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Abstract. We are interested in parallelizing the least angle regression (LARS) algorithm for
fitting linear regression models to high-dimensional data. We consider two parallel and communication
avoiding versions of the basic LARS algorithm. The two algorithms have different asymptotic costs and
practical performance. One offers more speedup and the other produces more accurate output. The
first is bLARS, a block version of the LARS algorithm, where we update b columns at each iteration.
Assuming that the data are row-partitioned, bLARS reduces the number of arithmetic operations,
latency, and bandwidth by a factor of b. The second is tournament-bLARS (T-bLARS), a tournament
version of LARS where processors compete by running several LARS computations in parallel to
choose b new columns to be added in the solution. Assuming that the data are column-partitioned,
T-bLARS reduces latency by a factor of b. Similarly to LARS, our proposed methods generate a
sequence of linear models. We present extensive numerical experiments that illustrate speedups up to
4x compared to LARS without any compromise in solution quality.
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1. Motivation and outline. Recently, there has been large growth in data
for many applications in statistics, machine learning, and signal processing, which
poses the need for powerful computer hardware as well as new algorithms that utilize
the new hardware efficiently. Commercial hardware companies started to construct
multicore designs because the performance of single central processing units (CPUs) is
stagnating due to heat issues, i.e., ``the Power Wall"" problem [31]. In terms of software
and algorithm implementations for processing large-scale data, the increased number
of cores might require synchronization among them, which results in data transfer
between levels of a memory hierarchy or between CPUs over a network. For this reason
the total running time of a parallel algorithm depends on the number of arithmetic
operations (computational costs) and the cost of data movement (communication
costs). The communication cost includes the ``bandwidth cost,"" i.e., the number of
bytes, or more abstractly, number of words, sent among cores for synchronization
purposes, and the ``latency cost,"" i.e., the number of messages sent. On modern
computer architectures, communicating data often takes much longer than performing
a floating-point operation and this gap is continuing to increase [35]. Therefore, it is
especially important to design algorithms that minimize communication in order to
attain high performance on modern computer architectures.
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In this paper we will propose two novel parallel and communication avoiding
versions of the least angle regression (LARS) algorithm which is a very popular method
for sparse linear regression [17]. A plethora of applications in statistics [17], machine
learning [29], and signal processing/compressed sensing [4] utilize sparse linear models.
To the best of our knowledge, there is no study on parallelizing LARS.

2. Introduction to the problem, existing models, and LARS. Let A \in 
Rm\times n be a data matrix with m samples and n features. We are concerned with the
problem of finding a vector y := Ax that approximates a given vector b \in Rm, where
vector y is a linear combination of a few columns/features of the given data matrix A.
This means that we are looking for a coefficients vector x that is sparse, i.e., it has a
small number of nonzeros.

Over the years, many algorithms/models to solve this problem have been proposed.
In what follows, we review the ones that to the best of our knowledge are the
most important. There are two main categories of algorithms/models to solve this
problem. The first category consists of algorithms that progressively select a subset of
columns/features based on their absolute correlation with the residual vector y  - b.
In particular, the classic Forward Selection algorithm in section 8.5 in [40] selects the
first column/feature with the largest absolute correlation with the response b. Let us
denote the index of the selected column with i, the corresponding column with Ai

and the corresponding coefficient with xi. The next step of the algorithm is to solve a
simple linear regression problem

min
1

2
\| Aixi  - b\| 22.

By solving this simple regression problem we obtain the value of the optimal coefficient
xi. The residual r := Aixi  - b, which is orthogonal to Ai, is now considered the new
response vector for the next iteration. Finally, we orthogonally project the remaining
columns in A to Ai. Then we have to repeat this process and find a new column/feature.
After k iterations we will have selected k columns, and we use the k columns to solve
smaller ordinary regression problem using the response vector b. According to [17],
in practice the Forward Selection algorithm might be aggressive in terms of selecting
features since other columns might be correlated with the selected column Ai that we
ignored. Another algorithm in this category is the Forward Stagewise algorithm [19, 20],
which in comparison to Forward Selection is much more cautious since it requires much
more steps to converge to a k-sparse model, i.e., k selected columns. More precisely, at
each iteration of the Forward Stagewise we select the column that is most correlated
with the current residual and increment the corresponding coefficient in the vector x by
a small amount \pm \epsilon , where the sign is determined based on the sign of the correlation.
The small increment of elements in x at each iteration is what distinguishes Forward
Stagewise and Forward Selection.

The second category of models is optimization based, meaning that we solve
a predefined optimization problem to obtain a sparse linear model. There are two
subclasses of optimization problems in this category, the first is known as \ell 1-regularized
linear regression or least absolute shrinkage and selection operator (LASSO) [38],
the second is \ell 0-regularized variants. Let us first define the \ell 1 and \ell 0 norms and
then we will continue by presenting the optimization problems. The \ell 1 norm of a
vector x is defined as \| x\| 1 :=

\sum n
i=1 | xi| , while the \ell 0 norm is defined as \| x\| 0 :=
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\{ number of nonzero elements in x\} . Equipped with these definitions we define LASSO:

minimize
1

2
\| Ax - b\| 22(1)

subject to \| x\| 1 \leq \lambda ,

where \lambda is a model parameter. LASSO is a convex optimization problem and can be
solved in polynomial time; we discuss several serial and parallel algorithms later in
this paper. The LASSO optimization problem is likely to have a set of sparse optimal
solutions due to the sparsity inducing \ell 1-ball constraint. For details we refer the reader
to [38]. A nonconvex alternative of LASSO, but with a direct constraint on the sparsity
of x, is the \ell 0-regularized linear regression problem

minimize
1

2
\| Ax - b\| 22(2)

subject to \| x\| 0 \leq \tau ,

where \tau is a model parameter that bounds the number of nonzeros in x. This is an
NP-hard problem. However, we can find local solutions by variants of gradient descent,
which we discuss later in this paper.

An important difference between the two approaches, i.e., Forward Selection or
Stagewise versus LASSO, is that the former obtains a sequence of solutions xk with
increasing number of nonzeros, while with the latter we obtain a solution path x(\lambda ).
There is a question regarding how those two solution paths differ in terms of the
selected features. The LARS algorithm is an algorithmic framework that unifies those
two approaches. In particular, the LARS algorithm has been motivated by the Forward
Selection and Stagewise algorithms. Therefore, in terms of steps it is similar to those
as we will see later, but it is also proved in Theorem 1 in [17] that a certain version
of LARS produces a sequence of solutions xk that is equivalent to the solution path
x(\lambda ). Let us now summarize the steps of the LARS algorithm. This algorithm is
discussed in detail in section 6. Similarly to Forward algorithms, at the first iteration
of LARS we initialize the algorithm by selecting the column with the largest absolute
correlation with vector b. The next step is to update vector y. Instead of solving a
simple regression problem like in Forward Selection (which is an aggressive strategy) or
making \epsilon updates to x (which is too cautious), we define a vector u that is equiangular
with all previous chosen columns and then we update y := y + u\gamma . The step-size
\gamma \in R is set such that the new column to be added in the next iteration has the same
correlation with the new residual vector as with all other selected columns so far. This
process might sound complicated at first but we will revisit the linear algebra behind
these decisions in section 6.

3. Our contributions. Although there are numerous parallel optimization al-
gorithms for \ell 0- and \ell 1-regularized regression, we are not aware of any parallel and
communication avoiding versions for LARS. To the best of our knowledge, the proposed
algorithms are the first parallel versions of LARS that are also communication avoiding.
Let us briefly describe the proposed algorithms and the most significant ideas that
had to be developed to establish them.

