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Abstract

In this paper, we study the collaborative learning model,
which concerns the tradeoff between parallelism and com-
munication overhead in multi-agent multi-armed bandits. For
regret minimization in multi-armed bandits, we present the
first set of tradeoffs between the number of rounds of commu-
nication among the agents and the regret of the collaborative
learning process.

1 Introduction
One of the biggest challenges with machine learning is scal-
ability. In recent years, a series of papers (Tao, Zhang, and
Zhou 2019; Karpov, Zhang, and Zhou 2020; Wang et al.
2020b; Karpov and Zhang 2022b,a) studied bandit problems
in the collaborative learning (CL) model, where multiple
agents interact with the environment to learn simultaneously
and cooperatively. One of the most expensive resources in
the CL model is communication, which consists of the num-
ber of communication steps (round complexity) and the to-
tal bits of messages exchanged between agents (bit com-
plexity). Communication directly contributes to the learn-
ing time due to network bandwidth constraints and latency,
and it can also lead to significant energy consumption, espe-
cially for deep-sea or outer-space exploration tasks. More-
over, when messages are sent using mobile devices, com-
munication can result in significant data usage. In this pa-
per, we focus on the round complexity in the CL model and
consider a basic problem in the bandit theory named regret
minimization in multi-armed bandits (MAB for short). We
try to investigate the round-regret tradeoffs for MAB in the
CL model.

In the rest of this section, we will first introduce the CL
model and the MAB problem. We then describe our results
and place them within the context of the literature.

Regret Minimization in MAB. In the single-agent learn-
ing model, we have one agent and a set of arms I =
{1, 2, . . . , N}; the arm i is associated with a distribution Di

with support [0, 1] and (unknown) mean µi. At each time
step t = 1, 2, . . . , T , the agent pulls arm πt and receives a
reward rt from distribution Dπt . The expected regret of a
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T -time single-agent algorithm A on input I is defined to be

E[Reg(A(I, T ))] = E

∑
t∈[T ]

(µ⋆ − µπt)

 , (1)

where µ⋆ ≜ max
i∈[N ]
{µi}.1 Without loss of generality, we as-

sume that the best arm is unique.

The Collaborative Learning Model. The CL model was
formalized in Tao, Zhang, and Zhou (2019). In this model,
we have K agents and a set of N arms I = {1, 2, . . . .N},
where arm i has mean µi. Again let µ⋆ ≜ maxi∈[N ]{µi}.
The learning proceeds in rounds. Within each round, at each
time step t, each agent k (k ∈ [K]) pulls arm π

(k)
t based on

its previous pull outcomes and messages received from other
agents; the arms {π(k)

t }k∈[K] can be the same or different
for different agents. At the end of each round, the K agents
communicate with each other to exchange newly observed
information and determine the number of time steps for the
next round. The number of time steps for the first round is
fixed at the beginning. See Figure 1 for an illustration of the
CL model.

It is worth mentioning that the lengths of rounds are not
required to be determined beforehand in the CL model.
Though for most CL algorithms in the literature (including
the one proposed in this paper), the round lengths are indeed
fixed at the beginning of the algorithms. This relaxation will
only make the lower bound proof harder/stronger.

The expected regret of a T -time K-agent collaborative al-
gorithm AK for MAB on input I is defined to be

E [Reg(AK(I, T ))] = E

∑
t∈[T ]

∑
k∈[K]

(
µ⋆ − µ

π
(k)
t

) .

(2)

The Batched Learning Model. The CL model is closely
related to the batched learning model, which has recently re-
ceived considerable attention in bandit theory (Perchet et al.
2015; Jun et al. 2016; Agarwal et al. 2017; Jin et al. 2019;
Gao et al. 2019; Esfandiari et al. 2019; Bai et al. 2019; Kar-
pov and Zhang 2020; Jin et al. 2021).

1We use [n] to denote {1, 2, . . . , n}.
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Figure 1: The collaborative learning model. Each dot rep-
resents an arm pull. The number of rounds of the learning
process shown in the figure is 3.

In the batched model, there is one agent interacting with
the arms. The learning proceeds in batches. The sequence of
arm pulls in each batch need to be determined at the begin-
ning of the batch. The goal is for the agent to minimize the
regret over a sequence of T pulls using a small number of
batches.

The batched model is motivated by applications in which
there is a significant delay in getting back the observations,
such as clinical trials (Thompson 1933; Robbins 1952) and
crowdsourcing (Kittur, Chi, and Suh 2008).

The following observation connects the CL model and the
batched model.

Observation 1. If there is a T -time R-batch single-agent al-
gorithm that achieves an expected regret f(I) for any input
I , then there is a (T/K)-time R-round K-agent collabora-
tive algorithm that achieves an expected regret f(I) for any
input I .

