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Abstract 

The tools and techniques such as 

imaging and machine learning used 

in the measurement of many material 

and microstructural properties 

are rapidly evolving. In metals, the 

grain size is routinely measured to 

estimate the yield strength. This paper 

describes some of the algorithms used 

in processing the microstructures to 

conduct quantitative measurements. 

The image processing methods 

provide the possibility to go beyond 

calculating the ASTM grain size 

number and calculate the actual 

surface area of each grain, grain 

boundary length, and the shape of the 

grains. The image analysis methods 

can be very helpful in conducting 

detailed quantitative analysis 

with greater accuracy than many 

labour-intensive manual methods 

currently in use. The work describes 

the complexities in applying the 

imaging methods and approaches 

in the metallurgical and materials 

fields. Successful application of 

such methods can reduce the time 

and effort required to characterise 

microstructures and can provide more 

precise information. 

Keywords: Microstructure, particles, 
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Introduction

Grain size measurement is necessary 

for several reasons for ferrous and 

non-ferrous castings in the foundry 

industry such as microstructural : 

characterisation, material properties, 

process optimisation, quality control, 

performance prediction and failure 

analysis. Some common methods 

used to measure grain size in cast 

alloys are linear intercept method, 

planimetric method, and comparison 

with standard charts. Grain size can 

be estimated by visually comparing 

the microstructure of the cast alloy 

with standard grain size charts or 

reference images. This qualitative 

method provides a rough estimate 

of the grain size but is less accurate 

than quantitative techniques. The 

mechanical properties of metallic 

materials depend on the grain size. 

Hence, grain size measurement is a 

key task in the microstructure analysis 

of metals[1, 2]. American Society for 

Testing and Materials (ASTM) standard 

describes the Heyn Intercept method, 

which is widely used for grain size 

measurement. This method is labour-

intensive and prone to human error 

and gives only an approximate 

measurement with large standard 

deviation. 

With the advent of advanced 

imaging systems, the tools 

and techniques for material 

characterisation have undergone 

significant transformations[3]. 

Recent advancements in grain size 

measurement techniques have 

focused on enhancing accuracy, 

efficiency, and automation.  Image 

processing and computer vision could 

also help significantly in reducing 

the time and manual inputs[4-6], 

while providing much greater details 

in the measurements such as the 

actual surface area of each grain, 

the length of grain boundaries, 

and morphological details about 

grain shapes[7]. Machine learning 

methods are immensely useful in 

microstructure recognition and 

deformation and failure analysis[8.9]. 

In machine learning, algorithms work 

with complex datasets to provide 

quantitative insight. They can learn 

patterns from large amounts of data 

and make predictions or decisions 
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based on those patterns. As some 

examples in the daily life, they are now 

recognising spam emails, predicting 

illnesses in a person before they occur, 

or even drive cars autonomously. 

Essentially, machine learning is a 

computer algorithm that learns from 

the available data to make predictions 

for a wide range of parameters. Since 

it is expensive and time consuming 

to conduct metallurgical analysis, 

automation using machine learning 

can help in reducing the time and 

cost and increasing the measurement 

accuracy.

Applying computer vision methods to 

an image dataset requires preparing 

the images to a standard format. 

The initial step is the of processing 

of micrograph into a digital format 

where grains are represented in 

terms of pixels[10, 11]. Once digitised, 

various algorithms can dissect these 

images, delineate grain boundaries, 

and quantify grain size. Image 

segmentation is a critical and essential 

component of many image analysis 

and/or pattern recognition systems, 

is one of the most difficult tasks in 

image processing, and determines the 

quality of the final result of analysis[12]. 

Segmentation can be performed 

either semantically, to label a set of 

pixels as belonging to a class (such as 

a material phase or boundaries), or 

on an instance basis, to label as set 

of pixels as belonging to an instance 

of a class (such as a single grain). The 

complexity of image segmentation 

stems from poor contrast that may 

result from insufficient etching, 

lighting or focus, overlapping 

features, clustering and precipitates, 

among others. The goal is to ensure 

that each segmented region retains 

homogeneity within a grain but the 

two neighbouring grains should 

exhibit a clear boundary between 

them. 

In this work, a variety of algorithms 

are compared for their ability to 

quantitatively analyse micrographs. 

The methodologies adopted in this 

work offer an exhaustive analysis 

that surpasses the limitations of 

conventional ASTM grain size 

numbers. The surface area of each 

grain, grain boundary lengths, and 

the grain orientation are calculated. 