The first method is a block version of LARS (bLARS) which is described in section
7. Instead of adding one feature at each iteration in the solution set, we add b features
at a time. By blocking operations and by partitioning the data per row, we are able
to show that we decrease the arithmetic, latency, and bandwidth costs by a factor of
b. Extensive numerical experiments in section 10 illustrate significant speedups for
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bLARS without compromising too much of the quality of the output compared to
LARS. In the same section we empirically study the trade-off between the size of b
and the quality of the output compared to LARS.

Careful modification of the linear algebra had to be performed in order to suc-
cessfully generalize LARS to the block case and also guarantee that all steps of the
algorithm are well defined. More precisely, LARS has two important properties that
we had to relax. The first is that all chosen columns at each iteration have the same
absolute correlation with the residual and are also maximally correlated. The second
property is that the direction u is equiangular and also has maximal correlation with
the chosen columns. bLARS maintains the property that the chosen columns at each
iteration are maximally correlated but they are not equal, meaning that there is no
column that has not been selected with larger absolute correlation with the residual
than the selected ones. bLARS also relaxes the second property in the sense that u is
not equiangular with all chosen columns but it is maximally correlated, i.e., there is no
column that has not been selected with larger correlation than the selected ones. We
show that bLARS at each iteration reduces the correlations for all selected columns
similarly to LARS. Finally, if we set b = 1, then bLARS reduces to LARS.

The second method is a tournament block LARS (T-bLARS) method. In this
method the data are partitioned per column and distributed to processors. Then each
processor calls a modified version of the LARS algorithm on its local data. Each
processor can run the modified LARS algorithm for b iterations so that b columns are
chosen at termination of the local call to LARS. Using a generalized tree-reduction
operation each processor/node sends its chosen columns to the parent node (starting
from the bottom of the tree). The parent node calls again the modified LARS algorithm
by utilizing only the columns that have been sent from the child nodes. This process
repeats until we reach the root node where the final output is used to update the current
vector y and current set of selected columns. By partitioning the data per column (as
opposed to per row for block LARS) and using the generalized tree-reduction we allow
the nodes to work in parallel in local data and this way we reduce latency by a factor
of b. Many of the properties of the LARS algorithm are not satisfied at a global level
but some of them are maintained during the local calls to LARS. We discuss details in
section 8. In section 10 we show that T-bLARS can be faster than the original LARS
without compromising the quality of the output. Similarly to bLARS, we study the
tradeoff between speed and quality of output as we vary parameter b and the number
of processors.

4. Literature review for parallel models and methods. The dependence
of the running time of parallel methods on communication requirements gave a totally
new perspective on how to efficiently parallelize existing algorithms. Communication
avoiding algorithms became a very popular subject of study and it has been demon-
strated that such algorithms exhibit large speedups on modern, distributed-, and
shared-memory parallel architectures through careful algorithmic modifications [3].
Many iterative methods for linear systems and matrix decomposition algorithms have
been reorganized to avoid communication, which has led to significant performance
improvements over existing state-of-the-art libraries [2, 3, 6, 21, 36, 41].

The origins of communication avoiding algorithms lie in the s-step conjugate
gradients method [39] by Van Rosendale and in the work of Chronopoulos on parallel
iterative methods for linear systems [8]. More precisely, Chronopoulos and Gear
developed s-step methods for symmetric linear systems [9, 10], Chronopoulos and
Swanson developed s-step methods for unsymmetric linear systems [11], and Kim and
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Chronopoulos developed an s-step nonsymmetric Lanczos method [23]. Furthermore,
Demmel et al. [15, 21, 24, 25] introduced the matrix powers kernel optimization which
reduces the communication cost of the s Krylov basis vector computations by a factor
O(s) for well-partitioned matrices. Finally, Carson, Demmel, and Hoemmen developed
communication avoiding Krylov subspace methods [6, 15, 21] by combining the matrix
powers kernel and s-step methods.

The above results are mainly focused on iterative methods for least-squares and
linear systems. Our focus in this paper is sparse linear regression where we require
the coefficients of the model to be sparse. As is mentioned in section 2 there are
two categories of methods that can solve this problem efficiently. The first is LARS-
type algorithms. To the best of our knowledge, there are no studies on parallelizing
LARS. However, we will see in section 7 that the computational bottleneck for
LARS is computing matrix-vector products. Therefore, a straightforward approach
for parallelizing LARS is to make use of parallel matrix-vector products. There are
numerous works on parallelizing matrix-vector product calculations [32]. In our
experiments in section 10 we do compare the two proposed methods with a LARS
implementation that uses parallel matrix-vector products. Similarly, the proposed
bLARS algorithm in section 7 relies on matrix-matrix products which can also be
efficiently parallelized [32]. The proposed T-bLARS algorithm divides the problem
into smaller problems that are solved in parallel, and then we aggregate the results
by allowing processors to compete. This strategy is similar to [14] for parallel QR
and LU algorithms, where pivoting is performed in parallel by using a generalized
tree reduction operation. Although we also use a generalized tree-reduction operation,
at each leaf of the tree we perform a LARS operation and not a pivoting operation.
Additionally, we modify a crucial part of the LARS algorithm, i.e., the calculation
of the step-size, to guarantee that all steps are well defined. Details are discussed in
section 8.

Recently, there have been numerous works regarding parallel optimization algo-
rithms. \ell 1-regularization problems often appear in statistics [17], machine learning [29],
and signal processing/compressed sensing [4] where there is a vast amount of data
available, i.e., matrix A has millions if not billions of samples and features. Large scale
problems are the main reason for the resurgence in methods with computationally
inexpensive iterations. Many modern first-order methods meet the previous goal. For
instance, for \ell 1-regularized least-squares problems coordinate descent methods can
have up to n times less computational complexity per iteration than methods which
use full gradient steps while at the same time coordinate descent methods achieve very
fast progress to optimality [28, 34, 42]. However, it is shown in [16] that the running
time for such methods is often dominated by communication cost which increases
with the number of processors. In the same work [16] the authors show how to avoid
communication for an s-step accelerated proximal block coordinate descent and demon-
strate up to 5x speedup compared to parallelized alternatives. Moreover, there are
parallel accelerated and proximal coordinate descent methods [18] that do not use the
s-step technique but allow coordinate updates to happen without synchronization. For
example, HOGWILD! [33] is a lock-free approach to stochastic gradient descent (SGD)
where each processor selects a data point, computes a gradient using its data point,
and updates the solution without synchronization. Finally, there are some frameworks
and algorithms that attempt to reduce the communication bottleneck by reducing the
number of iterations. For example, the CoCoA framework [22] reduces communication
by performing coordinate descent on locally stored data points on each processor and
intermittently communicating by summing or averaging the local solutions. Regarding
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\ell 0-regularization, there are not many works in terms of parallel methods; a notable work
is that of Needell and Woolf [27]. In this paper the authors suggest an asynchronous
parallel and stochastic greedy algorithm, where multiple processors asynchronously
update a vector in shared memory containing information on the estimated coefficients
vector x. Finally, one could also easily parallelize gradient-based methods for \ell 1- and
\ell 0-regularization by parallelizing the computation of the gradients which relies on
matrix-vector products.

Note that parallel optimization based methods aim at solving a single instance of
\ell 1- or \ell 0-regularized least-squares, i.e., they produce a single sparse linear model. In
this paper we are interested in algorithms that produce a sequence of sparse linear
models.