To see this, just note that each round of z (non-adaptive)
pulls in a batched algorithm can be evenly distributed to
the K agents in a collaborative algorithm so that each agent
makes z/K non-adaptive pulls. Observation 1 allows us to
establish a lower bound in the batched model by proving a
corresponding lower bound in the CL model, and to design
an algorithm for the CL model using an algorithm for the
batched model.

It is important to note that Observation 1 is one-way; the
other direction does not hold. This is because the CL model
is strictly stronger than the batched model in the sense that
in the CL model, each agent can make adaptive pulls within
each round. While in the batched model, the sequence of
pulls are non-adaptive in each batch. The requirement to ac-
commodate local agent adaptivity makes the previous ap-
proaches for proving lower bounds in the batched model in-
applicable to the CL model. As an example, in the previous
work (Tao, Zhang, and Zhou 2019), it has been shown that
for the problem of best arm identification (BAI) in multi-
armed bandits, where the goal is to identify the arm with the
highest mean rather than minimizing the regret, O(logK)
rounds is sufficient to achieve almost optimal error proba-

bility under a time budget in the adaptive CL model. On the
other hand, the same paper shows that Ω(logN/ log logN)
rounds is necessary to achieve almost optimal error probabil-
ity under a time budget in the batched model.2 This shows
that the local adaptivity does make the BAI problem more
difficult in the CL model when N ≫ K.

Our Results. Let ⋆ = argmaxi∈[N ] µi be the index of the
best arm. Let ∆i ≜ µ⋆ − µi, and ∆(I) = mini̸=⋆ ∆i. All
logarithms have base 2 unless specified explicitly. For read-
ability, we use ‘˜’ to hide some logarithmic factors. All these
factors will be spelled out in the corresponding theorems and
corollaries.

The results of this paper include the followings.
1. Our main result is a lower bound for MAB in the

CL model (Theorem 2). We show that for any T -time
K-agent collaborative algorithm AK , there is an in-
put I such that if AK runs on I using at most R ≤

log(KT )
2 log log log(KT ) rounds, then AK incurs an expected re-

gret of Ω̃
(
min{K, (KT )

1
R } · 1

∆(I)

)
.

2. Using Observation 1, our lower bound for MAB in the
CL model also gives a lower bound for MAB in the
batched model (Corollary 3), which is comparable to the
previous best lower bound (Gao et al. 2019).

3. We also design an algorithm for batched MAB (Theo-
rem 17). Again via Observation 1, we obtain an algorithm
for MAB in the CL model. Our upper bound matches the
lower bound up to logarithmic factors in regret.

We note that there is a single-agent algorithm ABPR

(Bubeck, Perchet, and Rigollet 2013) such that for an in-
put of two arms, given a time budget T , the algorithm in-
curs a regret of Õ

(
1

∆(I)

)
. Therefore, in the multi-agent set-

ting by asking each of the K agents to run ABPR, we ob-
tain a multi-agent algorithm ABPR

K that incurs a regret of
Õ
(
K · 1

∆(I)

)
without using any communication. This is

why the min{K, (KT )
1
R } term in our lower bound is nec-

essary.
On the other hand, we observe that when R ≤ log(KT )

logK ,
any collaborative algorithm AK , if runs for T time steps,
incurs an expected regret of at least Ω̃

(
K · 1

∆(I)

)
, which

matches the upper bound given by ABPR
K up to logarithmic

factors. Therefore, Theorem 2 indicates that to achieve any
super-logarithmic reduction in regret for MAB in the CL
model, the agents need to use at least log(KT )

logK rounds of
communication.

To the best of our knowledge, our proof strategy for the
round lower bound in the CL model is new. The only pre-
vious technique for proving round lower bound in the CL
model is the generalized round elimination, which was pro-
posed in Tao, Zhang, and Zhou (2019) for the problem

2In Tao, Zhang, and Zhou (2019), the Ω(logN/ log logN) (re-
call that N is the number of arms) round lower bound was proved
for the non-adaptive CL model, which is equivalent to the batched
model.



of best arm identification. However, we found it difficult
to use this technique for proving a regret-round tradeoff,
primarily because of the different nature of hard input in-
stances between best arm identification and regret minimiza-
tion. Specifically, Tao, Zhang, and Zhou (2019) exploited a
pyramid-type construction on arms for best arm identifica-
tion, while our hard inputs for regret minimization only in-
volve two arms. If we directly apply round elimination to
our hard inputs, only the best arm would survive after one
elimination step. Consequently, the maximum round lower
bound we can prove using round elimination is only two.

