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Abstract

It is often desirable to reduce the dimensionality of a large dataset by projecting
it onto a low-dimensional subspace. Matrix sketching has emerged as a powerful
technique for performing such dimensionality reduction very efficiently. Even
though there is an extensive literature on the worst-case performance of sketching,
existing guarantees are typically very different from what is observed in practice.
We exploit recent developments in the spectral analysis of random matrices to de-
velop novel techniques that provide provably accurate expressions for the expected
value of random projection matrices obtained via sketching. These expressions can
be used to characterize the performance of dimensionality reduction in a variety of
common machine learning tasks, ranging from low-rank approximation to iterative
stochastic optimization. Our results apply to several popular sketching methods,
including Gaussian and Rademacher sketches, and they enable precise analysis of
these methods in terms of spectral properties of the data. Empirical results show
that the expressions we derive reflect the practical performance of these sketching
methods, down to lower-order effects and even constant factors.

1 Introduction

Many settings in modern machine learning, optimization and scientific computing require us to
work with data matrices that are so large that some form of dimensionality reduction is a necessary
component of the process. One of the most popular families of methods for dimensionality reduction,
coming from the literature on Randomized Numerical Linear Algebra (RandNLA), consists of data-
oblivious sketches [Mah11, HMT11, Woo14]. Consider a large m x n matrix A. A data-oblivious
sketch of size k is the matrix SA, where S is a £ X m random matrix such that E[%STS} =1, whose
distribution does not depend on A. This sketch reduces the first dimension of A from m to a much
smaller k (we assume without loss of generality that £ < n < m), and an analogous procedure can
be defined for reducing the second dimension as well. This approximate representation of A is central
to many algorithms in areas such as linear regression, low-rank approximation, kernel methods, and
iterative second-order optimization. While there is a long line of research aimed at bounding the
worst-case approximation error of such representations, these bounds are often too loose to reflect
accurately the practical performance of these methods. In this paper, we develop new theory which
enables more precise analysis of the accuracy of sketched data representations.
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A common way to measure the accuracy of the sketch SA is by considering the k-dimensional
subspace spanned by its rows. The goal of the sketch is to choose a subspace that best aligns with
the distribution of all of the m rows of A in R". Intuitively, our goal is to minimize the (norm of
the) residual when projecting a vector a € R™ onto that subspace, i.e., a — Pa = (I — P)a, where
P = (SA)TSA is the orthogonal projection matrix onto the subspace spanned by the rows of SA
(and (-)" denotes the Moore-Penrose pseudoinverse). For this reason, the quantity that has appeared
ubiquitously in the error analysis of RandNLA sketching is what we call the residual projection
matrix:

(residual projection matrix) P, := I—-P = I— (SA)ISA.

Since P, is random, the average performance of the sketch can often be characterized by its
expectation, E[P, |. For example, the low-rank approximation error of the sketch can be expressed
as E[||A — AP||%] = tr ATAE[P,], where | - || r denotes the Frobenius norm. A similar formula
follows for the trace norm error of a sketched Nystrom approximation [WS01, GM16]. Among
others, this approximation error appears in the analysis of sketched kernel ridge regression [FSS20]
and Gaussian process regression [BRVDW 19]. Furthermore, a variety of iterative algorithms, such
as randomized second-order methods for convex optimization [QRTF16, QR16, GKLR19, GRB20]
and linear system solvers based on the generalized Kaczmarz method [GR15], have convergence
guarantees which depend on the extreme eigenvalues of E[P,]. Finally, a generalized form of
the expected residual projection has been recently used to model the implicit regularization of the
interpolating solutions in over-parameterized linear models [DLM 19, BLLT19].

1.1 Main result

Despite its prevalence in the literature, the expected residual projection is not well understood, even
in such simple cases as when S is a Gaussian sketch (i.e., with i.i.d. standard normal entries). We
address this by providing a surrogate expression, i.e., a simple analytically tractable approximation,
for this matrix quantity:

EP,] ~ P, := (WATA+I)™', with v >0 st. trP, =n—k. (1)

Here, ~ means that while the surrogate expression is not exact, it approximates the true quantity up
to some € accuracy. Our main result provides a rigorous approximation guarantee for this surrogate
expression with respect to a range of sketching matrices S, including the standard Gaussian and
Rademacher sketches. We state the result using the positive semi-definite ordering denoted by <.

