
Fast Attack Recovery for Stochastic Cyber-Physical Systems

Lin Zhang∗

University of Pennsylvania
cpsec@seas.upenn.edu

Luis Burbano∗

University of California, Santa Cruz
lburbano@ucsc.edu

Xin Chen
University of New Mexico

chenxin@unm.edu

Alvaro A. Cardenas
University of California, Santa Cruz

alacarde@ucsc.edu

Steven Drager, Matthew Anderson
Air Force Research Laboratory

{steven.drager, matthew.anderson.37}@us.af.mil

Fanxin Kong
University of Notre Dame

fkong@nd.edu

Abstract—Cyber-physical systems tightly integrate computa-
tional resources with physical processes through sensing and
actuating, widely penetrating various safety-critical domains,
such as autonomous driving, medical monitoring, and industrial
control. Unfortunately, they are susceptible to assorted attacks
that can result in injuries or physical damage soon after the
system is compromised. Consequently, we require mechanisms
that swiftly recover their physical states, redirecting a compro-
mised system to desired states to mitigate hazardous situations
that can result from attacks. However, existing recovery studies
have overlooked stochastic uncertainties that can be unbounded,
making a recovery infeasible or invalidating safety and real-time
guarantees. This paper presents a novel recovery approach that
achieves the highest probability of steering the physical states
of systems with stochastic uncertainties to a target set rapidly
or within a given time. Further, we prove that our method is
sound, complete, fast, and has low computational complexity if
the target set can be expressed as a strip. Finally, we demonstrate
the practicality of our solution through the implementation
in multiple use cases encompassing both linear and nonlinear
dynamics, including robotic vehicles, drones, and vehicles in high-
fidelity simulators.

Index Terms—cyber-physical systems, security, sensor attack,
recovery, real-time, stochastic systems

I. INTRODUCTION

Cyber-Physical Systems (CPS) integrate computation, net-
working, and physical processes, where embedded computers
and networks monitor and control the physical processes via
sensing and actuation. The functionality and connectivity in
CPS continue to increase and enable advanced applications
such as autonomous and connected vehicles, unmanned aerial
vehicles, and smart grids. Despite several advantages, CPSs
are vulnerable to various attacks, such as physical interference
affecting sensor readings [1] and actuation signals [2], GPS
spoofing [3], etc. Such security lapses in CPS can cause
dangerous consequences in the physical world, such as power
outages [4], car accidents [5], navigation errors [6], or damage
to nuclear power systems [7], [8].

To protect these systems, researchers have developed several
tools for preventing, detecting, and recovering from attacks.
Real-time attack recovery solutions can be broadly classified
into three categories: (1) restarting a system [9]–[11], (2)
replacing compromised sensor data with predicted one from

Assigned CLEARED 21 December 2023, case number AFRL-2023-5819.
∗ These authors contributed equally.

virtual sensors [12]–[14], and (3) replacing the original
control algorithm by a backup controller [15]–[17]. The first
two categories do not provide strong safety or timing guar-
antees; however, they are simple solutions that can be easy
to implement and offer minimal computational overhead. The
last category requires us to design a new safety controller to
take over a system under attack. A provably safe controller can
provide strong safety and timing guarantees, but this design
can increase the computational complexity of the recovery
problem. Moreover, solutions with guarantees are an all-or-
nothing approach [18], [19] (they either guarantee the safety
and real-time requirements or give up searching for a feasible
solution). Further, to ensure safety and real-time guarantees,
they assume bounded uncertainties, which does not hold in
real applications since most real-world CPSs are riddled with
stochastic uncertainties, including modeling errors, external
disturbances, and sensor noise. Furthermore, these bounded
uncertainties can result in a conservative recovery deadline,
exacerbating the infeasibility of deterministic approaches.

In this paper, we explore “Can we design an efficient
recovery controller that always finds a solution (completeness)
for stochastic CPS and offers provable safety and timing
properties (soundness)?” Instead of trying to find an all-
or-nothing approach, we focus on finding a solution that
maximizes the probability of safe recovery within a given time.
In particular, this paper proposes the optimal probabilistic
recovery (OPR) problem, i.e., designing a controller that takes
over the stochastic CPS after an attack and steers the system
to reach a target set as fast as possible and with the highest
probability of reaching the desired set. Then, we put forward
an efficient algorithm to solve this problem and prove that
this method is sound when the target set can be defined as a
strip. In this way, we pay attention to the recovery probability
instead of the deterministic guarantees, making the recovery
complete. In addition, the evaluations show that our recovery
strategy is efficient and still performs well and outperforms
previous works even when regularity assumptions do not hold
(e.g., drones or robotic vehicles).

Our contributions include the following: (1) We propose
a formal framework to design a safe attack-recovery con-
troller for stochastic systems. (2) We prove the soundness
and completeness of our solution, and show that our solution

maximizes the probability of the fastest recovery with safety
guarantees. (3) We show the practicality of our solution in
various cases, ranging from high-fidelity models such as SVL
and AirSim/Gazebo, real-world robotic vehicles, and several
simulations for linear systems. (4) We compare our solution
with previous proposals and illustrate the benefits of our
solution under key performance metrics.

The remainder of the paper is organized as follows. Sec-
tion II discusses related work and highlights our contributions.
Section III provides system and threat models and problem
statement. Section IV introduces our attack-recovery method.
Section V evaluates our proposed method and compares with
existing proposals. Section VI concludes the paper.

II. RELATED WORK

There is a growing literature on the security of CPS. One of
the research areas that has attracted great interest is CPS attack
detection [20]–[24]. Most of these efforts focus on detecting
attacks, leaving the response to intrusions as future work: for
example, a survey paper in 2021 on drone security summarizes
several attack prevention and detection mechanisms; however,
only two out of 131 citations focus on attack response (adding
parachutes to drones) [25].

Automated attack response is a growing area in classical
computer networks to mitigate the time-consuming and de-
layed response of overwhelmed security analysts. Automated
actions include patching, restoring software, blocking an at-
tacker’s IP addresses, switching to another server, or restarting
systems [26], [27]. However, these automated attack responses
for computer networks are not adequate for CPS. Since the
CPS actively interacts with the physical world, a malicious
sensor attack can lead to severe consequences, such as personal
casualties and economic losses.

Researchers have been working on new online attack re-
covery strategies to mitigate the physical impact of attacks.
These strategies can be broadly classified into three categories:
i) Restart-Based Recovery (RR). To respond to a detected
attack, RR restarts a CPS [9]–[11]. This strategy has been
mainly used for attacks on the controller [28], but sensor
attacks may continue to affect systems after restart. ii) Virtual
Sensors (VS). VS approaches replace corrupted sensor data
with predicted data by a software-simulated sensor and rely on
the nominal controller to drive the system to the desired phys-
ical state [12], [14], [29], [30]. iii) Backup Controller (BC).
This recovery strategy extends the simplex architecture [16],
[31], [32] and robust control [33], [34]. It requires designing a
backup controller that takes over the system to recover it after
an attack is detected [15], [18], [35]–[37].

For a deeper understanding of the online attack recovery for
CPS, we summarize the features of these methods in terms of
recovery goals, formal properties, and target system type.
Recovery Goals: We identify that researchers design the
above strategies to preserve two properties of attack recovery:
safety, and real-time. i) Safety. The goal of strategies focused
on safety is to protect humans and CPS from dangerous
conditions, i.e., away from unsafe states during recovery [15],

TABLE I: Classification of work on online attack recovery

[1
2]

[3
8]

[1
4]

[1
5]

[1
9]

[3
5]

O
ur

s

Guarantees
Safety - - - ● ● - ●

Real-time - - - ● ● - ●

Formal Properties
Soundness - ● - ● ● - ●

Completeness ● ● ● - - ● ●

System Type
Non-linear G# - G# - ● ● ●
Stochastic - ● - - - - ●

Legend: ●: feature considered by authors. G#: feature considered for results
but not for the design. -: feature not considered by authors.

[18], [19]. For example, we want a vehicle under GPS spoofing
attack to be steered to a safe zone, such as a roadside shoulder,
to avoid further deviation or collision and guarantee safety. If
there is no safety consideration or guarantee, the recovery is
as damaging as attacks since severe consequences, such as
collisions, may occur during recovery. For this reason, the
paper aims to preserve safety under attack instead of just
fulfilling its original mission. ii) Real-time. Timing is vital for
safety-critical CPS, and untimely recovery can lead to severe
consequences. Thus, some research starts to consider recovery
time, i.e., the interval between the attack detection and the end
of recovery. Some real-time recovery methods online estimate
a conservative deadline to avoid unsafe physical states and
complete the recovery before this deadline [15], [18], [19].
However, finding a suitable deadline is time-consuming, and
sometimes the deadline is too conservative to find a feasible
recovery solution. Thus, this paper aims to recover the physical
system fastest rather than estimating a deadline first.
Formal Properties: When dealing with adversarial conditions,
recovery methods should have some formal properties. We dis-
tinguish between soundness and completeness as two formal
properties: i) Soundness means that once we find a recovery
control sequence, it guarantees that the system can be driven
back to the desired states under safety and timing restrictions.
ii) Completeness means that the recovery strategies can always
find a recovery control sequence. Soundness can be achieved
by using reachability analysis to obtain a recovery deadline
and then formulate an optimization problem to produce a
control sequence with a length equal to the deadline [15],
[18]. However, these methods are not complete. Reachability
analysis overapproximates the reachable set given an uncer-
tainty bound, leading to an unnecessarily conservative recov-
ery deadline. The deadline can result in infeasible optimization
problems, i.e., failing to find a recovery control sequence.
System Type: To reduce computational overhead, several
authors consider systems with linear dynamics to synthesize
recovery strategies [14], [38]. However, the linear dynamics
are not enough to capture the richer behavior of systems, since
real systems such as autonomous vehicles are typically nonlin-
ear. If we apply these strategies directly to real systems, they
may fail to recover systems. Therefore, we require recovery

strategies that can handle more complex systems that present
nonlinear dynamics. Moreover, some recovery strategies con-
sider uncertainties inherently in real systems, such as sensor
noise. Analyzing such stochastic systems has been a significant
research topic in formal methods and control theory [39]–[43].
Most existing techniques find control inputs (e.g., the vehicle
steering) by solving an optimization problem that describes the
goal and a discrete abstraction of the stochastic dynamics [44]–
[46]. Due to the high computational complexities, they are
mostly developed for offline use and cannot be directly used
to perform online recovery for stochastic systems.
Difference from Existing Work. Table I summarizes and
categorizes the most related work on online attack recovery
among all the features above. Compared to existing methods,
this paper focuses on online, autonomous attack recovery
mechanisms for CPS. In particular, it develops a BC that
prioritizes the safety of humans and system and redirects
the physical system to a target set of desired states fastest
within a given time to prevent further damage caused by
the attack. Moreover, the strategy is proven to be sound and
complete when the target set is defined as a strip. Further,
it can effectively and efficiently handle linear and nonlinear
systems with stochastic uncertainties.