2 Related Work
Work in the Collaborative Learning Model. To the best
of our knowledge, the study of the CL model began from
Hillel et al. (2013), in which the authors considered the prob-
lem of best arm identification (BAI) in MAB. However, Hil-
lel et al. (2013) only considered a special case for the lower
bound, and the CL model was not formally defined in their
paper.

The CL model that we use in this paper was introduced by
Tao, Zhang, and Zhou (2019), in which almost tight round-
time tradeoff was given for BAI in MAB.3 Karpov, Zhang,
and Zhou (2020) extended this line of work to the top-m
arm identification in MAB. The work of Karpov and Zhang
(2022b) investigated the bit complexity of BAI in the CL
model. Wang et al. (2020b) studied regret minimization in
MAB in the same model, but their primary focus is the bit
complexity. Dai et al. (2023) investigated neural contextual
bandits; their focus was only on the upper bounds.

Several recent papers (Shi and Shen 2021; Shi, Shen, and
Yang 2021; Karpov and Zhang 2022a) studied problems in
MAB in the non-IID CL model, where agents interact with
possibly different environments. More specifically, Shi and
Shen (2021); Shi, Shen, and Yang (2021) studied regret min-
imization with a focus on the bit complexity, but the bit cost
in their model is integrated into the regret formulation. Kar-
pov and Zhang (2022a) gave almost tight round-time trade-
off for BAI in the non-IID CL model. Réda, Vakili, and
Kaufmann (2022) gave collaborative algorithms for non-IID
BAI and regret minimization in MAB in a similar setting, but
their algorithmic results only consider the fixed-confidence
setting, and they did not give any lower bound on the round-
regret tradeoffs.

Work in the Batched Learning Model. Batched algo-
rithms for bandit problems have attracted significant atten-
tion in the past decade. As discussed previously, Gao et al.
(2019); Esfandiari et al. (2019) studied regret minimization
in MAB mentioned. An earlier work (Perchet et al. 2015)
studied the same problem on two arms. Jin et al. (2021)
considered asymptotic regret in MAB in the batched model.
Several recent papers studied batched regret minimization in
MAB using Thompson sampling (Kalkanli and Özgür 2021;
Karbasi, Mirrokni, and Shadravan 2021; Karpov and Zhang

3In Tao, Zhang, and Zhou (2019), the time cost was presented
as speedup, defined as the ratio between the running time of the
collaborative algorithm and that of the best centralized algorithm.

2021). Another series of works (Jun et al. 2016; Agarwal
et al. 2017; Jin et al. 2019) studied batched BAI in MAB.

Other Work in Multi-Agent Bandit Learning. There are
many other papers investigating multi-agent bandit learning,
but they do not focus on the round complexity of the learn-
ing process. A series of papers (Szörényi et al. 2013; Land-
gren, Srivastava, and Leonard 2016, 2018) considered MAB
problems in the peer-to-peer (P2P) computing models such
that at each time step, agents can only communicate with
their neighbors in the P2P network. Several papers (Liu and
Zhao 2010; Rosenski, Shamir, and Szlak 2016; Bistritz and
Leshem 2018; Bubeck and Budzinski 2020) considered the
collision model, in which if multiple agents try to pull the
same arm at a particular time step, then their rewards will be
reduced due to collision.

There is a line of research that studies the bit complex-
ity of the messages transmitted between the agents (Mad-
hushani and Leonard 2021; Chawla et al. 2020; Wang et al.
2023, 2020a,b; Huang et al. 2021; He et al. 2022; Li et al.
2022). Some recent work has extended this line of re-
search to related models such as the Markov Decision Pro-
cesses (Dubey and Pentland 2021; Min et al. 2023).

3 The Lower Bound
In this section, we give the following theorem, which is the
main result of this paper.

Theorem 2. For any R such that 1 ≤ R ≤ log(KT )
2 log log log(KT ) ,

and for any R-round T -time K-agent collabo-
rative algorithm AK for MAB, there is an in-
put I such that AK incurs an expected regret of
Ω
(

1
log(KT ) log log log(KT ) ·min

{
K, (KT )

1
R

}
· 1
∆(I)

)
on input I .

By Observation 1, we have the following corollary (we
chose a value K such that K = (KT )

1
R in Theorem 2, and

note that a time budget T/K in the CL model corresponds
to a time budget T in the batched model).

Corollary 3. For any R such that 1 ≤ R ≤ log T
2 log log log T ,

and for any R-round T -time batch algorithm A for MAB,
there is an input I such that A incurs an expected regret of
Ω
(

1
log T log log log T · T

1
R · 1

∆(I)

)
on input I .