Theorem 1. Let S be a sketch of size k with i.i.d. mean-zero sub-gaussian entries and let v =
|Al|%/||A||? be the stable rank of A. If we let p = r/k be a fixed constant larger than 1, then
(1-e)P, <EP |2 (1+e)P, for e= O(#)

In other words, when the sketch size k is smaller than the stable rank r of A, then the discrepancy
between our surrogate expression P, and E[P, ] is of the order 1//r, where the big-O notation
hides only the dependence on p and on the sub-gaussian constant (see Theorem 2 for more details).
Our proof of Theorem 1 is inspired by the techniques from random matrix theory which have been
used to analyze the asymptotic spectral distribution of large random matrices by focusing on the
associated matrix resolvents and Stieltjes transforms [HLNT07, BS10]. However, our analysis is
novel in several respects:

1. The residual projection matrix can be obtained from the appropriately scaled resolvent
matrix z(ATSTSA 4+ zI)_1 by taking z — 0. Prior work (e.g., [HMRT19]) combined this
with an exchange-of-limits argument to analyze the asymptotic behavior of the residual
projection. This approach, however, does not allow for a precise control in finite-dimensional
problems. We are able to provide a more fine-grained, non-asymptotic analysis by working
directly with the residual projection itself, instead of the resolvent.

2. We require no assumptions on the largest and smallest singular value of A. Instead, we
derive our bounds in terms of the stable rank of A (as opposed to its actual rank), which
implicitly compensates for ill-conditioned data matrices.

3. We obtain upper/lower bounds for E[P, ] in terms of the positive semi-definite ordering <,
which can be directly converted to guarantees for the precise expressions of expected
low-rank approximation error derived in the following section.



It is worth mentioning that the proposed analysis is significantly different from the sketching literature
based on subspace embeddings (e.g., [Sar06, CW17, NN13, CEM ™15, CNW16]), in the sense that
here our object of interest is not to obtain a worst-case approximation with high probability, but rather,
our analysis provides precise characterization on the expected residual projection matrix that goes
beyond worst-case bounds. From an application perspective, the subspace embedding property is
neither sufficient nor necessary for many numerical implementations of sketching [AMT10, MSM 14],
or statistical results [RM 16, DL.19, YLDW?20], as well as in the context of iterative optimization and
implicit regularization (see Sections 1.3 and 1.4 below), which are discussed in detail as concrete
applications of the proposed analysis.

1.2 Low-rank approximation

We next provide some immediate corollaries of Theorem 1, where we use x ~ y to denote a
multiplicative approximation |z — y| < ey. Note that our analysis is new even for the classical
Gaussian sketch where the entries of S are i.i.d. standard normal. However the results apply more
broadly, including a standard class of data-base friendly Rademacher sketches where each entry
845 1s a =1 Rademacher random variable [Ach(03]. We start by analyzing the Frobenius norm error
|A — AP||% = tr ATA P, of sketched low-rank approximations. Note that by the definition of y
in (1), we have k = tr (I — P, ) = tryATA(yAT A +I)~1, so the surrogate expression we obtain
for the expected error is remarkably simple.

Corollary 1. Let o, be the singular values of A. Under the assumptions of Theorem I, we have:

Remark 1. The parameter v = (k) increases at least linearly as a function of k, which is why
the expected error will always decrease with increasing k. For example, when the singular values
of A exhibit exponential decay, i.e., 0? = C - a'~! for a € (0, 1), then the error also decreases
exponentially, at the rate of k/(a~% —1). We discuss this further in Section 3, giving explicit formulas
for the error as a function of k under both exponential and polynomial spectral decay profiles.