III. PRELIMINARIES

A. System Model

We consider a CPS consisting of a physical plant, nominal
controllers, actuators, and sensors. The physical plant follows
physical laws and can be expressed as a continuous model
using a differential equation ẋ = fc(x, u), where x ∈ Rn is
physical states (such as temperature and velocity), ẋ is the
derivative of x, and u ∈ Rm is control input (such as voltage
and throttle) that drives actuators (such as the motor of a
vehicle) to modify the physical state x and completing the CPS
task. The model, typically nonlinear in real systems, reflects
how system states evolve with control inputs. The system
states typically follow reference (or target) states to maintain
desired behaviors. For instance, cruise control requires that the
car maintain a steady speed as set by the driver. To achieve
this, the nominal controller periodically generates a piecewise
constant control input signal. At each control step, it estimates
system states xt at time t based on sensor measurements yt
and then generates a control input ut sent to actuators. The
control input signal is limited by the physical properties of
actuators, so the control inputs used at each time are bounded
in the set U ⊂ Rm. Since the control input signal is discrete,
the system model can also be expressed in a discrete form

xt+1 = fd(xt, ut) + Cwt, (1)

where w is a vector representing the uncertainty in the system
(a stochastic variable). The system state at a time is subject to
a probabilistic distribution, which is dependent on the initial
state and the randomness in the current and past steps. We
may also associate a probabilistic distribution on the initial
state x0. Because of the central limit theorem, we consider the
uncertainty of the initial state and the noise w to be distributed

as the standard Gaussian distribution N (0, 1) with covariance
matrix C. Given an initial state x0, any state xt for t = 0, 1, . . .
is called a reachable state from x0. Stochastic dynamics
consider uncertainties with a known probability distribution
that affects the evolution and observation of the state variables.
Such uncertainties are inherent in real-world CPS and could
come from measurement noises, external disturbances, etc.
In contrast, models with deterministic or bounded nondeter-
ministic dynamics do not reflect such stochastic behaviors of
systems, so they are limited when used in real-world CPS.

B. Threat Model and Assumptions

We present our recovery approach from the perspective of
sensor attacks that become a crucial threat targeting CPS.
The adversaries can manipulate sensor measurements by com-
promising the integrity of information perceived by the CPS
(e.g., spoofing and transduction attacks) or the availability of
information (e.g., DoS attacks). Specifically, the adversaries
change the actual sensor data yt at time t to ŷt observed
by the nominal controller, where yt ≠ ŷt. As a result,
the controller generates a corrupt control input, driving the
physical system towards unsafe states. Note that we make
no assumptions about the number of compromised sensors;
it could be one or many (we discuss how to deal with the
number of compromised sensors in Section IV-D).

To bypass security countermeasures, attackers are incen-
tivized to launch non-invasive sensor attacks, such as trans-
duction attacks, which leave actuators and controllers intact.
Thus, we assume that the actuators must be able to implement
commands from the recovery controller correctly and that
the recovery controller must remain uncompromised to take
control after the attack has been detected. Further, recovery
against other attacks, such as actuator and controller attacks,
which require additional adaptation, is beyond the scope.

Since this paper focuses on recovery, we also assume that an
attack detection system is in place, such as [47]–[50]. During
this detection delay between the onset of an attack and its
detection, the controller will operate with the corrupted values,
which may force the physical system from a desired trajectory
toward an unsafe condition.

C. Problem Statement

We consider a nonlinear CPS with stochastic uncertainties
expressed in Section III-A suffering from attacks described in
Section III-B. Fig. 1 demonstrates a timeline of the recovery
process we want to achieve for a CPS under sensor attack.
The system initially runs a nominal controller. The adversary
launches a sensor attack starting at time ta, and the system
states start to deviate from the desired states. Once the attack
detector identifies the attack at time tr, the system switches to
a recovery controller. The safety controller takes over the entire
system and generates a recovery control sequence to steer the
physical state to the target set as quickly as possible before a
given time. This sequence must maximize the probability that
the final state xe is within the target set.

For example, in Fig. 2, autonomous vehicles follow their
appropriate lane on a congested road. An attack on the

Fig. 1: Timeline. Fig. 2: Recovery Use-Case.

perception system of the blue car causes it to swerve into
oncoming traffic. Once an attack is detected, we need to
attempt to steer the car to a safer region (target set) within
several seconds to avoid collision with an ongoing red car.
We can choose different target set options depending on the
road and traffic conditions: one option is to return the car to
the original lane; if there is a road shoulder, a better option
would be to steer the car out of the highway and pull it over
to the shoulder to avoid a rear collision with the green car.

D. Recovery Goals

An ideal solution to this problem should satisfy the follow-
ing objectives. (i) Safety: an attack-recovery solution should
steer a CPS to a target state set where it cannot harm
humans or other systems. The target set should be determined
based on domain knowledge and customized to the particular
application [51]. For example, we can attempt to guide the
car to the road shoulder in the aforementioned example. (ii)
Robustness to Uncertainty: an attack-recovery algorithm
should be robust to stochastic uncertainty in its environment.
(iii) Fast Recovery: we want a solution that drives the CPS
as fast as possible to the target set to prevent operational
errors from building up and causing accidents. (iv) Low
Computational Overhead: because the software of CPS runs
on embedded systems, we also want a recovery solution with
minimal computational overhead. (v) Soundness: the safety
controller should only give control actions that satisfy our
desired properties. (vi) Completeness: the safety controller
always finds a solution that meets our objectives.

IV. REAL-TIME ATTACK RECOVERY

This section first sketches the online attack recovery pro-
cess. Then, it presents the core component, Optimal Probabilis-
tic Recovery (OPR), and shows how it achieves the properties
mentioned above. In addition, it describes other components
and explains how they support OPR.

A. Online Recovery Overview

The online attack recovery structure is illustrated in Fig. 3.
Once an attack is detected, the system switches from nominal
mode to recovery mode, where the online recovery controller
(blue-shaded dashed box) takes over the system. The core
component Optimal Probabilistic Recovery (OPR) generates a
recovery control sequence that drives the physical states to the
target set fastest with the highest probability of being in this
set within a given time (Section IV-B and IV-C). Meanwhile,
the State Reconstruction rebuilds the corrupted state estimate
and provides the initial state probabilistic distribution for

Fig. 3: Overview of Our Attack Recovery Structure.

OPR; the Model Adaption keeps updating the system linear
approximation (Section IV-D).

Algorithm 1 Online Predictive Recovery

Input: xw, uw, . . . , ur−1, emax.
Output: ur, . . . , ue−1 # Recovery control sequence

1: for i ← r to emax do
2: if i == r then
3: Ni ← StateReconstruction(xw, uw, . . . , ur−1);
4: else
5: Ni ← StateReconstruction(Ni−1, ui−1);
6: end if
7: sysi ← ModelAdaptation(Ni, ui−1);
8: u′

0, . . . , u′
k ← OPR(sysi,Ni); # Section IV-B, IV-C

9: ui ← u′
0 # Only apply the first control input

10: if k == 0 then
11: e ← i; # The physical state has the highest
12: break; # probability of being in the target set
13: end if
14: end for

Algorithm 1 describes how these three components coop-
erate with each other. At time tr, the system notices that an
attack has compromised the sensor data before the attack is
detected, and the state estimate cannot reflect the actual state.
Thus, on Line 3 of the algorithm, State Reconstruction first
rebuilds the current state probabilistic distribution (PD) Nr

from checkpointed trustworthy data. Moreover, the physical
states have been driven away from the desired states. Thus,
from tr, the recovery mode kicks in to generate a recovery
control sequence until it either drives the physical state to the
target set with the highest probability (Lines 10-12) or runs out
of the given time emax (Line 1): At the i

th control step, State
Reconstruction first estimates the current state PD based on
the last PD and the last recovery control input (Line 5). Then,
Model Adaption on Line 7 obtains a Linear Time-Invariant
(LTI) model from nonlinear dynamics around the current state
and control input. Based on them, OPR performs an efficient
algorithm to compute recovery control inputs (Line 8). Note
that it only applies the first recovery input to the actuator at
each control step (Line 9).

B. Optimal Probabilistic Recovery Problem

We first formally define the OPR problem as Definition IV.1.

Definition IV.1 (Optimal Probabilistic Recovery (OPR) Prob-
lem). Given a stochastic system in the form of Eq. (1), a target
set T , and an integer K > 0, can we find a control sequence
û0, . . . , ûk−1 for some 1 ≤ k ≤ K such that it has the highest
probability of steering the system to the target from all control
sequences in less than K control steps?

Given the range U for all control inputs, if we denote the
probability of reaching the target set at step k via the control
sequence u0, . . . , uk−1 ∈ U by P(xk(u0, . . . , uk−1) ∈ T),
then the OPR solves the following optimization problem

max
1≤k≤K,u0,...,uk−1∈U

P(xi(u0, . . ., ui−1) ∈ T)

s.t. u0, . . . , ui−1 ∈ U , i ≤ K.
(2)

Finding optimal controllers for discrete-time stochastic dy-
namics has been intensively studied in recent years [46],
[52], [53]. Most approaches are developed based on reach-
ability computation [54]–[56]. However, they are used for
more general purposes, such as solving optimal reach-avoid
control problems (e.g., reaching a destination while avoiding
obstacles). Thus, most of them require performing state-space
abstraction and/or solving nonlinear constraints, making them
too costly to be used online and unsuitable for real-time usage.

Fortunately, we find that most target sets in CPS can
be defined as a strip, i.e., the region between two parallel
hyperplanes: S = {x ∈ Rn ∣ ℓT x ≥ c1 and ℓ

T x ≤ c2}, where
c1, c2 ∈ R, c1 ≤ c2, and ℓ ∈ Rn is a normal vector of two
hyperplanes. For example, we can express that the temperature
of a reactor should be between 350

◦
F and 360

◦
F as a strip.

Once the target set can be defined as a strip, we propose a
new approach in the next subsection to solve the OPR problem
on LTI models without using any linear or nonlinear optimizer.
We further show that our method is not only a sound and
complete solution but also has low computational complexity.

C. Algorithm for Solving OPR Problem

Given the initial PD from State Reconstruction and updated
LTI approximation from Model Adaptation, Fig. 4 shows that
the algorithm performs a reachability search on the mean of
reachable PD and obtains a control sequence that maximizes
the probability of successful recovery within K steps.

Step

Attack

Target set

Step

Target set

Mean of reachable
PD

Mean of reachable
PD

Step

Target set

Estimate current system state Mean of PD as zonotope
(zonotopes)

Construct the control
sequence (Algorithm 2)

State Reconstruction Solution to the Optimal Probabilistic Recovery Problem

Fig. 4: Illustration of solving the OPR problem.