5. Preliminaries and assumptions.

5.1. Preliminaries. Capital letters denote matrices, lowercase bold letters de-
note vectors, lowercase letters denote scalars, and hollow letters denote sets. We denote
with 0m a vector of zeros of length m. Subscript k denotes the kth iteration of the
algorithm. The set of positive integers is denoted by Z+. We use [\cdot ]set, to denote a
function with a vector as an input that returns a subvector which corresponds to the
indices in the subscript set. AT denotes the transpose of a matrix. We denote with
Aset the concatenation of columns of matrix A with indices in the subscript set. We
denote the complement of a set by using the superscript c. We use the function sign(\cdot )
to denote the sign function which is applied componentwise if the input is a vector.
We use the convention that sign(0) = 0. We use \| \cdot \| \infty to denote the infinity norm,
i.e., maximum absolute component of the input, and define \| \cdot \| \infty ,k to be the sum of k
largest absolute components of the input. We define abs(\cdot ) as the absolute function
which is often applied componentwise. We define the function maxb(\cdot ) and argmaxb(\cdot )
as the bth maximum of the input vector and the indices of the b largest components of
the input vector, respectively. If the input vector has less than b components, then the
latter functions overwrite b to be the length of the input vector. We define minb(\cdot ) and
argminb(\cdot ) similarly. The function min+(\cdot ) returns the minimum positive value. The
symbol \emptyset denotes the empty set. We denote the simple multiplication of two scalars a
and b by a \cdot b. By log we denote the logarithm with base 2.

5.2. Assumptions. For simplicity, we assume that the columns of matrix A have
unit \ell 2 norm, and that matrix A is full-rank. For bLARS, we also assume that every b
columns are linearly independent. However, minor modifications to the algorithms can
be done to bypass these assumptions. We assume that the communication cost includes
the ``bandwidth cost,"" i.e., the number of words, sent among cores for synchronization
purposes, and the ``latency cost,"" i.e., the number of messages sent.

6. Least angle regression. In this section we review the LARS algorithm.
LARS is shown in Algorithm 1. The termination criterion in step 2 of Algorithm 1
is arbitrary; one can choose other criteria such as a lower bound on the maximum
absolute correlation \| ck\| \infty ; see [17]. Let us explain the first iteration of the algorithm.
Let us assume that at the 0th iteration we have response y0, residual vector r0 = b - y0,
correlation vector c0 := AT r0, and maximum absolute correlation c0 := max | c0| . The
algorithm starts by choosing all columns that have maximum absolute correlation

(3) I0 := \{ i \in [n] | | [c0]i| = c0\} .

The next decision step is how to set I1 and y1 using I0 and y0. We will define the
update as y1 := y0 + u0\gamma 0. This implies that we will have to define the vector
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u0 and the step-size \gamma 0. Let us start with the definition of u0. LARS defines u0

as a unit-length vector that is equiangular with signed columns in matrix A with
index in I0. It is easy to see that u0 := AI0(A

T
I0AI0)

 - 1sign([c0]I0)c0h0, where h0 :=

\| AI0(A
T
I0AI0)

 - 1sign([c0]I0)c0\|  - 1
2 , satisfies the requirements. This means that AT

I0u0 =
sign([c0]I0)c0h0, which in turn implies that subject to sign changes and because the
columns of AI0 and u0 are unit-length then u0 is equiangular with all columns in I0,
with cosine \pm c0h0. To define \gamma 0 and to update I1 based on \gamma 0 we will need first to
understand how the update rule y1 := y0 + u0\gamma 0 affects the correlation vector c1 as
a function of \gamma 0. For this we will make use of the auxiliary vector a0 := ATu0, and
we will use a different step-size \gamma j for each element j. In particular, we have that
[c1]j(\gamma j) = AT

j (b - y0  - u0\gamma j) = [c0]j  - [a0]j\gamma j \forall j \in Ic0 and

[c1]j(\gamma j) = sign([c0]j)(1 - \gamma jh0)c0 \forall j \in I0.(4)

Equation (4) uses [a0]I0 = AT
I0u0 = sign([c0]I0)c0h0 and that vector [c0]I0 has compo-

nents of magnitude equal to c0 since it satisfies the definition in (3). Notice that if
\gamma j = 1/h0, then [c1]j(\gamma j) = 0 \forall j \in I0, which means that the least-squares problem is
minimized with respect to the chosen columns in I0. Although tempting, this is not the
goal of LARS since this is an aggressive strategy similar to Forward Selection. As we
increase \gamma j from 0 to 1/h0 the absolute correlations in I0 are decreased identically ; see
(4). This is because the absolute correlations for the columns in I0 are equal. However,
the absolute correlations in Ic0 might increase or decrease. LARS' goal is to find a
column in Ic0 whose absolute correlation becomes equal to the maximum absolute
correlation as we increase \gamma 0. To find such a column, we need to find \gamma j for each j \in Ic0
such that

(5) c0(1 - \gamma jh0) = | [c0]j  - \gamma j [a0]j | .

Such \gamma j will guarantee that column j \in Ic0 has the same absolute correlation as the
columns with index in I0. It remains to check if (5) has a solution. It has two solutions,
out of which we keep the minimum positive one

\gamma j := min+
\biggl( 

c0  - [c0]j
c0h0  - [a0]j

,
c0 + [c0]j

c0h0 + [a0]j

\biggr) 
.

Out of all \gamma j where j \in Ic0, we choose the one with the minimum value \gamma 0 := minj\in Ic0 \gamma j .
Note that the minimum step-size \gamma 0 corresponds to the column(s) in Ic0 that will be
the first to have the same maximal absolute correlation as the columns in I0. Then
LARS updates the set of selected columns as I1 := I0 \cup \{ argminj\in Ic0 \gamma j\} . The chosen
column is the column with the least-angle which is where LARS gets its name from.
Finally, having the step-size \gamma 0 we update the response y1 := y0 + \gamma 0u0.

It is easy to show that our claims above hold for any iteration k. Therefore, it
is easy to show that LARS guarantees that Ak \subset Ak+1 and | Ak| = | Ak+1| + 1 \forall k.
Moreover, LARS decreases the maximum absolute correlation ck until it finally is
equal to zero for k = min(m,n). Furthermore, the columns in Ak have maximum
absolute correlations \forall k. Therefore, using (4) we see that LARS decreases \| ck\| \infty 
at each iteration. Furthermore, note that LARS also decreases \| ck\| \infty ,k := sum of
k largest absolute components; as we will see later this is a property that bLARS
generalizes for the k \cdot b largest components.

7. Parallel bLARS. In this section, we describe one iteration of bLARS (without
going into any details about parallelism), and then we explain how we can parallelize
bLARS.

D
ow

nl
oa

de
d 

01
/1

2/
24

 to
 2

3.
12

7.
16

0.
20

3 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARALLEL LEAST ANGLE REGRESSION C161

Algorithm 1. LARS.