This result is comparable with the lower bound result for
(adaptive grid) batched algorithms in Gao et al. (2019). In
particular, both results show that Ω(log T/ log log T ) rounds
is necessary to achieve the optimal regret O

(
log T · 1

∆(I)

)
.

In the rest of this section we prove Theorem 2.

3.1 The Setup
We start by introducing some concepts and notations.

Notations. We list in Table 1 a set of key notations that
we will use throughout this paper. Readers can always come
back to this table when encounter an unfamiliar notation.

We will use R to denote the number of rounds used by the
K-agent collaborative algorithm AK .



Table 1: Summary of Notations

Notation Definition
N number of arms
K number of agents
R number of rounds
T time horizon
ϵ, λ, β fixed constants: ϵ = 0.1, λ = 10−6, and β = 4

α α ≜ logL/(2λ)

L L = log(4KT )
4 is the number of pairs of hard

inputs
∆ℓ ∆ℓ = 2/βℓ is the mean gap of two arms in the

level ℓ hard inputs (Section 3.2)
γ pull transcript; a sequence of (arm pull index,

reward) pairs
r(γ) see Definition 9; intuitively, it is the index of a

“big” round under transcript γ
ℓ(γ) see Definition 9; it is roughly the logarithm of

the time step of the beginning of the r(γ)-th
round

τ(γ, ℓ) see Definition 11; can be seen as a mapping
from ℓ(γ) back to the round index

ℓ∗ defined in Inequality (9)

For a time horizon T , we will create L = log(4KT )
4 pairs

of hard inputs, and focus on R in the range

4L

logK
≤ R ≤ 2L

log logL
. (3)

Note that in the case when R < 4L
logK , the regret will cer-

tainly be lower bounded by the case when R = 4L
logK , in

which case (KT )
1
R becomes

(KT )
log K
4L = 2log(KT )· log K

log(4KT ) = Θ(K).

This is why there is a min{K, (KT )
1
R } term inside the re-

gret in Theorem 2. As mentioned in “our results” in the in-
troduction, this min operation is also necessary to be there.

We will use the following constants in the proof: ϵ =
10−1, λ = 10−6, and β = 4. We will use the notations
instead of the actual constants in most places of this section
for the sake of readability.

Pull Transcript. Let γ = ((j1, o1), . . . , (jn, on)) be a se-
quence of pulls and reward outcomes on an input I for MAB,
where jt is the index of the arm in I being pulled at the t-th
time step and ot is the corresponding reward. We call γ the
transcript of a sequence of arm pulls, and use |γ| = n to de-
note the length of γ (i.e., the number of (jt, ot) pairs in γ).
For convenience, we use j(γ) = (j1, . . . , jn) to denote the
sequence of arm indices and o(γ) to denote the correspond-
ing sequence of rewards.

For a sequence of arm indices j(γ), let ΘI(j(γ)) be the
sequence of (random) rewards by pulling the arms of I ac-
cording to j(γ). We define

gI(γ) ≜ Pr[ΘI(j(γ)) = o(γ)], (4)

which is the probability of observing the reward sequence
o(γ) by pulling the arms in input I following the index se-
quence j(γ).

For a single-agent algorithm A for MAB, an input I and
a time horizon n, we use Γ ∼ A(I, n) to denote a ran-
dom transcript generated by runningA on input I for n time
steps. For a K-agent collaborative algorithm AK , we write
Γ ∼ AK(I, n) as the round-robin concatenation of the K
transcripts generated by the K agents on input I for n time
steps. That is,

Γ =
{
(J

(1)
1 , O

(1)
1 ), . . . , (J

(K)
1 , O

(K)
1 ), . . . , (J (K)

n , O(K)
n )

}
,

where (J (k)
t , O

(k)
t ) is the (arm index, reward) pair of the pull

of agent k at time t. We use capital letters J
(k)
t and O

(k)
t

since they are random variables depending on the previous
pulls and outcomes.

3.2 The Hard Inputs
We begin by introducing the set of hard inputs.

For each ℓ ∈ {1, . . . , L} and each σ ∈ {+1,−1}, let Iσℓ
be an input on two Bernoulli arms (i.e., the reward is either
0 or 1 on each pull), where the first arm has mean 1

2 + σ
βℓ

and the second arm has mean 1
2 −

σ
βℓ .

For the convenience of writing, we will abbreviate I+1
ℓ

and I−1
ℓ to I+ℓ and I−ℓ respectively.

For ℓ ∈ [L], let ∆ℓ = 2/βℓ be the mean gap between the
two arms in the inputs I+ℓ (or I−ℓ ).

We define the set of hard inputs to be

I = {I+1 , I−1 , . . . , I+L , I−L } .