The above result is important for many RandNLA methods, and it is also relevant in the context
of kernel methods, where the data is represented via a positive semi-definite m x m kernel matrix
K which corresponds to the matrix of dot-products of the data vectors in some reproducible kernel
Hilbert space. In this context, sketching can be applied directly to the matrix K via an extended
variant of the Nystrom method [GM16]. A Nystrom approximation constructed from a sketching
matrix S is defined as K = CTWTC, where C = SK and W = SKS7, and it is applicable
to a variety of settings, including Gaussian Process regression, kernel machines and Independent
Component Analysis [BRVDW19, WSO01, BJO3]. By setting A = Kz, itis easy to see [DKM20]
that the trace norm error | K — K], is identical to the squared Frobenius norm error of the low-rank
sketch SA, so Corollary 1 implies that

E[IK - K|.] ~ k/y for v>0st >

%

YA N
YAi+1
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with any sub-gaussian sketch, where \; denote the eigenvalues of K. Our error analysis given in
Section 3 is particularly relevant here, since commonly used kernels such as the Radial Basis Function
(RBF) or the Matérn kernel induce a well-understood eigenvalue decay [SZW 97, RW06].

Metrics other than the aforementioned Frobenius norm error, such as the spectral norm error [HMT11],
are also of significant interest in the low-rank approximation literature. We leave these directions for
future investigation.

1.3 Randomized iterative optimization

We next turn to a class of iterative methods which take advantage of sketching to reduce the per
iteration cost of optimization. These methods have been developed in a variety of settings, from
solving linear systems to convex optimization and empirical risk minimization, and in many cases the
residual projection matrix appears as a black box quantity whose spectral properties determine the
convergence behavior of the algorithms [GR15]. With our new results, we can precisely characterize
not only the rate of convergence, but also, in some cases, the complete evolution of the parameter
vector, for the following algorithms:



1. Generalized Kaczmarz method [GR15] for approximately solving a linear system Ax = b;

2. Randomized Subspace Newton [GKLR19], a second order method, where we sketch the
Hessian matrix.

3. Jacobian Sketching [GRB20], a class of first order methods which use additional information
via a weight matrix W that is sketched at every iteration.

We believe that extensions of our techniques will apply to other algorithms, such as that of [LPP19].
We next give a result in the context of linear systems for the generalized Kaczmarz method [GR15],
but a similar convergence analysis is given for the methods of [GKLR 19, GRB20] in Appendix B.
Corollary 2. Let x* be the unique solution of Ax* = b and consider the iterative algorithm:

t+1

x'™! = argmin ||x — x’||> subjectto SAx = Sb.
X

Under the assumptions of Theorem 1, with ~y defined in (1) and r = ||A||%./||A||% we have:

41 x5 T -1 t * — 1
E[x"™ —x*] ~ (yATA+I)'E[x' —x*] for e—O(\/F).

The corollary follows from Theorem | combined with Theorem 4.1 in [GR15]. Note that when AT A
is positive definite then (YAT A +1I)~! < I, so the algorithm will converge from any starting point,
and the worst-case convergence rate of the above method can be obtained by evaluating the largest
eigenvalue of (YAT A + I)~!. However the result itself is much stronger, in that it can be used
to describe the (expected) trajectory of the iterates for any starting point x°. Moreover, when the
spectral decay profile of A is known, then the explicit expressions for «y as a function of & derived in
Section 3 can be used to characterize the convergence properties of generalized Kaczmarz as well as
other methods discussed above.

1.4 TImplicit regularization

Setting x! = 0, we can view one step of the iterative method in Corollary 2 as finding a minimum
norm interpolating solution of an under-determined linear system (SA, Sb). Recent interest in the
generalization capacity of over-parameterized machine learning models has motivated extensive re-
search on the statistical properties of such interpolating solutions [e.g., BLLT19, HMRT19, DLM19].
In this context, Theorem | provides new evidence for the implicit regularization conjecture posed by
[DLM19] (see their Theorem 2 and associated discussion), with the amount of regularization equal
%, where y is implicitly defined in (1):

E[argmin x[|? s.t. SAx = Sb} —x* ~ argmin {||Ax —b|*+ %||x||2} —x*.
X X

Bias of sketched minimum norm solution Bias of l2-regularized solution

While implicit regularization has received attention recently in the context of SGD algorithms for
overparameterized machine learning models, it was originally discussed in the context of approxima-
tion algorithms more generally [Mah12]. Recent work has made precise this notion in the context
of RandNLA [DLM19], and our results here can be viewed in terms of implicit regularization of
scalable RandNLA methods.