1: Initialize k := 0, yk := 0m, rk := b, ck := AT rk, i := argmax | ck| , ck := max | ck| ,
Ik := \{ i\} , t \leq min(m,n)

2: while | Ik| \leq t do
3: uk := AIk(A

T
IkAIk)

 - 1sign([ck]Ik)hkck, where hk := \| AIk(A
T
IkAIk)

 - 1sign([ck]Ik)

ck\|  - 1
2

4: \gamma j := min+
\Bigl( 

ck - [\bfc k]j
ckhk - [\bfa k]j

,
ck+[\bfc k]j

ckhk+[\bfa k]j

\Bigr) 
\forall j \in Ick, where ak := ATuk

5: \gamma k := minj\in Ick \gamma j , i := argminj\in Ick
\gamma j , Ik+1 := Ik \cup \{ i\} 

6: yk+1 := yk + uk\gamma k
7: ck+1 := AT rk+1, where rk+1 := b - yk+1

8: ck := max | ck| 
9: k := k + 1

10: end while
11: Return Ik, yk

Let us assume that at the 0th iteration of bLARS we have response y0, residual
vector r0 = b - y0, correlation vector c0 := AT r0, and the bth maximum correlation
c0 := maxb | c0| . The algorithm chooses all columns that have larger or equal absolute
correlation than the maximum bth absolute correlation I0 = \{ i \in [n] | | [c0]i| \geq c0\} .
Similarly to LARS, we define the update as y1 := y0 + u0\gamma 0, but the decision
rules for selecting u0, \gamma 0 and updating I0 and y0 are different. bLARS defines u0 as
u0 := AI0(A

T
I0AI0)

 - 1[c0]I0h0 and h0 := \| AI0(A
T
I0AI0)

 - 1[c0]I0\|  - 1
2 . This means that u0 is

a unit-length vector that satisfies AT
I0u0 = [c0]I0h0, instead of AT

I0u0 = sign([c0]I0)c0h0

for LARS. Note that u0 is not guaranteed to be equiangular to the chosen columns in
I0. This is because [c0]I0 is not guaranteed to have components with equal value. On
the contrary, LARS guarantees that all components of [c0]I0 are equal to the maximum
absolute correlation. However, bLARS still guarantees that there is no column that
has not been selected with absolute correlation larger than the bth maximum absolute
correlation. Similarly to LARS, we will make use of the auxiliary vector a0 := ATu0,
but we will use different step-sizes \gamma j for each element j. In particular, we have that
[c1]j(\gamma j) = AT

j (b - y0  - u0\gamma j) = [c0]j  - [a0]j\gamma j \forall j \in Ic0, where Ic0 is the complement
of I0, and

[c1]j(\gamma j) = [c0]j(1 - \gamma jh0) \forall j \in I0.(6)

The last equality uses [a0]I0 = AT
I0u0 = [c0]I0h0. This is different from LARS which

uses [a0]I0 = sign([c0]I0)c0h0. This means that as we increase \gamma j , LARS decreases the
absolute correlations identically, but bLARS decreases the absolute correlations with
the same rate but not identically. However, bLARS still guarantees that if \gamma j = 1/h0,
then [c1]j(\gamma j) = 0 \forall j \in I0, which means that the least-squares problem is minimized
with respect to the chosen columns in I0. Furthermore, bLARS still guarantees that as
we increase \gamma j from 0 to 1/h0 the absolute correlations in I0 are decreased (see (6)),
but the absolute correlations in Ic0 might increase or decrease. bLARS goal is to find b
columns in Ic0 for which their absolute correlations become greater than or equal to
the minimum absolute correlation of columns in I0 as we increase \gamma 0. To find such a
column we need to find \gamma j for each j \in Ic0 such that

(7) c0(1 - \gamma jh0) = | [c0]j  - \gamma j [a0]j | .
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Using the definition of c0, such \gamma j will guarantee that column j \in Ic0 has the same
absolute correlation as the column with index i \in I0 that satisfies i = argmaxb | c0| .
Equation (7) has two solutions; we keep the minimum positive solution

\gamma j := min+
\biggl( 

c0  - [c0]j
c0h0  - [a0]j

,
c0 + [c0]j

c0h0 + [a0]j

\biggr) 
.

Out of all \gamma j where j \in Ic0 we choose the one with the minimum bth value \gamma 0 :=
minbj\in Ic\gamma j . Note that the bth minimum step-size \gamma 0 corresponds to the column(s) in Ic0
that will be the bth to have the same absolute correlation with the column in I0 with the
minimum absolute correlation. Then bLARS updates I1 := I0 \cup \{ b columns with \gamma j \geq 
\gamma 0\} . Note that bLARS decreases \| ck\| \infty ,k\cdot b := sum of k \cdot b largest absolute components,
compared to LARS which decreases sum of k largest absolute components. It is easy
to see that by setting b = 1, then bLARS is equivalent to LARS.

The parallel bLARS algorithm is shown in Algorithm 2. This algorithm is presented
in great detail since this demonstrates our implementation. We assume that the data
matrix A and any vector/set of length/cardinality m are partitioned across processors,
i.e., each processor holds m/P components, where P is the number of processors, and
we assume for simplicity that m/P is an integer. More complicated two-dimensional
partitions could be used [5, 30] and may potentially improve communication cost, but
we use row partition for simplicity and leave more sophisticated partitioning methods
for future work. The main computational kernels of the algorithm are matrix-matrix
and matrix-vector products, which we can parallelize efficiently using Message Passing
Protocol (MPI) collective routines for reduction [37]. We also make use of collective
routines for broadcasting data [37]. In our numerical experiments in section 10, we use
parallel bLARS with b = 1 as parallel LARS.

7.1. Asymptotic costs for parallel bLARS and LARS. In what follows we
examine the asymptotic costs of each step of parallel bLARS in Algorithm 2. The
asymptotic costs of parallel LARS are obtained by setting b = 1. We also comment
when a step is executed only by the master processor, by all processors independently,
or in parallel with synchronization. We model the running time of an algorithm by
considering both arithmetic and communication costs. In particular, we model the
running time of an algorithm as a sum of three terms as

\gamma F + \alpha L+ \beta W,

where \gamma , \alpha , and \beta are hardware parameters for time per arithmetic operation, time
per message sent, and time per word moved, respectively. F , L, and W are algorithm
parameters for the number of arithmetic operations to be executed, number of messages
to be sent, and number of words to be moved, respectively. We choose the \alpha -\beta model
to measure communication of algorithms for simplicity. More refined models exist like
the LogP [12] and LogGP [1] models.

We assume that matrix A is a dense matrix. Step 1 requires O(m/P ) operations
for initialization of y0 and r0 in parallel with no communication. Step 2 requires
computing ck which is equal to AT rk. This operation can be performed in parallel with
synchronization in O(mn/P ) operations, n logP words, and logP messages, using a
binary tree reduction algorithm in [37]. The result of step 2 is reduced to the master
processor. Step 3 is performed by the master processor and it costs O(n) operations
using Introspective Selection [26]. Step 4 is performed in parallel with synchronization,
which requires O(b2m/P ) operations, b2 logP words, and logP messages using binary
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Algorithm 2. Parallel bLARS for row-partitioned data.

1: Initialize b \in Z+, t \leq min(m,n) \in Z+, k := 0, yk := 0m, rk := b in parallel
without synchronization.

2: Compute ck := AT rk in parallel using reduction.
3: ck := maxb | ck| , Ik := \{ i \in [n] | | [ck]i| \geq ck\} .
4: Compute Gk := AT

IkAIk in parallel using a reduction.
5: Compute Lk, the Cholesky factor of Gk.
6: while | Ik| < t do
7: sk := [ck]Ik , qk := (LkL

T
k )

 - 1sk
8: hk := (sTk qk)

 - 1/2, wk := qkhk

9: The master processor broadcasts wk.
10: Compute uk := AIkwk in parallel, no communication is required.
11: Compute ak := ATuk in parallel using a reduction.

12: \gamma j := min+
\Bigl( 

ck - [\bfc k]j
ckhk - [\bfa k]j

,
ck+[\bfc k]j

ckhk+[\bfa k]j

\Bigr) 
\forall j \in Ick

13: \gamma k := minbj\in Ick
\gamma j

14: B := argminbj\in Ick
\gamma j (note this returns b indices)

15: Ik+1 := Ik \cup B
16: The master processor broadcasts \gamma k to all processors.
17: Compute yk+1 := yk + uk\gamma k in parallel, no communication is required.
18: [ck+1]j := [ck]j(1 - \gamma khk) \forall j \in Ik and [ck+1]j = [ck]j  - \gamma k[ak]j \forall j \in Ick
19: ck+1 := ck(1 - \gamma khk)
20: Compute AT

IkAB and AT
BAB in parallel using a reduction.

