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Abstract
For a tall n × d matrix A and a random m × n sketching matrix S, the sketched estimate of
the inverse covariance matrix (A>A)−1 is typically biased: E[(Ã>Ã)−1] 6= (A>A)−1, where
Ã = SA. This phenomenon, which we call inversion bias, arises, e.g., in statistics and distributed
optimization, when averaging multiple independently constructed estimates of quantities that de-
pend on the inverse covariance matrix. We develop a framework for analyzing inversion bias, based
on our proposed concept of an (ε, δ)-unbiased estimator for random matrices. We show that when
the sketching matrix S is dense and has i.i.d. sub-gaussian entries, then after simple rescaling, the
estimator ( m

m−dÃ>Ã)−1 is (ε, δ)-unbiased for (A>A)−1 with a sketch of sizem = O(d+
√
d/ε).

In particular, this implies that for m = O(d), the inversion bias of this estimator is O(1/
√
d),

which is much smaller than the Θ(1) approximation error obtained as a consequence of the sub-
space embedding guarantee for sub-gaussian sketches. We then propose a new sketching technique,
called LEverage Score Sparsified (LESS) embeddings, which uses ideas from both data-oblivious
sparse embeddings as well as data-aware leverage-based row sampling methods, to get ε inversion
bias for sketch size m = O(d log d +

√
d/ε) in time O(nnz(A) log n + md2), where nnz is the

number of non-zeros. The key techniques enabling our analysis include an extension of a classical
inequality of Bai and Silverstein for random quadratic forms, which we call the Restricted Bai-
Silverstein inequality; and anti-concentration of the Binomial distribution via the Paley-Zygmund
inequality, which we use to prove a lower bound showing that leverage score sampling sketches
generally do not achieve small inversion bias.
Keywords: randomized linear algebra, sketching, random matrix theory, distributed optimization

1. Introduction

Sketching has been widely used in the design of scalable algorithms, perhaps most prominently in
Randomized Numerical Linear Algebra (RandNLA) due to applications in machine learning and
data analysis. In this approach, one randomly samples or computes a random projection of the
data matrix to construct a smaller matrix, the sketch. One then uses the sketch as a surrogate to
approximate quantities of interest. The analysis of these methods typically proceeds via a Johnson-
Lindenstrauss-type argument to establish that the geometry of the matrix is not perturbed too much
under the sketching operation. These methods have yielded state-of-the-art in worst-case analysis,
high-quality numerical implementations, and numerous applications in machine learning (Mahoney,
2011; Halko et al., 2011b; Woodruff, 2014; Drineas and Mahoney, 2016, 2018).
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In many cases, either to preserve the structure of the data or for algorithmic reasons, one is in-
terested in sparse sketches, i.e., random transformations that are represented by matrices with most
entries exactly equal to zero. One class of sparse sketches includes row sampling techniques, such
as leverage score sampling (Drineas et al., 2008, 2012; Ma et al., 2015), which are typically data-
aware, in the sense that the sampling distribution depends on the given data matrix. Another im-
portant class of methods uses data-oblivious sparse embedding, such as the CountSketch (Charikar
et al., 2002; Clarkson and Woodruff, 2017; Meng and Mahoney, 2013; Nelson and Nguyên, 2013),
to construct sketches in time depending on the number of non-zeros (nnz) in the input.

In all these cases, one can show that the sketch will be an approximation of the solution with
high probability. However, comparatively little is known about the average performance of these
sketches. In particular, there may be a systematic bias away from the solution, which is problematic
in many situations in statistics, machine learning, and data analysis. Perhaps the most ubiquitous
example of this phenomenon is the systematic bias caused by matrix inversion, a key component
of algorithms in the aforementioned domains. In this paper, we introduce the fundamental notion
of inversion bias, which provides a finer control over the sketched estimates involving matrix inver-
sion. We show that one can conveniently make the inversion bias small with dense Gaussian and
sub-gaussian sketches. We also show that some sparse sketches do not have this desired property.
Then, we provide a non-trivial new construction and algorithm, using ideas from both data-oblivious
projections and data-aware sampling, to get small inversion bias even for very sparse sketches.

1.1. Overview

Consider an n×d data matrix A of rank d, where n ≥ d. In many applications, we wish to approxi-
mate quantities of the form F ((A>A)−1), where (A>A)−1 is the d×d inverse data covariance and
F (·) is a linear functional. Our goal is to provide a finer control over the effect of matrix inversion
on the quality of such estimates. Here are some of the motivating examples:

• The vector (A>A)−1b is the solution of ordinary least squares (OLS) when b = A>y for
a vector y, arguably the most widely used multivariate statistical method (Anderson, 2003;
Rao et al., 1973; Hastie et al., 2009), and it is also crucial for the Newton’s method in numer-
ical optimization (Boyd and Vandenberghe, 2004; Nocedal and Wright, 2006). In particular,
accurate approximations of this vector lead directly to improved convergence guarantees for
many optimization algorithms (Pilanci and Wainwright, 2016; Wang et al., 2018b).

• The scalar x>(A>A)−1x for a vector x, has numerous use-cases: When x = ai is one of the
rows of A, then it represents the statistical leverage scores (Drineas et al., 2006b); If x = ei
is a standard basis vector, then this is the squared length of the confidence interval for the i-th
coefficient in OLS (Anderson, 2003; Hastie et al., 2009).

• The scalar tr C(A>A)−1 for a matrix C, is used to quantify uncertainty in statistical results,
e.g., via the mean squared error (MSE) of estimating the regression coefficients in OLS (An-
derson, 2003; Hastie et al., 2009), and to formulate widely used criteria from experimental
design, e.g., A-designs and V-designs (Pukelsheim, 2006; Cox and Reid, 2000).

More generally, our work is also motivated by the important problem of inverse covariance estima-
tion in statistics, machine learning, finance, signal processing, and related areas (Dempster, 1972;
Meinshausen and Bühlmann, 2006; Friedman et al., 2008; Lam and Fan, 2009; Cai et al., 2011;
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Ledoit and Wolf, 2012; Marjanovic and Hero, 2015). In this area, we wish to estimate statistically
the inverse covariance matrix of a population, or some of its functionals, based on a finite number of
samples. Furthermore, inverting covariance matrices occurs in Bayesian statistics (Hartigan, 1969;
Gelman et al., 2013), Gaussian processes (Rasmussen, 2003), as well as time series analysis and
control, e.g., via the Kalman filter (Welch and Bishop, 1995; Brockwell and Davis, 2009).

When n and d are large, and particularly when n � d, then the costs of storing the matrix A
and of computing (A>A)−1 are prohibitively large. Matrix sketching has proven successful at
drastically reducing these costs by approximating the inverse covariance with a sketched estimate
(Ã>Ã)−1 based on a smaller matrix Ã = SA, where S is a random m × n matrix and m � n
(Mahoney, 2011; Halko et al., 2011b; Woodruff, 2014; Drineas and Mahoney, 2016, 2018). As a
concrete algorithmic motivation for our work, consider the following popular strategy for boosting
the quality of such estimates: Construct multiple copies in parallel, based on independent sketches,
and then average the estimates. This strategy is especially useful in distributed architectures, where
storage and computing resources are spread out across many machines, and has commonly appeared
in the literature (Konecný et al., 2016a,b; Wang et al., 2018b; Dereziński and Mahoney, 2019).
While promising in practice, this averaging technique is fundamentally limited by the inversion
bias: even though the sketched covariance estimate is unbiased, E[Ã>Ã] = A>A, its inverse in
general is not unbiased, i.e., E[(Ã>Ã)−1] 6= (A>A)−1. When the sketch size m is not much larger
than the dimension d, the size of this bias can be very significant, even as large as the approximation
error, in which case averaging becomes ineffective. Motivated by this, we ask:

When is the inversion bias small, relative to the approximation error?

In this paper, we develop a framework for analyzing the inversion bias of sketching, via the notion
of an (ε, δ)-unbiased estimator (Definition 3), and we show how it can be used to provide improved
approximation guarantees for averaging. Through this framework, we provide several contributions
towards addressing the above question.

Sub-gaussian sketches have small inversion bias. Arguably the most classical family of
sketches consists of dense random matrices S with i.i.d. sub-gaussian entries. These sketches offer
strong relative error approximation guarantees via the so-called subspace embedding property, at
the expense of high computational cost of the matrix product Ã = SA. We show that, upon a sim-
ple correction, sub-gaussian sketches are nearly-unbiased, i.e., their inversion bias is much smaller
than the approximation error, which means that averaging can be used to significantly improve the
approximation quality. In particular, we show that, after a simple scalar rescaling, the inverse co-
variance estimator of the form ( m

m−dÃ
>Ã)−1 achieves ε inversion bias relative to (A>A)−1 with

a sketch of size only m = O(d+
√
d/ε) (Proposition 4). In contrast, to ensure that ( m

m−dÃ
>Ã)−1

is an η relative error approximation of (A>A)−1 via the subspace embedding property, we need
a sub-gaussian sketch of size m = Θ(d/η2), which is comparatively larger if we let η = Θ(ε).
This implies that an aggregate estimator obtained via averaging can with high probability produce
a relative error approximation that is by a factor of O(1/

√
m) better than the approximation error

offered by any one of the estimators being averaged.
LEverage Score Sparsified (LESS) embeddings. We show that existing algorithmically ef-

ficient sketching techniques may not provide guarantees for the inversion bias that match those
satisfied by dense sub-gaussian sketches (see Theorem 10 for a lower bound on leverage score
sampling, and a discussion of other methods in Appendix C.3). To address this, we propose a
new family of sketching methods, called LEverage Score Sparsified (LESS) embeddings, which

3
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combines a data-oblivious sparsification strategy reminiscent of the CountSketch with the data-
aware approach of approximate leverage score sampling. LESS embeddings have time complexity
O(nnz(A) log n+md2) and achieve ε inversion bias with the sketch of sizem = O(d log d+

√
d/ε),

nearly matching our guarantee for sub-gaussian sketches (Theorem 8). Thus, our new algorithm pro-
vides a promising way to address the fundamental problem of inversion bias, and it may have many
other applications in the future. Finally, our analysis reveals two structural conditions for small
inversion bias (Theorem 11), one of which (Condition 2, called the Restricted Bai-Silverstein con-
dition) leads to a generalization of a classical inequality used in random matrix theory, and should
be of independent interest.

1.2. Related work

Distributed averaging. Averaging strategies have been studied extensively in the literature, par-
ticularly in the context of machine learning and numerical optimization. This line of work has
proven particularly effective for federated learning (Konecný et al., 2016a,b), where local storage
and communication bandwidth are particularly constrained. The performance of averaged esti-
mates was analyzed in numerous statistical learning settings (McDonald et al., 2009, 2010; Zhang
et al., 2013; Dobriban and Sheng, 2018, 2020) and in stochastic first-order optimization (Zinke-
vich et al., 2010; Agarwal and Duchi, 2011). Of particular relevance to our results is a recent
line of works on distributed second-order optimization (Shamir et al., 2014; Zhang and Lin, 2015;
Reddi et al., 2016; Wang et al., 2018b), as well as large-scale second-order optimization (Yao et al.,
2019, 2020), since sketching is used there to estimate (implicitly) the inverse Hessian matrix which
arises in Newton-type methods. In particular, Dereziński and Mahoney (2019); Dereziński et al.
(2020a) pointed to Hessian inversion bias as a key challenge in these approaches. To address it,
their algorithms use non-i.i.d. sampling sketches based on Determinantal Point Processes (DPPs)
(Dereziński and Mahoney, 2021). DPP-based sketches are known to correct inversion bias exactly
(Dereziński and Warmuth, 2018; Dereziński et al., 2019c,a). However, state-of-the-art DPP sam-
pling algorithms (Dereziński et al., 2018, 2019; Calandriello et al., 2020) have time complexity
O(nnz(A) log n + d4 log d), which is considerably more expensive than fast sketching techniques
when dimension d is large.

Random matrix theory. When considering S ∈ Rm×n having i.i.d. zero-mean rows, A>S>SA
can be viewed as the popular sample covariance estimator of the “population covariance matrix”
A>A ∈ Rd×d. In this area, one often considers the matrix (A>S>SA − zI)−1 for z ∈ C \ R+,
the so-called resolvent matrix, which plays a fundamental role in the literature of random matrix
theory (RMT) (Marchenko and Pastur, 1967; Bai and Silverstein, 2010; Edelman and Rao, 2005;
Anderson et al., 2010; Couillet and Debbah, 2011; Tao, 2012; Bun et al., 2017) and which is directly
connected to the popular Marchenko-Pastur law (Marchenko and Pastur, 1967). The RMT literature
focuses on the Stieltjes transform (that is, the normalized trace of the resolvent) to investigate the
limiting eigenvalue distribution of large random matrices of the form A>S>SA as m,n, d → ∞
at the same rate. Here, we provide precise and finite-dimensional results on the inverse sketched
matrix. This addresses the important case of z = 0, which is typically avoided in RMT analyses,
due to the difficulty of dealing with the possible singularity. More generally, the resolvent also
appears as the key object of study in the spectrum analysis of linear operators in general Hilbert
space (Akhiezer and Glazman, 2013), as well as in modern convex optimization theory (Bauschke
and Combettes, 2011), thereby showing a much broader interest of the proposed analysis.
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Sketching. For overviews of sketching and random projection methods, we refer to (Vempala,
2005; Halko et al., 2011b; Mahoney, 2011; Woodruff, 2014; Drineas and Mahoney, 2016, 2017,
2018; Dereziński and Mahoney, 2021). A key result in this area is the Johnson-Lindenstrauss
lemma, which states that norms, and thus also relative distances between points, are approximately
preserved after sketching, i.e., (1− η)‖xi‖2 ≤ ‖Sxi‖2 ≤ (1 + η)‖xi‖2 for x1, . . . ,xn ∈ Rp. This
is further extended to the subspace embedding property: for all x, the norm of x is preserved up
to an η factor. Subspace embeddings were first used in RandNLA by Drineas et al. (2006b), where
they were used in a data-aware context to obtain relative-error approximations for `2 regression
and low-rank matrix approximation (Drineas et al., 2008). Subsequently, data-oblivious subspace
embeddings were used by Sarlos (2006) and popularized by Woodruff (2014). Both data-aware
and data-oblivious subspace embeddings can be used to derive bounds for the accuracy of various
algorithms (Drineas and Mahoney, 2016, 2018).