1.5 Related work

A significant body of research has been dedicated to understanding the guarantees for low-rank
approximation via sketching, particularly in the context of RandNLA [DM 16, DM 18]. This line of
work includes i.i.d. row sampling methods [BMDO08, AM15] which preserve the structure of the data,
and data-oblivious methods such as Gaussian and Rademacher sketches [Mah11, HMT11, Wool4].
However, all of these results focus on worst-case upper bounds on the approximation error. One
exception is a recent line of works on non-i.i.d. row sampling with Determinantal Point Processes
(DPP, [DM20]). In this case, exact analysis of the low-rank approximation error [DKM?20], as
well as precise convergence analysis of stochastic second order methods [MDK20], have been
obtained. Remarkably, the expressions they obtain are analogous to (1), despite using completely
different techniques. However, their analysis is limited only to DPP-based sketches, which are



considerably more expensive to construct and thus much less widely used. The connection between
DPPs and Gaussian sketches was recently explored by [DLM19] in the context of analyzing the
implicit regularization effect of choosing a minimum norm solution in under-determined linear
regression. They conjectured that the expectation formulas obtained for DPPs are a good proxy for
the corresponding quantities obtained under a Gaussian distribution. Similar observations were made
by [DBPM20] in the context of sketching for regularized least squares and second order optimization.
While both of these works only provide empirical evidence for this particular claim, our Theorem |1
can be viewed as the first theoretical non-asymptotic justification of that conjecture.

The effectiveness of sketching has also been extensively studied in the context of second order
optimization. These methods differ depending on how the sketch is applied to the Hessian matrix,
and whether or not it is applied to the gradient as well. The class of methods discussed in Section 1.3,
including Randomized Subspace Newton and the Generalized Kaczmarz method, relies on projecting
the Hessian downto a low-dimensional subspace, which makes our results directly applicable. A
related family of methods uses the so-called Iterative Hessian Sketch (IHS) approach [PW 16, LP19].
The similarities between IHS and the Subspace Newton-type methods (see [QRTF16] for a com-
parison) suggest that our techniques could be extended to provide precise convergence guarantees
also to the IHS. Finally, yet another family of Hessian sketching methods has been studied by
[RKM19, WGM17, XRKM17, YXRKM18, RLXM18, WRXM17, DM19]. These methods preserve
the rank of the Hessian, and thus they provide somewhat different convergence guarantees that do not
rely on the residual projection matrix.

2 Precise analysis of the residual projection

In this section, we give a detailed statement of our main technical result, along with a sketch of the
proof. First, recall the definition of sub-gaussian random variables and vectors.

Definition 1. We say that x is a K-sub-gaussian random variable if its sub-gaussian Orlicz norm

llzllp, < K, where |||y, == inf{t > 0: Elexp(z?/t?)] < 2}. Similarly, we say that a random
vector X is I-sub-gaussian if for all ||a|| < 1 we have |x"al|y, < K.

For convenience, we state the main result in a slightly different form than Theorem 1. Namely, we
replace the m x n matrix A with a positive semi-definite 7 x n matrix > 2. Furthermore, instead of
a sketch S with i.i.d. sub-gaussian entries, we use a random matrix Z with i.i.d. sub-gaussian rows,
which is a strictly weaker condition because it allows for the entries of each row to be correlated.
Since the rows of Z are also assumed to have mean zero and identity covariance, each row of 737 has
covariance X. In Section 2.2 we show how to convert this statement back to the form of Theorem 1.

Theorem 2. LetP; =1 - XX for X = 732, where Z € RF*™ has i.i.d. K -sub-gaussian rows

with zero mean and identity covariance, and 3 is an n X n positive semi-definite matrix. Define:

P, =("WS+1)"', suchthat trP, =n— k.