21: Hk+1 := L - 1
k AT

IkAB
22: Solve \Omega T

k+1\Omega k+1 = AT
BAB - HT

k+1Hk+1 subject to \Omega k+1 being a lower triangular
matrix.

23: Lk+1 :=

\biggl[ 
Lk 0k,b

Hk+1 \Omega k+1

\biggr] 
24: k := k + 1
25: end while
26: Return Ik, yk

tree reduction. Step 5 is executed by the master processor, which costs O(b3) operations.
Step 7 is executed by the master processor, which costs O(| Ik| ) operations to compute
sk := [ck]Ik . Since | Ik| = b(k + 1), this requires O(bk + b) operations. Moreover, step 7
requires an additional O(b2(k + 1)2) operations to compute qk := (LkL

T
k )

 - 1sk, which
is also executed by the master processor. Step 8 costs O(bk + b) operations and it is
executed by the master processor. In step 9, wk has to be broadcast to each processor
from the master processor, which costs b(k+1) logP words and logP messages using a
broadcast algorithm from [37]. Step 10 is computed in parallel without synchronization
in O(b(k+1)m/P ) operations, i.e., each processor multiplies its own part of the vector
AIk with wk. Step 11 is executed in parallel with synchronization, which requires
O(mn/P ) operations, n logP words, and logP messages using a reduction. The result
of step 11 is reduced to the master processor. Step 12 is executed by the master
processor, which requires O(| Ick| ) operations and is upper bounded by O(n) operations
in worst-case since | Ick| \leq n. Steps 13 and 14 are executed by the master processor
and they require in worst-case O(n) operations using Introspective Selection. Step
15 is executed by the master processor and costs O(b) operations. In Step 16 the
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Table 1
Running time costs for parallel bLARS in Big O notation. The running time costs of LARS

can be obtained by setting b = 1. The first column shows the number of step(s) of the algorithm. The
second, third, and fourth columns show the number of operations, the number of words, and the number
of messages, respectively, that are required by bLARS to output a solution with t columns/features.

Step(s) Arithmetic operations (F) Words (W) Messages (L)

1 m
P

- -
2 mn

P
n logP logP

3 n - -

4 b2m
P

b2 logP logP

5--8 t3

b
- -

9 - t2

b
logP + t logP t

b
logP

10 t2m
bP

- -

11 tmn
bP

tn
b
logP t

b
logP

12--14 tn
b

- -
15 t - -
16 - t

b
logP t

b
logP

17--19 tm
bP

+ tn
b

- -

20 t2m
P

+ tbm
P

t2 logP + tb logP t
b
logP

21--23 t3 + t2b - -

Total (assuming t \gg b) tmn
bP

+ tn
b

+ t2m
P

+ t3 tn
b

logP + t2 logP t
b
logP

step-size \gamma is broadcast to all processors from the master processor in logP words and
logP messages. Step 17 is executed in parallel without synchronization and requires
O(m/P ) operations. Steps 18 and 19 are executed by the master processor and require
O(n) operations. Step 20 is executed in parallel with synchronization and requires
O(b2km/P + b2m/P ) operations, O(b2k logP + b2 logP ) words, and 2 logP messages.
The result of Step 20 is reduced to the master processor. Step 21 is executed by the
master processor and requires O(b3k2) operations since Lk is a lower triangular matrix.
Step 22 is executed by the master processor and requires O(b3k + b2) operations. Step
23 is executed by the master processor and requires O(b2k + b2) operations. Notice
that if we want to obtain t columns using LARS, then we need to run the algorithm
for t - 1 iterations. Therefore, if we want to obtain t columns using bLARS, then we
need to run the algorithm for (t - 1)/b iterations. By using this and the above costs
for each step we summarize in Table 1 the asymptotic costs of bLARS and LARS
for obtaining a solution with t columns. Assuming that t\gg b, which means that we
want to output many more columns than b, then we observe in Table 1 that by using
bLARS we reduce by a factor of b all major computational and communication costs
compared to LARS.

8. Tournament block least angle regression. In this section we will present
tournament block LARS (T-bLARS), a variation of LARS where b columns are selected
at each iteration using a generalized reduction on a binary tree. Like bLARS, T-bLARS
requires a lot of nontrivial modifications in order to maintain some properties of the
original algorithm which we discuss in detail below. In comparison to parallel LARS
and bLARS, for T-bLARS we assume that the data matrix A column-partitioned,
i.e., each processor holds n/P columns, where P is the number of processors and we
assume that n/P is an integer. Furthermore, we assume that vectors of length m or n
or sets with cardinality at most m or n can be stored locally.

Let us now describe one iteration of T-bLARS. Let us assume that at the lth
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iteration we have response yl and we have selected columns Il. Furthermore, let us
assume that P = 2, i.e., two processors. Each processor gets n/P columns, which we
denote with index sets Iv1

and Iv2
. T-bLARS requires running a modified version of

LARS (mLARS), which we discuss later, as a reduction on a binary tree. For a visual
explanation, see Figure 1. The algorithm starts at the bottom of the tree by calling
mLARS for each node in parallel. Nodes v1 and v2 return candidate columns with
indices in the sets Bv1

and Bv2
, respectively. Columns Bv1

\cup Bv2
are sent to node v3,

which is the parent of v1 and v2. Finally, the node v3 calls mLARS using columns
in Il \cup Bv1

\cup Bv2
which returns the new response yl+1 and index set Il+1. Then this

process is repeated. Details are provided in Algorithm 3.

Il+1,yl+1 \leftarrow mLARS(b,yl, Il \cup Bv1
\cup Bv2

)

Bv2
\leftarrow mLARS(b,yl, Il \cup Iv2

)Bv1 \leftarrow mLARS(b,yl, Il \cup Iv1)

Fig. 1. Binary tree for one iteration of T-bLARS. The nodes at the bottom of the tree
communicate columns in Bv1 and Bv2 .

Modified LARS. We mentioned that each node calls a modified version of
LARS Algorithm 4. Let us now comment on this algorithm and why LARS needs to
be modified in order for T-bLARS to be a well-defined algorithm. The problem is
caused due to the fact that each processor on any level of the binary tree runs mLARS
independently of other processors and on data that might not overlap. This may result
in violation of a basic rule of LARS, which is that there is no column that has not been
selected with larger absolute correlation than the current known maximum absolute
correlation ck.

Similarly to LARS, mLARS chooses one column at each iteration. Each call to
mLARS operates on the columns with indices in I\nu \cup Il, where \nu is the index of the
node in the binary tree and Il is the set of indices of columns that have been selected at
the lth iteration of T-bLARS. If Il does not include any index with maximum absolute
correlation among the indices in I\nu \cup Il, then (5) might not have a nonnegative solution.
This affects the step-size calculation, which for LARS is computed by solving (5) with
the constraint that \gamma \geq 0. To guarantee that a meaningful step-size is calculated
at each iteration of mLARS, we propose using stepLARS in Procedure 1. Briefly,
stepLARS detects violations to the above basic rule of LARS. If it detects a violation,
it checks if (5) still has a nonnegative solution and sets \gamma k appropriately. If it cannot
resolve it ((5) does not have a nonnegative solution), then it sets \gamma k = 0. By setting
\gamma k = 0 we guarantee that the response yk is not updated in the current iteration.
Setting \gamma k to a positive value would be a ``mistake"" since as we show in step 14 of
stepLARS Procedure 1, this would result in decreasing the current known maximum
correlation ck of mLARS but at the same time it increases the absolute correlation of
columns that violate the LARS property. This makes violation of the LARS property
even larger.