Let Iℓ = {I+ℓ , I−ℓ , . . . , I+L , I−L } denote a suffix of I starting
from index ℓ.

The set of hard inputs I have some nice properties which
we will use in the lower bound proof. Due to the space con-
straints, we leave them to the full version of this paper.

3.3 Indistinguishable Input Pairs
We introduce the following event defined on a transcript γ.

Definition 4. Event E(γ): For any ℓ ∈ [L] such that
λβ2ℓ

logL ≥ |γ|, and for any pair of inputs A,B ∈ Iℓ, we have

ln
gA(γ)

gB(γ)
≤ 2ϵ .

Intuitively, it says that when the length of transcript γ is
smaller than λβ2ℓ

logL , the probabilities of producing γ under all
inputs in Iℓ are similar. We will often abbreviate E(γ) to E
when γ is clear from the context.

The following lemma states that for a random transcript Γ
generated by running a single-agent algorithm on any input
in I, E(Γ) holds with high probability. The technical proof
can be found in the full version of this paper.

Lemma 5. For any single-agent algorithm A for MAB, any
I ∈ I, and any n > 0, let Γ ∼ A(I, n) denote a random



transcript Γ generated by running A on input I for n time
steps. It holds that

Pr
Γ∼A(I,n)

[E(Γ)] ≥ 1− 1/L6.

The next lemma shows that short transcripts generated by
a single-agent algorithm on two inputs in Iℓ are statistically
indistinguishable. Its proof can be found in the full version
of this paper.
Lemma 6. Let A be any single-agent algorithm for MAB.
For a transcript γ, let G(γ) be any event determined by γ.
For any ℓ ∈ [L], any pair of inputs A,B ∈ Iℓ, and any
n ≤ λβ2ℓ

logL , we have

Pr
Γ∼A(A,n)

[G(Γ) ∧ E(Γ)] ≤ e2ϵ Pr
Γ∼A(B,n)

[G(Γ) ∧ E(Γ)] .

3.4 The Lower Bound Proof
Now we are ready to give the proof of Theorem 2.

Intuition. The high level intuition is that if the number of
rounds of the CL algorithm is small, then for some pair of
inputs (I+ℓ∗ , I

−
ℓ∗) in the set of hard inputs I, we have (1) the

algorithm will make many pulls in the ℓ∗-th round, and (2)
the information collected from the pull transcript and pre-
vious communication at each local agent is not enough to
distinguish I+ℓ∗ from I−ℓ∗ . The second item implies that all se-
quences of pulls on the pair of inputs (I+ℓ∗ , I

−
ℓ∗) are approx-

imately equally likely, which, together with the first item,
implies that the regret of the algorithm should be large on at
least one of these two inputs.

Identifying A Critical Pair of Inputs. We start by identi-
fying the pair (I+ℓ∗ , I

−
ℓ∗).

Observe that by our choices of L and β, it holds that

T = 1/(K∆2
L) = β2L/(4K). (5)

Let AK be a R-round collaborative algorithm. Let γ be
any transcript produced by AK . Let tr ≜ tr(γ) (r =
1, . . . , R) be the time step at the end of the r-th round. We
thus have tR = T . For convenience, we define t0 = 1/K.
Note that t1, . . . , tR−1 are determined by γ, and t0 and tR
are two fixed values.

We have the following simple fact on the ratio of finishing
times of two consecutive rounds.
Fact 7. For any T > 0, R > 0, and any transcript γ, there
is a r ∈ [R] such that tr

tr−1
≥ (KT )

1
R .

We define the following event Fr(γ) for r = 1, . . . , R.
Definition 8. Event Fr(γ): For any i < r, it holds that
ti/ti−1 < (KT )

1
R ; and for i = r, we have tr/tr−1 ≥

(KT )
1
R .

It is clear that F1(γ), . . . ,FR(γ) are disjunctive and they
together partition the probability space.

For convenience of writing, let α ≜ logL
2λ . We first intro-

duce two notations r(γ) and ℓ(γ); intuitively, the former is
the index of a “big” round under transcript γ, and the latter
is roughly the logarithm of the time step of the beginning of
the r(γ)-th round.

Definition 9 (r(γ) and ℓ(γ)). For a transcript γ, let r =
r(γ) be the round index such that Fr(γ) holds. And let ℓ(γ)
be the integer such that

β2(ℓ(γ)−1)

αK
≤ tr(γ)−1 <

β2ℓ(γ)

αK
. (6)

The next claim shows that the value of ℓ(γ) will not be
larger than L. Its proof can be found in the full version of
this paper.
Claim 10. For any γ, it holds that 1 ≤ ℓ(γ) ≤ L.