The refined post-imaging analytical 

techniques provide a richer, more 

detailed array of tools for analysing 

material properties.

Image processing for grain 
size measurement

The ASTM grain size number is 

measured as a whole number by 

visual comparison in the standard 

metallographic practice. However, 

modern processed specimens may 

have small differences in grain size, 

which may still be approximated 

by the same integer. Machine 

learning can help in more precise 

measurements of grain size. It can 

also detect presence of directionality 

or texture that the ASTM grain 

size analysis would not be able to 

capture. The process of preparing the 

micrographs and measuring the grain 

size is presented below. 

Segmentation approach

The raw image (Fig 1 (a)) is taken from 

a Nikon Epiphot optical microscope 

and is read by using Open CV’s library. 

The input dimensions of the raw 

image are (1920, 2560, 3). It is cropped 

to the dimensions of (1600, 2560, 

3) to remove the scale bar before 

segmentation. The pixels to μm length 

ratio from the scale bar in raw image is 

3.5 i.e., 350 pixels = 100 μm.

The primary step in the calculation of 

grain size is the detection of individual 

grain boundaries. Traditional methods 

for boundary detection such as Canny 

edge detection (CED)[13] have not 

provided satisfactory results. Canny 

edge detection is a classic edge 

detection algorithm developed by 

John Canny in 1986. It is commonly 

used for general-purpose edge 

detection tasks in computer vision 

applications. HED is a more advanced 

edge detection technique developed 

 Fig 1: (a) Original microstructure of steel
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by Xie et al. in 2015. It aims to capture 

edges at multiple scales and levels 

of abstraction by combining features 

from multiple layers of a deep 

convolutional neural network (CNN). 

HED uses a deep neural network 

architecture to learn hierarchical 

representations of edges, which 

allows it to detect edges at different 

levels of details and complexity. Unlike 

Canny edge detection, HED is more 

tailored towards detecting complex 

and nuanced edges in images. While 

Canny edge detection is a traditional 

algorithmic approach, HED leverages 

the power of deep learning to achieve 

more sophisticated edge detection 

results. It's widely used for detecting 

a wide range of edges in images. 

Therefore, the technique that was 

utilised in this study is known as 

"Holistically Nested Edge Detection 

(HED)" [14]. 

Figure 2 compares the results 

obtained from the CED and the HED 

with different scale parameters.

Compared to the Canny algorithm, 

HED displays superior connectivity 

of edges, consistency and a spatial 

shift in the detection of edges[14]. 

This deep learning model employs 

fully convolutional neural networks 

for image-to-image prediction and 

directly produces the edge map image 

as an output[15, 16]. A crop layer is added 

to the network (Fig 3) as in the original 

network the input image gets shifted 

from the origin as demonstrated in Fig 

3(b).  

The raw image is processed prior to 

its transmission to the neural network 

to scale the image and subtract 

mean [17]. Scaling helps in reducing 

the computation time though it may 

decrease some features of the image. 

Based on a subjective evaluation 

of the images that yielded the best 

results, the scaling factor of 0.7 was 

selected. Figure 4(a) demonstrates 

Fig 2: Illustration of grain boundary detection using CED and HED algorithms. (a), (b), 
(c) shows the CED by changing the lower (τ

l
) and upper (τ

u
) threshold value in hysteresis 

thresholding: (a) τ
l
 = 20, τ

u
 = 150, (b) τ

l
 = 70, τ

u
 = 150, (c) τ

l
 = 120, τ

u
 = 150. (d) HED shows a 

notable superiority over CED. The numbers on x and y-axes correspond to pixels.

Fig 3: Demonstration of crop layer implementation in the original HED network on 
the input image: (a) without and (b) with crop Layer. The numbers on x and y-axes 

corresponds to pixels

Fig 4: Illustration of the raw image that is fed to the neural network for obtaining the 
segmented grain boundaries: (a) raw and (b) output image after passing it into forward 
the HED network. 
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the raw image which is pre-processed 

using mean subtraction and scaling 

and then forward pass is performed 

to extract the edges. Figure 4(b) 

illustrates the edge map obtained 

from the HED network.

The contrast and brightness are 

now enhanced to detect the edges 

more efficiently. The first operation 

is to rescale the source image by a 

factor of λ  and second is to offset 

by adding a δ term. The values of 

λ and δ  are selected as 2 and 25, 

respectively, based on parametric 

studies to achieve the maximum 

grain boundaries detection efficiency. 