If \gamma k = 0, then mLARS at step 18 adds the column with the largest absolute
correlation that also violates the LARS property in the set of selected columns. This
decision guarantees that a violation will not happen again during the execution of
mLARS. This is because similarly to LARS, mLARS guarantees that once ck is
maximal, then it will remain like this for all iterations, which ensures that (5) always
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has at least one nonnegative solution. More details are described in mLARS Algorithm
4 and Procedure 1.

Algorithm 3. T-bLARS.

1: Initialize l := 0, yl := 0m, t \in Z+, b \in Z+, Ll = 0, where Ll is the Cholesky factor.
2: Initialize Il = \emptyset 
3: while | Il| < t do
4: for all levels of the tree from bottom to the root do
5: if at the bottom of the tree then
6: Let Iv be the columns of node v in the tree. For all nodes v in the current

level of the binary tree call Bv \leftarrow mLARS(b,yl, Il \cup Iv, Ll).
7: else if not at root of the binary tree then
8: Let Bv be the columns selected by child nodes of v. For all nodes v in the

current level of the binary tree call \~Bv \leftarrow mLARS(b,yl, Il \cup Bv, Ll), where
\~Bv are the selected b columns out of Bv.

9: Send columns \~Bv for each node v to the processor of the parent node of v.
10: else
11: yl+1, Il+1,Bl+1, Ll+1 \leftarrow mLARS(b,yl, Il \cup Bv, Ll)
12: Broadcast selected columns with index in Bl+1, yl+1, and Ll+1 to all

processors. Note that we only communicate the part of Ll+1 that gets
updated by the root node.

13: end if
14: end for
15: l := l + 1
16: end while
17: Return Il, yl

8.1. Asymptotic costs for parallel implementation of T-bLARS. In this
subsection we examine the asymptotic costs for T-bLARS Algorithm 3. We start with
the asymptotic costs of mLARS Algorithm 4, which is used by T-bLARS at every
iteration.

Before we compute the asymptotic costs for mLARS we have to bound the
cardinality of some sets. The cardinality Iv is bounded by | Iv| \leq n/P . Let l be the lth
iteration of T-bLARS, and let Il be the current selected columns of T-bLARS. Then
| Il| \leq lb. Assuming that we are on the kth iteration of mLARS, then | Ik| \leq | Il| + b \leq 
lb + b, and | Ik \cup \~Iv| \leq lb + b + n/P for all k if node v is at the bottom of the tree,
i.e., \~Iv := Iv, otherwise | Ik \cup \~Iv| \leq lb + b + 2b for all k because node v not at the
bottom of the tree, i.e., \~Iv := Bv. The cardinality of \~Iv\setminus Ik is bounded by n/P if v is
a leaf node because | \~Iv\setminus Ik| \leq | \~Iv| = | Iv| \leq n/P , or otherwise bounded by 2b because
| \~Iv| = | Bv| \leq 2b. Using these bounds we will compute the asymptotic costs of each
step of mLARS. Note that there is no parallelism for each individual run of mLARS.
Therefore, we only report results for arithmetic operations.

Step 3 costs O(m) operations. Step 4 costs O(mn/P +mlb +mb) at leaf node
and O(mlb+ 3mb) otherwise. Step 5 costs O(lb+ b). Step 7 costs O(n/P + lb+ b+m)
at leaf node and O(lb+ 3b+m) otherwise. Step 10 costs O(lb2 + b2). Step 11 costs
O(b(lb+ b)2). Steps 12--13 cost O(lb2+ b2). Step 14 costs O(mlb2+mb2). Step 15 costs
O(bmn/P +mlb2+mb2) at leaf node and O(mlb2+3mb2) otherwise. Steps 16--18 cost
O(bn/P ) at leaf node and O(2b2) otherwise. Step 19 costs O(m). Steps 20--21 cost
O(bn/P + lb2 + b2) at leaf node and O(lb2 + 3b2) otherwise. Step 22 costs O(lb2 + b2).
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Procedure 1. Step-size for modified LARS (stepLARS).

1: Input: ck, hk, ck, ak and an index j
2: if ck \geq | [ck]j | then
3: if [ck]j and [ak]j have the same sign then
4: Equation ck(1 - \gamma hk) = | [ck]j  - \gamma [ak]j | has at least one positive solution, we

select the minimum positive one \gamma := min+
\Bigl( 

ck - [\bfc k]j
ckhk - [\bfa k]j

,
ck+[\bfc k]j

ckhk+[\bfa k]j

\Bigr) 
.

5: else
6: Equation ck(1  - \gamma hk) = | [ck]j  - \gamma [ak]j | has one positive solution that is

\gamma :=
ck - | [\bfc k]j | 

ckhk+| [\bfa k]j | .

7: end if
8:

9: if [ck]j and [ak]j have the same sign and [ck]jhk \leq [ak]j then
10: Equation ck(1  - \gamma hk) = | [ck]j  - \gamma [ak]j | has one positive solution that is

\gamma :=
ck - | [\bfc k]j | 

ckhk - | [\bfa k]j | .

11: else if [ck]j and [ak]j have the same sign and [ck]jhk > [ak]j then
12: Equation ck(1 - \gamma hk) = | [ck]j  - \gamma [ak]j | does not have a positive solution. But

as \gamma increases ck(1 - \gamma hk) and | [ck]j  - \gamma [ak]j | decrease; therefore, we set \gamma to
its maximum value \gamma := 1/hk.

13: else
14: Equation ck(1 - \gamma hk) = | [ck]j  - \gamma [ak]j | does not have a positive solution. In

this case, as \gamma increases | [ck]j  - \gamma [ak]j | increases and ck(1 - \gamma hk) decreases.
Therefore, we set \gamma := 0, which subject to \gamma \geq 0 minimizes the error | [ck]j  - 
\gamma [ak]j |  - ck(1 - \gamma hk).

15: end if
16: end if
17: Return \gamma 

Step 23 costs O(mlb2 +mb2). Step 24 costs O(b(lb+ b)2). Steps 25--26 cost O(lb2 + b2).
For t columns we need to run T-bLARS for t/b iterations and each iteration makes
logP parallel calls to mLARS which results in

t/b \cdot (arithmetic cost of mLARS at leaf node)

+ t/b \cdot (arithmetic cost of mLARS at nonleaf node) \cdot logP

total operations. Therefore, in Big O notation T-bLARS requires

F = O

\biggl( 
tmn

P
+

tmn

bP
+

\bigl( 
t2m+ t3

\bigr) 
logP

\biggr) 
operations. Communication occurs logP times because of the binary tree and another
logP times to broadcast data from the root node to the rest of the nodes. Therefore,
T-bLARS requires

L = 2
t

b
logP

messages. Each node (except of the root) communicates bm words for columns in B.
Therefore, the execution of the binary tree requires tm logP words. Broadcasting data
from the root node to the rest of the nodes at step 12 costs a total of

W = O

\biggl( \biggl( 
tm+

tm+ t2

b
+ tb

\biggr) 
logP

\biggr) D
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Algorithm 4. Modified least angle regression (mLARS).