By the definition of Fr(γ), we have

tr(γ) ≥ (KT )
1
R · tr(γ)−1 =

(
β2L

4

) 1
R

tr(γ)−1 . (7)

Let mr(γ) = tr(γ) − tr(γ)−1 be the length of the r(γ)-th
round. By (6) and (7), we have

mr(γ) ≥

((
β2L

4

) 1
R

− 1

)
β2(ℓ(γ)−1)

αK
. (8)

Now, consider a particular ℓ∗ such that

Pr
Γ∼AK(I+

L ,T )
[ℓ(Γ) = ℓ∗] ≥ 1

L
. (9)

Such an ℓ∗ must exist, since each transcript Γ = γ corre-
sponds to a unique r(γ) and consequently a unique ℓ(γ).
And by Claim 10, ℓ(γ) ≤ L always holds.

Our goal is show that the expected regret of AK is high
on either the input I+ℓ∗ or the input I−ℓ∗ . We call (I+ℓ∗ , I

−
ℓ∗) the

critical input pair for AK .

Projection of A Collaborative Algorithm. To facilitate
the regret analysis on the critical pair of inputs, we would
like to introduce a concept termed as projection of a collab-
orative algorithm on a single agent.

We first introduce a notation τ(γ, ℓ), which can be seen
as a mapping from (the logarithm of) time step ℓ(γ) back to
the round index.
Definition 11 (τ(γ, ℓ)). Let γ be an arbitrary transcript gen-
erated by running AK on I for T time steps. Let τ(γ, ℓ) be
the round index such that

β2(ℓ−1)

αK
≤ tτ(γ,ℓ)−1 <

β2ℓ

αK
. (10)

By the Definition 9 and Definition 11, it is not difficult to
check that r(γ) = τ(γ, ℓ(γ)).

Let AK be a collaborative algorithm. For any k ∈ [K],
we use ProjAK

k (I, ℓ) to denote a single-agent algorithm that
simulates AK .

And let

ζℓ =
β2ℓ

α
· β

2(L
R−1)

8K
. (11)

ProjAK

k simulatesAK as follows: In the first (τ(γ, ℓ)−1)
rounds, at each time step t, if agents 1, . . . ,K pull arms
a
(1)
t , . . . , a

(K)
t in I respectively under AK , then ProjAK

k

pulls arms a
(1)
t , . . . , a

(K)
t in I in order. In the τ(γ, ℓ)-th



round, at each time step t when t ≤ ζℓ + tτ(γ,ℓ)−1, if agent
k pulls arm a

(k)
t in I under AK , then ProjAK

k also pulls arm
a
(k)
t in I .
For a transcript γ generated by running AK and each k ∈

[K], we introduce two concepts:
Definition 12 (Projk(γ, ℓ)). Let Projk(γ, ℓ) be the sequence
of (jt, ot) pairs in γ generated by the K agents in the round-
robin fashion in the first (τ(γ, ℓ) − 1) rounds, followed by
the first ζℓ of (jt, ot) pairs in the τ(γ, ℓ)-th round (or until
the end of the τ(γ, ℓ)-th round) in γ generated by agent k.

Projk(γ, ℓ) connects a pull transcript produced by a K-
agent algorithm in the eye of the k-th agent at the time of
the ζℓ-th time step in the τ(γ, ℓ)-th round (or until the end
of the τ(γ, ℓ)-th round) with that produced by a single-agent
algorithm.

Definition 13 (Lastk(γ, ℓ)). Let Lastk(γ, ℓ) be the sequence
of the first ζℓ of (jt, ot) pairs in the τ(γ, ℓ)-th round (or until
the end of the τ(γ, ℓ)-th round) in γ generated by agent k.

Lastk(γ, ℓ) can be seen as a suffix of Projk(γ, ℓ) that is
only observed locally at the k-agent in the τ(γ, ℓ)-th round.

Large Regret on the Critical Input Pair. Now we are
ready to lower bound the regret. Let AK be any K-agent
collaborative algorithm, and ℓ∗ satisfying Inequality (9). We
define the following event for a transcript γ.
Definition 14. Event Q(γ): ℓ(γ) = ℓ∗.

Inequality (9) implies that

Pr
Γ∼AK(I+

L ,T )
[Q(Γ)] ≥ 1

L
. (12)

Intuitively, EventQ(γ) says that the “big” round under tran-
script γ coincides to at least a 1/L fraction of transcripts
produced by AK on a particular input I+L .

