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ABSTRACT
Cyber-Physical Systems (CPS) integrate computational elements
with physical processes via sensors and actuators. While CPS is
expected to have human-level intelligence, traditional machine
learning which is trained on specific and isolated datasets seems in-
sufficient to meet such expectation. In recent years, Large Language
Models (LLMs), like GPT-4, have experienced explosive growth and
show significant improvement in reasoning and language com-
prehension capabilities which promotes LLM-enabled CPS. In this
paper, we present a comprehensive review of these studies about
LLM-enabled CPS. First, we overview LLM-enabled CPS and the
roles that LLM plays in CPS. Second, we categorize existing works
in terms of the application domain and discuss their key contribu-
tions. Third, we present commonly-used metrics and benchmarks
for LLM-enabled CPS evaluation. Finally, we discuss future research
opportunities and corresponding challenges of LLM-enabled CPS.
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1 INTRODUCTION
Cyber-Physical Systems (CPS) integrate computational elements
with physical processes via sensors and actuators. CPS has a wide
range of applications including robots [28], self-driving vehicles [9]
and so on. Researchers keep advancing CPS to be more intelligent,
interactive, and working like human beings. Progress in the field
of machine learning has empowered CPS with a certain level of
intelligence, such as better image processing and natural language
processing. However, these machine learning models are usually
trained in specific and isolated datasets, which still leaves a signifi-
cant gap towards human-level sensing and decision-making.

In recent years, Large Language Models (LLMs) have experi-
enced explosive growth with the introduction of the transformer
model [34] and the improvement of computing power. These LLMs,
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such as LLaMA [33], GPT-3 [12], and GPT-4 [30], are trained on
massive web-scale datasets and possess billions of parameters. For
example, the large language model GPT-3 contains 175 billion pa-
rameters while Yolo-v3 [29], a famous deep learning model used
for object detection tasks, only has around 61.9 million parame-
ters. Unlike traditional models that learn only from specific domain
datasets, the learning process of these LLMs is more similar to that
of humans, i.e., learning from news, books, scientific articles, code
repositories, etc., which promises significant potential in human-
like intelligence.

Inspired by these large language models, researchers in the CPS
field have started to embedded LLMs into CPS and create LLM-
enabled CPS [1, 9, 14, 17, 19, 24, 28, 38, 41]. Researchers lever-
age LLMs to enhance CPS, such as autonomous vehicles [9] and
smart homes [10]. Some studies [19] have utilized the powerful
natural language processing capabilities of LLMs, allowing users
to interact with CPS directly through natural language. Some re-
searchers [1, 24] attempt to take advantage of LLMs’ capabilities in
logic and reasoning, deploying LLMs as high-level controllers for
CPS to provide reasonable planning and decision-making. Given
that these LLM-enabled CPS works are spanned over various appli-
cation domains that utilize different characteristics of LLMs, it is
important to provide an overview of these LLM-based applications
from a CPS perspective. There is a need to summarize these exist-
ing works and identify shortcomings and challenges, to provide
directions and suggestions for future research.

Towards this end, we aim to summarize the applications of LLM-
enabled CPS, delving into their contributions, impact, and short-
comings. To be specific, our contribution includes: (1) We overview
LLM-enabled CPS, present the roles and functionalities of LLM that
play in CPS. (2) We categorize existing LLM-enabled CPS works
according to their application domains. (3) We have compiled com-
monly used metrics and benchmarks for evaluating LLM-enabled
CPS. (4) We explore potential research opportunities and corre-
sponding challenges of LLM-enabled CPS.

The remainder of the paper is organized as follows. Section 2
gives an overview of LLM-enabled CPS. Section 3 reviews existing
applications of LLM-enabled CPS. Section 4 presents commonly
used metrics and benchmarks for evaluation. Section 5 shows the
potential research opportunities and corresponding challenges. Sec-
tion 6 discusses the related survey papers referenced in this paper.
Section 7 concludes the survey paper.
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2 OVERVIEW
CPS powered by LLMs are anticipated to efficiently execute a variety
of tasks, utilizing the human-like abilities of LLMs.When embedded
into CPS, the roles of LLM in these systems can be broadly divided
into two main categories: Assistant. LLM serves as an assistant for
various characteristics such as data processing and context ground-
ing. They do not involve specific decision-making within CPS but
provide assistance to CPS. They can assist the system in interacting
with the external world by handling input and output of natural
language, images, and other information. In these works, LLMs
bring the capability of interaction and perception to CPS. Brain.
LLM serves as the brain of CPS to decide the motion of the con-
trollable agent. LLMs analyze and organize information and make
reasonable decisions based on knowledge from pre-trained data. In
these studies, CPS leverage the advantages of LLMs in planning
and reasoning. These relationships are illustrated in Figure 1. The
central part of the figure represents LLM-enabled CPS. The left part
illustrates the role and function of LLMs with the systems, while
the right part depicts the application areas of these systems.