1: Input: number of columns b \in Z+, response \~y, column index sets \~I0 \cup \~Iv (third
input), and Cholesky factor \~L (forth input)

2: Initialize: k := 0, B := \emptyset , Lk := \~L, Ik := \~I0
3: rk := b - \~y
4: ck := AT

Ik\cup \~Iv
rk

5: ck := max | [ck]Ik | . Note that we abuse notation here for [ck]Ik . Since ck \in R| Ik\cup \~Iv| 

and by usual convention, its components are indexed from 1 to | Ik \cup \~Iv| , which
might not overlap with the indices in Ik. We assume that the components of ck
are indexed using the indices in Ik \cup \~Iv. We use this abuse of notation at other
steps of this algorithm because it simplifies notation.

6: if Ik = \emptyset then
7: ck := max | [ck]| , Ik := \{ argmax | ck| \} , Lk = (AT

IkAIk)
1/2.

8: end if
9: while | Ik| < | \~I0| + b do

10: sk := [ck]Ik
11: qk := (LkL

T
k )

 - 1sk
12: hk := (sTk qk)

 - 1/2

13: wk := qkhk

14: uk := AIkwk

15: ak := AT
Ik\cup \~Iv

uk

16: \gamma j \leftarrow stepLARS(ck, hk, ck,ak, j) \forall j \in \~Iv\setminus Ik
17: If there are \gamma j that are equal to zero, set \gamma k to zero. Otherwise, set \gamma k to the

minimum nonzero \gamma j .
18: If there are \gamma j that are equal to zero, set i to the jth column with the largest

| [ck]j | . Otherwise, set i to the jth column with the minimum nonzero \gamma j .
19: yk+1 := yk + uk\gamma k
20: [ck+1]j := [ck]j(1 - \gamma hk) \forall j \in Ik, and [ck+1]j = [ck]j  - \gamma [ak]j \forall j \in \~Iv\setminus Ik
21: Ik+1 := Ik \cup \{ i\} , B := B \cup \{ i\} 
22: ck+1 := max | [ck+1]Ik+1

| 
23: Compute AT

IkAi and AT
i Ai.

24: lk+1 := L - 1
k AT

IkAi

25: \omega k+1 := (AT
i Ai  - lTk+1lk+1)

1/2

26: Lk+1 :=

\biggl[ 
Lk 0k

lk+1 \omega k+1

\biggr] 
27: k := k + 1
28: end while
29: Return yk, Ik, B, Lk

words.

9. Comparison of asymptotic costs. In this section, we compare the asymp-
totic costs of parallel LARS, bLARS, and T-bLARS. The results are shown in Table 2.
Note that parallel bLARS becomes faster than parallel LARS for b > 1. Parallel
bLARS and T-bLARS have similar latency costs. However, an important difference is
that the number of words for parallel bLARS depends on the number of columns n
while the number of words for T-bLARS depends on the number of rows m. This is due
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Table 2
Asymptotic costs for parallel LARS, bLARS, and T-bLARS. Here, t is the required number of

columns to be output by all algorithms. We assume that t \gg b and that matrix A is dense.

Method Arithmetic operations Words communicated Messages

LARS tmn
P

+ t2m
P

+ tn+ t3 tn logP + t2 logP t logP

bLARS tmn
bP

+ tn
b

+ t2m
P

+ t3 tn
b

logP + t2 logP t
b
logP

T-bLARS tmn
P

+ tmn
bP

+
\bigl( 
t2m+ t3

\bigr) 
logP

\bigl( 
tm+ tm

b
+ tb

\bigr) 
logP + t2

b
logP t

b
logP

to the fact that for parallel bLARS we partition the data per row, while for T-bLARS
we partition the data per column. Therefore, in the high-dimensional regression setting
where n\gg m, T-bLARS requires communicating far fewer words than bLARS. We
compare the two methods empirically in section 10.

We note that even though the results in Table 2 are obtained by assuming matrix
A is dense, the complexity bounds trivially extend to sparse matrices as long as we
have balanced partitions, i.e., the local sparse matrices stored at different processors
should have similar number of nonzero entries. In the balanced sparse case, we simply
replace mn with the number of nonzeros nnz(A) and obtain the arithmetic complexity
for all methods. The communication costs stay the same. In section 10 we use balanced
partition to deal with sparse matrices.

10. Empirical performance. This section contains two parts. First, we evalu-
ate and compare the solution quality of bLARS and T-bLARS for a range of block sizes
b and processors P . Second, we present a comprehensive list of plots that demonstrate
both overall speedups and more detailed running time breakdowns from increasing
b and P . We carry out the experiments on four regression datasets summarized in
Table 3. The data matrices for sector and E2006 are sparse and columnwise unbalanced,
i.e., the distribution of nonzeros per column is skewed (Figure 2). In order to balance
the computation workload on all processors, for T-bLARS we distribute the columns of
these sparse matrices so that the partitioned columns at each processor have roughly
the same number of nonzeros. Other column partitioning could also be used. We
discuss the effect of column partition on solution quality of T-bLARS in the next
subsection. For comparison purposes we limit both algorithms to collect the first
75 columns. We implemented the code in Python and used the optimized mpi4py
library [13]. The code is run on a computer cluster with distributed memory. Each
node in the cluster comes with 2 x Intel E5-2683 v4, 128 GB of RAM.

Table 3
Properties of the datasets that we consider. nnz(A) denotes the number of nonzeros in matrix

A. Consequently, the fourth column gives the (relative) sparsity of A. These regression datasets can
be downloaded from [7] as part of the LIBSVM Data package. The E2006 and Year datasets are the
three largest regression datasets in LIBSVM.

Dataset m n nnz(A)/mn
sector 6412 55197 0.003
YearPredictionMSD 463715 90 1.00
E2006 log1p 16087 4272227 0.001
E2006 tfidf 16087 150360 0.008D
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(a) sector (b) E2006 tfidf (c) E2006 log1p

(d) sector (e) E2006 tfidf (f) E2006 log1p

Fig. 2. Sparsity pattern and distribution of nonzeros for sparse datasets sector and E2006. The
histograms (d)--(f) are drawn on 128 equally spaced bins.

10.1. Solution quality. We use two metrics to measure solution quality. One
metric is, for a given parameter b, the value of the \ell 2-norm of the residual vector versus
the number of columns added at each iteration (Figure 3). For the second metric,
since LARS is primarily used for column selection in regression, we treat the columns
selected by LARS as the ground truth, and we use precision in column selection to
measure performance, i.e., we compare the percentage of columns selected by bLARS
and T-bLARS that overlap with the columns selected by LARS (Figure 4).

Observe that T-bLARS is overall more successful in terms of both data fitting
and column selection. The \ell 2-norm of the residual produced by T-bLARS is nearly
identical to that of LARS on all datasets and for all choices of b and P . On the
other hand, bLARS has higher residuals as b increases. For column selection, we see a
decrease in precision for both methods when b > 1, but in most settings T-bLARS
recovers more columns than bLARS. In particular, the precision of bLARS keeps
dropping quickly as b increases, while on three out of four datasets the precision of
T-bLARS goes up again for larger b. This makes sense because for T-bLARS, the
larger the block size is, the more columns will be sent from leaf nodes to nonleaf nodes
to choose from.

For bLARS, how rows are partitioned among processors does not affect the
columns selected by the algorithm. For T-bLARS, different column partitions can
lead to different tournaments at nonleaf nodes and thus cause T-bLARS to select
different columns at the root node. Figure 5 shows a range of precision results for
T-bLARS over 10 random partitions of columns into P = 128 processors. We observe
that T-bLARS still has a higher precision than bLARS in most cases. Determining the
best column partitions that would yield the highest precision for T-bLARS in terms of
column selection is interesting both in theory and in practice, but it is beyond the
scope of this work.