The most popular sketching methods include random projections with i.i.d. entries, random
sampling of the datapoints, uniform orthogonal projections, Subsampled Randomized Hadamard
Transform (SRHT) (Sarlos, 2006; Ailon and Chazelle, 2006), leverage score sampling (Drineas
et al., 2008, 2012; Ma et al., 2015), and CountSketch (Charikar et al., 2002; Clarkson and Woodruff,
2017; Nelson and Nguyên, 2013; Meng and Mahoney, 2013). Random projection based approaches
have been developed for a wide variety of problems in data science, statistics, machine learning
etc., including linear regression (Sarlos, 2006; Drineas et al., 2011; Raskutti and Mahoney, 2016;
Dobriban and Liu, 2018), ridge regression (Lu et al., 2013; Chen et al., 2015; Wang et al., 2018a; Liu
and Dobriban, 2019), two sample testing (Lopes et al., 2011; Srivastava et al., 2016), classification
(Cannings and Samworth, 2017), PCA (Frieze et al., 2004; Drineas et al., 2006a; Sarlos, 2006;
Liberty et al., 2007; Halko et al., 2011a,b; Woolfe et al., 2008; Musco and Musco, 2015; Tropp
et al., 2017; Dasarathy et al., 2015; Yang et al., 2020; Gataric et al., 2020), convex optimization
(Pilanci and Wainwright, 2015, 2016, 2017), etc.; see (Woodruff, 2014; Drineas and Mahoney,
2016, 2018) for a more comprehensive list. Our new LESS embeddings have the potential to be
relevant for all those important applications.

2. Dense Gaussian and sub-gaussian sketches have small inversion bias

Consider first the classical Gaussian sketch, i.e., where the entries of S are i.i.d. standard normal
scaled by 1/

√
m. In this special case, the sketched covariance matrix Ã>Ã is a Wishart-distributed

random matrix, and we have:

E
[
(Ã>Ã)−1

]
= m

m−d−1(A>A)−1 for m ≥ d+ 2. (1)

In other words, even though the sketched inverse covariance is not an unbiased estimate, the bias
can be corrected by simply scaling the matrix, after which averaging can be used effectively without
encountering any inversion bias.

The key property which enables exact bias-correction for the Gaussian sketch is orthogonal
invariance. This property requires that for any orthonormal matrix O, the distributions of the ran-
dom matrices S and SO are identical. An example beyond Gaussians are Haar sketches, which are
uniform over all partial orthogonal matrices. If a sketch S is orthogonally invariant and Ã>Ã is
invertible with probability one, then we can show that the inversion bias can be corrected exactly,
in that, (1) holds with some constant factor c (replacing the factor m

m−d−1 ) that depends on the
distribution of the sketch (see Proposition 38 in Appendix G).
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DEREZIŃSKI LIAO DOBRIBAN MAHONEY

Exact bias-correction, achieved by the Gaussian sketch and other orthogonally invariant sketches,
is no longer possible for general sub-gaussian sketches. Here, we consider sketching matrices with
i.i.d. entries that (after scaling by

√
m) have O(1) sub-gaussian Orlicz norm. Consider for example

the so-called Rademacher sketch, with S consisting of scaled i.i.d. random sign entries (which is
useful for reducing the cost of randomness relative to the Gaussian sketch). In this case, an exact
bias-correction analogous to (1) is clearly infeasible for any d > 1, simply because, with some
positive (but exponentially small) probability, the matrix Ã>Ã will be non-invertible, making the
expectation undefined. Yet, any task where we observe at most polynomially many independent
estimates (such as averaging) should not be affected by such low-probability events, so we need a
notion of near-unbiasedness that is robust to this. To that end, we first recall a standard definition of
a relative error approximation for a positive semi-definite matrix.

Definition 1 (Relative error approximation) A positive semi-definite (p.s.d.) matrix C̃ (or a non-
negative scalar) is an η-approximation of C, denoted as C̃ ≈η C, if

C/(1 + η) � C̃ � (1 + η) ·C.

If C̃ is random and the above holds with probability 1− δ, then we call it an (η, δ)-approximation.

Remark 2 (Subspace embedding) If C̃ = Ã>Ã where Ã ∈ Rm×d is a sketch of A ∈ Rn×d, then
the condition Ã>Ã ≈η A>A is called the subspace embedding property with error η.

For instance, any sketching matrix S with i.i.d. O(1) sub-gaussian random entries, of size m =
O((d + ln(1/δ))/η2), where η ∈ (0, 1), ensures that Ã = SA with probability 1 − δ satisfies
the subspace embedding property with error η. In other words, Ã>Ã is an (η, δ)-approximation of
A>A (This is known to be tight; see, e.g., Nelson and Nguyen, 2014). As a consequence, the same
guarantee applies to the inverse (Ã>Ã)−1, relative to (A>A)−1. The δ failure probability makes
this definition robust to the rare events where Ã>Ã is not invertible. It is natural to desire a similar
robustness in the definition of near-unbiasedness. We achieve this as follows.

Definition 3 ((ε, δ)-unbiased estimator) A random p.s.d. matrix C̃ is an (ε, δ)-unbiased estimator
of C if there is an event E that holds with probability 1− δ such that

E
[
C̃ | E

]
≈ε C, and C̃ � O(1) ·C when conditioned on E .

Note that this definition only becomes meaningful if we use it with an ε that is much smaller than
the approximation error η in Definition 1 (for instance, we will often have η = Ω(1) and ε �
1). Further, note the following two important aspects of Definition 3. First, instead of a simple
expectation, we condition on some high probability event E , which, similarly as in Definition 1,
allows robustness against such corner cases as when the sketch Ã>Ã is not invertible. Second,
conditioned on the event E , in addition to an ε-approximation holding in expectation, we require a
weaker upper bound to hold almost surely, in terms of the target matrix C scaled by some constant
factor. This condition is important to guard against certain corner cases where the probability mass
is extremely skewed. For instance, suppose that C̃ is a scalar random variable which is uniform
over [0, 1] and has an additional probability mass of 10−10 at the value 10100. Here, averaging will
not prove effective at converging to the true expectation of C̃, but we could still use the notion of
(ε, δ)-unbiasedness to show that the average of an appropriately chosen number (much smaller than
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1010) of i.i.d. copies will converge very close to 0.5, by choosing an event E that avoids the 10100

(see Appendix E).
We are now ready to state our main result for sub-gaussian sketches (this is in fact a corollary of

our more general result, Theorem 11, discussed in Section 4), which asserts that after proper rescal-
ing, not only the Gaussian sketch, but in fact all sub-gaussian sketches (including the Rademacher
sketch) enjoy small inversion bias.

Proposition 4 (Near-unbiasedness of sub-gaussian sketches) Let S be an m× n random matrix
such that

√
mS has i.i.d. O(1)-sub-gaussian entries with mean zero and unit variance. There is

C = O(1) such that for any ε, δ ∈ (0, 1) if m ≥ C(d+
√
d/ε+ log(1/δ)), then for all A ∈ Rn×d

of rank d, ( m
m−dA

>S>SA)−1 is an (ε, δ)-unbiased estimator of (A>A)−1.

Observe that the scaling m
m−d essentially matches the exact bias-correction for Gaussian sketches,

which is m
m−d−1 . In fact, the same statement of the theorem holds with either scaling, and we merely

chose the simplest form of the scaling.
As a corollary of the near-unbiasedness of sub-gaussian sketches, we can show the following

approximation guarantee for averaging the inverse covariance matrix estimates. Recall that our
primary motivation is parallel and distributed averaging, where the computational cost does not
grow with the number of independent estimates.

Corollary 5 Let S be a sub-gaussian sketching matrix of size m, and let S1, ...,Sq be i.i.d. copies
of S. There is C = O(1) such that if m ≥ C(d +

√
d/ε + log(q/δ)) and q ≥ Cm log(d/δ), then

for any A ∈ Rn×d of rank d, 1
q

∑q
i=1( m

m−dA
>S>i SiA)−1 is an (ε, δ)-approximation of (A>A)−1.

Proposition 4 shows that for a sub-gaussian sketch Ã = SA of size m ≥ Cd, the sketched
inverse covariance ( m

m−dÃ
>Ã)−1 has inversion bias O(

√
d/m). This means that the inversion

bias of this estimator is smaller than the approximation error, which is Θ(
√
d/m), by a factor

of O(1/
√
m). Thus, using Corollary 5, we can reduce the approximation error by averaging

q = O(m log(d/δ)) copies of this estimator, obtaining that 1
q

∑q
i=1( m

m−dÃ
>
i Ãi)

−1 is with high

probability an O(
√
d/m)-approximation of (A>A)−1. In particular, when m = Θ(d), then the

approximation error of a single estimate (without averaging) is Θ(1), whereas the approximation
error of the averaged estimate is only O(1/

√
d).

3. Main results: Less inversion bias with LESS embeddings

To address the high computational cost of sub-gaussian sketches, while preserving their good near-
unbiasedness properties, we propose a new family of sketches, which we call LEverage Score
Sparsified (LESS) embeddings. A LESS embedding is defined simply as a sparsified sub-gaussian
sketch, where the sparsification is designed so as to ensure small inversion bias for a particular
matrix A. Our approach combines ideas from approximate leverage score sampling (which is data-
aware) with ideas from sparse embedding matrices (which are normally data-oblivious). Impor-
tantly, neither strategy by itself is sufficient to ensure small inversion bias (see our lower bound in
Theorem 10 and discussion in Section 4). Each row of a LESS embedding is sparsified indepen-
dently using a sparsification pattern defined as follows. Recall that for a tall full rank matrix A, we
use a>i to denote the ith row of A, and the ith leverage score of A is defined as li = a>i (A>A)−1ai.
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Definition 6 (LESS: LEverage Score Sparsified embedding) Fix a matrix A ∈ Rn×d of rank d
with leverage scores l1, ..., ln, and let s1, ..., sd be sampled i.i.d. from a probability distribution

(p1, ..., pn) such that pi ≈O(1) li/d for all i. Then, the random vector ξ> =
(√

b1
dp1
, ...,

√
bn
dpn

)
,

where bi =
∑d

t=1 1[st=i], is called a leverage score sparsifier for A.
Sketching matrix S is a LESS embedding of size m for a matrix A, if it consists of m i.i.d. row

vectors distributed as 1√
m

(x◦ξ)>, where ◦ denotes an entry-wise product and x is a random vector
with i.i.d. mean zero, unit variance, O(1)-sub-gaussian entries.

Remark 7 (Time complexity of LESS) Given a matrix A ∈ Rn×d of rank d, there is an algorithm
with an O(nnz(A) log n + d3 log d) time preprocessing step, that can then construct a LESS em-
bedding sketch SA of size m in time O(md2). In the following results we always use m ≥ d log d,
in which case the total cost of constructing a LESS embedding is O(nnz(A) log n+md2).

The matrix product SA costs only O(md2) because, by definition, the number of non-zeros per
row of S is bounded almost surely by d. It is not essential for our analysis that we sample ex-
actly d indices in each row of a LESS embedding, but we fix it here for the sake of simplicity.
We could also have approximately d non-zeros per row, and similar results would still hold. To
construct the distribution (p1, ..., pn), the sparsifier requires a constant relative error approxima-
tion of all the leverage scores of A, which can be computed in O(nnz(A) log n + d3 log d) time
(Drineas et al., 2012; Clarkson and Woodruff, 2017). Alternatively we can use our approach in a
data-oblivious way, by combining LEverage Score Sparsification with the Randomized Hadamard
Transform (Ailon and Chazelle, 2009; Drineas et al., 2011), which we may abbreviate as LESS-
RHT. Here, the matrix A is first transformed so that it has approximately uniform leverage scores
(Drineas et al., 2012), and then we can sparsify it using a uniform distribution, i.e., pi = 1/n for all
i, with total cost O(nd log n+md2). Finally, computing the sketched inverse covariance matrix es-
timator ( m

m−dA
>S>SA)−1 only adds an O(md2) cost. These costs can be further optimized using

fast matrix multiplication (Williams, 2012).1

In our main result, we show that LESS embeddings enjoy small inversion bias, nearly matching
our guarantee for sub-gaussian sketches (Proposition 4).

Theorem 8 (Near-unbiasedness for LESS) Suppose that S is a LESS embedding of size m for a
rank d matrix A ∈ Rn×d. There is C = O(1) such that if m ≥ C(d log(d/δ) +

√
d/ε) then the

sketch ( m
m−dA

>S>SA)−1 is an (ε, δ)-unbiased estimator of (A>A)−1.

Thus, we show that the inversion bias guarantee for LESS embeddings matches our result for sub-
gaussian sketches up to a logarithmic factor. This additional factor is standard in the analysis of fast
sketching methods. It comes from the fact that, as an artifact of the matrix concentration bounds
(Tropp, 2012) we use in our analysis of LESS embeddings, a sketch of size m = O(d log d) is
needed to satisfy the subspace embedding property, which is one of our two structural conditions for
small inversion bias (see Section 4). As a corollary, we obtain an improved guarantee for parallel
and distributed averaging of i.i.d. sketched inverse covariance estimates which also matches the
corresponding statement for sub-gaussian sketches (Corollary 5) up to logarithmic factors.

1. The cost of computing the matrix product SA can be optimized beyond O(md2) by adapting the fast matrix multi-
plication routines to take advantage of the sparsity pattern; see, e.g., Yuster and Zwick (2005).
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Corollary 9 Let S be a LESS embedding matrix of size m for a rank d matrix A ∈ Rn×d, and let
S1, ...,Sq be i.i.d. copies of S. There is C = O(1) such that if m ≥ C(d log(q/δ) +

√
d/ε) and

q ≥ Cm log2(d/δ), then 1
q

∑q
i=1( m

m−dA
>S>i SiA)−1 is an (ε, δ)-approximation of (A>A)−1.

To motivate and place our new algorithm into context, we demonstrate that existing fast sketch-
ing techniques may not achieve an inversion bias bound comparable to that of sub-gaussian sketches,
even if they achieve a nearly matching subspace embedding guarantee. This lower bound demon-
strates the hardness of constructing an (ε, δ)-unbiased estimator of the inverse covariance matrix
from its sketch. We show this here for leverage score sampling (Drineas et al., 2006b, 2008, 2012;
Ma et al., 2015). However, based on evidence from our analysis, we conjecture that similar lower
bounds hold for other methods such as Subsampled Randomized Hadamard Transform (Ailon and
Chazelle, 2009; Drineas et al., 2011) and data-oblivious sparse embedding matrices (Clarkson and
Woodruff, 2017; Nelson and Nguyên, 2013; Meng and Mahoney, 2013).2

Theorem 10 (Lower bound for leverage score sampling) For any n ≥ 2d ≥ 4, there is an n× d
matrix A and a row sampling (p1, ..., pn), with a corresponding m× n sketching matrix S, s.t.:

1. The row sampling (p1, ..., pn) is a 1/2-approximation of leverage score sampling; and

2. For any sketch size m and scaling γ, (γA>S>SA)−1 is not an (ε, δ)-unbiased estimator of
(A>A)−1 with any ε ≤ c dm and δ ≤ c( dm)2, where c > 0 is an absolute constant.