Let r = tr(X) /||| be the stable rank of £2 and fix p = r/k > 1. There exists a constant C, >0,
depending only on p and K, such that if r > C,, then

(13;) P <E[P,] < (1+§;) Pl ©)

We first provide the following informal derivation of the expression for P | given in Theorem 2.
Let us use P to denote the matrix XX = I — P . Using a rank-one update formula for the
Moore-Penrose pseudoinverse (see Lemma | in the appendix) we have
k
I- P,k-)XkXT
I-EP,]=EP|=E[(X"X)'X"X] =) E[(X"X)x;x]] =kE I Pop)xixy
PL] = EIP) = B[(XTX)X"X] = 3 E(XX)xox] Erasal

where we use x; to denote the i-th row of X, and P_;, = XikX_k, where X _; is the matrix X

without its 4-th row. Due to the sub-gaussianity of xy, the quadratic form x; (I — P_;)xy, in the
denominator concentrates around its expectation (with respect to xy), i.e., tr3(I — P_j ), where we



use E[x;,x] = 3. Further note that, with P_;, ~ P for large k and 1+ trE(I—P_;) ~ +trEE[P ]
from a concentration argument, we conclude that

FE[P | 5> -1
I-EP,||~» ——— EP||~(—— +1
ST [P.] (trEE[PJ_] 1)
and thus E[P ] ~ P, for P, = (yX +I)~' and 7! = $trXP,. This leads to the (implicit)

expression for P and  given in Theorem 2.

2.1 Proof sketch of Theorem 2

To make the above intuition rigorous, we next present a proof sketch for Theorem 2, with the detailed
proof deferred to Appendix A. The proof can be divided into the following three steps.

Step 1.  First note that, to obtain the lower and upper bound for E[P | | in the sense of symmetric
matrix as in Theorem 2, it suffices to bound the spectral norm ||I — E[P |P || < %, so that, with

%I <P, <1Iforp=r/k > 1from the definition of P , we have

_ _ 1 _ — 1
I=P *(I-EP.JP~HP:| <

Q

p [P
p—1

N

_ _ 1 [
II-P 2E[P,|P] —e

=

This means that all eigenvalues of the p.s.d. matrix P ?E[P | ]P | 2 lie in the interval [1 — ¢, 1 + €],
1 _T
> =< (1 + e)I. Multiplying by P? from both sides, we obtain the

_ _ 1 —
so(l—eI =P *E[P, P
desired bound.

Step 2. Then, we carefully design an event F that (i) is provable to occur with high probability and
(ii) ensures that the denominators in the following decomposition are bounded away from zero:

I-E[P,|P'=E[P] -1EP,JE =E[P-15] +E[P - 1_5] —1E[P,]Z
(I — P_k)XkX]z

=vE|(5-8) ————— 1| vE[(I-P_ R
TE|(5-3) x, (I—P_p)xy, el —7E[( k) XEX, E]
To
T,
+7E[P ~P_JS+E[P -1 g],
T3 T4

where we let § = x| (I — P_j)x; and 5 = k/~.

Step 3. It then remains to bound the spectral norms of Ty, T, T3, T4 respectively to reach the
conclusion. More precisely, the terms || T|| and ||T4|| are proportional to Pr(—FE), while the term
IT3|| can be bounded using the rank-one update formula for the pseudoinverse (Lemma 1 in the
appendix). The remaining term ||T'; || is more subtle and can be bounded with a careful application
of the Hanson-Wright type [RV 13] sub-gaussian concentration inequalities (Lemmas 2 and 3 in the
appendix). This allows for a bound on the operator norm ||I — E[P |P*|| and hence the conclusion.