1) Reachable PD Analysis: Before we introduce the main
algorithm, let us investigate the stochastic behavior of the LTI
approximation at each time step

xt+1 = Axt +But + Cwt (3)

Given that the initial state x0 is subject to a Gaussian
distribution N (µ0,Σ0), then the state at the next step x1 =

Ax0+Bu0 via a control input u0 is still subject to a Gaussian
distribution that is defined by N (Aµ0+Bu0, AΣ0A

T+CC
T),

since the independent multivariate Gaussian distributions are
closed under additions and linear transformations. I.e., given
x ∼ N (µx,Σx), y ∼ N (µy,Σy), we have that

x + y ∼ (µx + µy,Σx + Σy), Mx ∼ (Mµx,MΣxM
T).

Therefore, given a sequence of k control inputs u0, . . . , uk−1,
the reachable state xk(u0, . . . , uk−1) can be expressed as

xk = A
kx0 +

k

∑
i=1

A
i−1

Buk−i

Í ÒÒÑÒÒÒÏ
uk

+
k

∑
i=1

A
i−1

Cwk−i

Í ÒÒÒÑÒÒÏ
wk

(4)

and xk is subject to the Gaussian distribution

xk ∼ N (Ak
µ0 + uk , A

k
Σ0(Ak)T + Σwk

) (5)

wherein Σwk
= ∑k

i=1 A
i−1

CC
T (Ai−1)T . Additionally, the

term wk representing the accumulation of noises is also subject
to a Gaussian distribution, which is N (0,Σwk

).
PD Decomposition. To find a xk with the highest probability
of staying in the target set, we need to find the optimal PD
under all possible control sequences. To do so, we investigate
the probability of a random vector staying in a strip. A PD can
be decomposed into mean and covariance. Lemma IV.1 tells
that given two Gaussian distributions of the same covariance,
the one with a closer mean to the strip center has a higher
probability of staying in the strip. Since the covariance of the
distribution (5) is identical at the k

th step, we may design an
algorithm to find the closest mean to the center of the strip
among all possible control sequences bounded by a user-given
maximum length K.

Lemma IV.1. Given a strip T (x) ∶ a ≤ ℓ
T x ≤ b, and two

Gaussian distributions y1 ∼ N (µ1,Σ) and y2 ∼ N (µ2,Σ)
which have the same covariance matrix. We have that P(y1 ∈

T (y1)) ≤ P(y2 ∈ T (y2)) iff. ∣a+b
2

− ℓ
T
µ1∣ ≥ ∣a+b

2
− ℓ

T
µ2∣.

Proof. The probability of P(x ∈ T (x)) w.r.t. a Gaussian
distribution x ∼ N (µ,Σ) can be computed accurately by
first linear transforming the distribution of x to a univariate
Gaussian distribution z ∼ N (ℓTµ, ℓTΣℓ), and then evaluate

P(a ≤ z ≤ b) =1

2
(erf(b − ℓ

T
µ√

2ℓTΣℓ
) − erf(a − ℓ

T
µ√

2ℓTΣℓ
))

=
1√
π
∫

b−ℓT µ√
2ℓT Σℓ

a−ℓT µ√
2ℓT Σℓ

e
−t2

dt.

When a, b, ℓ,Σ are constant, the above expression monotoni-
cally increases along with the decreasing of ∣a+b

2
− ℓ

T
µ∣. To

see this fact, we introduce ∆ =
a+b
2

− ℓ
T
µ to replace ℓ

T
µ in

the above expression, and computed its derivative w.r.t. ∆:

dP(a ≤ z ≤ b)
d∆

=
1√

2πℓTΣℓ
(e−

(∆+ b−a
2)2

2ℓT Σℓ − e
−

(∆− b−a
2)2

2ℓT Σℓ)

When ∆ = 0, the derivative is 0 and P(a ≤ z ≤ b) has
its highest value. When ∆ < 0, we have that (∆ + b−a

2
)2 <

(∆ − b−a
2
)2, the derivative is positive and P(a ≤ z ≤ b)

monotonically increases when ∆ → 0
−. On the other hand,

when ∆ > 0, (∆ + b−a
2
)2 > (∆ − b−a

2
)2, the derivative is

negative, and then P(a ≤ z ≤ b) monotonically decreases
when ∆ → +∞. Besides, we also have that P(y1 ∈ T (y1)) =
P(y2 ∈ T (y2)) if ∣a+b

2
− ℓ

T
µ1∣ = ∣a+b

2
− ℓ

T
µ2∣.

Express Mean of PD as Zonotope. All control inputs are
in U . U can be derived from the physical limitation of a
system and is assumed to be a hyperrectangle (box). Then the
following set defines all possible means of the distribution (5):

Mk ={Ak
µ0 +

k

∑
i=1

A
i−1

Buk−i ∣u0, . . . , uk−1 ∈ U}

=A
k{µ0}⊕

k

⨁
i=1

A
i−1

BU

wherein ⊕ denotes the Minkowski sum such that X ⊕ Y =

{x+y ∣x ∈ X, y ∈ Y }. If we can compute this set for all k =

1, . . . ,K , then the optimal mean can be obtained by finding
the closest point in those sets to the strip center.

Since U is a box and µ0 is a point, the set Mk can be viewed
as the Minkowski sum of points and linearly transformed
boxes, i.e., it is a zonotope [57]. Zonotopes are centrally sym-
metric and closed under linear transformation and Minkowski
sum, i.e., the linearly transformed boxes are zonotopes, and
the Minkowski sum of zonotopes is still a zonotope. Hence,
we seek to compute the set Mk as a zonotope.
G-Representation of a Zonotope. Given a zonotope Z de-
fined by the mapping x ↦ Gx + c from the p-dimensional
unit box Bp. It can be represented by its center c along
with the generators g1, . . . , gp which are the columns of G:
Z = (c, ⟨g1, . . . , gp⟩). On the other hand, it can also be viewed
as the Minkowski sum of the center c and the line segments
Li = {αigi ∣αi ∈ [−1, 1]} for all i = 1, . . . , p:

Z = {c +
p

∑
i=1

aigi ∣ ai ∈ [−1, 1]}.

When zonotopes are represented in their G-representations,
their linear transformation and Minkowski sums can be com-
puted easily. Given Z = (c, ⟨g1, . . . , gp⟩), its linear transfor-
mation is MZ = (Mc, ⟨Mg1, . . . ,Mgp⟩). Given two zono-
topes Z1 = (c1, ⟨g1, . . . , gp⟩) and Z2 = (c2, ⟨h1, . . . , hq⟩),
their Minkowski sum is (c1 + c2, ⟨g1, . . . , gp, h1, . . . , hq⟩).
Then, if the box U is represented as (cu, ⟨gu1 , . . . , gum⟩) where
cu is the center of U , guj is an m-dimensional column vector
whose jth component is the radius of U in the jth dimension

and the others are 0. Intuitively, guj denotes the radius of the
jth input range. Then the G-representation of Mk is

Mk = (Ak
µ0 +

k

∑
i=1

A
i−1

Bcu,

⟨Bg
u
1 , . . . , Bg

u
m, . . . , A

k−1
Bg

u
1 , . . . , A

k−1
Bg

u
m⟩),

which has km generators each of which is n-dimensional.
Zonotopes in Reachability Analysis. Zonotopes have been
widely used as a reachable set representation for linear and
nonlinear systems [58], [59]. They are even effectively used
in online predictive monitoring [60] and provide probabilistic
hulls for linear stochastic systems [61]. Instead of computing
reachable sets, we use zonotopes only to represent the set of
means for reachable PD.

2) Efficient Solving Algorithm: Our idea is to (i) find
the closest point z∗k ∈ Mk to the strip center for each
k = 1, . . . ,K , (ii) construct a control sequence based on z∗k ,
and (iii) evaluate and choose the sequence which gives the
highest probability of having the final state in the target strip.
We explain the details as follows.
(i) Finding the Closest Zonotope Point to the Strip Center.
Given a zonotope Z = (c, ⟨g1, . . . , gp⟩) and a strip center
hyperplane H ∶ ℓT z = β, we propose Algorithm 2 to compute
a group of scalars α1, . . . , αp ∈ [−1, 1] to find a state z∗ =

α1g1+⋯+αpgp ∈ Z, which is closest to H among all z ∈ Z.
This algorithm can find a mean in Xk(µ0), which provides
the highest probability of reaching the target strip without
solving an optimization problem. We can find the optimal
mean z

∗ by pushing the center c towards the hyperplane as
much as possible before reaching the hyperplane, i.e., let α
to be 1 (Lines 12) if the generator towards the hyperplane
(Line 9) otherwise −1 (Line 10). In the example of Case 2 of
Fig. 5, all α are set to be 1 and −1, since they never reach
the hyperplane. Once we find 1 or −1 is too much, i.e., z∗

goes through the hyperplane, we can find a γ in the range of
(−1, 1) by computing γ = (β − ℓ

T z∗)/(ℓT gi) (Line 4). In
this case, z∗ can fall onto the hyperplane, so we assign the
value of γ to αi (Line 5). Note that αi+1,⋯, αp are set to be
0 before termination since the algorithm takes the minimum
control steps. An example is illustrated in Fig. 5 Case 1, where
α2 ∈ (−1, 1) and α3 = 0. This algorithm can be viewed as a
modification of the zonotope/hyperplane intersection algorithm
described in [62]; however, we aim to find the closest state in
the zonotope to the hyperplane.
(ii) Constructing the Control Sequence. A control sequence
can be constructed for reaching z∗k during Algorithm 2.
Given that Z is Mk, we may compute the control sequence
u0, . . . , uk−1 using the returned scalars. To do so, assume that
αi,j is the computed scalar associated to the generator Ai

Bg
u
j

for some i = 0, . . . , k − 1 and j = 1, . . . ,m. Then uk−i−1 can
be obtained as cu +∑m

j=1 αi,1g
u
j . We may perform the above

method for all k = 1, . . . ,K , and choose the control sequence
with the highest probability of reaching the target. We can
now show that our solution is sound and complete.

Fig. 5: Examples of the two cases of z∗. Case 1: Z ∩H ≠ ∅,
the optimal state z∗ is found as c + α1g1 + α2g2. Case 2:
Z ∩H = ∅, the optimal state z∗ = c+α1g1 +α2g2 +α3g3 is
a vertex of Z and is the closest state to H .

Algorithm 2 Finding a state z∗ ∈ Z such that ∣β − ℓ
T z∗∣ =

min{∣β − ℓ
T z∣ ∣ z ∈ Z}.