Figure 1: Overview of LLM-enabled CPS.

Thus, the functionality of LLMs for CPS can be encapsulated in
the following key aspects:
Perception. Perception here means the capability of sensing the
environment through inputs. The capabilities of LLMs in natural
language processing enable them to perceive their surrounding
environment through descriptions provided by users in natural
language. In addition to NLP, some LLMs also possess powerful
image and video analysis capabilities, which can assist CPS in ob-
ject recognition, target detection, and scene understanding. Since
CPS’s input spans from natural language and images to continuous
data like the velocity of the car and so on, this multimodal percep-
tion capability enables CPS to better perceive their surroundings,
thereby completing users’ objectives more accurately. For instance,
RT-2 [4] builds a multimodal LLM that directly takes images and
user instructions as input, generating plans for tasks.
Interaction. LLMs endow CPS with improved interactive capabili-
ties [15]. Conventional CPS’s interaction functions mostly remain
at the level where the user gives commands, and the CPS returns
relevant execution data. This mode of interaction places a high
demand on the user’s expertise, as they need to analyze the data
returned by the CPS themselves to determine if it meets the objec-
tive. At the same time, how to predict in advance whether the input
commands will achieve the desired effect is also a problem. In con-
trast, LLM-enabled CPS perform much better in interaction. LLMs
excel in speech recognition, semantic understanding, and natural

language generation. CPS can utilize LLMs to comprehend com-
mands issued by users in natural language, execute the requested
tasks, and then provide feedback in both numerical data and natural
language to the users. Meanwhile, LLM-enabled CPS can engage
in multi-turn dialogues with users to help them understand the
system’s comprehension of the instructions and potential execu-
tion scenarios, providing timely feedback to enhance the likelihood
of task completion. This mode of interaction aligns more closely
with human behavior and requirements, thereby enhancing the
user-friendliness and acceptance of CPS.
Reasoning. By utilizing existing knowledge to summarize and in-
fer about the current issue, the reasoning capability plays a crucial
role in problem-solving and decision-making. In conventional CPS,
the reasoning ability is usually undertaken by algorithms deployed
by the designers before. The reasoning capability of such systems is
limited to the deployed algorithms, requiring designers to consider
all possible scenarios, which makes it difficult to handle complex
and variable situations. Although machine learning has been ap-
plied to CPS systems in recent years, the reasoning capabilities of
these traditional machine learning models are also limited to the
specific training dataset. In contrast, LLMs exhibit powerful reason-
ing capability by making inferences based on general knowledge
about the world. Benefiting from the web-scale training datasets,
this enables them to provide explanations or make decisions that
require an understanding of expert concepts and activities. In ad-
dition, LLMs are capable of drawing analogies between different
concepts, which is useful for tasks that are out of LLM’s pre-trained
knowledge. LLMs apply reasoning to do enhanced decision-making
in these tasks after analyzing the background information provided
by users.
Planning. Based on reasoning, planning capability refers to break-
ing down complex problems into smaller sub-problems and pro-
viding a step-by-step plan to gradually solve the entire issue. The
performance of traditional CPS systems in planning capabilities is
similar to that in reasoning. Both have significant limitations. In
contrast, LLMs like the GPT series have demonstrated a noteworthy
ability in planning across various contexts, benefiting from their
powerful reasoning abilities. In addition, the plans generated by
LLM-enabled CPS span several levels, from high-level instructions
such as ’go to the market’, to low-level actions like ’turn left’. This
goal, which once required the deployment of multiple specific plan-
ners to achieve, can now all be solved with LLMs by giving them the
appropriate information. The integration of LLMs with planning ca-
pabilities into CPS represents a significant advancement in making
these systems more intelligent, autonomous, and efficient [9, 15].

Note: Unlike other domains, nearly every LLM-enabled CPS
leverages reasoning and planning capabilities. Systems like question-
answering that only use reasoning and not planning are not seen
as CPS, since they do not interact with the physical world.