Figure 5(a) plots the image after 

contrast and brightness correction. 

Before extracting the individual grain 

boundaries, the algorithm performs 

Gaussian blurring on the adjusted 

image (Figure 5(b)) for smoothing 

of image, noise reduction and edge 

preservation. The blurred image 

is further thresholded using the 

combination of Binary Thresholding 

and Otsu’s Binarisation and then 

inverted as shown in Fig 5(c). The 

connected components labelling on 

the thresholded image is performed 

to identify each individual grain so 

that measurements can be produced. 

This also helps in calculating the total 

number of grains and labelling them 

with different colours. The colours are 

randomly assigned to the grains in Fig 6.

A number of techniques are available 

to measure the segmented objects. To 

extract the individual grain properties, 

the algorithm uses Skimage’s measure 

module[18-20] with a Pandas data frame. 

The following properties are measured 

for each grain:

 Area - The number of pixels in the 

region, scaled by pixel-area. This 

area is then divided by (pixel/μm)2 

to scale the area in μm.

 Equivalent Diameter - The 

diameter of the grain with the 

same area as the region. This is 

divided by pixel_to_μm for scaling.

 Perimeter - Perimeter of the 

grain that uses a 4-connectivity 

to represent the contour as a line 

in the middle of the border pixels. 

Fig 5: Illustration of postprocessing of the image for the labelling and extraction of individual grain properties: (a) contrast and 
brightness adjusted image, (b) gaussian blurred image, (c) inverted thresholded image. The numbers on x and y axes correspond pixels.

Fig 6: Grain Image. The numbers on x and y axes corresponds pixels

This is also divided by pixel_to_μm 

for scaling.

 Orientation - Angle between the 

0th axis (rows) and the major axis 

of the ellipse that has the same 

second moments as the region, 

ranging from -π/2 to π/2 counter-

clockwise. 

 Major axis length or minor axis 

length - The length of the major 

or minor axis of the ellipse that 

has the same normaliszed second 

central moments as the region. 

This is also divided by pixel_to_μm 

for scaling.

 Centroid - It returns the centroid 

coordinate tuple (row, column) of 

the grain. 
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In this image, the objects of equivalent diameter of fewer than 25 pixels are 

considered to be noise, and as a result, they are eliminated from the data frame. 

The border/edge touching grains can be discounted in the absence of complete 

information of particle to calculate the grain attributes.

G = 3.321928.log
10

n - 2.954         …..              (1)  

where n = number of grains per mm2 area at 100 × magnification. To calculate 

the number of grains per mm2 (n), the average grain area calculated above in 

μm2 is multiplied by 106. Finally, the ASTM grain number (G) is calculated using 

Equation (1)[21].  

Heyn intercept method

The intercept method involves plotting lines of known length on the micrograph 

and counting the number of times the line intercepts grain boundaries. The 

mean intercept length ( ī ) is given by[21]

             …..         (2)

where L
T
 = total length of lines, P = total number of intercepts, and M = 

magnification. From ī , the ASTM grain size number G is calculated by [21]

             G = - 6.643856.log
10

ī - 3.288         …..              (3)  

This equation infers that the higher the grain size number, the smaller the 

average grain size.

The thresholded image from the HED algorithm (Fig 5(a)) is taken and noise 

reduction is performed by using a morphological operation called Opening, 

which is a combination of two techniques, i.e., erosion followed by dilation (Fig 

7(a))[22]. Erosion erodes the foreground of an image depending on the size and 

shape of a structuring element. Dilation helps in connecting the broken parts of 

the object [22]. Morphological opening is effective for eliminating small structures 

from an image while retaining the shape and size of larger structures in the 

image. A structuring element with size of (10,10) and elliptical shape is used on 

the image to reduce the noise. To remove further noise, a median filter is then 

applied using a square kernel of size (5,5) as demonstrated in Fig 7(b).