Input: Z = (c, ⟨g1, . . . , gp⟩), H ∶ ℓT z = β
Output: z∗, α1, . . . , αp

1: z∗ ← c; # starting from the center
2: α1, . . . , αp ← 0; # initializing the parameters
3: for i = 1 to p do
4: if ∃γ ∈ (−1, 1).(ℓT (z∗ + γgi) = β) then
5: αi ← γ; αi+1,⋯, αp ← 0;
6: z∗ ← z∗ + αigi; # moving z∗ onto H
7: break;
8: else
9: if (ℓT z∗ > β ∧ ℓ

T
gi > 0) ∨ (ℓT z∗ < β ∧ ℓ

T
gi < 0) then

10: αi ← −1; # moving z∗ towards H by adding −gi
11: else
12: αi ← 1; # moving z∗ towards H by adding gi
13: end if
14: z∗ ← z∗ + αigi;
15: end if
16: end for

Theorem IV.1. Our approach is a sound and complete solu-
tion to the OPR problem.

Soundness. We prove that the Gaussian distribution xk ∼

N (z∗,Σk) produces the highest probability P(a ≤ ℓ
T xk ≤ b)

among all other distributions xk ∼ N (z,Σk) with z ∈ Xk(µ0).
By Lemma IV.1, we only need to prove that z∗ has the
minimum distance to the center hyperplane ℓ

T xk = (a+b)/2:

∣(a + b)/2 − ℓ
T z∗∣ = min{∣(a + b)/2 − ℓ

T z∣ ∣ z ∈ Xk(µ0)}.

To do so, we consider two cases. Case 1: Z∩H ≠ ∅. Then z∗

must be in the hyperplane and we have that (a+b)/2−ℓ
T z∗ =

0. Hence it is the minimum distance. Case 2: Z ∩ H = ∅.
We prove that z∗ is the closest state in Z to the hyperplane.
Algorithm 2 reduces the value ∣β − ℓ

T z∗∣ (Line 9-14) by the
maximum extent in each iteration, then the value of ∣β−ℓ

T z∗∣
obtained from the resulting z

∗ must be the minimum, and
therefore ∣(a+ b)/2− ℓ

T z∗∣ is the minimum. Fig. 5 gives an
illustration of the two cases. Hence, if we compute all of the
optimal PD for k = 1, . . . ,K , the best probability as well as
the control sequence to the problem (2) can be obtained.

Fig. 6: The optimal reachable PD for DC motor speed bench-
mark. The green shaded area is the target set, where the center
of the strip is marked in a grey dashed line. k: the number of
recovery steps. P : the probability of reaching the target set.
Red arrows indicate the time evolution. The proposed method
gains the highest probability P = 0.919 at the 5

th step.

Completeness. We show that if there exists a solution to the
problem (2), then it can always be found by our method. We
consider the same two cases as those in the above proof.
Case 1: Z ∩ H ≠ ∅. The zonotope Z can be viewed as
the result of bloating the center c by consecutively adding a
centrally symmetric line segment determined by a generator.
We define the intermediate set Sj = {c} ⊕⨁j

i=1 Li wherein
Li = {αigi ∣αi ∈ [−1, 1]}, then Z = Sp. If Z ∩ H ≠ ∅,
there must be some 0 ≤ j ≤ p − 1 such that Sj ∩H = ∅ but
Sj+1∩H ≠ ∅, or c ∈ H . Both of these two cases can be found
by Algorithm 2, since the algorithm always keeps z

∗ as one
of the closest states to H . Thus, the first case can be detected
by Line 4 in the (j + 1)st iteration for some γ ∈ [−1, 1], and
the second case can be found in the first iteration as γ = 0.
Case 2: Z ∩ H = ∅. When the intersection is empty, we
have two cases for Z. (i) All of the states in Z satisfy the
constraint ℓ

T z < β, then Algorithm 2 (Line 9-14) computes
a state z∗ such that ℓ

T z∗ equals to the support function
ρZ(ℓ) = sup{ℓT z ∣ z ∈ Z}. (ii) All of the states in Z satisfy
the constraint ℓT z > β, it is analogous to the previous case,
Algorithm 2 computes a state z∗ such that −ℓT z∗ equals
to the support function ρZ(−ℓ) = sup{−ℓT z ∣ z ∈ Z} =

− inf{ℓT z ∣ z ∈ Z}. In both cases, z∗ is the closest to H .
(iii) Computing the Maximum Probability. When an optimal
mean z∗ is computed for the kth step, the optimal PD is ob-
tained as xk ∼ N (z∗,Σk) wherein Σk = A

k
Σ0(Ak)T +Σwk

.
Then the probability of reaching the target set can be computed
as P(a ≤ ℓ

T xk ≤ b) = 1
2
(erf(b−ℓT z∗√

2ℓTΣkℓ
) − erf(a−ℓT z∗√

2ℓTΣkℓ
)).

Example IV.1. We consider the DC motor defined by

[ẋ1

ẋ2
] = [−10 1

−0.02 −2
] [x1

x2
] + [0

2
]u

where x1 denotes the rotational speed of the shaft, and

x2 denotes the electric current. The controller updates the
voltage source u every 0.02 seconds to maintain the value
of x1 at 4rad/s. The linear stochastic model is obtained by
discretizing the above ODE using the control stepsize and
adding two independent noises to x1, x2. Fig. 6 shows the
optimal reachable PD computed by our method from the initial
Gaussian distribution x1 ∼ N (0, 1) and x2 ∼ N (0, 1). The
recovery target is defined by 3.8 ≤ x1 ≤ 4.2 rad/s.

Computational Complexity of OPR. Given that the system
(1) has n state variables, m control inputs, and d noises. Then
A is an n×n matrix, B is an n×m matrix and C is an n×d
matrix. We investigate the time complexity of computing the
optimal recovery probability at the kth step. We assume that
the operations in the basic arithmetic on reals have the time
complexity O(1) due to the use of floating-point numbers with
fixed precision. We consider the multiplication of two matrices
M1 ∈ Rm×n and M2 ∈ Rn×k costs O(mnk). We provide
Table II for the matrices that can be pre-computed and reused
for each k = 1, . . . ,K .

We first evaluate the cost of computing the zonotope
Xk(µ0) wherein µ0 is an n-dimensional vector represent-
ing the mean of the Gaussian distribution of x0. The
set U of the control inputs is a box represented as a
zonotope (cu, ⟨gu1 , . . . , gum⟩) wherein cu, g

u
1 , . . . , g

u
m are all

m-dimensional column vectors. Thus, the computation of
Xk(µ0)’s center A

k
µ0 + ∑k

i=1 A
i−1

Bcu requires O(n2) to
compute A

k
µ0 and O(kn) to compute the sum of vectors.

Each of its km generators can be computed in O(nm) and
the total complexity is O(knm2). Hence, the computation of
the G-representation of Xk(µ0) requires O(n2 + knm

2), and
the zonotope has km generators.

Then we turn to the complexity of Algorithm 2. Given
that Z is n-dimensional. The algorithm performs p iterations
in each of which we verify the existence of γ ∈ [−1, 1]
that requires to compute two inner products ℓ

T z∗, ℓT gi and
evaluate the division (β − ℓ

T z∗)/(ℓT gi). Thus, the time cost
is O(n). If such a γ does not exist, we use the two inner
products computed previously to move z∗ to a new position
that is closer to the hyperplane, and it costs O(n) (mainly cost
by Line 14). Hence, the time complexity of Algorithm 2 with
Z = Xk(µ0) is O(kmn) which is linear in the size of Xk(µ0),
since it has km generators which are all n-dimensional.

TABLE II: Pre-computed and reused matrices

Matrix A
k

A
k
B A

k
Bcu A

k
Bg

u
i A

k
C Σwk

Total Complexity of
k = 1, . . . ,K

O(Kn
3) O(Kn

2
m) O(Knm

2) O(Knm
2) O(Kn

2
d) O(Kn

2
d)

Finally, we consider the evaluation of the best probability
of reaching the target w.r.t. the distribution xk ∼ N (z∗,Σk).
The computation of Σk requires O(n3) when Σwk

is pre-
computed, and linear mapping the Gaussian distribution to
(N (ℓT z∗, ℓTΣkℓ)) costs O(n2). Assuming that the time cost
of evaluating the error function erf(⋅) is Cerf, the time cost of
the probability evaluation is O(n3+Cerf). The total complexity

of finding a solution for the optimization problem (2) is

O(K(n3
+ n

2
m + nm

2
+ n

2
d) +K

2
nm

2
+KCerf) (6)

which is at most cubic in the number of state variables,
quadratic in the number of control inputs and K, and linear
in the complexity of computing error functions. When Algo-
rithm 2 is used online, all of the matrices in Table II can be pre-
computed and kept in hash tables. Therefore, the online com-
putational complexity becomes O(K(n2+Knm

2+n
3+Cerf)).

D. Algorithms for Other Components

1) Supporting Components: Attack detector. The existing
attack detectors may have two levels of capabilities. (D1)
Detect whether there is an anomaly (e.g., the physical behavior
of the system is not consistent with the intended control
actions). Since we cannot trust any sensor data after detection,
the recovery cannot get any sensor feedback, also known
as Open-Loop (OL) Recovery. D1 captures the case when
all sensors are compromised. (D2) Detect an anomaly and
identify which sensors are receiving the malicious data (e.g.,
detect that the IMU is sending erroneous data, while the
LiDAR is reliable) [63], [64]. The recovery can leverage good
sensor data as feedback, also known as Partial Closed-Loop
(PCL) Recovery. We will implement and evaluate Open-Loop
Recovery and Partial Closed-Loop Recovery in our evaluation
section and discuss the pros and cons of each strategy there.
Checkpointer. We also consider that a Checkpointer already
exists since it is the focus of some existing work, such as
[13]. It can record historical state estimates x, sensor data y,
and control input u within a sliding window. The window is
typically larger than the maximum detection delay, providing
a trustworthy state xw insusceptible to sensor attacks.

2) State Reconstruction: The State Reconstruction com-
ponent estimates the PD of a system state using histori-
cal data. There are two phases: predict and update. It can
work with either of these two detector options above. The
predict phase computes the predicted current state estimate
and covariance matrix from the previous ones. If there is
a detector of type (D1), we use the mathematical model
to estimate the system state and its covariance matrix. If
there is a detector of type (D2), it can identify good sensor
data. Thus, the update phase improves the estimate based on
trustworthy sensor data. We use an extended Kalman filter
(EKF) and the good sensor data y′w+1, . . . , y′r to obtain the
probability distribution. We modify line 3 from Algorithm 1 to
Ni ← StateReconstruction(xw, uw, . . . , ur−1, y′w+1, . . . , y′r),
which runs the EKF. The experiments show that our open-
loop recovery can safely recover various CPS with a detector
of type (D1), and that the closed-loop recovery significantly
enhances performance if we have a detector of type (D2).