3 APPLICATION
In this section, we offer a concise overview of existing works and
we organize them based on their applications across five distinct
areas: robotics, autonomous vehicles, industrial systems, experi-
ment systems, smart cities and homes. To provide a more intuitive
perspective, we list these representative works in Table 1.
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Table 1: Applications of LLM-enabled CPS

Domain Works
Robotics Jasen [19], Ahn et al [1], GD [17],RT-2 [4], PaLM-

E [14], Text2Motion [24], SayPlan [28]
Autonomous
vehicles

Dilu [38], DriveGPT4 [41], Talk2BEV [13], Cui et
al. [7], Cui et al. [15], Talk2Drive [9]

Industrial
systems

Xia et al [40]

Experiment
systems

Inagaki et al [18], CLAIRIFY [43], Boiko et al [2],
Coscientist [3]

Smart cities
& homes

GPT-in-the-Loop [26], PromptGAT [11], LL-
Mind [10]

Robotics. LLM-enabled robotics demonstrate powerful versatility.
They can break down natural language commands into executable
actions or sequences of skills through a combination of perception,
interaction, reasoning, and planning to control the robot. In contrast,
traditional methods that assist in controlling robots are only suitable
for specific tasks according to the pre-designed algorithms or pre-
trained data, struggling to understand natural language instructions.
As a result, they are difficult to accurately achieve objectives for
normal users without expert knowledge.

LLM-enabled CPS in the robotics domain evolveswith the amount
of information input to LLM. Jansen [19] shows the ability of LLM
to produce high-level instructions solely from natural language
instructions. In addition, it also demonstrates that providing even
a small amount of visual information, such as the robot’s location
at the start of a task, can significantly improve the success rate of
LLM-enabled planners. This inspires subsequent researchers to in-
tegrate visual information into LLM-enabled CPS. Some researchers
employ additional models to perceive environmental information,
generate usable instructions, and input them to LLMs in the form of
natural language. In these cases, LLMs don’t perceive the environ-
ment directly by themselves. In the work [1], robots perceive the
environment and then apply reinforcement learning (RL) to give
actionable instructions for LLMs to select. Then they demonstrate
that LLMs are capable of producing precise high-level instructions
using verbal instructions from the user and other perception mod-
els. Subsequent researches show that LLMs with multimodality can
directly perceive environmental information like images. RT-2 [4]
builds a multimodal LLM that takes images and user’s instructions
as input, generating plans in an end-to-end manner. PaLM-E [14] in-
troduces embodied language models to directly integrate real-world
continuous sensor data into LLM, and thereby perceive the envi-
ronment even further. This method interleaves visual, continuous
state estimation, and textual input to formulate plans for robotics.

As for complex skill sequences, LLM-enabled CPS also show
significant advancement. Different from the previous problem,
"skills" refer to instructions with more information and constraints,
such as environmental conditions and execution sequence, which
are important in long-horizon planning problems. For example,
Text2Motion [24] deals with sequence manipulation tasks that re-
quire long-horizon reasoning. Unlike previous methods that only
consider the feasibility of individual instruction, Text2Motion con-
siders the geometric dependency between sequences of skills during
the reasoning process. Moreover, it demonstrates improved results

in various types of complex tasks, such as long-horizon, multiple
object instances, and tasks where skills’ dependency cannot be ob-
tained from the initial state. Current LLMs still fall short in dealing
with large-scale environments and long-horizon problems, for ex-
ample, they cannot adequately consider the sequence dependency
of skills in long sequences. SayPlan [28] tackles these shortcom-
ings by incorporating a classical path planner, such as Dijkstra,
to shorten the LLM’s planning horizon. This integration allows
a mobile manipulator robot to successfully execute these large-
scale, long-horizon tasks that are derived from abstract and natural
language-based instructions.
Autonomous vehicles. LLMs hold great potential for perception,
interaction, planning, and control in autonomous vehicles. Dilu [38]
introduces the idea of incorporating LLMs as decision-makers in
autonomous vehicles to create sequences of actions.