In the proof of Theorem 10, we develop a new lower bound for the inverse moment of the Binomial
distribution (Lemma 36), by using anti-concentration of measure via the Paley-Zygmund inequal-
ity, which should be of independent interest. To illustrate Theorem 10, consider a sketch of size
m = O(d log d). This is sufficient to ensure that approximate leverage score sampling achieves
the subspace embedding property with relative error O(1). In particular, it implies that for any
γ = Θ(1), the inverse covariance matrix estimator (γA>S>SA)−1 is with high probability an
O(1)-approximation of (A>A)−1. Our lower bound implies that the inversion bias of any such
estimator is Ω(1/ log d), which is up to logarithmic factors the same as the approximation achieved
by a single estimator.

Thus, Theorem 10 shows that when m = O(d log d), averaging i.i.d. copies of the sketched
inverse covariance estimator obtained from approximate leverage score sampling may lead to only
Ω(1/ log d) factor improvement in the approximation, which is merely inverse-logarithmic in d.
In contrast, Theorem 8 shows that, when using our new LESS embeddings with the same sketch
size and time complexity, averaging i.i.d. copies of the sketched inverse covariance reduces the
approximation error by a factor of O(1/

√
d), which is inverse-polynomial in d and thus far superior

to what is achievable by approximate leverage score sampling.

4. Our techniques: Structural conditions for near-unbiasedness

In order for our analysis of inversion bias to apply to a wide range of sketching techniques, we give
two key structural conditions for a random sketching matrix S that are sufficient to achieve provably

2. An alternative approach to achieving small inversion bias is to chain together a fast sketch having a larger size, say,
t = Õ(d/ε2), with a sub-gaussian sketch having a smaller size m = O(d +

√
d/ε). However, this leads to a sub-

optimal time complexity in terms of the polynomial dependence on d due to the cost O(tmd) of the sub-gaussian
sketch. For example, with ε = 1/

√
d, the overall cost is Õ(nnz(A)+d4) compared to Õ(nnz(A)+d3) with LESS.

9
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small inversion bias. The first is the subspace embedding property discussed in Remark 2, which
we now use as one of the key conditions needed in our analysis.

Condition 1 (Subspace embedding) The (sketching) matrix S ∈ Rm×n satisfies the subspace
embedding condition with η ≥ 0 for a matrix A ∈ Rn×d, if A>S>SA ≈η A>A.

The second structural condition for small inversion bias is a property of each individual row of S.
We use an n-dimensional random row vector x> to denote the marginal distribution of a row of S
(after scaling by

√
m). This condition represents a key novelty in our analysis.

Condition 2 (Restricted Bai-Silverstein) The random vector x ∈ Rn satisfies the Restricted Bai-
Silverstein condition with α > 0 for a matrix A ∈ Rn×d, if Var

[
x>Bx

]
≤ α · tr(B2) for all p.s.d.

matrices B such that B = PBP, where P is the projection onto the column span of A.

Based on these two structural conditions, we show the following result, which we use to prove both
Proposition 4 and Theorem 8. In this result, we will refer to anm×n sketching matrix Sm, indexed
by the number of rows m.

Theorem 11 (Structural conditions for near-unbiasedness) Fix A ∈ Rn×d with rank d and let
Sm consist of m ≥ 8d i.i.d. rows distributed as 1√

m
x>, where E[xx>] = In. Suppose that Sm/3

satisfies Condition 1 (subspace embedding) for η = 1/2, with probability 1−δ/3, where δ ≤ 1/m3.
Suppose also that x satisfies Condition 2 (Restricted Bai-Silverstein) with some α ≥ 1. Then
( m
m−dA

>S>mSmA)−1 is an (ε, δ)-unbiased estimator of (A>A)−1 for ε = O(α
√
d/m).

The proof of Theorem 11 adapts and extends techniques for analyzing the limiting Stieltjes trans-
form for high-dimensional random matrices in the so-called Marchenko-Pastur regime (also called
the proportional or mean-field limit). This regime arises if we let n, m and d all go to infinity
and let the ratio m/d converge to a fixed constant larger than unity. Crucially, our analysis is non-
asymptotic, and it is not restricted to the constant aspect ratio between the sketch size and the dimen-
sion. Further, while classical random matrix theory analysis considers matrix resolvents, which take
the form (γA>S>mSmA + zI)−1 for z, γ 6= 0, and are well-defined with full probability, we con-
sider the case of z = 0 where the matrix in question may be undefined with positive probability. We
address this by defining a high probability event which ensures that the sketch ( m

m−dA
>S>mSmA)−1

is well-defined and bounded, while preserving enough of the independence structure in the condi-
tional distribution for the expectation analysis to go through. Specifically, we split the sketch into
three parts, and we condition on the event that each part satisfies the subspace embedding property.
This way, for any pair of rows, there is a part of the sketch that ensures invertibility while being
independent from the two rows, which is important for the analysis.

Subspace embedding condition. Our first structural condition for small inversion bias (Condi-
tion 1) is a variant of the subspace embedding property, which is standard in the sketching literature.
In particular, this condition immediately implies that ( m

m−dA
>S>mSmA)−1 is with probability 1−δ

an O(1)-approximation of (A>A)−1. For sub-gaussian sketches this is known to hold with sketch
size O(d+ log(1/δ)) (Nelson and Nguyen, 2014). We prove this for LESS of size O(d log(d/δ)).

Lemma 12 (Subspace embedding for LESS) Suppose that S is a LESS embedding of size m for
a rank d matrix A ∈ Rn×d. There is C = O(1) such that if m ≥ Cd log(d/δ)/η2 for η ∈ (0, 1),
then the sketch A>S>SA is an (η, δ)-approximation of A>A.

10
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The subspace embedding guarantee for LESS embeddings is as good as that for existing fast sketch-
ing methods. However, the analysis differs from the ones used for either data-aware leverage score
sampling or for data-oblivious sparse sketches. We show the result by deriving a subexponential
bound on the matrix moments of a LESS embedding (Lemma 30), relying on a novel variant of the
Hanson-Wright concentration inequality for quadratic forms based on orthogonal projection matri-
ces (Lemma 31). We then use this to invoke a matrix Bernstein inequality for random matrices with
subexponential moments (Tropp, 2012, Theorem 6.2).

Restricted Bai-Silverstein condition. Our second structural condition for small inversion bias
(Condition 2) is not commonly seen in sketching, but we expect that it will be of broader interest
in adapting high-dimensional random matrix theory to RandNLA (Dereziński et al., 2020b, 2019b;
Dereziński and Mahoney, 2021). It is based on the classical inequality of Bai and Silverstein (Bai
and Silverstein, 2010) which bounds the deviation of a random quadratic form x>Bx from its
mean. We call it the Restricted Bai-Silverstein condition because, unlike in the classical version,
we only require the inequality to hold for matrices B that are restricted to the subspace spanned by
the columns of A. By contrast, in classical random matrix theory it is often assumed that the the
following (unrestricted) condition holds.

Condition 3 (Bai-Silverstein) Random vector x ∈ Rn satisfies the (unrestricted) Bai-Silverstein
condition with α > 0, if Var

[
x>Bx

]
≤ α · tr(B2) for all n× n p.s.d. matrices B.

When the random vector x is O(1)-sub-gaussian, then Condition 3 is satisfied with α = O(1), as a
consequence of the original inequality of Bai and Silverstein (2010).3

Lemma 13 (Bai-Silverstein inequality) Let x have n independent entries with mean zero and unit
variance such that E[x4

i ] = O(1). Then, Condition 3 is satisfied with α = O(1).

5. Restricted Bai-Silverstein inequality

The Bai-Silverstein inequality from Lemma 13 does not directly apply to any of the fast sketch-
ing methods discussed above (see Appendix C.3 for lower bounds). However, we state and prove
a generalization of this lemma, which allows us to show the Restricted Bai-Silverstein condition
(Condition 2) for our new LESS embeddings.

To provide some intuition behind this result, consider the variance term Var[x>Bx] which ap-
pears in the Restricted Bai-Silverstein condition, where 1√

m
x> represents a random row vector of

the sketching matrix S. The condition requires that just this one row vector carries enough ran-
domness to produce an accurate sketch of the trace of a quadratic form B. This is in contrast to
the subspace embedding condition, which uses the joint randomness of all the rows of S. Lemma
13 achieves this by enforcing a fourth-moment bound on all of the entries of x. Suppose that we
sparsify this vector, following the strategy of sparse embedding matrices, by multiplying each entry
of x with an independent scaled Bernoulli variable, obtaining

√
m
s bixi for bi ∼ Bernoulli( sm),

where s � m is the sparsity level and i is the entry index.4 This preserves the mean and variance
assumptions from Lemma 13, but as long as s = o(m), it violates the fourth-moment assumption.

3. The original lemma applies more broadly to higher moments; we cite only the case relevant to our analysis.
4. Most commonly studied sparse embedding matrices have non-independent entries. However, the i.i.d. variant we

consider offers an equivalent guarantee for the subspace embedding property. See Cohen (2016) and Appendix C.3.
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Thus, it is natural to ask whether we can relax this fourth-moment assumption. It turns out that, if
we do the sparsification in a data-oblivious manner, then the answer is no, since the random vector
may not capture most of the relevant directions in the matrix B (see Appendix C.3). Importantly,
this can occur even when the rows of the sketch together capture all of the directions, ensuring the
subspace embedding property, which is already the case when we set the sparsity level to be as small
as s = O(log d). In other words, there is a wide gap between the sparsity needed to preserve the
Bai-Silverstein inequality, s = Ω(m), and sparsity needed to ensure the subspace embedding.

Crucially, Theorem 11 does not require the Bai-Silverstein inequality to hold for all n×n p.s.d.
quadratic forms B. Rather, it restricts the family of quadratic forms to those that lie within the
column-span of the n × d data matrix A. In particular, this restriction implies that the matrix B
is low-rank (it has at most rank d) and its important directions are captured by the leverage scores
of A. We take advantage of this additional information to relax the fourth-moment assumptions,
obtaining the following generalization of Lemma 13, which should be of independent interest.

Theorem 14 (Restricted Bai-Silverstein inequality) Fix a matrix A ∈ Rn×d with rank d and
leverage scores li, and let x have n independent entries with mean zero and unit variance such that
Ex4

i ≤ C/li. Then, x satisfies Condition 2 with α = C + 2 for matrix A.

By setting A = In, where all leverage scores are 1 and the restriction on B is vacuous, we not only
recover the statement of Lemma 13, but also our new analysis uses the Perron-Frobenius theorem to
obtain a tight constant factor in the bound (see Appendix C). However, when A is a tall matrix, then
the fourth-moment assumption becomes potentially much more broadly applicable (for example,
when the leverage scores are uniform, we only need Ex4

i ≤ C · n/d). In particular, consider an
i.i.d. sub-gaussian random vector x sparsified as follows: x ◦ ξ, where we let ξi = bi/

√
li and

bi ∼ Bernoulli(li). Then, the entries satisfy the assumptions of Theorem 14, with expected number
of non-zeros equal to d. Note that this is different than the data-oblivious sparsification discussed
above, since the entries of the vector corresponding to large leverage scores are less likely to be
zeroed-out than others. This form of sparsification is nearly equivalent to the one we use for our
LESS embeddings (see Definition 6; our analysis can be applied to either variant), except that
it leads to a non-deterministic level of sparsification. In Appendix C.2 we prove the Restricted
Bai-Silverstein condition with α = O(1) for a leverage score sparsified vector constructed as in
Definition 6, which has non-independent entries.

6. Conclusions

We analyzed the phenomenon of inversion bias in sketching-based estimation tasks involving the
inverse covariance matrix. Inversion bias is a significant bottleneck in methods that use parallel and
distributed averaging. We showed that certain classical sketching methods (such as sub-gaussian
sketches) have small inversion bias, while many algorithmically efficient sketches (such as leverage
score sampling) may not provide such a guarantee. Finally, we developed a new efficient sketching
method, called LEverage Score Sparsified (LESS) embeddings, which has small inversion bias and
its computational cost is nearly-linear in the input size.

Estimation of the inverse covariance matrix and its various linear functionals is motivated by a
rich body of literature in statistics, data science, numerical optimization, machine learning, signal
processing, etc., which we summarized in detail in Section 1.1. Here, we additionally remark that
the (ε, δ)-approximation guarantee we provide for the averaged estimates of the inverse covariance
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(see Corollaries 5 and 9) immediately implies corresponding approximation guarantees for linear
functionals of the inverse covariance in numerous tasks. In a distributed environment, one can use
this to build a system for querying such functionals, by aggregating coarse estimates computed
locally from q sketches to produce an improved global estimate with minimal communication cost.
We illustrate this here for a family of linear functionals of the form tr C(A>A)−1, parameterized
by any p.s.d. matrix C, as motivated by applications in statistical inference (see Section 1.1). The
claim follows from Corollary 9 by letting Qi = ( m

m−dA
>S>i SiA)−1.

Corollary 15 (Querying linear functionals) For any matrix A ∈ Rn×d and ε, δ ∈ (0, 1), we can
use LESS embeddings of size m = O(d log(d/εδ) +

√
d/ε) to construct Q1, ...,Qq ∈ Rd×d in

parallel time O(nnz(A) log n+md2), where q = O(m log2(d/δ)), so that with probability 1− δ:

For all p.s.d. matrices C ∈ Rd×d,
1

q

q∑
i=1

tr CQi ≈ε tr C(A>A)−1.

In the context of distributed optimization, our results can be directly applied to show improved
convergence guarantees, for instance, in the case of the Distributed Iterative Hessian Sketch al-
gorithm (Pilanci and Wainwright, 2016; Dereziński et al., 2020a) and Distributed Newton Sketch
method (Wang et al., 2018b; Dereziński and Mahoney, 2019). Here, the quantity of interest is of the
form (A>A)−1b for some vector b (where A>A corresponds to the Hessian and b corresponds
to the gradient). For those methods, an ε-approximation guarantee for the average of the sketched
inverse covariance matrices, as in Corollaries 5 and 9, directly implies that the iterates xt produced
by the algorithms achieve a convergence rate of the form ∆t ≤ O(εt) · ∆0, where ∆t represents
distance from the optimum in the t-th iteration. We illustrate this by applying Corollary 9 to the
existing analysis of Distributed Newton Sketch, as outlined in Section 4 of Dereziński et al. (2020a),
obtaining an improved linear-quadratic convergence rate for distributed empirical risk minimization.