2.2 Proof of Theorem 1

We now discuss how Theorem 1 can be obtained from Theorem 2. The crucial difference between
the statements is that in Theorem | we let A be an arbitrary rectangular matrix, whereas in Theorem
2 we instead use a square, symmetric and positive semi-definite matrix 3. To convert between the
two notations, consider the SVD decomposition A = UDVT of A € R™*" (recall that we assume
m > n), where U € R™*™ and V € R™*™ have orthonormal columns and D is a diagonal matrix.
Now, letZ = SU, ¥ = D2 and X = ZX? = SUD. Using the fact that VTV = VVT =1 it
follows that:

I-(SA)SA=VI-X'X)VT and (yATA+ D)1 =V(HZ+I)"'V".
Note that since |Uv/|| = ||v||, the rows of Z are sub-gaussian with the same constant as the rows of

S. Moreover, using the fact that B < C implies VBV™ < VCV'T for any p.s.d. matrices B and C,
Theorem 1 follows as a corollary of Theorem 2.
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Figure 1: Theoretical predictions of low-rank approximation error of a Gaussian sketch under known
spectral decays, compared to the empirical results. The constant C is scaled so that | A% = 1 and
we let n = m = 1000. For the theory, we plot the explicit formulas (5) and (6) (dashed lines), as
well as the implicit expression from Corollary | (thin solid lines) obtained by numerically solving (4).
Observe that the explicit and implicit predictions are nearly (but not exactly) identical.

3 Explicit formulas under known spectral decay

The expression we give for the expected residual projection, E[P || ~ (yAT A + I)~1, is implicit in
that it depends on the parameter v which is the solution of the following equation:

2

o .
% k, where o; are the singular values of A. @)

2

+oi + 1

In general, it is impossible to solve this equation analytically, i.e., to write - as an explicit formula

of n, k and the singular values of A. However, we show that when the singular values exhibit a

known rate of decay, then it is possible to obtain explicit formulas for ~. In particular, this allows us

to provide precise and easily interpretable rates of decay for the low-rank approximation error of a

sub-gaussian sketch.

Matrices that have known spectral decay, most commonly with either exponential or polynomial rate,
arise in many machine learning problems [MDK20]. Such behavior can be naturally occurring in
data, or it can be induced by feature expansion using, say, the RBF kernel (for exponential decay)
[SZW™T97] or the Matérn kernel (for polynomial decay) [RW06]. Understanding these two classes of
decay plays an important role in distinguishing the properties of light-tailed and heavy-tailed data
distributions. Note that in the kernel setting we may often represent our data via the m x m kernel
matrix K, instead of the m x n data matrix A, and study the sketched Nystrom method [GM16]
for low-rank approximation. To handle the kernel setting in our analysis, it suffices to replace the
squared singular values o7 of A with the eigenvalues of K.

3.1 Exponential spectral decay

Suppose that the squared singular values of A exhibit exponential decay, i.e. 02 = C - o'~!, where
C'is a constant and « € (0,1). For simplicity of presentation, we will let m,n — oo. Under
this spectral decay, we can approximate the sum in (4) by the analytically computable integral
fy de obtaining v ~ (a~* —1)y/a/C. Applying this to the formula from Corollary 1,

we can express the low-rank approximation error for a sketch of size k as follows:

C k
— - ———, when 0 =C-a' ! foralli. 5)
Va a k-1

In Figure la, we plot the above formula against the numerically obtained implicit expression from
Corollary 1, as well as empirical results for a Gaussian sketch. First, we observe that the theoretical
predictions closely align with empirical values even after the sketch size crosses the stable rank
TR ﬁ, suggesting that Theorem | can be extended to this regime. Second, while it is not surprising
that the error decays at a similar rate as the singular values, our predictions offer a much more precise
description, down to lower order effects and even constant factors. For instance, we observe that the

E[| A - AP|}] ~
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error (normalized by || A||%, as in the figure) only starts decaying exponentially after k crosses the

stable rank, and until that point it decreases at a linear rate with slope —

3.2 Polynomial spectral decay

2

l—«o
Vo

We now turn to polynomial spectral decay, which is a natural model for analyzing heavy-tailed data
distributions. Let A have squared singular values o> = C - i~” for some 3 > 2, and let m,n — oo.