Let ΓL ∼ AK(I+L , T ). Let
Υ = {γ ∈ supp(ΓL) | Q(γ)},

and for any k ∈ [K],
Υk(ℓ

∗) = {Projk(γ, ℓ
∗) | γ ∈ Υ}. (13)

We will try to show that I+ℓ∗ , I
−
ℓ∗ are indistinguishable w.r.t.

transcripts in Υk(ℓ
∗), and we will use the special input

I+L as a bridge. Specifically, we show for each transcript
γ ∈ Υk(ℓ

∗), the probability of producing γ when the in-
put instance is I+ℓ∗ is close to the probability of producing γ

when the input instance is I−ℓ∗ .
Before doing this, we first upper bound the length of tran-

scripts in Υk(ℓ
∗). By (11) and (8), we have

ζℓ∗ ≤

((
β2L

4

) 1
R

− 1

)
β2(ℓ∗−1)

αK
≤ mτ(γ,ℓ∗). (14)

Consequently, for any γ ∈ Υk(ℓ
∗),

|γ| = K · tτ(γ,ℓ∗)−1 + ζℓ∗

≤ K · β
2ℓ∗

αK
+

β2ℓ∗

α
· β

2(L
R−1)

8K

≤ λβ2ℓ∗

logL
, (15)

where the last inequality holds because β2(L
R−1) ≤ 8K by

the first inequality in (3).
The following two claims exhibit properties of transcripts

in Υk(ℓ
∗). The first claim states that the probability of a

random transcript being in Υk(ℓ
∗) is significant. Its proof

makes use of Lemma 5 and Lemma 6.

Claim 15. For any I ∈ {I+ℓ∗ , I
−
ℓ∗} and any k ∈ [K], we have

Pr
Γ∼AK(I,T )

[Projk(Γ, ℓ
∗) ∈ Υk(ℓ

∗)∧ E(Projk(Γ, ℓ
∗))] ≥ e−2ϵ

2L
.

The next claim states that it is difficult to use a transcript
in Υk(ℓ

∗) to differentiate inputs I+ℓ∗ (or I−ℓ∗ ) from I+L . Its
proof makes use of Lemma 6.

Claim 16. For any I ∈ {I+ℓ∗ , I
−
ℓ∗} and any k ∈ [K], for any

γ ∈ Υk(ℓ
∗) such that E(γ) holds, we have

Pr
Γ∼AK(I,T )

[Projk(Γ, ℓ
∗) = γ]

= cϵ Pr
Γ∼AK(I+

L ,T )
[Projk(Γ, ℓ

∗) = γ]

for some cϵ ∈ [e−2ϵ, e2ϵ].

Recall that Lemma 5 and Lemma 6 concern single-agent
algorithms. We use the following relation between a K-
agent algorithm AK and a single-agent algorithm A to con-
nect Claim 15 and Claim 16 with Lemma 5 and Lemma 6:

Pr
Γ∼AK(I+

L ,T )
[Q(Γ)] = Pr

Γ∼ProjAK
k (I+

L ,ℓ∗)

[Γ ∈ Υk(ℓ
∗)].

We leave the proofs of Claim 15 and Claim 16 to the full
version of this paper.

We now try to prove Theorem 2.
Let Γ+ ∼ Ak(I

+
ℓ∗ , T ), and Γ− ∼ Ak(I

−
ℓ∗ , T ). By

Claim 16 and Claim 15, we know that

∑
γ∈Υk(ℓ∗)

min

{
Pr[Projk(Γ

+, ℓ∗) = γ],

Pr[Projk(Γ
−, ℓ∗) = γ]

}

≥ e−2ϵ

2L
· (cϵ)2 ≥

e−8ϵ

2L
. (16)

For an input I and transcript γ =
((j1, o1), . . . , (j|γ|, o|γ|)), let Reg(I, γ) denote the re-
gret of pulling the arm sequence j(γ) on the input I , that is,
Reg(I, γ) =

∑
t=1,...,|γ|(µ∗ − µjt).

For any transcript γ ∈ Υk(ℓ
∗) and any k ∈ [K], we

consider the regret Uk = Reg
(
I+ℓ∗ ,Lastk(γ, ℓ∗)

)
and Vk =

Reg
(
I−ℓ∗ ,Lastk(γ, ℓ∗)

)
. Due to our constructions of I+ℓ∗ and

I−ℓ∗ , we have for any k ∈ [K],

Uk + Vk ≥ ∆ℓ∗ · ζℓ∗ . (17)

Since for k = 1, . . . ,K , Lastk(γ, ℓ∗) are disjoint, we have



Algorithm 1: BATCHEDMAB(I, λ, T )

1: Initialize a set of active arms I0 ← I
2: Set T0 ← 0
3: for i = 1, 2, . . . , logλ T do
4: Set Ti ← λi

5: end for
6: Set r ← logλ log(T

3N)
7: Pull each arm for Tr−1 times
8: while r ≤ logλ T or |Ir| > 1 do
9: for a ∈ Ir do