Corollary 16 (Distributed Newton Sketch) Consider a twice differentiable convex function f(x) =
1
n

∑n
i=1 `i(x

>φi)+ λ
2‖x‖

2, where x ∈ Rd and φ>i is the ith row of an n×d data matrix Φ. Given xt,
we can use LESS embeddings to construct q independent randomized estimates Ĥ1(xt), ..., Ĥq(xt)
of the Hessian ∇2f(xt) in parallel time O(nnz(Φ) log n + md2), where m = O(d log(d/εδ) +√
d/ε) and q = O(m log2(d/δ)), so that

xt+1 = xt −
1

q

q∑
i=1

Ĥi(xt)
−1∇f(xt) with probability 1− δ satisfies:

‖xt+1 − x∗‖ ≤ max
{
ε ·
√
κ‖xt+1 − x∗‖, 2L

λmin
‖xt+1 − x∗‖2

}
for x∗ = argmin

x
f(x),

where κ, L, λmin are the condition number, Lipschitz constant and smallest eigenvalue of ∇2f(x).

This result provides an improvement over the recently proposed DPP-based sketching methods of
Dereziński et al. (2020a), which suffer no inversion bias but are more expensive, as well as over
other fast sketching methods like row sampling (e.g., see Wang et al., 2018b), which, as shown in
this work, may indeed suffer from large inversion bias.
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DEREZIŃSKI LIAO DOBRIBAN MAHONEY

References

Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. In J. Shawe-Taylor,
R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in Neural Infor-
mation Processing Systems 24, pages 873–881. Curran Associates, Inc., 2011.

Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast johnson-lindenstrauss
transform. In Proceedings of the thirty-eighth annual ACM symposium on Theory of computing,
pages 557–563. ACM, 2006.

Nir Ailon and Bernard Chazelle. The fast johnson–lindenstrauss transform and approximate nearest
neighbors. SIAM Journal on computing, 39(1):302–322, 2009.

Naum Ilich Akhiezer and Izrail Markovich Glazman. Theory of linear operators in Hilbert space.
Courier Corporation, 2013.

Greg W Anderson, Alice Guionnet, and Ofer Zeitouni. An Introduction to Random Matrices. Num-
ber 118. Cambridge University Press, 2010.

Theodore W Anderson. An Introduction to Multivariate Statistical Analysis. Wiley New York,
2003.

Zhidong Bai and Jack W Silverstein. Spectral analysis of large dimensional random matrices,
volume 20. Springer, 2010.

Heinz H Bauschke and Patrick L Combettes. Convex analysis and monotone operator theory in
Hilbert spaces, volume 408. Springer, 2011.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Peter J Brockwell and Richard A Davis. Time series: theory and methods. Springer, 2009.
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Michał Dereziński, Daniele Calandriello, and Michal Valko. Exact sampling of determinantal point
processes with sublinear time preprocessing. In H. Wallach, H. Larochelle, A. Beygelzimer,
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Appendix A. Preliminaries

Notations. In the remainder of the article, we follow the convention of denoting scalars by low-
ercase, vectors by lowercase boldface, and matrices by uppercase boldface letters. The norm ‖ · ‖
is the Euclidean norm for vectors and the spectral or operator norm for matrices, and ‖ · ‖F is the
Frobenius norm for matrices. For vector v ∈ Rd, we let ‖v‖1 :=

∑d
i=1 |vi| denote the `1 norm and

‖v‖∞ := maxi |vi| denote the `∞ norm of v. We use λmax(A) to denote the maximum eigenvalue
of a symmetric matrix A. We say A � B if and only if B −A is positive semi-definite. We use
A ◦ B to denote the entry-wise Hadamard product of matrices or vectors. For random vectors or
matrices, we say A

d
= B if A follows the same distribution as B. For positive semi-definite (p.s.d.)

matrices A and B, or non-negative scalars a and b, we use A ≈η B and a ≈η b to denote the
relative error approximation (Definition 1). The big-O notation is used to absorb constant factors
in upper bounds, where the constant only depends on other big-O constants appearing in a given
statement (thus, all constants can be made absolute).

An important linear algebraic result that will be used in proving the restricted Bai-Silverstein in-
equality (Theorem 14) is the following Perron-Frobenius theorem on non-negative matrices. While
the most well known version of the Perron-Frobenius theorem concerns matrices with strictly posi-
tive entries, there is also a version for matrices with only non-negative entries.

Lemma 17 (Perron-Frobenius theorem, (Meyer, 2000, claims 8.3.1 and 8.3.2)) For a non-negative
symmetric matrix A ∈ Rn×n such that [A]ij ≥ 0 for all i, j ∈ {1, . . . , n}, then the largest eigen-
value of A is non-negative, i.e., r = λmax(A) ≥ 0. Moreover, there is a corresponding eigenvector
z, i.e., Az = rz with non-negative entries zi ≥ 0 for all i.

Our analysis of the inversion bias (proof of Theorem 11) crucially relies on a standard rank-one
update formula for the matrix inverse, which is given below.

Lemma 18 (Sherman-Morrison formula) For an invertible matrix A ∈ Rn×n and u,v ∈ Rn,
A + uv> is invertible if and only if 1 + v>A−1u 6= 0. If this holds, then

(A + uv>)−1 = A−1 − A−1uv>A−1

1 + v>A−1u
.

In particular, it follows that:

(A + uv>)−1u =
A−1u

1 + v>A−1u
.

Our proofs rely on different types of concentration and anti-concentration inequalities, from
scalars to quadratic forms of the type x>Bx, and eventually to matrix concentration bounds. These
technical lemmas are collected in this section and will be repeatedly used in the proofs of our main
results.
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A.1. Scalar concentration and anti-concentration inequalities

The Burkholder inequality (Burkholder, 1973) provides moment bounds on the sum of a martingale
difference sequence. It is used to show Lemma 25 as part of the proof of Theorem 11.

Lemma 19 (Burkholder inequality, (Burkholder, 1973)) For {xj}mj=1 a real martingale differ-
ence sequence with respect to the increasing σ field Fj , we have, for L > 1, there exists CL > 0
such that

E
[∣∣∣ m∑

j=1

xj

∣∣∣L] ≤ CL · E[( m∑
j=1

|xj |2
)L/2]

.

The Paley-Zygmund inequality is used to establish an anti-concentration inequality for the Bi-
nomial distribution (Lemma 36), which is the key in deriving a lower bound for the inversion bias
of leverage score sampling in Appendix F.

Lemma 20 (Paley-Zygmund inequality, (Paley and Zygmund, 1932)) For any non-negative vari-
able Z with finite variance and θ ∈ (0, 1), we have:

Pr
(
Z ≥ θE[Z]

)
≥ (1− θ)2E[Z]2

E[Z2]
.

A.2. Quadratic form concentration

Being the key object of (one of) the structural conditions in Theorem 11, the (random) quadratic
form of the type x>Bx will consistently appear in our analysis, for instance in the form of the Bai-
Silverstein inequality in Lemma 13 on quadratic form variance, as well as the following Hanson-
Wright inequality on the tail probability.

Lemma 21 (Hanson-Wright inequality, (Rudelson and Vershynin, 2013, Theorem 1.1)) Let x have
independent O(1)-sub-gaussian entries with mean zero and unit variance. Then, there is c = Ω(1)
such that for any n× n matrix B and t ≥ 0,

Pr
{
|x>Bx− tr(B)| ≥ t

}
≤ 2 exp

(
− cmin

{ t2

‖B‖2F
,
t

‖B‖

})
.

A.3. Matrix concentration inequalities

When random matrices are considered, different variants of Matrix Chernoff/Bernstein inequalities
will be needed to handle the case where the random matrix under study is known to have (almost
surely) bounded operator norm, or only to admit a subexponential decay for its higher order mo-
ments.

Lemma 22 (Matrix Bernstein: Bounded Case, (Tropp, 2012, Theorem 1.4)) For i = 1, 2, ..., con-
sider a finite sequence Xi of d× d independent and symmetric random matrices such that

E[Xi] = 0, λmax(Xi) ≤ R almost surely.

Then, defining the variance parameter σ2 = ‖
∑

i E[X2
i ]‖, for any t > 0 we have:

Pr

{
λmax

(∑
i
Xi

)
≥ t
}
≤ d · exp

(
−t2/2

σ2 +Rt/3

)
.
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Lemma 23 (Matrix Bernstein: Subexponential Case, (Tropp, 2012, Theorem 6.2)) For i = 1, 2, ...,
consider a finite sequence Xi of d× d independent and symmetric random matrices such that

E[Xi] = 0, E[Xp
i ] �

p!

2
·Rp−2A2

i for p = 2, 3, ...

Then, defining the variance parameter σ2 = ‖
∑

i A
2
i ‖, for any t > 0 we have:

Pr

{
λmax

(∑
i
Xi

)
≥ t
}
≤ d · exp

(
−t2/2
σ2 +Rt

)
.

Lemma 24 (Matrix Chernoff, (Tropp, 2012, Theorem 1.1 and Remark 5.3)) For i = 1, 2, ..., con-
sider a finite sequence Xi of d × d independent positive semi-definite random matrices such that
E
[∑

i Xi

]
= I and ‖Xi‖ ≤ R. Then, for any t ≥ e, we have:

Pr
{∥∥∥∑

i

Xi

∥∥∥ ≥ t} ≤ d · (e

t

)t/R
.

Appendix B. Structural conditions for small inversion bias

In this section, we prove Theorem 11, which gives two structural conditions for a random sketch
of a rank d matrix A ∈ Rn×d to have small inversion bias. We assume that the sketching matrix
Sm ∈ Rm×n consists of m ≥ 8d i.i.d. rows 1√

m
x>i , where E[xix

>
i ] = I. To simplify the analysis,

we assume that m is divisible by 3.

B.1. Proof of Theorem 11

Note that the subspace embedding assumption (based on Condition 1) immediately implies the result
with ε = O(1), so without loss of generality we can assume that α

√
d/m ≤ 1. Let H = A>A

and Q = (γA>S>mSmA)−1 for γ = m
m−d . Moreover, let S−i denote Sm without the ith row, with

Q−i = (γA>S>−iS−iA)−1. Finally, for t = m/3, we define the following events:

Ej :
1

t
A>
( tj∑
i=t(j−1)+1

xix
>
i

)
A � 1

2
·A>A, j = 1, 2, 3, E =

3∧
j=1

Ej . (2)

For each j, the meaning of the event Ej is that the average of the rank one matrices xix
>
i over

the corresponding j-th third of indices 1, . . . ,m forms a sketch for A that is a “lower” spectral
approximation of A>A.

Note that events E1, E2 and E3 are independent, and for each i ∈ {1, ...,m} there is a j = j(i) ∈
{1, 2, 3} such that:

1. Ej is independent of xi; and

2. Ej implies that Q−i � γQ−i = (A>S>−iS−iA)−1 � 6 · (A>A)−1 = 6 ·H−1.

Here we use that A>S>mSmA is the average of the three matrices to which the conditions in Ej refer
to, and also that m ≥ 2d.
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From the subspace embedding assumption and the union bound we conclude that Pr(E) ≥ 1−δ.
Letting EE denote the expectation conditioned on E and γi = 1 + γ

mx>i AQ−iA
>xi, we have:

I− EE [Q]H = −EE [Q]H + γ EE [QA>S>mSmA] = −EE [Q]H + γ EE [QA>xix
>
i A]

(∗)
= −EE [Q]H + γ EE

[
Q−iA>xix>i A

1+ γ
m
x>i AQ−iA>xi

]
= −EE [Q]H + EE [Q−iA>xix

>
i A] + EE

[
( γγi − 1)Q−iA

>xix
>
i A
]

= EE [Q−iA>(xix
>
i − I)A]︸ ︷︷ ︸

Z0

+EE [Q−i −Q]H︸ ︷︷ ︸
Z1

+EE
[
( γγi − 1)Q−iA

>xix
>
i A
]︸ ︷︷ ︸

Z2

,

for a fixed i, where (∗) uses the Sherman-Morrison rank-one update formula (Lemma 18). We also
used the fact that due to symmetry in the definition of event E , the marginal distributions of the
random vectors xi are identical after conditioning (even though they are no longer independent and
identically distributed). To obtain the result, it suffices to bound:

‖I−H
1
2EE [Q]H

1
2 ‖ = ‖H

1
2 (Z0 + Z1 + Z2)H−

1
2 ‖

≤ ‖H
1
2 Z0H

− 1
2 ‖+ ‖H

1
2 Z1H

− 1
2 ‖+ ‖H

1
2 Z2H

− 1
2 ‖. (3)

We start by bounding the first term. Without loss of generality, assume that events E1 and E2 are
both independent of xi, and let E ′ = E1 ∧ E2 as well as δ3 = Pr(¬E3). We have:

Z0 =
1

1− δ3
·
(
EE ′ [Q−iA>(xix

>
i − I)A]− EE ′ [Q−iA>(xix

>
i − I)A · 1¬E3 ]

)
= − 1

1− δ3
· EE ′

[
Q−iA

>(xix
>
i − I)A · 1¬E3

]
.

Above, we evaluated the expectation EE ′ [Q−iA>(xix
>
i − I)A] by first conditioning on all random-

ness except xi, and using the independence of xi and E ′, as well as E[xx>] = I.
Thus, since δ3 ≤ 1

2 , we obtain that:

‖H
1
2 Z0H

− 1
2 ‖ ≤ 2

∥∥∥EE ′[H 1
2 Q−iA

>(xix
>
i − I)AH−

1
2 · 1¬E3

]∥∥∥
≤ 2EE ′

[∥∥H 1
2 Q−iA

>(xix
>
i − I)AH−

1
2

∥∥ · 1¬E3]
≤ 2EE ′

[
‖H

1
2 Q−iH

1
2 ‖ ·

∥∥H− 1
2 A>(xix

>
i − I)AH−

1
2

∥∥ · 1¬E3]
≤ 12EE ′

[(
x>i AH−1A>xi + 1

)
· 1¬E3

]
.