1 .
W(ix to approximate the sum

As in the case of exponential decay, we use the integral fyoo

in (4), and solve for +, obtaining v ~ ((k + 1) 8 sin(%))ﬁ. Combining this with Corollary 1 we get:

E[|A - AP|%] ~ C

s

/B

k
(k+1)P (Sin(W/B

B
)> , when o?=C-i"” foralli. (6)

Figure 1b compares our predictions to the empirical results for several values of 3. In all of these
cases, the stable rank is close to 1, and yet the theoretical predictions align very well with the
empirical results. Overall, the asymptotic rate of decay of the error is k' ~#. However it is easy to
verify that the lower order effect of (k + %)B appearing instead of k7 in (6) significantly changes the

trajectory for small values of k. Also, note that as /3 grows large, the constant (

75111727/;%) )B goes to 1,

but it plays a significant role for 8 = 2 or 3 (roughly, scaling the expression by a factor of 2). Finally,
we remark that for 8 € (1, 2), our integral approximation of (4) becomes less accurate. We expect
that a corrected expression is possible, but likely more complicated and less interpretable.
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Figure 2: Theoretical predictions versus approxi-
mation error for the sketched Nystrom with the
RBF kernel (spectral decay shown at the bottom).

4 Empirical results
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Figure 3: Theoretical predictions versus approxi-
mation error for the Gaussian and Rademacher
sketches (spectral decay shown at the bottom).

In this section, we numerically verify the accuracy of our theoretical predictions for the low-rank
approximation error of sketching on benchmark datasets from the libsvm repository [CL11] (further
numerical results are in Appendix C). We repeated every experiment 10 times, and plot both the
average and standard deviation of the results. We use the following k x m sketching matrices S:

1. Gaussian sketch: with i.i.d. standard normal entries;

2. Rademacher sketch: with i.i.d. entries equal 1 with probability 0.5 and —1 otherwise.

Varying spectral decay. To demonstrate the role of spectral decay and the stable rank on the
approximation error, we performed feature expansion using the radial basis function (RBF) kernel
k(a;,a;) = exp(—|la; — a;]|?/(20?)), obtaining an m x m kernel matrix K. We used the sketched
Nystrém method to construct a low-rank approximation K = KS™(SKS™)"SK, and computed the
normalized trace norm error ||K — K]|../||K]||«. The theoretical predictions are coming from (2),
which in turn uses Theorem 1. Following [GM16], we use the RBF kernel because varying the scale
parameter o allows us to observe the approximation error under qualitatively different spectral decay



profiles of the kernel. In Figure 2, we present the results for the Gaussian sketch on two datasets,
with three values of o, and in all cases our theory aligns with the empirical results. Furthermore, as
smaller o leads to slower spectral decay and larger stable rank, it also makes the approximation error
decay more linearly for small sketch sizes. This behavior is predicted by our explicit expressions (5)
for the error under exponential spectral decay from Section 3. Once the sketch sizes are sufficiently
larger than the stable rank of K2, the error starts decaying at an exponential rate. Note that Theorem
| only guarantees accuracy of our expressions for sketch sizes below the stable rank, however the
predictions are accurate regardless of this constraint.

Varying sketch type. In the next set of empirical results, we compare the performance of Gaussian
and Rademacher sketches, and also verify the theory when sketching the data matrix A without
kernel expansion, plotting ||A — A(SA)TSA||2./||A]|%. Since both of the sketching methods have
sub-gaussian entries, Corollary | predicts that they should have comparable performance in this task
and match our expressions. This is exactly what we observe in Figure 3 for two datasets and a range
of sketching sizes, as well as in other empirical results shown in Appendix C.

5 Conclusions

We derived the first theoretically supported precise expressions for the expected residual projection
matrix, which is a central component in the analysis of RandNLA dimensionality reduction via
sketching. Our analysis provides a new understanding of low-rank approximation, the Nystrom
method, and the convergence properties of many randomized iterative algorithms. As a direction for
future work, we conjecture that our main result can be extended to sketch sizes larger than the stable
rank of the data matrix.

Broader Impact

In this paper, we investigate the spectral properties of residual (random) projection matrices, com-
monly appearing in various sketching-based methods. The precise theoretical description given in
this paper provides performance guarantees for popular algorithms such as low-rank approximation
and many randomized (iterative) optimization methods, and contributes to the development of more
robust and reliable large-scale learning systems. The theoretical framework developed in this work
presents no foreseeable negative societal consequence.

Acknowledgments. We would like to acknowledge DARPA, NSF, and ONR for providing partial
support of this work.
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