Enhanced by LLMs,multimodal Large LanguageModels (MLLMs)
have attracted considerable attention for their ability to analyze
non-textual data such as images and point clouds alongside text, a
skill particularly valuable in the field of autonomous driving. For
instance, DriveGPT4 [41] processes video inputs to produce textual
responses related to driving, aiding in the analysis of vehicle ac-
tions. Talk2BEV [13] utilizes pre-trained image-language models to
integrate Bird’s Eye View (BEV) maps with linguistic context. This
integration facilitates visuo-linguistic reasoning in autonomous
vehicles, enhancing their interpretation and navigation.

As a mode of transportation for humans, autonomous vehicles
have higher requirements for safety and explainability. [7] and
[15] introduce frameworks where LLMs leverage their perception
and reasoning capabilities to provide descriptions of how they
perceive and react to environmental factors, such as weather and
traffic conditions. These researches also demonstrate the capacity
of adapting driving behaviors in response to human commands.
Beyond simulator-based self-driving experiments, Cui et al. [9] take
into account safety, efficiency, and comfort to develop Talk2Drive.
This marks the first instance of a LLM-enabled autonomous driving
system being applied in a real-world experiment.
Industrial systems. In the domain of industrial engineering, LLMs
utilized in CPS are used for intelligent planning and control of
production processes. Unlike previous fields, ’brains’ in industrial
engineering require more specialized knowledge, such as how to
use these complex production equipment. The interaction and rea-
soning capabilities of LLMs can effectively overcome this challenge.
By inputting relevant materials into the LLM, it can easily learn
how to use the equipment. Reference [40] introduces an innovative
approach that combines LLMs with digital twin technology to meet
the dynamic needs of production. They retrofit the engineering
system for a modular production facility and create control infer-
ence at different levels. Informed by digital twin data, LLMs are
developed to have the capability of adjusting to particular com-
plex tasks. LLMs in the system can manage and execute a range
of basic functions and skills, facilitating production tasks across
different levels of the automation hierarchy. This study showcases
the promising potential of incorporating LLMs into industrial au-
tomation frameworks, offering novel strategies for achieving more
intelligent, adaptable, and efficient production workflows.
Experiment systems. In the fields of biology and chemistry, LLMs
can serve as experiment assistants in the laboratory to help design
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and conduct experiments. Given some instructions, LLMs can de-
sign experiments and issue commands to experimental equipment
for automatic execution. In this field, the reasoning ability of LLMs
is particularly important. Because LLMs need to consider the con-
text of scientific research to propose suitable experimental plans
to achieve corresponding research objectives, such as validating
a particular inference. For instance, researchers in [18] combine
LLMs with OT-2, an automated liquid-handling robot used in bio-
logical laboratories. Based on the context of biological experiments,
LLM writes and executes operation scripts for the OT-2, easing the
workload of biological researchers. As for chemical experiments,
CLAIRIFY [43] combines high-level plans generated by LLMs with
low-level plans generated by traditional algorithms. LLMfirst gener-
ates a long-term plan from natural language instructions. Then the
plan is executed by solving a constrained task and motion planning
problem using PDDLStream solvers [16]. Real robots complete two
basic chemical experiments, solubility and recrystallization, show-
casing notable outcomes. Research [2] [3] goes even further. The
LLM-enabled systems collect enough information and propose an
experimental plan by blending the context of the experiment with
the outcomes of internet searches. Following this, the LLM consults
relevant documentation on experimental equipment to generate
Python code for executing. Researchers only need to provide the
experimental objective as input throughout the entire process.
Smart cities and homes. In the fields of smart cities and homes,
systems incorporate numerous sensors and actuators. Embedding
LLMs into these systems also has broad prospects, capable of bring-
ing numerous advantages including energy saving and efficiency
improvement. For instance, GPT-in-the-Loop [26] is proposed for
multi-agent systems. They leverage the advanced reasoning capa-
bility of GPT models within the loop of decision-making to create a
self-adaptive IoT multi-agent system. This method has been applied
to smart streetlights [27] benchmark for optimizing energy while
ensuring adequate lighting. The LLM-enabled system in work [11]
is proposed for the traffic signal control tasks. The pre-trained
LLM’s inference ability is exploited and applied to understand how
weather conditions, traffic states, and road types influence traffic
dynamics, then takes the action produced by the control policy
to provide efficient transportation and mitigate congestion waste.
Within LLMind [10], LLM designs control scripts through inter-
action with users and machines to multiple domain-specific AI
modules and IoT devices in smart homes.