3) Model Adaptation: The Model Adaptation online locally
linearizes and discretizes the nonlinear model into a discrete-
time linear model, which is a common routine in the control
community. We use Taylor Series expansion to linearize non-
linear systems around the current state estimate and control
input and then use the Euler method to discretize it. In this

way, the Model Adaptation obtains a discrete-time LTI model
in the form of Equation (3), and the OPR algorithm can work
on it. Since we perform linearization and discretization in
every control step, the approximation error is rather small.
Experiments show that this approximation does not negatively
impact the efficacy of the OPR method.

V. EVALUATION

We now compare the performance of our proposed recovery
strategy with previous work. We test several use cases, includ-
ing a drone, a robotic vehicle, a simulated vehicle, and several
linear systems. We will show that the Open-Loop recovery
outperforms the previous works and then present the Partial-
Closed Loop recovery as a further improvement. The code is
available at this link and integrated into the CPSim [65].

A. Experimental Settings

This subsection explains the example systems, metrics, and
baseline recovery strategies.

1) Implementation details: We implement the recovery
strategies in systems with linear and nonlinear dynamics. We
first consider a drone simulated in high-fidelity simulators,
Gazebo and Airsim. We also use two ground vehicles, one
simulated in a high-fidelity simulator, SVL, and a real-world
robot. Finally, we simulate several linear systems. Next, we
present the implementation details of each use case and define
the target sets, which are application-specific [51].
Drone from Gazebo/AirSim simulator.

We simulate the drone using Gazebo and Airsim as the
physics providers [66]. We use the group of all rotation ma-
trices in R3, denoted as SO(3), to model the drone behavior.
The following model describes the drone dynamics [67], [68],

ẋ = v

mv̇ = mge3 − fRe3

Ṙ = RΩ̂

JΩ̇ = U − Ω × JΩ,
(7)

where m is the drone mass, g the gravity, J ∈ R3×3 is the
inertia matrix, x ∈ R3 is the drone position, v ∈ R3 is the
drone velocity, Ω ∈ R3 is the drone angular velocity, R ∈

SO(3) is the attitude, and e3 is a vector that defines the inertial
frame. The operator × is the cross product, and ⋅̂ is an operator
such that x̂y = x × y and x̂

T
= −x̂, for x, y ∈ R3 (see [68],

[69] for details). The inputs f ∈ R and U ∈ R3 are the total
thrust and the resultant moment generated by four rotors. We
assume that each motor generates a torque proportional to the
thrust, that the distance between the quadrotor gravity center
and each rotor is d, and that the mass distribution of the drone
is symmetric. Thus, the relationship between the model inputs
and the motors’ thrust is linear (see [68], [69]), and the inertia
matrix J is diagonal and positive definite.

The drone uses the controller in [67] when there is no
alarm. We design the strip parameters as follows to avoid
an unauthorized landing. The parameter ℓ is one in its third
component, corresponding to the drone height, and zero in the
others. Before the attack begins, the drone hovers at a height of
10m, so the remaining strip values are a = 9.8, b = 10.2. The

attacker compromises the drone’s height sensor to produce an
unauthorized landing, which is detected 1.5 s later.
Vehicle from SVL Simulator. Autonomous vehicles perform
lateral control to track the path the planning module provides.
The vehicle can be approximately modeled with a nonlinear
kinematic model [20] given by,

ẋ = v cos(θ + β), ẏ = v sin(θ + β), θ̇ = L
−1
v tan(δ) cos(β),

where x, y are the position in a two-dimensional space, θ is
the angle with respect to x axis, δ is the steering angle, v is
the vehicle velocity, β = arctan (lr tan(δ)

L
) with lr the distance

between the rear axle and the vehicle center of mass, and L
is the length between the front and rear wheels.

We use a vehicle in SVL, a unity-based high-fidelity simula-
tor for autonomous driving (AD). The nominal controller is the
Stanley lateral controller in [70], which requires measurements
from an IMU and GPS. The vehicle’s mechanical structure
constraints the control input to [−30◦, 30◦]. We want the
vehicle to drive to the shoulder of the road and stop there
when recovery ends. Thus, the target set is the road shoulder,
expressed as a strip with parameters l = [0, 1, 0], a = 45.95.
We simulate an IMU sensor attack in which the attacker can
alter the sensor values through acoustic signals [71]. The attack
drives the vehicle to enter the oncoming traffic lane, and the
detector can identify it after 1.5 s.
Robotic vehicle Testbed (RV). We implement a similar setup
to the vehicle from SVL in a real RV. The RV is based on the
BARC project [72]. It uses ROS 1 Noetic with Python 3 and
has two motors to control the vehicle’s velocity and direction.
This vehicle has the same model as the vehicle from SVL.

For this experiment, the vehicle has to follow a straight line
at a constant velocity v. While the detector does not trigger
an alarm, the vehicle uses a proportional–integral–derivative
(PID) controller to obtain the steering angle δ. The RV’s
physical characteristics constrain the steering angle to be in the
range of [−60◦, 60◦]. As the vehicle from SVL, we want the
RV to rest on the shoulder at the end of the recovery. Then, the
strip parameters are ℓ = [0, 1, 0], a = −0.3, b = −0.7, which
corresponds to the road shoulder. The attacker compromises
the sensor that measures the RV’s position to steer it to the
opposite lane, and the detector raises the alarm 1.5 s later.
Linear Systems. Finally, we use systems with linear dynamics
and linearized versions of systems to show that our strategy
also outperforms the baselines for simpler systems. Table III
summarizes the systems and the number of states and inputs.
We omit the particular parameters for space constraints.

TABLE III: Linear benchmarks

Benchmark Number of inputs Number of states

DC motor speed [73] 1 2
Aircraft Pitch [74] 1 3
Boeing 747 [75] 1 5
Quadrotor [76] 1 12
F16 [77] 2 4
Quadruple tank [78] 2 4

https://github.com/CPSEC/probabilistic-recovery
https://sim.cpsec.org/en/latest/5_example.html#fast-attack-recovery-for-stochastic-cyber-physical-systems

2) Metrics for evaluation: We now present the performance
metrics to compare the strategies. We run several experiments
to obtain the metrics as we consider stochastic systems.
Successful Recovery Rate (SRR). An attack recovery is
successful if the system state is in the target set at the end
of recovery. We compute SRR as the ratio of successful
recoveries to the total number of experiments.
State distance to the center of the target set. We want
the system to be as close to the target set at the end of the
reconfiguration. Therefore, we compute the distance from the
system’s state at the end of the recovery to the target set center.
Recovery time. We want the system under attack to go to the
target set as fast as possible. We measure the number of control
steps that a recovery strategy requires to steer the system to
the target set. The metric evaluates the recovery speed.
Computational overhead. Since the computational resource
is typically limited in CPSs, an online recovery strategy should
have low computational overhead. We measure the time a
strategy requires to find the recovery actions in each iteration.
This metric evaluates the strategies’ complexity.

3) Baselines: In Section II, we offer a comprehensive com-
parison of related work. This section compares our proposed
open-loop OPR strategy (detailed in Section IV-D2) with
strategies employing backup controllers and virtual sensors.
For backup controllers, we implement an LQR-based real-
time recovery, as presented in [18], an advancement over [15].
This strategy considers safety guarantees and real-time require-
ments, a feature absent in [35]. Regarding virtual sensors, we
use a strategy informed by previous studies [12], [14], [38].
LQR-based real-time recovery (RTR-LQR). After the attack
detection, the method in [18] formulates the recovery as a
linear-quadratic programming problem whose solution pro-
vides a sequence of control actions to recover the system. To
make the method applicable to nonlinear systems, we linearize
the nonlinear dynamics around the reconstructed state and
control input when recovery begins.
Virtual sensor recovery (VS). The strategy replaces corrupted
sensor data with model-predicted data from a virtual sensor.
The nominal controller leverages virtual sensor data to correct
systems’ behavior during an attack. To make a fair compari-
son, we improve such strategies by adopting a checkpointing
protocol to provide trustworthy states. We measure all metrics
when VS reports that the system is inside the target set.

4) Experimental Environment: Simulations run on a com-
puter powered by an NVIDIA T600 GPU, an 11th Generation
Intel Core I7-11800H, and 32GB RAM memory. The real-
world implementation on an RV runs on an Odroid XU4 board.

B. Experimental results
We summarize our results of OPR-OL in Figs. 7 and 8,

which exemplify an execution of the recovery strategy, and
Tables IV and V. The first table presents the performance
of each baseline in terms of the SRR. The second table
summarizes the recovery time, computation time, and distance
to the strip. As we deal with stochastic systems, we run several
simulations and implementation executions and summarize the
aggregate statistics in the tables and plots. In the remainder

Attack

(a) hovering (b) attacked

Recovery

(c) recovered

(d) normal (e) attacked (f) recovered

(g) normal (h) attacked (i) recovered

Fig. 7: Recovery examples: drone, SVL, and RV.

of this section, we discuss the results of implementing the
strategies on each benchmark.

1) Recovery Effect: We first intuitively demonstrate the
execution of different attack-recovery proposals using time-
series state plots, and then we compare these strategies using
the SRR and distances to the target set center.

30.0 32.5 35.0 37.5 40.0 42.5 45.0
Time [s]

8

9

10

Dr
on

e
he

ig
ht

 [m
]

OPR-OL
RTR-LQR

VS

(a) Drone from Gazebo/AirSim

30 32 34 36 38
Time [sec]

40

45

50

55

y
po

sit
io

n
[m

]

OPR-OL
RTR-LQR

VS

(b) Vehicle from SVL

0.5 1.0 1.5 2.0 2.5 3.0
x position [m]

−0.5

0.0

0.5

1.0

y
po

sit
io

n
[m

] OPR-OL
RTR-LQR

VS

(c) RV

3 4 5 6 7 8
Time [s]

4

5

6
Ro

ta
tio

na
l s

pe
ed

 [r
ad

/s
]

OPR-OL
RTR-LQR

VS

(d) Motor

Fig. 8: Comparison of the system executions using different
recovery strategies. Stars mark the final system states of
recovery. The green shaded area is the target set.

Demonstration of Recovery Processes. Fig. 7 demonstrates
the recovery process of OPR-OL. First, Figs. 7a, 7d and 7g
show the vehicles are operating without attack: the drone is at
a safe height, and the ground vehicles are following the lane
path. The attacker then compromises the vehicles’ sensors to
provoke an unauthorized drone landing and make the SVL
vehicle and the RV enter the opposite lane as Figs. 7b, 7e, 7h
show. Finally, the attack recovery drives the drone back to a
safe height and parks the vehicles on the safe road shoulder to
avoid dangerous consequences such as crashes with incoming
traffic (see Figs. 7c, 7f and 7i).