Note that E[x>i AH−1A>xi] = d, and using Condition 2 (Restricted Bai-Silverstein), we have
Var[x>i AH−1A>xi] ≤ α · d (and both are still true after conditioning on E ′, because it is indepen-
dent of xi). Chebyshev’s inequality thus implies that for x ≥ 2d we have Pr(x>i AH−1A>xi ≥ x |
E ′) ≤ Cαd/x2. Combining this with the assumption that δ3 ≤ δ ≤ 1/m3, we have:

EE ′
[
x>i AH−1A>xi · 1¬E

]
=

∫ ∞
0

Pr(x>i AH−1A>xi · 1¬E ≥ x | E ′) dx

≤ 2m2δ3 +

∫ ∞
2m2

Pr(x>i AH−1A>xi ≥ x) dx

≤ 2

m
+ Cαd

∫ ∞
2m2

1

x2
dx ≤ 2

m
+ C

αd

m2
,
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which implies that ‖H
1
2 Z0H

− 1
2 ‖ = O(1/m+αd/m2) = O(α

√
d/m). We now move on to bound-

ing the second term in (3). In the following, we will use the observation that for a p.s.d. random
matrix C (or non-negative random variable) in the probability space of Sm, we have:

EE [C] =
E[(
∏3
j=1 1Ej ) ·C]

Pr(E)
� 1

1− δ
E[1E ′ ·C] � 2 · EE ′ [C]. (4)

Using the above, and the fact that event E ′ is independent of xi, we have:

EE [Q−i −Q] � 2 · EE ′ [Q−i −Q] =
2γ

m
· EE ′

[
γ−1
i Q−iA

>xix
>
i AQ−i

]
� 2γ

m
· EE ′ [Q−iHQ−i].

We now bound the second term in (3) by using the fact that E ′ implies H
1
2 γQ−iH

1
2 � 6I:

‖H
1
2 Z1H

− 1
2 ‖ = ‖H

1
2EE [Q−i −Q]H

1
2 ‖ ≤ 2γ

m
· EE ′

[
‖H

1
2 Q−iH

1
2 ·H

1
2 Q−iH

1
2 ‖
]
≤ 2

m
· 36.

We next bound the last term in (3), applying the Cauchy-Schwarz inequality twice:

‖H
1
2 Z2H

− 1
2 ‖ = sup

‖v‖=1, ‖u‖=1
EE
[ ∣∣∣ γγi − 1

∣∣∣ · v>H
1
2 Q−iA

>xix
>
i AH−

1
2 u
]

≤
√

EE
[
( γγi − 1)2

]
· sup
‖v‖=1, ‖u‖=1

√
EE
[
(v>H

1
2 Q−iA>xi · x>i AH−

1
2 u)2

]
≤
√
EE
[
(γi − γ)2

]︸ ︷︷ ︸
T1

· sup
‖u‖=1

4

√
EE
[
(u>H

1
2 Q−iA>xi)4

]
︸ ︷︷ ︸

T2

· sup
‖u‖=1

4

√
EE
[
(u>H−

1
2 A>xi)4

]
︸ ︷︷ ︸

T3

.

To bound T3, we rely on Restricted Bai-Silverstein with B = AH−
1
2 uu>H−

1
2 A>, noting that

tr(B2) = tr(B) = (u>H−
1
2 HH−

1
2 u)2 = ‖u‖4 = 1. Recall that event E ′ is independent of xi, so

we have:

EE
[
(u>H−

1
2 A>xi)

4
]
≤ 2EE ′

[
(u>H−

1
2 A>xi)

4
]

= 2E
[
(x>i Bxi)

2
]

= 2Var[x>i Bxi] + 2
(
E[x>i Bxi]

)2
≤ 2α · tr(B2) + 2

(
tr(B)

)2
= 2(α+ 1),

obtaining that T3 = O( 4
√
α+ 1). We can similarly bound T2 by letting B = AQ−iH

1
2 uu>H

1
2 Q−iA

>.
Note that, conditioned on E ′, we again have

tr(B2) =
(
u>(H

1
2 Q−iH

1
2 )2u

)2 ≤ 64,

so analogously as above we conclude that T2 = O( 4
√
α+ 1).

It thus remains to bound the term T1. First, note that:

EE [(γ − γi)2] ≤ 2EE ′ [(γ − γi)2] = 2 (γ − γ̄)2 + 2EE ′ [(γi − γ̄)2], (5)
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where γ̄ = EE ′ [γi] = 1 + γ
mtr(EE ′ [Q−i]H). To bound the second term in (5), we write:

EE ′ [(γi − γ̄)2] =
γ2

m2
EE ′
[(

tr(Q−i − EE ′ [Q−i])H
)2]

+
γ2

m2
EE ′
[(

tr(Q−iH)− x>i AQ−iA
>xi
)2]

.

The latter term can be bounded by again using Condition 2, with B = AQ−iA
>, obtaining:

γ2

m2
EE ′
[(

tr(Q−iH)− x>i AQ−iA
>xi
)2] ≤ 1

m2
EE ′
[
α · tr((γQ−iH)2)

]
≤ 36 · αd

m2
.

The former term can be bounded using the Burkholder inequality for martingale difference se-
quences. We state this bound as a lemma, proven separately in Appendix B.2.

Lemma 25 Let VarE ′ [·] be the conditional variance with respect to event E ′ = E1 ∧ E2, see (2),
with xi independent of E ′. Then, there is an absolute constant C > 0 such that:

VarE ′
[
tr(Q−iH)

]
≤ C · d.

Using Lemma 25, we conclude that EE ′ [(γi − γ̄)2] ≤ C ′ · αd/m2 for some absolute constant C ′. It
remains to bound the term:

|γ − γ̄| =
∣∣∣∣ m

m− d
−
(

1 +
γ

m
tr(EE ′ [Q−i]H)

)∣∣∣∣ =
|d− tr(EE ′ [Q−i]H)|

m− d
.

Observe that we have:∣∣d− trEE ′ [Q−i]H
∣∣ =

∣∣tr((EE [Q]− EE ′ [Q−i])H) + tr(I− EE [Q]H)
∣∣

=
∣∣tr((EE − EE ′)[Q−i]H) + tr(−Z1) + tr(Z0 + Z1 + Z2)

∣∣
≤
∣∣tr((EE − EE ′)[Q−i]H)

∣∣+ |tr(Z0)|+ |tr(Z2)|.

The first two terms can be bounded similarly as we did ‖H
1
2 Z0H

− 1
2 ‖, obtaining that |tr(Z0)| =

O(αd/m), and also:∣∣tr((EE − EE ′)[Q−i]H)
∣∣ =

δ3

1− δ3

∣∣tr((EE ′ [Q−i]− EE ′ [Q−i | ¬E3])H)
∣∣ = O(dδ3) = O(d/m3).

For the last term, we have:

|tr(Z2)| =
∣∣∣EE[( γγi − 1)x>i AQ−iA

>xi
]∣∣∣

≤
∣∣∣EE[γ−γ̄γi x>i AQ−iA

>xi
]∣∣∣+

∣∣∣EE[ γ̄−γiγi
x>i AQ−iA

>xi
]∣∣∣

≤ |γ − γ̄| · EE [x>i AQ−iA
>xi] + (m− d) · E

[
|γi − γ̄|

]
≤ |γ − γ̄| · 6

1− δ
EE ′ [x>i AH−1A>xi] + (m− d) ·

√
E[(γi − γ̄)2]

≤ |γ − γ̄| · 6

1− δ
d+
√
C ′αd.

The bound for the second term
∣∣∣EE[ γ̄−γiγi

x>i AQ−iA
>xi
]∣∣∣ comes from the definition of γi = 1 +

γ
mx>i AQ−iA

>xi, because x>i AQ−iA
>xi
/
γi ≤ m/γ = m− d.
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Thus, putting this together we conclude that:

|γ − γ̄| ·
(
1− 6d

(m−d)(1−δ)
)
≤ O(αd/m2) +O(

√
αd/m) = O(

√
αd/m),

which for m ≥ 8d and δ ≤ 1/m3 implies that (γ− γ̄)2 = O(αd/m2) so we get T1 = O(
√
αd/m).

Finally, we obtain the bound ‖H
1
2 Z2H

− 1
2 ‖ ≤ T1 · T2 · T3 = O(α

√
d/m), which concludes the

proof.

B.2. Proof of Lemma 25

Let Q−ij denote the matrix (γA>S>−ijS−ijA)−1 where S−ij is the matrix Sm without the ith and
jth rows and γ = m

m−d . Let EE ′,j [·] be the conditional expectation with respect to E ′ and the σ-field
Fj generating the rows 1√

m
x>1 . . . ,

1√
m

x>j of S. First note that

tr(Q−i − EE ′Q−i)A>A = EE ′,m[trQ−iA
>A]− EE ′,0[trQ−iA

>A]

=
m∑
j=1

(
EE ′,j [trQ−iA>A]− EE ′,j−1[trQ−iA

>A]
)

= −
m∑
j=1

(ψj + ξj),

where ψj = (EE ′,j − EE ′,j−1)[tr(Q−ij −Q−i)A
>A]

and ξj = −(EE ′,j − EE ′,j−1)[tr Q−ijA
>A].

This forms a martingale difference sequence and hence falls within the scope of the Burkholder in-
equality (Burkholder, 1973), recalled as follows. We mention that similar martingale decomposition
techniques are common in random matrix theory, see e.g., (Bai and Silverstein, 2010). Also, for the
case L = 2 that we will use, Burkholder inequality is nothing but the law of iterated variance.

Lemma 26 (Burkholder (1973)) For {xj}mj=1 a real martingale difference sequence with respect
to the increasing σ field Fj , we have, for L > 1, there exists CL > 0 such that

E
[∣∣∣ m∑

j=1

xj

∣∣∣L] ≤ CL · E[( m∑
j=1

|xj |2
)L/2]

.

Note that for each pair i, j, one of E1, E2 is independent of both xi and xj . Without loss of generality,
suppose that this is E1. Then, in particular, E1 implies that AQ−ijA

> � 6 I. Thus, conditioned on
E1, it follows that

tr(Q−ij −Q−i)A
>A = tr

( γ
mQ−ijA

>xjx
>
j AQ−ij

1 + γ
mx>j AQ−ijA>xj

A>A

)
=

γ
mx>j (AQ−ijA

>)2xj

1 + γ
mx>j AQ−ijA>xj

≤
6 · γmx>j AQ−ijA

>xj

1 + γ
mx>j AQ−ijA>xj

≤ 6,

which implies that |ψj | ≤ 6. We now provide a bound on the second moment of ψj , bounding the
E ′-conditional expectation in terms of the E1-conditional expectation analogously as in (4):

EE ′ [ψ2
j ] ≤ 2 · EE1

[(
6 · γmx>j AQ−ijA

>xj

1 + γ
mx>j AQ−ijA>xj

)2
]
≤ 72 · EE1 [ γmx>j AQ−ijA

>xj ]

= 72 · EE1 [tr AQ−ijA
>]

m− d
≤ 72 · 6 · d

m− d
.
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We now aim to bound |ξj |. Since E1 is independent of xj , we have EE1,j [tr Q−ijA
>A] = EE1,j−1[tr Q−ijA

>A].
Furthermore, letting δ2 = Pr(¬E2), we have:

EE1,j−1[tr Q−ijA
>A] = EE ′,j−1[tr Q−ijA

>A](1− δ2) + EE1,j−1[tr Q−ijA
>A | ¬E2]δ2,

EE1,j [tr Q−ijA
>A] = EE ′,j [tr Q−ijA

>A](1− δ2) + EE1,j [tr Q−ijA
>A | ¬E2]δ2.

Thus, subtracting the two equalities from each other, we conclude that:

|ξj | = |(EE ′,j − EE ′,j−1)[tr Q−ijA
>A]|

≤ δ2 ·
|(EE1,j − EE1,j−1)[tr Q−ijA

>A | ¬E2]|
1− δ2

≤ 2δ2 · 6d ≤ 12 · d/m, for δ2 ≤ 1/m.

So, with xj = ψj + ξj and X = −tr(Q−i − EE ′ [Q−i])A>A in Lemma 26, for L = 2 we get:

EE ′ [X2] ≤ C2 ·
∑
j

EE ′
[
(ψj + ξj)

2
]

= C2 ·
∑
j

(
EE ′ [ψ2

j ] + 2EE ′ [ψjξj ] + EE ′ [ξ2
j ]
)

≤ C2m ·
(

72 · 6 · d

m− d
+ 2 · 6 · 12 · d

m
+ 122 d

2

m2

)
≤ Cd,

where we also used that m ≥ 8d, thus concluding the proof.

Appendix C. Restricted Bai-Silverstein inequality

In this section, we prove Theorem 14. Specifically, we study Condition 2 (Restricted Bai-Silverstein),
the second structural condition for small inversion bias in Theorem 11, which describes the deviation
of a quadratic form x>Bx from its mean, for a random vector x. We start by showing Theorem 14,
a generalized version of the lemma of Bai and Silverstein (Lemma 13), which applies when x has
independent entries. Then, in Appendix C.2 we show a similar result for a leverage score sparsified
vector, constructed as in Definition 6, which has non-independent entries. Finally, in Appendix C.3
we consider random vectors used in other fast sketching methods, and give lower bounds demon-
strating why these methods do not provide satisfactory guarantees for Condition 2.

C.1. Proof of Theorem 14

Since the assumptions on x only depend on the leverage scores of A, and the conclusion is about
the variance of a quadratic form, which only depends on the first four moments of the entries of x,
we can assume without loss of generality that the distribution of x only depends on the leverage
scores of A. We will prove the claim for such random vectors x.

We start by proving the following result:

Proposition 27 Let A be a fixed n × d matrix with n ≥ d, and x be a random vector with inde-
pendent entries with mean zero and unit variance, whose distribution only depends on the leverage
scores of A. Then, Condition 2 (Restricted Bai-Silverstein) for the matrix A is equivalent to

λmax ((U ◦U)>D(U ◦U)) ≤ α− 2,
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where U is the n× d matrix of left singular vectors of A and D is the n× n matrix D = diag(dk),
with dk = Ex4

k − 3.

Proof The Restricted Bai-Silverstein condition is equivalent to having, for all matrices B of the
form B = UMU>, where U is the matrix of left singular vectors of A,

Var[x>Bx] ≤ α · tr(B2).

Let z = U>x. Then this is equivalent to

Var[z>Mz] ≤ α · tr(M2). (6)

First we claim that it is enough to consider diagonal matrices M. Suppose that we have a con-
dition C(diag(UU>), α) that guarantees that (6) holds for diagonal matrices Md, and that depends
only on the leverage scores and α. Now, consider a general matrix M, and suppose it has the
eigendecomposition M = OMdO

> for a diagonal matrix Md. We can write the equivalences

Var[z>Mz] ≤ α · tr(M2)

Var[z>OMdO
>z] ≤ α · tr([OMdO

>]2)

Var[z>dMdzd] ≤ α · tr(M2
d)

where zd = O>z = (UO)>x. Now we apply the condition C(diag(UoU
>
o ), α) to Uo = UO

and the diagonal matrix Md. This condition is applicable, because Mo is a diagonal matrix,
and guarantees (6) for Md. However, we also have that the row norms of Uo = UO are the
same as the row norms of U, because O simply acts by an orthogonal rotation of the rows. So
diag(UoU

>
o ) = diag(UU>). Thus, since the distributions of the sketches we consider only de-

pend on the leverage scores of A, which are the diagonals of the matrix A(A>A)−1A> = UU>,
the condition C(diag(UU>), α) guarantees that (6) holds for the original matrix M. This shows
that it is enough to establish the condition for diagonal matrices M.