4 EVALUATION
As LLM-enabled CPS continue to evolve, evaluating the effective-
ness of these technologies is also a crucial issue. We primarily focus
on analyzing evaluation techniques in the fields of robotics and
autonomous driving from two aspects: metrics and benchmarks.
Other application fields currently lack a unified benchmark and
mainly rely on custom methods defined by researchers.
Metrics. To effectively evaluate these systems, metrics are very
important, as they can influence the accuracy and persuasiveness of
the evaluation results. In most studies [1, 9, 14, 17, 19, 24, 28, 38, 41],
accuracy or plan success rate are used to measure the precision of
plans generated by LLM comparedwith ground truth. The execution
success rate is used to assess the specific execution of the plan by
robots or cars. Additionally, full sequence accuracy and subgoal

completion rates are utilized formeasuring the accuracy and success
rate of sub-tasks in some long-horizon tasks [19, 24]. RMSE and
some other metrics are used to measure the control performance
of LLM-enabled CPS in autonomous driving. Beyond these metrics
related to planning and execution, accuracy is also used to access
how LLM-enabled CPS understand multimodal data.
Benchmarks. As for robotics and embodied systems, Alfred [31]
and Behavior [32] are two of the most popularly used benchmarks
for interpreting grounded instructions. In the field of autonomous
driving, datasets BDD-X [22] and DRAMA [25] which include multi-
modal data such as images, control signals, and vehicle states, have
been widely applied. Some other datasets, such as Nuprompt [39]
and MAPLM [5] are also been considered since they contain point
cloud data. Some studies have constructed their own datasets from
simulators for specific scenarios [38] [13]. Beyond simulators and
datasets, existing works in the field of robotics and embodied sys-
tems extensively use real mobile manipulators for experiments in
real-world scenarios, such as robotic arms [1, 14, 17] and robotic
dogs [42]. Among them, SayCan [1] constructs a dataset for mobile
manipulators based on Alfred [31] and Behavior [32]. It has been
widely used by robotics researchers. In the field of autonomous
driving, only [9] has conducted experiments with real vehicles.
Figure 2 gives an illustration of some simulators and real-world
testbeds. This figure sequentially showcases simulated scenarios
of robots [31], real-world scenarios of robots [1], simulated sce-
narios of autonomous vehicles [38], and real-world scenarios of
autonomous vehicles [9].

Figure 2: Illustration of some test scenarios

5 RESEARCH OPPORTUNITIES AND
CHALLENGES

In this section, we explore the potential research opportunities for
LLM-enabled CPS and give the corresponding challenges.
Security and safety. With the rapid development of LLM-enabled
CPS, security should be considered as a important research di-
rection. Malicious attackers can modify the instructions or data
uploaded to the LLMs, causing deviations in the LLMs’ output. Such
deviations can lead to serious safety problems in CPS due to their
interaction with the physical world, for example, an autonomous
vehicle may cause an accident due to deviations in the LLM’s plan.
In addition, LLMs can harbor biases even without being attacked.
Hallucination [23] in LLMs is a widely studied phenomenon where
LLMs generate information that is incorrect confidently. It occurs
due to issues in the training process, such as insufficient training
data or biases within the training dataset itself. When embedding
LLMs into CPS, hallucination can lead these systems to confidently
execute incorrect plans, thereby raising significant safety concerns.
Moreover, LLMs inherently lack the capability to understand the
physical world. This could lead to plans generated by LLMs violat-
ing the constraints of the physical environment in which the CPS
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operate, such as a robotic arm colliding with obstacles. LLMs may
also be hard to understand some temporal constraints in CPS, such
as deadline and events order. In conclusion, it is both necessary and
urgent to design additional methods to make the LLM-enabled CPS
more secure and safe because of the strong interaction between
CPS and the physical world.

However, ensuring the security and safety of LLM-enabled CPS
is nontrivial and can face several challenges. For example, when
hallucination occurs, it is difficult to judge based on the correspond-
ing probabilities to the output of LLM, because LLMs are confident
in these incorrectly generated answers. Although multiple methods
are used to feed LLMs with environmental data, LLM itself performs
poorly in abstracting knowledge from continuous data for decision-
making, which is widely used in CPS, like speed and position. For
the safety and temporal constraints, some researches [20, 42] make
progress on generating constraints-guaranteed plans. They itera-
tively query LLMs and validate the plans using external validation
tools and providing LLMs with counter-examples. However, the
ability of LLMs to consider constraints in the planning process has
not seen significant improvement. These systems frequently fail to
produce the correct plan after reaching the iteration limit.
Runtime Checking/Verification of LLM. In addition to applying
methods to enhance system security and safety, it is necessary to
evaluate and guarantee the security and safety of LLM-enabled
CPS both prior to and throughout deployment. When applying
neural networks to safety-critical applications, researchers conduct
runtime checking and verification to ensure the safety of systems.
For LLM-enabled CPS, the demand is even more pronounced due
to the broad application areas of LLM-enabled CPS.