Fig. 8 shows the trajectory of the recovery process and il-
lustrates how OPR-OL compares to previous work (RTR-LQR
and VS). For this Figure, we include one linear benchmark
(Fig. 8(d)). The blue, orange, and green curves represent OPR-
OL, RTR-LQR, and VS strategies, respectively. The dashed
red vertical line indicates the onset of sensor attacks, and the
dotted green vertical line indicates their detection. In addition,
the green shaded area marks the target set, the target strip.
When the attack is detected, we trigger the recovery methods
to take control of the system.

Fig. 8 also shows that our proposal (i) steers the system
states into the target set (ii) and recovers system states faster
than previous work for linear and nonlinear systems. In
contrast, the baselines cannot steer all the benchmarks to the
target set. Particularly, VS leaves the system outside the target
set, even for the linear system, while the RTR-LQR cannot
recover the ground vehicles (see Figs. 8b and 8d). Moreover,
the RV exposes the limitations of previous works, as the RTR-
LQR cannot find a solution to the recovery problem and leaves
the vehicle in the opposite lane (see Fig. 8c).
Successful recovery rate. We present the SRR in Table
IV. Our strategy always achieves an SRR higher than the
baselines. The OPR-OL achieved an SRR of 80% or more. In
contrast, the VS only achieved a maximum SRR of 20% in the
nonlinear systems and 55% in the linear systems. The RTR-
LQR achieved an SRR higher than 50% for the linear systems
and the drone, but this strategy could not steer the vehicles (in
SVL and the RV) to the target set. The optimization problem
that it solves becomes unfeasible for the RV. Consequently,
RTR-LQR does not find a sequence of inputs to recover the
system, leaving the system in control of the attacker.

TABLE IV: Successful Recovery rate for each benchmark

Benchmark VS RTR-LQR OPR-OL

Drone 0.00 80.00 80.00
SVL 20.00 0.00 100.00
Robotic vehicle 0.00 0.00 80.00
Linear systems 55.12 53.96 88.12

State distance to the center of the target set. As shown in
Table IV, OPR-OL gets the system closer to the center of the
target set than the baselines for all the benchmarks. RTR-
LQR presents a similar performance to OPR-OL in the drone
system. However, RTR-LQR presents the worst performance
for ground vehicles, leaving them far from the target set. VS
performs better on the vehicles but does not improve OPR-OL.
Although the VS strategies can decrease the effectiveness of
the attacks, they cannot accurately provide the instant when
the system is safe and arrives at the target set. Thus, the system
might not be inside the target set when the VS indicates it.

2) Recovery Speed: Table V shows the time each strategy
requires to steer the system to the target set. RTR-LQR is the
strategy that requires more time. In contrast, our strategy is
the fastest for the drone, the vehicle from SVL, and the linear
systems. VS requires fewer time steps for the RV than the
other strategies. However, this is, in fact, a disadvantage of

VS. For those systems, VS indicates that the system is in the
target set when the vehicle has not entered yet and makes an
early stop. Thus, the RV stops in the lane center, which might
have more traffic.

3) Computational Overhead: Based on Table V, we con-
firm that VS is a fast strategy that imposes a small compu-
tational overhead but cannot recover the system as discussed
above. Additionally, the computational overhead of RTR-LQR
is similar for systems with few states and inputs as the SVL
vehicle but increases with the number of states and inputs.

Our strategy requires an acceptable computational overhead
and is implementable in real systems with limited resources
while improving the SRR. On average, OPR-OL requires
8.33ms to solve the recovery problem. Particularly, the real
RV requires on average less than 9ms to compute the recov-
ery, while the vehicle needs a control action every 100ms.

4) False alarms: An incorrect call to an attack-recovery
procedure (e.g., due to a false alarm by the intrusion detection
system) should not make the system unsafe. We obtain the
SRR for the drone and the linear systems with all the strategies
after a false alarm. We find that the drone always reaches the
desired height after a false alarm using the OPR-OL. For the
linear systems cases, OPR-OL can steer them to the target
set in 97% of the cases, while RTR-LQR and VS obtain an
SRR of 90%. Then, OPR-OL preserves the system safe and
outperforms the baselines, even after an incorrect call.

C. Partial Closed-Loop Recovery

We have shown that OPR-OL can recover the systems and
outperform the baseline strategies. Next, we will show that we
can further improve our strategy by incorporating sensors that
are not under attack.

Fig. 9 presents one run of the attack recovery for the drone
and the linear systems using the OPR-OL (blue line) and the
OPR-PCL (purple line); the results for the other systems are
similar but omitted for space constraints. The drone arrives
closer to the desired height with the OPR-PCL, while both
strategies perform similarly for the motor. Additionally, we
obtain the SRR for all the benchmarks, which increases for
all the systems: the OPR-PCL successfully steers the system
RV, drone, and SVL vehicle to the target set in 100% of the
simulations, and the SRR increases to 96.04% for the linear
systems. This indicates that the OPR-PCL can incorporate data
from sensors that are not under attack and enhance the OPR.

30.0 32.5 35.0 37.5 40.0 42.5 45.0
Time [s]

8

9

10

Dr
on

e
he

ig
ht

 [m
]

OPR-OL OPR-PCL

(a) Drone from Gazebo/AirSim

3 4 5 6
Time [s]

4

5

6

Ro
ta

tio
na

l s
pe

ed
 [r

ad
/s

]

OPR-OL OPR-CL

(b) Motor

Fig. 9: Comparison of the OPR-OL and OPR-CL approaches.

TABLE V: Performance metric throughout several experiments. Values are the average ± one standard deviation

Distance to strip center Recovery time [steps] Computation time [ms]

Benchmark VS RTR-LQR OPR-OL VS RTR-LQR OPR-OL VS RTR-LQR OPR-OL

Drone 0.42 ± 0.11 0.16 ± 0.13 0.13 ± 0.04 36.30 ± 4.12 90.40 ± 16.31 34.40 ± 0.92 0.63 ± 0.12 1.88 ± 16.75 1.49 ± 3.30
SVL 0.89 ± 0.10 2.79 ± 0.54 0.54 ± 0.08 109.50 ± 0.81 101.00 ± 0.00 81.50 ± 0.50 0.74 ± 0.30 4.52 ± 54.28 8.83 ± 3.36
Robotic vehicle 0.37 ± 0.02 0.73 ± 0.01 0.16 ± 0.04 26.00 ± 0.00 − 30.50 ± 0.67 0.45 ± 0.05 − 8.33 ± 3.73
Linear systems 0.25 ± 0.24 0.31 ± 0.33 0.11 ± 0.14 33.01 ± 21.14 39.75 ± 37.07 11.50 ± 3.14 0.07 ± 0.04 11.15 ± 12.79 0.61 ± 0.20

1) Impact of Uncertainty: We study the effect of the
stochastic process on recovery strategies. We use the drone
setup for this study with the same characteristics we presented
before, but we add noise that may model unknown elements
such as wind. The noise covariance matrix is given by C = γI;
a larger γ means there is more uncertainty. Fig. 10a presents
the SRR of maintaining the desired height and entering the
target set, and Fig. 10b the distance to the target set center.
The SRR decreases for all the open-loop strategies as there
is more uncertainty, but the SRR of the OPR-OL is always
higher than the baseline strategies’ SRR. Additionally, the
OPR-OL always steers the drone closer to the desired height
than the baselines. Finally, we corroborate that we can further
improve our strategy by using uncompromised sensors. The
OPR-PCL achieves a 100% success for all noise levels, and
the distance to the target set center is always closer to zero.
Thus, we conclude our strategies can handle noise better than
the baselines, even for nonlinear systems.

0.0 0.2 0.4 0.6 0.8 1.0
Covariance matrix gain γ 1e−2

0

50

100

150

Su
cc

es
s r

at
e

[%
] OPR-OL

OPR-PCL
RTR-LQR
VS

(a) Success rate

0.0 0.2 0.4 0.6 0.8 1.0
Covariance matrix gain γ 1e−2

10−2

10−1

100

101

102

Di
st

an
ce

 to
 st

rip
 c

en
te

r

OPR-OL
OPR-PCL

RTR-LQR
VS

(b) Distance to strip center

Fig. 10: Success rate and average distance to the target set
center with increasing noise for the drone.

D. Discussion

Partial closed-loop vs. open-loop OPR. OPR-PCL can in-
corporate the measurements of trustworthy sensors into the
recovery at each step. Therefore, OPR-PCL can reject the
uncertainty that noise introduces and find a recovery that steers
the system closer to the center of the target set. Although
OPR-PCL is an improvement over OPR-OL for systems
with linear and nonlinear dynamics, we find that nonlinear
systems can benefit more from OPR-PCL than linear systems.
Nonlinear systems have more complex dynamics that are more
difficult to capture with mathematical models, and introducing
trustworthy measurements alleviates the model mismatches.
Completeness. As we show theoretically and through sim-
ulations, the proposed approach always produces a recovery
control sequence to maximize the probability of arriving at
the target set. In contrast, RTR-LQR could not find a solution

in several situations. Consequently, the system cannot react to
the attack, leaving the control to the attacker.
Computation time trade-off. For a given system, the pa-
rameter K of our strategy imposes a trade-off between the
computation time and the probability of arriving at the target
set. A small K introduces a small computational overhead, but
it might not give enough time for the system to arrive at the
target set. However, a large K will increase the computation
time, while the probability of arriving at the target set will not
necessarily increase due to noise accumulation.
Limitations. Our strategy requires an attack detector in place
to trigger it. Moreover, OPR-PCL requires a detector that
identifies good sensors, which is an additional assumption.
Although improving the performance of the detectors is out
of scope, detectors may affect the performance of attack
recovery. For instance, if the detector cannot identify the
attack, the recovery is not activated, leaving control to the
attacker. However, some research is focused on dealing with
such stealthy attacks [79]. Additionally, our strategy provides
an efficient solution to the recovery problem when the target
set is a strip. If the target set cannot be expressed as a
strip, it requires an optimization solver to find a recovery
control sequence, which potentially makes the solution time-
consuming. Besides, discretization and linearization in model
adaptation introduce uncertainties, which can be considered in
the system model.

Finally, as we focused on attacks against sensors, our
strategy requires that the device that computes the recovery is
not under attack. If the attacker manages to compromise the
controller and modify the computations, our strategy cannot
respond. However, that is out of the scope of this paper.

VI. CONCLUSIONS

In this paper, we introduce a new algorithm to recover
CPS from sensor attacks. First, we identify limitations of
state-of-the-art recovery mechanisms, then we propose a new
formal framework to formulate the problem and prove that
under certain conditions, our proposed algorithm is sound (all
solutions maximize the probability of recovery), complete (we
always find a solution, unlike previous work), and efficient.
We then show, through multiple high-fidelity simulations and
with real-world robotic vehicles, that our solution is effective
and efficient for nonlinear systems. Our experimental simula-
tions in various scenarios show how our proposed recovery
algorithms outperform previous work. As attack-detection
systems improve over time, the next natural step is to include
autonomous attack responses. We hope that this paper will
motivate more work in this area.