Hence we can rotate U by the eigenvectors O of M into U′ = UO, and thus assume without
loss of generality that M is diagonal, M = diag(g), where g is a vector. Then, the condition
simplifies to

Var[z>Mz] = Var[

d∑
i=1

z2
i gi]

= g>Γg ≤ α · ‖g‖2,

where Γ is the covariance matrix of z ◦ z. Here the symbol ◦ means entrywise product. This
condition has to be true for any vector g. Thus, this condition says exactly that the largest eigenvalue
of Γ is at most α:

λmax(Γ) ≤ α.

Also we assume that Exx> = Im, hence for any symmetric matrix F (see e.g., (Bai and Silverstein,
2010; Couillet and Debbah, 2011) and (Mei and Montanari, 2019, Lemma B.6.)),

Var[x>Fx] =
∑
k

dkF
2
kk + 2tr(F2) (7)
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where dk = Ex4
k−3. Therefore, applying this for F = U diag(g)U>, and matching terms, one

has Γ = (U ◦U)>DU ◦U + 2In, where D = diag(dk) and with dk = Ex4
k − 3. This finishes the

proof.

We now continue with the proof of the main claim (Theorem 14). Based on the above results,
as long as the random vector x has independent entries of zero mean and unit variance, proving
Condition 2 boils down to the control of the fourth moment of the distribution.

Let R = U ◦ U, and let ri denote its rows. Note that ri have non-negative entries. Let
L = diag(1/‖ui‖2) = diag(1/‖ri‖1) = diag(1/li) be the matrix of inverse leverage scores of A,
which are also the inverse `1 norms of the rows ri of R. We can simply discard the zero rows to
ensure that this is well defined and ‖ri‖1 > 0 for all indices.

Then if we can bound λmax (R>LR) ≤ κ, it follows that λmax (R>DR) ≤ Cκ ≤ α−2, which
is our desired condition as long as α is sufficiently large. We will show this bound with κ = 1.

Note that Q = R>LR is a symmetric matrix and has non-negative entries, because the rows of
R, ri = ui ◦ ui are the entry-wise squares of certain vectors, and the entries of L are all positive.
Moreover, it is readily verified that the all ones vector 1d (which clearly has non-negative entries),
is an eigenvalue of Q with unit eigenvalue,

Q1d = 1d.

In other words, Q is a symmetric doubly stochastic matrix. In more detail, we have

Q1d = R>LR1d =

n∑
i=1

rir
>
i

‖ri‖1
1d =

n∑
i=1

ri ·
r>i 1d
‖ri‖1

.

Now, clearly, since ri have non-negative entries, we have r>i 1d = ‖ri‖1. Therefore, we find

Q1d =

n∑
i=1

ri ·
‖ri‖1
‖ri‖1

=

n∑
i=1

ri = 1d.

In the last equality, we have used that, since the columns of U are orthogonal vectors, we have that∑n
i=1 rij = 1 for all j = 1, . . . , d.
Hence, the largest eigenvalue of Q is at least 1. By the Perron-Frobenius theorem for non-

negative matrices, it follows that the largest eigenvalue of Q is paired with an eigenvector v of
non-negative entries, see e.g., (Meyer, 2000, claims 8.3.1 and 8.3.2). We can write, for any such
vector v ≥ 0, that

Qv = R>LRv =
n∑
i=1

rir
>
i

‖ri‖1
v =

n∑
i=1

ri ·
r>i v

‖ri‖1
.

Now, clearly r>i v/‖ri‖1 ≤ ‖v‖∞. Since each entry of each ri is non-negative, we have that 0 ≤
(Qv)j ≤ (

∑n
i=1 rij)‖v‖∞. As mentioned, we also have that

∑n
i=1 rij = 1. Hence,

0 ≤ (Qv)j ≤ ‖v‖∞, j = 1, . . . , n.

Suppose v is an eigenvector of Q with eigenvalue λ ≥ 0, i.e., Qv = λv. Based on the above
inequality, we find ‖λv‖∞ ≤ ‖v‖∞, hence λ ≤ 1. This shows that the largest eigenvalue of Q is at
most unity. Thus, by the above reasoning λmax (R>DR) ≤ C, and thus Condition 2 holds as long
as C + 2 ≤ α. This finishes the proof.
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C.2. Restricted Bai-Silverstein for LESS embeddings

In this section we show that a sub-gaussian random vector sparsified using our leverage score spar-
sifier (LESS) satisfies Condition 2 (Restricted Bai-Silverstein) with α = O(1). We use this fact
later in Appendix D to prove Theorem 8.

Lemma 28 (Restricted Bai-Silverstein for LESS) Fix a matrix A ∈ Rn×d with rank d and let ξ
be a leverage score sparsifier for A. For any p.s.d. matrix B restricted to the span of A and any
x> = (x1, ..., xn) having independent entries with mean zero, unit variance and E[x4

i ] = O(1),

Var
[
(x ◦ ξ)>B(x ◦ ξ)

]
≤ O(1) · tr(B2).

Proof Let U = A(A>A)−1/2 be the orthonormal basis matrix for the span of A, and let Uξ =
diag(ξ)U. Note that B = UU>BUU> = UCU> for C = U>BU. It follows that:

Var
[
(x ◦ ξ)>B(x ◦ ξ)

]
= Var[x>UξCU>ξ x] = Var

[
tr(UξCU>ξ )

]
+ E

[
Varξ[x>UξCU>ξ x]

]
,

where Varξ denotes the conditional variance with respect to ξ. Recall that ξi =
√

bi
dpi

, where

bi =
∑d

t=1 1[st=i], with st sampled i.i.d. from (p1, ..., pn) and pi ≈O(1) ‖ui‖2/d (here, u>i denotes

the ith row of U). Thus, U>ξ Uξ =
∑d

t=1

ustu
>
st

dpst
and it follows that:

Var
[
tr(UξCU>ξ )

]
= Var

[ d∑
t=1

u>stCust
dpst

]
= dVar

[
u>s1Cus1
dps1

]
≤ dE

[
tr(Cus1u

>
s1Cus1u

>
s1)

d2p2
s1

]
≤ E

[
‖us1‖2

dps1

u>s1C
2us1

ps1

]
≤ O(1)E

[
u>s1C

2us1
ps1

]
= O(1) tr(UC2U>) = O(1) tr(B2).

The Bai-Silverstein inequality (Lemma 13) implies that Varξ[x>UξCU>ξ x] ≤ O(1)·tr
(
(UξCU>ξ )2

)
,

so we have:

E
[
Varξ[x>UξCU>ξ x]

]
≤ O(1) · E

[
tr
(
(UξCU>ξ )2

)]
= O(1) · E

[
tr

(( d∑
t=1

Custu
>
st

dpst

)2
)]

≤ O(1)
d∑
t=1

E
[

tr(Custu
>
stCustu

>
st)

d2p2
st

]
+O(1)

∑
t 6=r

E
[

tr(Custu
>
stCusru

>
sr)

dpst · dpsr

]

≤ O(1) tr(B2) +O(1) tr
(
CE

[us1u>s1
ps1

]
CE

[us2u>s2
ps2

])
≤ O(1) · tr(B2).

Thus, we obtain the desired bound:

Var
[
(x ◦ ξ)>B(x ◦ ξ)

]
≤ O(1) · tr(B2),

which completes the proof.
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DEREZIŃSKI LIAO DOBRIBAN MAHONEY

C.3. Lower bounds for other sketching methods

In this section, we show lower bounds for Condition 2 (Restricted Bai-Silverstein) in the context
of existing fast sketching techniques. To do that, we first discuss the basic requirement of the
framework defined by Theorem 11, namely that the sketching matrix S must have i.i.d. rows.

Fast sketches with i.i.d. rows. In our discussion, we will focus on three types of sketches:
approximate leverage score sampling (Drineas et al., 2006b), Subsampled Randomized Hadamard
Transform (Ailon and Chazelle, 2009), and sparse embedding matrices (extensions of the CountS-
ketch (Clarkson and Woodruff, 2017), see (Nelson and Nguyên, 2013; Cohen, 2016)), all of which
can be implemented in time nearly linear in the input size. The i.i.d. row assumption can be easily
satisfied by any row sampling sketch, including approximate leverage score sampling. The SRHT
technically does not satisfy this assumption, however if we treat the Randomized Hadamard Trans-
form as a preprocessing step (given that it does not distort the covariance matrix), then the subsam-
pling part can be analyzed analogously as leverage score sampling. In the case of sparse embedding
matrices, the most commonly studied variant has a fixed number of non-zeros per column of S
and so it does not have independent rows, however, it is known that a variant with independently
sparsified entries (which fits into the setup of Theorem 11) achieves nearly matching approximation
guarantees (Cohen, 2016).

Leverage score sampling. Let S be a row sampling sketch of sizem, i.e., each row is distributed
independently as 1√

m
x>, where x = 1√

ps
es and s is an index drawn from distribution (p1, ..., pn).

Given a matrix A ∈ Rn×d of rank d, we call this an approximate leverage score sampling sketch if
pi ≈O(1) li/d for all i, where li = a>i (A>A)−1ai is the ith leverage score of A. We will present
two lower bound constructions.

1. Approximate sampling and arbitrary A. Now, suppose that n is even and consider the fol-
lowing specific example:

pj =

{
lj/2d, for j ≤ n/2,

3lj/2d, otherwise.

Further, consider the matrix B = A(A>A)−1A> = P, which is the projection onto the column-
span of A, and therefore satisfies the restriction requirement in the Restricted Bai-Silverstein con-
dition. Then, since tr(B2) = tr(P2) = tr(P) = d, we have:

Var[x>Bx] = E
[(

e>s A(A>A)−1A>es/ps − d
)2]

= E
[(
ls/ps − d

)2] ≥ (d/3)2

2. Exact sampling and a specific A. Suppose that A>A = I, each ai is a standard basis vector
scaled by

√
d/n and we are sampling index s according to exact leverage scores, i.e., uniformly at

random. Then, letting x = 1√
ps

es and B = ACA>, we have:

Var[x>Bx] = E
[(

x>Bx− tr(B)
)2]

= E
[(
d · a>s Cas

a>s (A>A)−1as
− tr(C)

)2]
= d2 · 1

d

d∑
j=1

(
Cjj −

1

d

d∑
i=1

Cii

)2
= d2 · Ω(1), if Cii =

{
1/2, for even i,
3/2, for odd i.
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In both constructions, we have tr(B2) = Θ(d), so this implies that for leverage score sampling,
Condition 2 can only be shown with factor α = Ω(d), as opposed toO(1) for sub-gaussian sketches
and LESS embeddings.

Data-oblivious sparse embeddings. Let S be a sketch of size m, where each row is distributed
independently as 1√

m
x> and x = (

√
m
s b1r1, ...,

√
m
s bnrn), with bi ∼ Bernoulli( sm) and ri dis-

tributed as a uniformly random sign. While this is not the most commonly studied variant of a sparse
embedding, it is known to satisfy the subspace embedding property for sketch size m = O(d log d)
with sparsity level s = O(log d) (Cohen, 2016), which matches the state-of-the-art for sparse em-
beddings. Other sparse embeddings have non-i.i.d. row distributions (Clarkson and Woodruff, 2017;
Nelson and Nguyên, 2013; Meng and Mahoney, 2013), and so they do not fit into the framework
laid out by Theorem 11. The key difference between the sparsification of x relative to our LESS
embeddings is that it is data-oblivious. We can exploit that in our lower bound example by choosing
an extremely skewed leverage score distribution of matrix A. In particular, suppose that A>A = I
and moreover, ai = ei for i = 1, ..., k (where 1 ≤ k ≤ d) and for all i > k, the first k coordinates
of ai are zero. This construction ensures that the first k leverage scores of A are equal 1. Once
again setting B = A(A>A)−1A>, we get:

Var[x>Bx] ≥
k∑
i=1

Var
[m
s
biri

]
= k · m

s

(
1− s

m

)
.

If we let k = Ω(d), then we get Var[x>Bx] ≥ Ω(m/s) · tr(B2). Thus, unless we zero-out merely
a constant fraction of entries of S, the sketching matrix will not satisfy Condition 2 with a constant
factor α = O(1). We conjecture that this example can be extended to show a general lower bound
on the inversion bias, as we did for approximate leverage score sampling.

Appendix D. Subspace embedding guarantee for LESS embeddings

In this section, we prove Lemma 12 and Theorem 8. In particular, we prove that LESS embeddings
achieve the subspace embedding property for a sketch of size O(d log d) (Lemma 12), thus estab-
lishing Condition 1. Then, at the end of the section we briefly discuss how to combine Lemmas 12
and 28, using the structural conditions via Theorem 11, to obtain Theorem 8.

D.1. Proof of Lemma 12

First, note that instead of directly showing the subspace embedding of SA for the span of A, it suf-
fices to show the guarantee when replacing A with its orthonormal basis matrix U = A(A>A)−1/2,
since A>S>SA = (A>A)

1
2 U>S>SU(A>A)

1
2 . Then, a standard technique, e.g., as used for lever-

age score sampling sketches, relies on the following decomposition of U>S>SU as an average of
independent rank-one p.s.d. random matrices:

U>S>SU =

m∑
i=1

U>sis
>
i U,

where s>i represents the ith row of S. For standard leverage score sampling sketches it suffices to
use the matrix Chernoff bound (Tropp, 2012, Theorem 1.1), which uses an almost sure bound on
each rank-one matrix to ensure concentration around the mean, E[U>S>SU] = I. However, in the
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case of a leverage score sparsified embedding an almost sure bound is not sufficient. Instead, we
show that the rank-one matrices U>sis

>
i U exhibit sub-exponential tails on all of their moments, as

required by the following variant of the matrix Bernstein bound.

Lemma 29 (Tropp (2012, Theorem 6.2)) For i = 1, 2, ..., consider a finite sequence Xi of d× d
independent and symmetric random matrices such that

E[Xi] = 0, E[Xp
i ] �

p!

2
·Rp−2A2

i for p = 2, 3, ...

Then, defining the variance parameter σ2 = ‖
∑

i A
2
i ‖, for any t > 0 we have:

Pr

{
λmax

(∑
i
Xi

)
≥ t
}
≤ d · exp

(
−t2/2
σ2 +Rt

)
.