The denoised image is converted back to RGB image format, and 100 random 

vertical lines are drawn on the image with red colour (255, 0, 0) (as per the RGB 

convention). For the calculation of intersection points, the algorithm blends 2 

images in α and (1- α ) proportion as per 

 g(x) = α.f
1
(x) + (1 - α ).f

2 
(x)     ……        (4)

Fig 7: Noise removal on the input image after: (a) morphological transformation and then 
(b) median filtration. The numbers on x and y axes corresponds pixels

where 0 ≤ α ≤ 1 and f
1 
(x) & f

2
 (x)  

represents the images. The value of   is 

chosen such that the resultant image 

has a particular range of mean pixel 

values when the vertical lines intersect 

the grain boundaries enabling their 

capture. Here, α = 0.4 and f
1
 (x) being 

the image without the intercept line 

(Fig 8(a)) while f
2
 (x) being the image 

which has the red intercept lines (as 

shown in Figure 8(b)). The intersection 

points of red and black pixels will 

have a mean range of colour channels 

between 140 and 160, which will 

assist in calculating the intersection 

points (shown in Fig 8(c)). The 

algorithm iterates over 100 vertical 

lines and counts intersection points 

and the mean intercept length (ī). 

Consequently, the grain size number 

is calculated using Equation (3) and 

the number of grains per mm2 are 

calculated by Equation (1).

Results of grain size 
measurement

The two approaches ie, segmentation 

and intercept were executed on 

Jupyter notebook. Using the time 

library in python the wall-clock time 

was measured for both approaches. 

The segmentation approach found a 

total of 223 different grains and the 

output is presented in Table-1. This 

method yielded a grain size evaluation 

of 7.02 with an execution time of 15.01 

seconds on Apple M1 Pro chip with 8 

cores CPU and 14 cores GPU having 

16GB of primary memory.
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Fig 8: The detection of intersection points of grain boundary with the intercept lines.  
(a) The denoised image without the intercept lines having added weight ( α = 0.4, (b) the 
denoised image with the intercept lines with having added weight (1- α = 0.6, (c) the oval 
regions indicate the change in color channel intensity for the intersection points. The 
numbers on x and y-axes correspond to pixels.

Table-1: Grain distribution data frame using segmentation approach. 

x_centroid and y_centroid corresponds to the x and y coordinate of the 

centroid of the particular grain respectively in pixels

No. Area  
(μm )

Perimeter 
(μm )

Equivalent 
Diameter 

(μm )

Orientation 
(degrees)

Major 
Axis 

Length 
(μm)

Minor 
Axis 

Length 
(μm)

x_
centroid 
(pixels)

y_
centroid 
(pixels)

1 336.33 77.75 20.69 -38.03 27.69 16.45 42.66 37.22

2 2559.18 296.05 57.08 80.94 100.83 38.19 54.26 264.49

3 421.80 92.31 23.17 85.52 37.36 14.98 21.68 483.01

…. …. …. …. …. …. …. …. ….

222 92.00 45.10 10.82 79.00 17.24 7.30 1582.11 543.97

223 56.57 43.75 8.48 88.75 19.19 4.07 1592.88 1328.58

A comparison of the results from the two approaches is shown in Table-2. 

Compared to the ASTM grain size number, which is a whole number, the grain 

size statistics computed using these image processing algorithms is more 

accurate and can differentiate between small differences in the grain size. The 

intercept approach was significantly faster than the segmentation approach. 

Table-2: Results of segmentation vs intercept approach

Grain properties Segmentation approach Intercept approach

Average grain diameter (μm ) 30.29 ± 18.61 43.01

Average grain area ( μm2) 991.37  ± 1422.05 (505.71 median) 688.38

Number of grains per mm2 1008.71 1452.7

Execution time (s) 15.01 1.99

Grain size number* 7.02 6.46

*Unlike an integer ASTM grain size number, these numbers can be more precise.

Conclusions

The conventional methods for determining grain size, such as the Heyn Intercept 

method, are arduous and provide limited information. Image processing and 

computer vision have emerged as essential technologies, considerably cutting 

down the amount of time and effort needed to determine the grain size. Not 

only do these technologies offer a more effective method of measuring, but 

they also offer a more in-depth look into the microstructures and can help 

in differentiating small differences 

between two microstructures. The 

two approaches explained in this 

paper namely the segmentation and 

intercept approach help in capturing 

the grain properties like area, diameter 

and orientation, making it possible 

to have an in-depth understanding 

of the microstructure. The intercept 

approach in particular provides the 

grain size number in approximately 2 

seconds which is significantly faster 

than the segmentation approach. 

In summary, while both approaches 

contribute to capturing grain 

properties in the microstructure of a 

casting, the segmentation approach 

offers a more detailed and nuanced 

analysis, allowing for a deeper 

understanding of spatial distribution 

and variability. On the other hand, the 

intercept approach provides a quicker 

overview, making it suitable for initial 

assessments or situations where time 

and resources are limited. The choice 

between the two approaches depends 

on the specific goals, requirements, 

and constraints of the analysis.
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