10.2. Speedup. We show the speedup trends in Figure 6. Note that for P =
b = 1, the speedup factor for T-bLARS is not identically 1.0 because T-bLARS
performs more matrix-vector products than LARS in this parameter setting. For
example, T-bLARS recomputes ck repeatedly due to iterative call to mLARS (step
4), while in LARS, the vector ck is computed only once and updated iteratively.
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(a) sector
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(b) Year.

b =
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b =
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b =
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b =
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b =
 74

b =
 56

b =
 38b =
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(c) E2006 tfidf

b =
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b =
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b =
 14

b =
 20

b =
 26

b =
 32

b =
 38

b =
 44

b =
 50

b =
 56 b =

 62 b =
 68

b =
 74

(d) E2006 log1p

Fig. 3. \ell 2-norm of residuals. For T-bLARS each line corresponds to a setting of P and b.
We do not show all legends for T-bLARS to ease readability; most settings give similar quality. For
bLARS each line corresponds to a different b. Note that P does not affect the quality of bLARS.
Seventy-five columns were chosen for all experiments.

Overall, bLARS enjoys much higher speedups across all datasets. When the data
is not very high-dimensional, i.e., not in the regime n \gg m, the total running time
of bLARS scales with both P and b as predicted by the asymptotic costs analysis.
The largest dataset E2006 log1p has far more columns than rows, and bLARS slows
down when we increase the number of processors beyond 4. On the other hand,
apart from E2006 log1p, T-bLARS does not seem to have a good speedup on other
datasets. In order to understand what causes the speedups or the slow-downs, in
Figure 7 (resp., Figure 8) we fix b (resp., P ) and vary P (resp., b) and show how
the major components of the total running time scales. For arithmetic operations,
we plot the time spent on performing matrix-matrix and matrix-vector products and
the time spent on computing the step-size \gamma separately, as both the cost analysis
(cf. Table 1) and subsequent plots show that these are the computation bottlenecks.
There is only a very small fraction of the total time spent on other computations, e.g.,
scalar multiplications, array initializations, and Cholesky factorization and inversion of
small-size matrices, so we do not plot all of them explicitly. Note that the binary tree
reduction in T-bLARS has logP serial levels: for a column to become a winner at the
root, it has to go through logP number of competitions sequentially. Therefore, once
the candidate columns are selected at leaf nodes and competitions start at nonleaf
nodes, there will always be some nodes waiting for the root to broadcast the final
winners before starting the next iteration. For T-bLARS we include this wait time
in the running time breakdown plots. We estimated the wait time using the average
computation time per competition at nonleaf nodes times the number of levels in the
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P = 1

P = 128

P = 8

P = 64P = 32

P = 2,4
P = 16

(a) sector

P = 1

P = 2

P = 128
P = 64

P = 16,32

P = 8

P = 4

(b) Year.

P = 1

P = 2

P = 4

P = 8

P = 16

P = 32

P = 64

P = 128

(c) E2006 tfidf

P = 1

P = 2
P = 4
P = 8

P = 16

P = 32P = 64
P = 128

(d) E2006 log1p

Fig. 4. Precision in column selection. For both bLARS and T-bLARS each line corresponds to
a setting of P . Note that different P 's give rise to different row partitions for bLARS and different
column partitions for T-bLARS. Row partitions do not affect the precision of bLARS.

(a) sector (b) Year. (c) E2006 tfidf (d) E2006 log1p

Fig. 5. Effects of column partitions on the precision of column selection for T-bLARS. We fix
P = 128 and run T-bLARS on 10 random column partitions. The bars for each b show the minimum
and maximum precisions over the 10 runs, and the line in the middle connects the mean.

tree.
We make some comments about Figures 7 and 8. First, both bLARS and T-bLARS

reduce the time spent on matrix-vector products as we increase either P or b. The
speedup of bLARS mainly comes from the speedup of matrix-vector products. Second,
bLARS spent smaller fraction of total time on communication when the data matrix
is a tall m\gg n, e.g., YearPredictionMSD; T-bLARS spent a smaller fraction of total
time on communication when the data matrix is fat n\gg m. This is expected because
the number of words communicated for bLARS increases with n and is independent
of m, while the number of words communicated for T-bLARS increases with m and
is independent of n. Third, we didn't see a good speedup of T-bLARS for sector,
YearPredictionMSD, and E2006 tfidf, because T-bLARS spent a large fraction of time
on serial reduction in the binary tree, which overweighs the reduction in time for
matrix-vector products. On the other hand, the wait time for serial tournaments for
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(a) sector, bLARS (b) sector, T-bLARS

(c) Year., bLARS (d) Year., T-bLARS

(e) E2006 tfidf, bLARS (f) E2006 tfidf, T-bLARS

(g) E2006 log1p, bLARS (h) E2006 log1p, T-bLARS

Fig. 6. Total speedup.

E2006 log1p took relatively much less time, so T-bLARS obtains good speedups. In
general, one can expect T-bLARS to have a good speedup when the ``wait time"" is
much less than parallel computation times (e.g., matrix-vector products) at leaf nodes.
Our implementation of T-bLARS uses sparse data structures for computations at leaf
nodes (to reduce memory requirement) and dense data structures for computations at
nonleaf nodes (to reduce overheads). This has put T-bLARS in a slight disadvantage
when dealing with sparse data as many arithmetic operations at nonleaf nodes will be
unnecessary. We thus expect T-bLARS to achieve better speedups (than the 6x on
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E2006 log1p) on dense and high-dimensional data where n \gg m. Finally, Figure 8
shows that the communication cost of both bLARS and T-bLARS tends to decrease
as b increases, which is also expected according to Table 2.

(a) sector, bLARS (b) Year., bLARS (c) E2006 tfidf,
bLARS

(d) E2006 log1p,
bLARS

(e) sector, T-bLARS (f) Year., T-bLARS (g) E2006 tfidf,
T-bLARS

(h) E2006 log1p,
T-bLARS

Fig. 7. Running time breakdown. We fix b = 1 and vary P . The pattern is similar for other b.

(a) sector, bLARS (b) Year., bLARS (c) E2006 tfidf,
bLARS

(d) E2006 log1p,
bLARS

(e) sector, T-bLARS (f) Year., T-bLARS (g) E2006 tfidf,
T-bLARS

(h) E2006 log1p,
T-bLARS

Fig. 8. Running time breakdown. We fix P = 128 and vary b. The pattern is similar for other P .

Our experiments indicate that there is a tradeoff between bLARS and T-bLARS.
On one hand, bLARS is well suited for row-partitioned data and can achieve speedups
up to two orders of magnitude. However, the amazing speedup of bLARS comes at
the expense of solution quality. One the other hand, while T-bLARS is generally
slower than bLARS, it has lower residual norms and on average selects columns more
accurately than bLARS. For example, for E2006 log1p, T-bLARS achieves 4x speedup
(P = 64, b = 2) while correctly selecting 100\% columns, bLARS only obtains 2x
speedup for b = 2 and has a precision below 80\%. Even though bLARS has up to
27x speedup (P = 4, b = 38) for E2006 log1p, in this setting bLARS only correctly
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recovers around 30\% columns that would have been selected by LARS.

11. Conclusions. The two parallel and communication avoiding methods we
have introduced, bLARS and T-bLARS, present valuable methods of LARS that
provide higher performance of speed than LARS can normally give. The choice
between the two comes down to what priorities and expectations the user has from
the solutions generated from these algorithms, e.g., be it higher speed or more resilient
accuracy.
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