We apply the above result for Xi = ±(U>sis
>
i U − 1

mI), where si = 1√
m

(xi ◦ ξ) is a leverage
score sparsified sub-gaussian random vector. We next establish the subexponential moment bound
needed for the matrix Bernstein bound.

Lemma 30 Fix a matrix U ∈ Rn×d such that U>U = I. Suppose that ξ is a leverage score
sparsifier for U and x has i.i.d. O(1)-sub-gaussian entries with mean zero and unit variance. Then,
there is C = O(1) such that for all p = 2, 3, ... we have∥∥∥E[(U>(x ◦ ξ)(x ◦ ξ)>U− I

)p]∥∥∥ ≤ p!

2
· (Cd)p−1.

Now, the matrix Bernstein bound (Lemma 29) can be invoked with A2
i = Cd

m2 · I and σ2 = R = Cd
m ,

obtaining that for η ∈ (0, 1):

Pr
{∥∥U>S>SU− I

∥∥ ≥ η} ≤ 2d · exp
(
− η2m

4Cd

)
≤ δ for m ≥ 4Cd log(2d/δ)/η2,

which completes the proof.

D.2. Proof of Lemma 30

The key part of our proof of Lemma 30 involves establishing the following concentration inequality
which can be viewed as a form of the Hanson-Wright inequality (Rudelson and Vershynin, 2013)
that takes advantage of the leverage score sparsifier ξ, similarly as we did for the Restricted Bai-
Silverstein inequality (Lemma 28).

Lemma 31 Fix a matrix U ∈ Rn×d such that U>U = I. Suppose that ξ is a leverage score spar-
sifier for U and x has independent O(1)-sub-gaussian entries with mean zero and unit variance.
Then, there is c = Ω(1) and C = O(1) such that for any t ≥ Cd we have:

Pr
{

(x ◦ ξ)>UU>(x ◦ ξ) ≥ t
}
≤ exp

(
− c

(√
t+ t/d

))
.

Proof We use the shorthand Uξ = diag(ξ)U. Similarly as for Lemma 28, our strategy is to show
that the sparsification Uξ preserves enough of the structure of U so that we can apply the classical
Hanson-Wright inequality, which is repeated below, following (Rudelson and Vershynin, 2013),
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Lemma 32 (Rudelson and Vershynin (2013, Theorem 1.1)) Let x have independent O(1)-sub-
gaussian entries with mean zero and unit variance. Then, there is c = Ω(1) such that for any n× n
matrix B and t ≥ 0,

Pr
{
|x>Bx− tr(B)| ≥ t

}
≤ 2 exp

(
− cmin

{ t2

‖B‖2F
,
t

‖B‖

})
.

To show that the leverage score sparsification Uξ is sufficiently accurate, we can rely on the matrix
Chernoff bound, repeated below, and the following decomposition:

U>ξ Uξ =
d∑
i=1

usiu
>
si

dpsi
,

where si are the random indices sampled from the approximate leverage score distribution (p1, ..., pn)
(see Definition 6). For simplicity, we only repeat the large deviation part of the Chernoff bound,
which is the one relevant to our analysis.

Lemma 33 (Tropp (2012, Theorem 1.1 and Remark 5.3)) For i = 1, 2, ..., consider a finite se-
quence Xi of d × d independent positive semi-definite random matrices such that E

[∑
i Xi

]
= I

and ‖Xi‖ ≤ R. Then, for any t ≥ e, we have:

Pr
{∥∥∥∑

i

Xi

∥∥∥ ≥ t} ≤ d · (e

t

)t/R
.

We apply the matrix Chernoff to Xi = 1
dpsi

usiu
>
si , noting that since pi ≥ ‖ui‖2/Rd for R = O(1),

it follows that ‖Xi‖ ≤ R. Moreover, E[
∑d

i=1 Xi] = I, so for t ≥ O(1) · d we have:

Pr
{
‖U>ξ Uξ‖ ≥

√
t
}
≤ d exp

(
−
√
t ln(
√
t/e)/R

)
≤ exp(−c

√
t),

for some c = Ω(1). Also, note that ‖U>ξ Uξ‖ ≤ tr(U>ξ Uξ) ≤ Rd almost surely, which implies
that event E :

[
‖U>ξ Uξ‖ ≤ min{

√
t, Rd}

]
holds with probability at least 1− exp(−c(

√
t+ t/d)).

Conditioned on E , it holds that ‖UξU
>
ξ ‖2F ≤ ‖U>ξ Uξ‖ · tr(U>ξ Uξ) ≤ min{

√
t, Rd} · Rd, so

applying Lemma 32 for fixed ξ we get:

Pr
{
x>UξU

>
ξ x ≥ Rd+ t | ξ, E

}
≤ 2 exp

(
− cmin

{ t2

‖UξU
>
ξ ‖2F

,
t

‖UξUξ‖

})
≤ 2 exp

(
− cmin

{ t2

min{
√
t, Rd} ·Rd

,
t

min{
√
t, Rd}

})
≤ 2 exp

(
− c(
√
t+ t/Rd)

)
.

Appropriately rescaling t, we obtain the claim.

We are now ready to present the proof of Lemma 30, obtaining subexponential moment bounds
for the random matrix U>(x ◦ ξ)(x ◦ ξ)>U, thus completing the proof of the subspace embedding
guarantee for leverage score sparsified sketches.
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Proof [Proof of Lemma 30] Throughout the proof, we will use the shorthand Uξ = diag(ξ)U. It is
easy to show by induction over p that:(

U>ξ xx>Uξ − I
)p︸ ︷︷ ︸

Zp

=
(
x>UξU

>
ξ x− 1

)p−1
U>ξ xx>Uξ −

(
U>ξ xx>Uξ − I

)p−1︸ ︷︷ ︸
Zp−1

.

Thus, it follows that for any p = 2, 3, ... (both even and odd) we have the following upper bound:∥∥E[Zp]
∥∥ ≤ ∥∥∥E[ |x>UξU

>
ξ x− 1|p−1U>ξ xx>Uξ︸ ︷︷ ︸

Tp

]∥∥∥+
∥∥E[Zp−1]

∥∥.
To bound the quadratic form x>UξU

>
ξ x in the first term, we can use Lemma 31. In particular, the

lemma implies that the event E : [x>UξU
>
ξ x ≤ Cpd] fails with probability at most e−

√
pd for a

sufficiently large C = O(1), so we have:∥∥E[Tp]
∥∥ ≤ ∥∥E[Tp · 1E ]

∥∥+
∥∥E[Tp · 1¬E ]

∥∥
≤ (pd)p−1

∥∥E[U>ξ xx>Uξ]
∥∥+ E

[
(x>UξU

>
ξ x · 1¬E)p

]
= (Cpd)p−1 +

∫ ∞
0

ptp−1Pr
{
x>UξU

>
ξ x · 1¬E > t

}
dt

≤ (Cpd)p−1 + p(Cpd)pe−
√
pd +

∫ ∞
Cpd

ptp−1e−c(
√
t+t/d)dt.

Note that (O(1) p)p+O(1)dp−1 ≤ pp(O(1) d)p−1 ≤ (p!/2)(O(1) d)p−1, and also e−
√
pd ≤ O(1/d),

so the first two terms can be easily bounded as desired. To bound the last term, we use the following
integral formula: ∫

tp−1e−αt
θ
dt = −Γ(p/θ, αtθ)

θαp/θ
+ const,

which follows from the definition of the upper incomplete Gamma function Γ. Note that for p =
2, 3, ... this function also satisfies:

Γ(p, λ) = (p− 1)! · Pr{x < p} for x ∼ Poisson(λ),

≤ (p− 1)! · e−cλ for λ ≥ 2p, c = Ω(1),

where the last inequality is a standard tail bound for a Poisson random variable. With a slight abuse
of notation, we let c denote the minimum of the above constant c and the constant c from Lemma
31. We apply the integral formula in two different ways, depending on p. First, if p < d then we
have:∫ ∞
Cpd

ptp−1e−c(
√
t+t/d)dt ≤

∫ ∞
Cpd

ptp−1e−c
√
tdt = 2pc−2pΓ(2p, c

√
Cpd) ≤ 2c−2p(2p)!e−c

2
√
Cpd.

By using the fact that exp(−c2
√
Cpd) ≤ exp(−c2p) = O(1/p), this expression can be bounded by

(p!/2)(O(1) p)p−1 ≤ (p!/2)(O(1) d)p−1. Next, we consider the case when p ≥ d. We have:∫ ∞
Cpd

ptp−1e−c(
√
t+t/d)dt ≤

∫ ∞
Cpd

ptp−1e−ct/ddt = p(d/c)pΓ(p, cCp) ≤ p!dpe−c2Cp,
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where the last inequality holds as long as C ≥ 2/c. Here, we note that e−c
2Cp ≤ O(1/d) since

p ≥ d, thus again obtaining a bound of the form (p!/2)(O(1) d)p−1. Putting everything together,
we conclude that:

‖E[Zp]‖ ≤ p!

2
(O(1) d)p−1 + ‖E[Zp−1]‖.

Recursively summing up this bound concludes the proof.

D.3. Proof of Theorem 8

In Lemma 12, we showed that a LESS embedding of size m ≥ 4Cd log(3d/δ) satisfies Condition 1
(subspace embedding) for η = 1/2 with probability 1 − δ/3, as required by Theorem 11. Also, in
Lemma 28 we showed Condition 2 (Restricted Bai-Silverstein) with α = O(1) for a leverage score
sparsified sub-gaussian vector. Thus, as long as δ ≤ 1/m3 and m/3 ≥ 4Cd log(3d/δ), it follows
that ( m

m−dA
>S>SA)−1 is an (ε, δ)-unbiased estimator of (A>A)−1 for ε = O(

√
d/m), and we

obtain the desired guarantee. Note that the condition for invoking Theorem 11 can be written as
m ≥ C ′d log(m). This is satisfied for m = C ′d log(C ′2d2), and since m grows faster than log(m),
it will also be satisfied for all m ≥ C ′d log(C ′2d2) = O(d log(d)). This completes the proof of
Theorem 8.

Appendix E. Averaging nearly-unbiased estimators

In this section, we show that averaging improves spectral approximation for matrix estimators with
small inversion bias, and as a consequence we prove Corollaries 5 and 9 for averaging sketched
inverse covariance matrix estimators based on sub-gaussian sketches and LESS embeddings respec-
tively.

E.1. Conditions for effective averaging of random matrices

We start with a more general result, which should be of interest to averaging nearly-unbiased matrix
estimators in settings other than inverse covariance matrix estimation.

Lemma 34 (Conditions for effective averaging) Suppose that δ ≤ ε ≤ η ≤ 1 and C̃1, ..., C̃q are
i.i.d. positive semi-definite d-dimensional random matrices such that:

1. C̃i is an (ε, δ/2q)-unbiased estimator of C;

2. C̃i is an (η, δ/2q)-approximation of C.

Then, 1
q

∑q
i=1 C̃i is an (ε′, 2δ)-approximation of C for ε′ = ε+ η ·O

(√ ln(d/δ)
q

)
.

Proof For this, we use a variant of the matrix Bernstein inequality given below.

Lemma 35 (Tropp (2012, Theorem 1.4)) For i = 1, 2, ..., consider a finite sequence Xi of d× d
independent and symmetric random matrices such that

E[Xi] = 0, λmax(Xi) ≤ R almost surely.
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Then, defining the variance parameter σ2 = ‖
∑

i E[X2
i ]‖, for any t > 0 we have:

Pr

{
λmax

(∑
i
Xi

)
≥ t
}
≤ d · exp

(
−t2/2

σ2 +Rt/3

)
.

Suppose that C̃ is an (ε, δ/2q)-unbiased estimator and an (η, δ/2q)-spectral approximation for C,
with Einv and Esub the associated high probability events. For concreteness, let the O(1) constant
factor in Definition 3 be denoted as M . Further, let C̃i, E iinv, E isub be the i.i.d. copies of C̃ with their
associated events. Finally, let C̃′i be a random matrix obtained from conditioning C̃i on E iinv ∧E isub,
and coupled with C̃i so that Pr(C̃′i = C̃i) ≥ Pr(E iinv ∧ E isub) ≥ 1 − δ/q (this coupling can be
obtained by considering a construction of C̃′i via rejection sampling from C̃i). We can bound the
bias of C̃′i (for any i) by observing that:

−δ/q · E[C̃i | E iinv,¬E isub] � E[C̃′i]− E[C̃i | E iinv] �
δ/q

1− δ/q
· E[C̃i | E iinv].

Since we have E[C̃i | E iinv] ≈ε C and E[C̃i | E iinv,¬E isub] � M · C, it follows that E[C̃′i] is an
ε′-spectral approximation of C for ε′ = ε+ 2δ

q (1 + ε+M).
We will now apply the matrix Bernstein inequality (Lemma 35) to the sequence of matrices:

Xi =
1

q

(
C−

1
2 C̃′iC

− 1
2 − E

[
C−

1
2 C̃′iC

− 1
2
])
, i = 1, ..., q.

Note that we have C̃′i ≈η 1
qC, so it follows that ‖Xi‖ ≤ (η + ε′)/q and

∑
i ‖X2

i ‖ ≤ (η + ε′)2/q.
Thus, we conclude that for t ∈ (0, 1):

Pr

{∥∥∥ q∑
i=1

Xi

∥∥∥ ≥ t (η + ε′)

}
≤ 2d exp

(
− t2q/4

)
.

Setting t =
√

4 ln(2d/δ)/q (without loss of generality, assume that t ≤ 1), we obtain that with
probability 1− δ,∥∥∥1

q

q∑
i=1

C−
1
2 C̃′iC

− 1
2 − I

∥∥∥ ≤ ∥∥∥ q∑
i=1

Xi

∥∥∥+
∥∥∥1

q

q∑
i=1

C−
1
2E[C̃′i]C

− 1
2 − I

∥∥∥
≤ t · (η + ε′) + ε′ ≤ ε+ η ·O

(√
log(d/δ)

q

)
+O

(δM
q

)
.

Note that under the assumptions that M = O(1) and δ ≤ η, we can absorb the last term into the
middle term. Finally, observe that thanks to the coupling and a union bound, the above bound holds
with probability 1− 2δ after we replace C̃′i with C̃i, completing the proof of Lemma 34.