ACKNOWLEDGEMENTS

This work was supported in part by NSF CNS-1929410,
CNS-1931573, CNS-2333980, the Air Force under PIA
FA8750-19-3-1000, the CAHSI-Google Institutional Research
Program, and by the National Center for Transportation Cy-
bersecurity and Resiliency (TraCR) (a U.S. Department of
Transportation National University Transportation Center).

The U.S. Government is authorized to reproduce and dis-
tribute copies for Governmental purposes notwithstanding any
copyright or other restrictive legends. The views and conclu-
sions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the Air Force
or the U.S. Government the Department of Transportation, and
National Science Foundation (NSF).

REFERENCES

[1] C. Yan, H. Shin, C. Bolton, W. Xu, Y. Kim, and K. Fu, “Sok: A
minimalist approach to formalizing analog sensor security,” in 2020
IEEE Symposium on Security and Privacy (SP), 2020, pp. 480–495.

[2] G. Y. Dayanıklı, S. Sinha, D. Muniraj, R. M. Gerdes, M. Farhood, and
M. Mina, “{Physical-Layer} attacks against pulse width {Modulation-
Controlled} actuators,” in 31st USENIX Security Symposium (USENIX
Security 22), 2022, pp. 953–970.

[3] H. Sathaye, M. Strohmeier, V. Lenders, and A. Ranganathan, “An
experimental study of {GPS} spoofing and takeover attacks on {UAVs},”
in 31st USENIX Security Symposium (USENIX Security 22), 2022, pp.
3503–3520.

[4] D. U. Case, “Analysis of the cyber attack on the ukrainian power grid,”
Electricity Information Sharing and Analysis Center (E-ISAC), vol. 388,
pp. 1–29, 2016.

[5] Chrysler recalls 1.4m vehicles for bug fix:
https://www.wired.com/2015/07/jeep-hack-chrysler-recalls-1-4m-
vehicles-bug-fix/. [Online]. Available: https://www.wired.com/2015/07/
jeep-hack-chrysler-recalls-1-4m-vehicles-bug-fix/

[6] A. H. Rutkin, “spoofers use fake gps signals to knock a yacht off course,”
MIT Technology Review, 2013.

[7] Slammer worm crashed ohio nuke plant network:
https://www.securityfocus.com/news/6767. [Online]. Available: https:
//www.securityfocus.com/news/6767

[8] J. P. Farwell and R. Rohozinski, “Stuxnet and the future of cyber war,”
Survival, vol. 53, no. 1, pp. 23–40, 2011.

[9] M. A. Arroyo, M. T. I. Ziad, H. Kobayashi, J. Yang, and S. Sethumad-
havan, “Yolo: frequently resetting cyber-physical systems for security,”
in Autonomous Systems: Sensors, Processing, and Security for Vehicles
and Infrastructure 2019, vol. 11009. International Society for Optics
and Photonics, 2019, p. 110090P.

[10] F. Abdi, C.-Y. Chen, M. Hasan, S. Liu, S. Mohan, and M. Caccamo,
“Guaranteed physical security with restart-based design for cyber-
physical systems,” in Proceedings of the ACM/IEEE International Con-
ference on Cyber-Physical Systems (ICCPS). IEEE, 2018.

[11] L. Niu, D. Sahabandu, A. Clark, and P. Radha, “Verifying safety
for resilient cyber-physical systems via reactive software restart,” in
accepted) 2022 ACM/IEEE 13th International Conference on Cyber-
Physical Systems (ICCPS), 2022.

[12] A. A. Cardenas, S. Amin, Z.-S. Lin, Y.-L. Huang, C.-Y. Huang, and
S. Sastry, “Attacks against process control systems: risk assessment,
detection, and response,” in Proceedings of the 6th ACM symposium
on information, computer and communications security, 2011, pp. 355–
366.

[13] F. Kong, M. Xu, J. Weimer, O. Sokolsky, and I. Lee, “Cyber-physical
system checkpointing and recovery,” in 2018 ACM/IEEE 9th Interna-
tional Conference on Cyber-Physical Systems (ICCPS). IEEE, 2018,
pp. 22–31.

[14] H. Choi, S. Kate, Y. Aafer, X. Zhang, and D. Xu, “Software-based
realtime recovery from sensor attacks on robotic vehicles,” in 23rd In-
ternational Symposium on Research in Attacks, Intrusions and Defenses
(RAID 2020), 2020, pp. 349–364.

[15] L. Zhang, X. Chen, F. Kong, and A. A. Cardenas, “Real-time recovery
for cyber-physical systems using linear approximations,” in 41st IEEE
Real-Time Systems Symposium (RTSS). IEEE, 2020.

[16] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, and M. Caccamo, “S3a:
secure system simplex architecture for enhanced security of cyber-
physical systems,” arXiv preprint arXiv:1202.5722, 2012.

[17] M. Liu, L. Zhang, V. V. Phoha, and F. Kong, “Learn-to-respond:
Sequence-predictive recovery from sensor attacks in cyber-physical
systems,” in 2023 IEEE Real-Time Systems Symposium (RTSS), ser.
RTSS ’23, 2023, pp. 78–91.

[18] L. Zhang, P. Lu, F. Kong, X. Chen, O. Sokolsky, and I. Lee, “Real-
time attack-recovery for cyber-physical systems using linear-quadratic
regulator,” in 21st ACM SIGBED International Conference on Embedded
Software (EMSOFT), 2021.

[19] L. Zhang, K. Sridhar, M. Liu, P. Lu, X. Chen, F. Kong, O. Sokolsky,
and I. Lee, “Real-time data-predictive attack-recovery for complex
cyber-physical systems,” in 2023 IEEE 29th Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2023, pp. 209–222.

[20] R. Quinonez, J. Giraldo, L. Salazar, E. Bauman, A. Cardenas, and
Z. Lin, “SAVIOR: Securing autonomous vehicles with robust physical
invariants,” in 29th USENIX Security Symposium (USENIX Security 20),
2020.

[21] D. I. Urbina, J. A. Giraldo, A. A. Cardenas, N. O. Tippenhauer,
J. Valente, M. Faisal, J. Ruths, R. Candell, and H. Sandberg, “Lim-
iting the impact of stealthy attacks on industrial control systems,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016, pp. 1092–1105.

[22] J. Giraldo, D. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths, N. O.
Tippenhauer, H. Sandberg, and R. Candell, “A survey of physics-based
attack detection in cyber-physical systems,” ACM Computing Surveys
(CSUR), vol. 51, no. 4, pp. 1–36, 2018.

[23] F. Akowuah and F. Kong, “Physical invariant based attack detec-
tion for autonomous vehicles: Survey, vision, and challenges,” in The
Fourth International Conference on Connected and Autonomous Driving
(MetroCAD 2021). IEEE, 2021.

[24] Y. Luo, Y. Xiao, L. Cheng, G. Peng, and D. Yao, “Deep learning-based
anomaly detection in cyber-physical systems: Progress and opportuni-
ties,” ACM Computing Surveys (CSUR), vol. 54, no. 5, pp. 1–36, 2021.

[25] B. Nassi, R. Bitton, R. Masuoka, A. Shabtai, and Y. Elovici, “Sok:
Security and privacy in the age of commercial drones,” in 42nd IEEE
Symposium on Security and Privacy, SP 2021. Institute of Electrical
and Electronics Engineers Inc., 2021, pp. 1434–1451.

[26] M. Foley, C. Hicks, K. Highnam, and V. Mavroudis, “Autonomous
network defence using reinforcement learning,” in Proceedings of the
2022 ACM on Asia Conference on Computer and Communications
Security, 2022, pp. 1252–1254.

[27] A. Molina-Markham, C. Miniter, B. Powell, and A. Ridley, “Net-
work environment design for autonomous cyberdefense,” arXiv preprint
arXiv:2103.07583, 2021.

[28] L. Burbano, K. Garg, S. J. Leudo, A. A. Cardenas, and R. G. Sanfelice,
“Online attack recovery in cyberphysical systems,” IEEE Security &
Privacy, 2023.

[29] F. Akowuah and F. Kong, “Recovery-by-learning: Restoring autonomous
cyber-physical systems from sensor attacks,” in 27th IEEE International
Conference on Embedded and Real-Time Computing Systems and Ap-
plications (RTCSA). IEEE, 2021.

[30] K. Vatanparvar and M. A. Al Faruque, “Self-secured control with
anomaly detection and recovery in automotive cyber-physical systems,”
in 2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2019, pp. 788–793.

[31] T. L. Crenshaw, E. Gunter, C. L. Robinson, L. Sha, and P. Kumar, “The
simplex reference model: Limiting fault-propagation due to unreliable
components in cyber-physical system architectures,” in 28th IEEE In-
ternational Real-Time Systems Symposium (RTSS). IEEE, 2007, pp.
400–412.

[32] X. Wang, N. Hovakimyan, and L. Sha, “L1simplex: fault-tolerant
control of cyber-physical systems,” in 2013 ACM/IEEE International
Conference on Cyber-Physical Systems (ICCPS). IEEE, 2013, pp. 41–
50.

[33] K. Zhou and J. C. Doyle, Essentials of robust control. Prentice hall
Upper Saddle River, NJ, 1998, vol. 104.

[34] M. Green and D. J. Limebeer, Linear robust control. Courier Corpo-
ration, 2012.

[35] P. Dash, G. Li, Z. Chen, M. Karimibiuki, and K. Pattabiraman, “Pid-
piper: Recovering robotic vehicles from physical attacks,” in 2021 51st

https://www.wired.com/2015/07/jeep-hack-chrysler-recalls-1-4m-vehicles-bug-fix/
https://www.wired.com/2015/07/jeep-hack-chrysler-recalls-1-4m-vehicles-bug-fix/
https://www.securityfocus.com/news/6767
https://www.securityfocus.com/news/6767

Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 2021, pp. 26–38.

[36] L. Buşoniu, T. de Bruin, D. Tolić, J. Kober, and I. Palunko, “Reinforce-
ment learning for control: Performance, stability, and deep approxima-
tors,” Annual Reviews in Control, vol. 46, pp. 8–28, 2018.

[37] H. Dai, B. Landry, L. Yang, M. Pavone, and R. Tedrake, “Lyapunov-
stable neural-network control,” arXiv preprint arXiv:2109.14152, 2021.

[38] K. Paridari, N. O’Mahony, A. E.-D. Mady, R. Chabukswar,
M. Boubekeur, and H. Sandberg, “A framework for attack-resilient
industrial control systems: Attack detection and controller reconfigu-
ration,” Proceedings of the IEEE, vol. 106, no. 1, pp. 113–128, 2017.