10: Make (Tr − Tr−1) pulls on arm a
11: Compute µ̂r

a, the estimated mean after Tr pulls
12: end for
13: Let µ̂r

max ← maxa∈Ir µ̂
r
a

14: Set Ir+1 ←
{
a | µ̂r

max − µ̂r
a < 2

√
ln(T 3|I|)

Tr

}
15: Update r ← r + 1
16: end while
17: if r < logλ T then
18: Assign the rest of pulls to the single arm in Ir
19: end if

for any γ ∈ Υ,

Reg(I+ℓ∗ , γ) + Reg(I−ℓ∗ , γ)

≥
∑

k∈[K]

(Uk + Vk)

(17)

≥ K∆ℓ∗ · ζℓ∗

= K∆ℓ∗ ·
β2ℓ∗

α
· β

2(L
R−1)

8K

=
β2(L

R−1)

2α
· 1

∆ℓ∗
. (18)

By (16) and (18), we have that

max
{
E
[
Reg(AK(I+ℓ∗ , T ))

]
,E
[
Reg(AK(I−ℓ∗ , T ))

]}
≥ 1

2
· e

−8ϵ

2L
· β

2(L
R−1)

2α
· 1

∆ℓ∗

= Ω

(
β

2L
R

L logL
· 1

∆ℓ∗

)
.

This concludes the proof of Theorem 2.

4 The Algorithm
In this section, we design a batched algorithm for MAB,

which implies an algorithm for MAB in the CL model via
Observation 1. Our batched algorithm is described in Algo-
rithm 1. It uses the successive elimination method. In each
batch, we pull the remaining arms for an equal number of
times and then eliminate those whose empirical means are
smaller than the best one by a good margin.

Algorithm 1 can be seen as a variant of the algorithm
in Gao et al. (2019). The main differences are: (1) Algo-
rithm 1 employs an early stopping rule (triggered when

|Ir| = 1 at Line 8), which leads to an instance-dependent
batch complexity; and (2) it uses a preliminary exploration
step (Line 7) to further reduce the number of batches.

The proof of the following theorem can be found in the
full version of this paper. We note that Algorithm 1 does not
need to know ∆(I), but in the analysis we can upper bound
both the number of batches and the regret in terms of ∆(I).
Theorem 17. For any λ ≥ 2, BATCHEDMAB(I, λ, T )
uses η ≤ logλ T rounds and incurs an expected regret of

O
(∑

a ̸=⋆
λ log T
∆a

)
. We also have η = O

(
logλ

1
∆(I)

)
with

probability
(
1− 1

T 3

)
.

By Observation 1, we have the following corollary.
Corollary 18. There is a collaborative algorithm AK for
MAB such that under time horizon T , for any input I , AK

uses η ≤ logλ(KT ) rounds and incurs an expected regret

of O
(∑

a ̸=⋆
λ log(KT )

∆a

)
. We also have η = O

(
logλ

1
∆(I)

)
with probability

(
1− 1

T 3

)
.

We would like to give a brief comparison between our
upper bound and the lower bound.

1. If we set λ = (KT )
1
R . By Corollary 18, for the case

of two arms, Algorithm 1 uses at most R rounds and in-
curs an expected regret O

(
(KT )

1
R · log(KT ) · 1

∆(I)

)
.

Recall by Theorem 2 that the expected regret needs to be
Ω
(
(KT )

1
R · 1

log(KT ) log log(KT ) ·
1

∆(I)

)
. For R = O(1),

which is of practical interest, our upper and lower bounds
match up to a term that is logarithmic of (KT )

1
R .

2. If we set λ = Θ(1), by Corollary 18, Algorithm 1
uses O(log(KT )) rounds and achieves asymptotically
optimal regret O

(∑
a ̸=⋆

log(KT )
∆a

)
. While the best

centralized algorithm has essentially the same regret
O
(∑

a ̸=⋆
log(T )
∆a

)
(Garivier, Ménard, and Stoltz 2016);

recall that time T in the centralized model corresponds
to KT in the CL model.

5 Concluding Remarks
In this paper, we present the first set of round-regret tradeoffs
for regret minimization in multi-armed bandits in the collab-
orative learning model. To the best of our knowledge, our
lower bound results are the first to address the local adap-
tivity of agents for regret minimization in the collaborative
learning model.

We observe that a poly-logarithmic factor gap remains be-
tween our upper and lower bounds, potentially to be bridged
in the future work. It would also be interesting to general-
ize the results to non-IID environments, and investigate the
round-regret tradeoffs for other bandits and reinforcement
learning problems in the collaborative learning model.
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