Real-time monitoring of LLMs and verification of LLMs present
new challenges. Due to the massive number of parameters and com-
plex network structures of LLMs compared to traditional neural
networks, conventional runtime checking algorithms would lead to
significant time overheads, making real-timemonitoring impossible.
Traditional methods for DNN verification, such as methods Relu-
plex [21] and reluval [37], are also unfeasible due to immeasurable
computational costs. Furthermore, applying traditional runtime
checking and verification to multimodal LLMs is also challenging.
For example, traditional methods of verifying neural networks typ-
ically involve calculating the range of the neural network’s output
results after giving a certain range of inputs. However, for multi-
modal LLMs, the inputs may include both images and text, which
have vastly different scales of input ranges. At the same time, the
outputs of LLMs are often not categorical or numerical like those of
traditional neural networks, but textual in natural language, which
poses additional challenges for verification.
Autonomous perception and response.Most present researches
are dedicated to creating LLM-enabled CPS capable of interacting
with humans through natural language. In some cases, we aim for
these systems to have the ability to perceive and autonomously
respond in real-time to meet our immediate needs or maintain some
abstract objectives [11, 26]. We aspire for these systems to operate
autonomously, without the need for human instructions.

Reducing humans in the loop is an important challenge in achiev-
ing this objective. This requires that LLMs not only perform rea-
soning and planning like humans when given specific instructions
but also possess common sense similar to humans. For instance,

when a teacup falls from the table and breaks, the robot is expected
to automatically detect and clean up the fragments.
LLM deployment. Several significant problems in efficiency and
accuracy emerge when deploying LLMs in CPS. Due to existing
technical constraints like computational and storage resource limi-
tations, deploying LLMs locally on CPS is infeasible. The common
approach is to utilize a cloud-based LLM for complex functions such
as reasoning and planning, while the local machine is responsible
for transmitting data and performing pre-processing.

However, this deployment architecture still has several chal-
lenges to overcome. First, the cloud-based LLMs bring up latency
issues. In some real-time systems with high requirements for re-
sponse time, tasks or issues may not be processed by LLM in a
timely manner due to transmission delays. Second, LLMs like GPT-
4 have limitations on the size of prompt. In multi-turn dialogues,
users cannot include all the content of previous prompts in a new
prompt, which may lead to challenge in maintaining dialogue con-
sistency. Existing methods summarize the content of the prompt,
but this inevitably results in the loss of information, leading to
inaccurate answers from LLMs.

6 RELATED SURVEYS
The rapid advancement of LLMs-enabled systems has given rise to
numerous comprehensive surveys. [36] reviews research in the field
of LLM-based agents from the aspect of construction, application,
and evaluation. In addition, [6] gives more detail on the capabilities
of LLMs. These surveys offer detailed insights into general aspects
of the field, like natural sciences, social sciences, and so on. As
for specific areas, [44] provides an overview of the integration of
LLM intro robotic systems. This survey focuses on analyzing the
capabilities required by robotic systems and offered by LLMs. It also
discusses the challenges and promising directions of LLM-enabled
robotic systems. [35] shed light on evaluating LLM-enabled robotics
systems. [8] conduct a literature review on autonomous driving
integrated with multimodal LLMs.

7 CONCLUSION
As LLMs continue to evolve, LLM-enabled CPS will become more
intelligent and efficient. However, we must also pay attention to
the new security and safety issues that arise from embedding LLMs
into CPS. In this survey paper, we first give an overview of LLMs’
functions and roles in LLM-enabled CPS. Then we systematically
summarize existing applications of LLM-enabled CPS across vari-
ous fields. Subsequently, this paper provides some commonly used
metrics and benchmarks for evaluating LLM-enabled CPS. In ad-
dition to reviewing the previous works, we also give a vision of
potential future research opportunities and the corresponding chal-
lenges. We hope this survey paper can provide some inspiration to
researchers and promote the development of the field.
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