E.2. Proof of Corollary 5

Consider a sub-gaussian sketching matrix S of size m ≥ C(d+
√
d/ε+ log(2q/δ)). From Proposi-

tion 4, it follows that ( m
m−dA

>S>SA)−1 is an (ε, δ/2q)-unbiased estimator of (A>A)−1. Further,
it is an (η, δ/2q)-approximation of (A>A)−1, where η = O(

√
d/m) = O(ε ·

√
m). Thus, using
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Lemma 34, it follows that for q i.i.d. copies S1, ...,Sq, the averaged estimator 1
q

∑q
i=1( m

m−dA
>S>i SiA)−1

is an (ε′′, 2δ)-approximation of (A>A)−1 for

ε′′ = ε+O
(
ε ·
√
m log(d/δ)/q

)
.

Setting q = O(m log(d/δ)) and adjusting the constants appropriately, we obtain the claim.

E.3. Proof of Corollary 9

Consider a LESS embedding matrix S of size m ≥ C(d log(2dq/δ) +
√
d/ε). From Theorem 8,

it follows that ( m
m−dA

>S>SA)−1 is an (ε, δ/2q)-unbiased estimator of (A>A)−1. Furthermore,
the theorem also implies that this matrix is an (η, δ/2q)-approximation of (A>A)−1 for η =
O(
√
d log(2dq/δ)/m) = O(ε ·

√
m log(d/δ)). Using Lemma 34, it follows that for q i.i.d.

copies S1, ...,Sq, the averaged estimator 1
q

∑q
i=1( m

m−dA
>S>i SiA)−1 is an (ε′′, 2δ)-approximation

of (A>A)−1 for

ε′′ = ε+O

(
ε ·
√
m log2(2dq/δ)/q

)
.

Setting q = O(m log2(d/δ)) and adjusting the constants appropriately, we obtain the claim.

Note that in both Corollaries there is a slight interdependence in the conditions for m and q.
This is in general unavoidable, since as q grows large with fixed m, the average has to eventually
converge to the true expectation of ( m

m−dA
>S>SA)−1, which may be unbounded.

Appendix F. Inversion bias lower bound for leverage score sampling

In this section, we show a lower bound on the inversion bias of approximate leverage score sampling,
proving Theorem 10. In the proof, we show a lower bound for the inverse moment of a shifted
Binomial random variable (Lemma 36), which should be of independent interest.

F.1. Proof of Theorem 10

Without loss of generality, suppose that n = 2d (otherwise the matrix A can be padded by zeros).
We can also assume that m ≥ d, since the other cases follow easily. Our construction is designed
so that uniform row sampling is a 1/2-approximation of leverage score sampling. Let S be a uni-
form row sampling sketch of size m, i.e., its ith row is

√
n
m e>si , where s1, ..., sm are independent

uniformly random indices from 1, ..., n. Our matrix A consists of n = 2d scaled standard basis
vectors such that pairs of consecutive rows are given by a>2(i−1)+1 = a>2(i−1)+2 = 1√

2
e>i for i ≥ 2,
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whereas the first two rows are a>1 = 1√
4
e>1 and a>2 =

√
3
4e>1 :

A =



1√
4√
3
4 0

1√
2

1√
2

. . .
0 1√

2
1√
2


.

First, note that A>A = I, and all of the squared row norms are within [1
2
d
n ,

3
2
d
n ], so uniform

sampling is indeed a 1/2-approximate leverage score sampling scheme. Further, for any γ > 0, the
matrix γA>S>SA is diagonal, and its diagonal entries are given by:

[
γA>S>SA

]
ii

=

{
γn
m

∑m
j=1

(
1
41[sj=1] + 3

41[sj=2]

)
= γn

m ·
x+b1/2

2 for i = 1,
γn
m

∑m
j=1

(
1
21[sj=2(i−1)+1] + 1

21[sj=2(i−1)+2]

)
= γn

m ·
bi
2 otherwise,

where bi’s are all identically (but not independently) distributed as Binomial(m, 1/d) and x is
distributed, conditionally on b1, as Binomial(b1, 1/2). Here bi denote the number of times sj ∈
{2i − 1, 2i}, while x denotes the number of times sj = 2. Due to the symmetry of the problem,
conditionally on a given value of b1 (i.e., a given value of counts sj that are equal to either unity
or two), each sj ∈ {1, 2} is distributed uniformly over {1, 2}, hence the value x of counts sj
that are equal to two is distributed as Binomial(b1, 1/2). This leads to the claimed distributional
representation.

The key idea in the construction is that the first diagonal entry of the sketch has more variance
than the others, and thus it will also have more inversion bias. As a result, there is no scaling γ that
will simultaneously correct the inversion bias of the first entry and of all the other entries. To that
end, we lower bound a shifted inverse moment of the Binomial distribution in the following lemma,
potentially of independent interest, proven at the end of this section.

Lemma 36 There is a universal constant C > 0 such that for any positive integer b, if x ∼
Binomial(b, 1/2) then:

E
[

1

x+ b/2

]
≥
(

1 +
1

Cb

)
· 1

b
.

Note that the expected inverse of γA>S>SA is undefined since the matrix may not be invertible.
Thus, as in the definition of an (ε, δ)-unbiased estimator, we must condition on a high probability
event which ensures invertibility. We start by considering the largest such event, E∗ : [∀ibi > 0].
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Using the fact that, conditioned on b1, the variable x is independent of E∗, we have:

E
[[

(γA>S>SA)−1
]
11
| E∗

]
=
(γn
m

)−1∑
b>0

E
[ 2

x+ b1/2
| b1 = b

]
Pr(b1 = b | E∗)

(a)

≥
(γn
m

)−1∑
b>0

(
1 +

1

Cb

) 2

b
Pr(b1 = b | E∗)

=
∑
b>0

(
1 +

1

Cb

)
E
[[

(γA>S>SA)−1
]
22
| b2 = b

]
Pr(b2 = b | E∗)

≥ E
[[

(γA>S>SA)−1
]
22
| E∗

]
+

1

2C

d

m

2m/d∑
b=1

E
[[

(γA>S>SA)−1
]
22
| b2 = b

]
Pr(b2 = b | E∗)

(b)

≥
(

1 +
d

4Cm

)
· E
[[

(γA>S>SA)−1
]
22
| E∗

]
,

where in (a) we used Lemma 36 and in (b) we observed that
[
(γA>S>SA)−1

]
22

decreases with b2
and moreover, since E[b2] = m/d ≥ 1, it is easy to verify that the range [1, 2m/d] contains more
than half of the probability mass of Binomial(m, 1/d).

The above derivation shows that when conditioned on E∗, for any scaling γ > 0 the inversion
bias will be at least Ω(d/m), since the estimated matrix (A>A)−1 = I has the same entries on the
diagonal, whereas the expectation of the first two diagonal entries of the estimator (γA>S>SA)−1

differs by a factor of 1 + Ω(d/m). To complete the proof of Theorem 10, it remains to show
that the same is true not just for E∗, but for any event E ⊆ E∗ with sufficiently high probability.
Suppose that E is such an event, with δ = Pr(E | E∗) ≤ Pr(¬E) ≤ 1

4C·16( dm)2. Then, using
τi = m

γn [(γA>S>SA)−1]ii as a shorthand, we have:

E[τ1 | E ] = E[τ1 | E∗] +
δ

1− δ

(
E[τ1 | E∗]− E[τ1 | E∗,¬E ]

)
≥ E[τ1 | E∗]− 8δ,

where we used that δ ≤ 1/2 and, conditioned on E∗, we have τ1 ≤ 4. On the other hand,

E[τ2 | E ] = E[τ2 | E∗] +
δ

1− δ

(
E[τ2 | E∗]− E[τ2 | E∗,¬E ]

)
≤ (1 + 2δ)E[τ2 | E∗].

Combining the two inequalities and using that E[τ2 | E∗] ≥ d/m and δ ≤ 1
4C·16( dm)2, we get:

E
[
[(γA>S>SA)−1]11 | E

]
E
[
[(γA>S>SA)−1]22 | E

] =
E[τ1 | E ]

E[τ2 | E ]
≥

(1 + d
4Cm)E[τ2 | E∗]− 8δ

(1 + 2δ)E[τ2 | E∗]

≥
1 + d

4Cm − 8δmd
1 + 2δ

≥
1 + d

8Cm

1 + d
32Cm

≥ 1 +
d

64Cm
.

Thus, as discussed above, we conclude that for any scaling γ > 0 and any event E with probability
Pr(E) ≥ 1 − 1

4C·16( dm)2, we have ‖E[(γA>S>SA)−1 | E ] − I‖ = Ω( dm), which concludes the
proof.
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F.2. Proof of Lemma 36

We conclude this section with a proof of the Binomial inverse moment bound from Lemma 36.
While existing work has focused on asymptotic expansions of inverse moments of the Binomial
(Znidaric, 2009), those precise characterizations either break down or appear to be impractical to
work with when the variable is significantly shifted, as in our case. Thus, we use a different strategy:
reducing the inverse moment bound to showing an anti-concentration inequality for the Binomial
distribution. For this, we use the classical Paley-Zygmund inequality, stated below.

Lemma 37 For any non-negative variable Z with finite variance and θ ∈ (0, 1), we have:

Pr
(
Z ≥ θE[Z]

)
≥ (1− θ)2E[Z]2

E[Z2]
.

Let x ∼ Binomial(b, 1/2) for a positive integer b. It follows that:

E
[ 1

x+ b/2
− 1

b

]
=

b∑
i=0

Pr(x = i)
( 1

i+ b/2
− 1

b

)
=

1

b

b∑
i=0

Pr(x = i)
b/2− i
b/2 + i

=
1

b

bb/2c∑
i=0

Pr(x = i)(b/2− i)
( 1

b/2 + i
− 1

3b/2− i

)
,

where the last equality is obtained by symmetrically pairing up the terms i and b− i in the first sum.
Next, observe that for 0 ≤ i ≤ b/2−

√
b/4, we have:

(b/2− i)
( 1

b/2 + i
− 1

3b/2− i

)
≥
√
b

4

( 1

b−
√
b/4
− 1

b+
√
b/4

)
=

√
b

4
·
√
b/2

b2 − b/16
≥ 1

8b
.

Putting this together, we conclude that:

E
[ 1

x+ b/2

]
≥
(

1 +
1

8b
Pr
{
x− b/2 ≤ −

√
b/4
})
· 1

b
. (8)

Thus, it suffices to show that, with constant probability, x is smaller than its mean, b/2, by at least√
b/4. This follows from the Paley-Zygmund inequality (Lemma 37) by setting Z = (x − b/2)2.

Using standard formulas for the second and fourth centered moment of the Binomial distribution,
we have E[Z] = b/4 and E[Z2] = b

4(1 + 3b−6
4 ) ≤ 3b2/16. Therefore, setting θ = 1/4 in Lemma

37, we obtain:

Pr
(
x− b/2 ≤ −

√
b/4
)

=
1

2
Pr
(
|x− b/2| ≥

√
b/4
)

=
1

2
Pr
(
Z ≥ θE[Z]

)
≥ 1

2

(
1− 1

4

)2 b2/16

3b2/16
=

3

32
.

Combining this with (8), we obtain the desired claim for C = 8 · 32/3.
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Appendix G. Exact bias-correction for orthogonally invariant embeddings

In this section we prove that orthogonal invariance implies no inversion bias. This claim has been
mentioned in the main text, in Section 2. Here we give a formal statement.

Proposition 38 (Orthogonal invariance implies no inversion bias) Let S be a random and right-
orthogonally invariant matrix; specifically an m×n matrix (with m ≤ n) such that for any orthog-
onal n × n matrix O, we have S

d
= SO. Assume that (A>S>SA)−1 exists with probability one.

Then the inversion bias is exactly correctable, i.e., there exists a constant c = cm,n,d such that
EΣ̂−1 = c ·Σ−1; where Σ = A>A and Σ̂ = A>S>SA.

Examples of orthogonal ensembles can be constructed in the following way:

1. Let S have i.i.d. normal entries with variance m−1. Due to the properties of the Wishart
ensemble, the constant cm,n,d is cm,n,d = m/(m− d− 1).

2. Let Su be a uniformly random m × n partial orthogonal matrix (with m ≤ n) such that
SuS

>
u = Im. Equivalently, these are the first few rows of a Haar matrix. Then define S =√

n/m · Su, scaled such that ES>S = Im. We will call this the Haar sketch.

3. The class of orthogonally invariant matrices has several closure properties. Specifically, it is
closed with respect to left-multiplication by any matrices, right-multiplication by orthogonal
matrices, and with respect to vector space operations (addition and multiplication by scalars).
Several examples can be obtained this way. For instance, matrices S of the form S = MZ,
where Z has i.i.d. normal entries with variance m−1, and M is an arbitrary matrix fixed or
random and independent of Z are orthogonally invariant.

Proof We start with a reduction to orthogonal matrices: Let A = UΛV> be the SVD of A. Here
recall that A is an n × d matrix, with n ≥ d and with full column rank, and thus U is an n × d
partial orthogonal matrix with n ≥ d, Λ is d× d diagonal, and V is d× d orthogonal. Our goal is
to show that EΣ̂−1 = c ·Σ−1, or equivalently that

E(VΛU>S>SUΛV>)−1 = c · (VΛU>UΛV>)−1.

Then, by cancelling Λ and V above (using that they are deterministic square invertible matrices),
and using that U>U = I, we see that the above inequality is equivalent to

E(U>S>SU)−1 = c · I.

Thus, the problem is reduced to studying orthogonal matrices A = U, such that Σ = A>A =
U>U = I.

We claim that the right-orthogonal invariance implies that SU
d
= SUO for any d×d orthogonal

matrix O. Here is a geometric argument. We have that SU are the angles that the random orthogonal
rows of S form with the fixed set of basis vectors formed by the columns of U. Also, SUO
corresponds to the same quantity, but with respect to the basis formed by UO. Since S is right-
rotationally invariant, these angles have the same distribution.

Another, more algebraic proof is as follows. Since S is right-rotationally invariant, for any
orthogonal n×n matrix R, we have S

d
= SR. Thus, for any fixed matrix U, we have SU

d
= SRU.
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Choose a rotation matrix R such that RUU> = UOU>, while RU⊥ is arbitrary, where U⊥ is an
orthogonal complement of U. Then, multiplying the above with U>U we have

SUU>U
d
= SRUU>U = SUOU>U = SUO.

We get that SU
d
= SUO. Next, SU

d
= SUO implies that, with J := E(U>S>SU)−1,

U>S>SU
d
= O>U>S>SUO

(U>S>SU)−1 d
= O>(U>S>SU)−1O

E(U>S>SU)−1 = O>E(U>S>SU)−1O

J = O>JO.

Since J is preserved under conjugation by any orthogonal matrix, J must be a multiple of the
identity matrix, so J = cId, for some c = cm,n,d. This finishes the proof.
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