[39] P. Zuliani, “Statistical model checking for biological applications,” Int.
J. Softw. Tools Technol. Transf., vol. 17, no. 4, pp. 527–536, 2015.

[40] A. P. Vinod, J. D. Gleason, and M. M. K. Oishi, “Sreachtools: a
MATLAB stochastic reachability toolbox,” in Proc. of HSCC’19. ACM,
2019, pp. 33–38.

[41] Y. Wang, M. Zarei, B. Bonakdarpour, and M. Pajic, “Statistical verifica-
tion of hyperproperties for cyber-physical systems,” ACM Trans. Embed.
Comput. Syst., vol. 18, no. 5s, pp. 1–23, 2019.

[42] S. Sun, Y. Zhang, X. Luo, P. Vlantis, M. Pajic, and M. M. Zavlanos,
“Formal verification of stochastic systems with relu neural network
controllers,” in Proc. of ICRA’22. IEEE, 2022, pp. 6800–6806.

[43] A. J. Thorpe, V. Sivaramakrishnan, and M. M. K. Oishi, “Approximate
stochastic reachability for high dimensional systems,” in 2021 American
Control Conference (ACC), 2021, pp. 1287–1293.

[44] A. Abate, M. Prandini, J. Lygeros, and S. Sastry, “Probabilistic reacha-
bility and safety for controlled discrete time stochastic hybrid systems,”
Automatica, vol. 44, no. 11, pp. 2724–2734, 2008.

[45] S. Summers and J. Lygeros, “Verification of discrete time stochastic
hybrid systems: A stochastic reach-avoid decision problem,” Automatica,
vol. 46, no. 12, pp. 1951–1961, 2010.

[46] A. P. Vinod and M. M. Oishi, “Stochastic reachability of a target tube:
Theory and computation,” Automatica, vol. 125, p. 109458, 2021.

[47] T. He, L. Zhang, F. Kong, and A. Salekin, “Exploring inherent sensor
redundancy for automotive anomaly detection,” in 57th Design Automa-
tion Conference. ACM, 2020.

[48] L. Zhang, Z. Wang, M. Liu, and F. Kong, “Adaptive window-based
sensor attack detection for cyber-physical systems,” in 59th Design
Automation Conference. ACM, 2022.

[49] Z. Wang, L. Zhang, Q. Qiu, and F. Kong, “Catch you if pay attention:
Temporal sensor attack diagnosis using attention mechanisms for cyber-
physical systems,” in 2023 IEEE Real-Time Systems Symposium (RTSS),
ser. RTSS ’23, 2023, pp. 64–77.

[50] L. Zhang, M. Liu, and F. Kong, AI-enabled Real-Time Sensor Attack
Detection for Cyber-Physical Systems, ser. Book. Cham: Springer
International Publishing, 2023, pp. 91–120. [Online]. Available:
https://doi.org/10.1007/978-3-031-42637-7 6

[51] K. Hobbs, M. Mote, M. Abate, S. Coogan, and E. Feron, “Run
time assurance for safety-critical systems: An introduction to safety
filtering approaches for complex control systems,” arXiv preprint
arXiv:2110.03506, 2021.

[52] A. Lavaei, M. Khaled, S. Soudjani, and M. Zamani, “AMYTISS:
parallelized automated controller synthesis for large-scale stochastic
systems,” in Proc. of CAV’20, ser. LNCS, vol. 12225. Springer, 2020,
pp. 461–474.

[53] A. J. Thorpe and M. Oishi, “SOCKS: A stochastic optimal control
and reachability toolbox using kernel methods,” in Proc. of HSCC’22.
ACM, 2022, pp. 21:1–21:12.

[54] S. E. Z. Soudjani, C. Gevaerts, and A. Abate, “FAUST 2 : Formal
abstractions of uncountable-state stochastic processes,” in Proc. of
TACAS’15, ser. LNCS, vol. 9035. Springer, 2015, pp. 272–286.

[55] F. Shmarov and P. Zuliani, “Probreach: A tool for guaranteed reachabil-
ity analysis of stochastic hybrid systems,” in Proc. of SNR’15, ser. EPiC
Series in Computing, vol. 37. EasyChair, 2015, pp. 40–48.

[56] A. J. Thorpe and M. M. K. Oishi, “Model-free stochastic reachability
using kernel distribution embeddings,” IEEE Control Systems Letters,
vol. 4, no. 2, pp. 512–517, 2020.

[57] G. M. Ziegler, Lectures on Polytopes, ser. Graduate Texts in Mathemat-
ics. Springer, 1995, vol. 152.

[58] A. Girard, “Reachability of uncertain linear systems using zonotopes,”
in Proceedings of the 8th International Workshop on Hybrid Systems:
Computation and Control (HSCC’05), ser. LNCS, vol. 3414. Springer,
2005, pp. 291–305.

[59] M. Althoff, O. Stursberg, and M. Buss, “Computing reachable sets
of hybrid systems using a combination of zonotopes and polytopes,”
Nonlinear Analysis: Hybrid Systems, vol. 4, no. 2, pp. 233–249, 2010.

[60] X. Chen and S. Sankaranarayanan, “Model-predictive real-time moni-
toring of linear systems,” in Proc. of RTSS’17. IEEE Press, 2017, pp.
297–306.

[61] M. Althoff, O. Stursberg, and M. Buss, “Safety assessment for stochastic
linear systems using enclosing hulls of probability density functions,”
in 2009 European Control Conference (ECC), 2009, pp. 625–630.

[62] A. Girard and C. Le Guernic, “Zonotope/hyperplane intersection for
hybrid systems reachability analysis,” in Proc. of HSCC’08, ser. LNCS,
vol. 4981. Springer, 2008, pp. 215–228.

[63] L. F. Cómbita, A. Cárdenas, and N. Quijano, “Mitigating sensor attacks
against industrial control systems,” IEEE Access, vol. 7, pp. 92 444–
92 455, 2019.

[64] Y. Wang, Q. Liu, E. Mihankhah, C. Lv, and D. Wang, “Detection and
isolation of sensor attacks for autonomous vehicles: Framework, algo-
rithms, and validation,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 7, pp. 8247–8259, 2022.

[65] L. Zhang, M. Liu, and F. Kong, “Demo: Simulation and security
toolbox for cyber-physical systems,” in 2023 IEEE 29th Real-Time and
Embedded Technology and Applications Symposium (RTAS), ser. RTAS
’23. Los Alamitos, CA, USA: IEEE Computer Society, May 2023,
pp. 357–358. [Online]. Available: https://doi.ieeecomputersociety.org/
10.1109/RTAS58335.2023.00040

[66] J. Collins, S. Chand, A. Vanderkop, and D. Howard, “A review of physics
simulators for robotic applications,” IEEE Access, vol. 9, pp. 51 416–
51 431, 2021.

[67] K. Gamagedara, M. Bisheban, E. Kaufman, and T. Lee, “Geometric
controls of a quadrotor uav with decoupled yaw control,” in 2019
American Control Conference (ACC). IEEE, 2019, pp. 3285–3290.

[68] T. Lee, M. Leok, and N. H. McClamroch, “Control of complex ma-
neuvers for a quadrotor uav using geometric methods on se (3),” arXiv
preprint arXiv:1003.2005, 2010.

[69] N. A. Chaturvedi, A. K. Sanyal, and N. H. McClamroch, “Rigid-body
attitude control,” IEEE control systems magazine, vol. 31, no. 3, pp.
30–51, 2011.

[70] J. M. Snider et al., “Automatic steering methods for autonomous
automobile path tracking,” Robotics Institute, Pittsburgh, PA, Tech. Rep.
CMU-RITR-09-08, 2009.

[71] Y. Tu, Z. Lin, I. Lee, and X. Hei, “Injected and delivered: Fabricating
implicit control over actuation systems by spoofing inertial sensors,”
in 27th USENIX Security Symposium (USENIX Security 18), 2018, pp.
1545–1562.

[72] MPC-Berkeley, “Berkeley autonomous race car (barc) repo,” 2020.
[Online]. Available: https://github.com/MPC-Berkeley/barc.git

[73] G. Huang and S. Lee, “Pc-based pid speed control in dc motor,” in 2008
International Conference on Audio, Language and Image Processing.
IEEE, 2008, pp. 400–407.

[74] B. Messner, D. Tilbury, R. Hill, and J. Taylor, “Control tutorials for mat-
lab and simulink: Aircraft pitch,” Re-trieved from https://web. archive.
org/web/20200509164711/http://ctms. engin. umich. edu/CTMS/index.
php, 2020.

[75] N. Popovich, “Lateral motion control of boeing 747 by using full-order
observer,” in 2019 5th International Conference on Control, Automation
and Robotics (ICCAR), 2019, pp. 377–383.

[76] F. D. Sabatino, “Quadrotor control: modeling, nonlinearcontrol design,
and simulation,” 2015.

[77] S. N. Sheldon and C. Osmon, “Piloted simulation of an f-16 flight con-
trol system designed using quantitative feedback theory,” International
Journal of Robust and Nonlinear Control, vol. 9, no. 12, pp. 841–855,
1999.

[78] K. H. Johansson, “The quadruple-tank process: a multivariable labo-
ratory process with an adjustable zero,” IEEE Trans. Control. Syst.
Technol., vol. 8, pp. 456–465, 2000.

[79] M. Liu, L. Zhang, P. Lu, K. Sridhar, F. Kong, O. Sokolsky, and
I. Lee, “Fail-safe: Securing cyber-physical systems against hidden sensor
attacks,” in 2022 IEEE Real-Time Systems Symposium (RTSS), ser. RTSS
’22, 2022, pp. 240–252.

https://doi.org/10.1007/978-3-031-42637-7_6
https://doi.ieeecomputersociety.org/10.1109/RTAS58335.2023.00040
https://doi.ieeecomputersociety.org/10.1109/RTAS58335.2023.00040
https://github.com/MPC-Berkeley/barc.git

	Introduction
	Related Work
	Preliminaries
	System Model
	Threat Model and Assumptions
	Problem Statement
	Recovery Goals

	Real-Time Attack Recovery
	Online Recovery Overview
	Optimal Probabilistic Recovery Problem
	Algorithm for Solving OPR Problem
	Reachable PD Analysis
	Efficient Solving Algorithm

	Algorithms for Other Components
	Supporting Components
	State Reconstruction
	Model Adaptation

	Evaluation
	Experimental Settings
	Implementation details
	Metrics for evaluation
	Baselines
	Experimental Environment

	Experimental results
	Recovery Effect
	Recovery Speed
	Computational Overhead
	False alarms

	Partial Closed-Loop Recovery
	Impact of Uncertainty

	Discussion

	Conclusions
	References

