
Poster Abstract: Assuring LLM-Enabled
Cyber-Physical Systems

Weizhe Xu†, Mengyu Liu†, Steven Drager‡, Matthew Anderson‡, Fanxin Kong†
†Department of Computer Science and Engineering, University of Notre Dame, South Bend, IN

‡Air Force Research Laboratory, Rome, NY
wxu3@nd.edu, mliu9@nd.edu, steven.drager@us.af.mil, matthew.anderson.37@us.af.mil, fkong@nd.edu

Abstract—Cyber-Physical Systems (CPS) are integrations of
computation, networking, and physical processes. The auton-
omy and self-adaptation capabilities of CPS mark a significant
evolution from traditional control systems. Machine learning
significantly enhances the functionality and efficiency of Cyber-
Physical Systems (CPS). Large Language Models (LLM), like
GPT-4, can augment CPS’s functionality to a new level by
providing advanced intelligence support. This fact makes the
applications above potentially unsafe and thus untrustworthy
if deployed to the real world. We propose a comprehensive
and general assurance framework for LLM-enabled CPS. The
framework consists of three modules: (i) the context grounding
module assures the task context has been accurately grounded (ii)
the temporal Logic requirements specification module forms the
temporal requirements into logic specifications for prompting and
further verification (iii) the formal verification module verifies the
output of the LLM and provides feedback as a guideline for LLM.
The three modules execute iteratively until the output of LLM
is verified. Experiment results demonstrate that our assurance
framework can assure the LLM-enabled CPS.

I. INTRODUCTION

Cyber-Physical Systems (CPS) represent a fusion of com-
puting, networking, and physical operations. Distinguished
by their autonomous and adaptive features, CPS shows a
remarkable advancement beyond traditional control systems.
Large Language Models (LLMs), such as GPT-4, significantly
enhance the capabilities of CPS by providing sophisticated
intelligence support. Researchers have explored using LLMs
for task planning synthesis in controllable robots or agents.
In some applications, LLMs serve as assistants in various
domains, including data processing and contextual ground-
ing [1]. Alternatively, LLMs can perform as decision-makers
in planning and navigating application [2]. In other words,
LLMs are responsible for determining the agents’ motions to
accomplish specific tasks.

However, the deterministic requirements in CPS contradict
the probabilistic nature of LLMs. This contradiction subjects
the above applications to risks of vulnerability and unreli-
ability, potentially leading to catastrophes. Therefore, when
deploying LLMs in CPS, it necessitates experts to manually
inspect LLM outputs, which is expensive and time-consuming.
Hence, an automated framework for verifying LLM outputs is
essential to deploying LLM to real-world systems. Although
some testing and assurance methods for learning-enabled CPS
have been proposed [3], [4], the vast number of parameters

This material was assigned a clearance of CLEARED on 14 Mar 2024,
SAF/PA case number 2024-0208, AFRL case number 2024-1061.

in LLMs and their variable use cases make these methods
unsuitable. Meanwhile, traditional verification and safe assur-
ance methods for CPS [5], [6] are also inadequate due to the
learning characteristics of LLMs. Users seek to both verify
and guide LLMs to ensure correct and safe outcomes. The
goal of this paper is to provide a comprehensive and general
assurance framework for LLM-enabled CPS.

Assurance of LLM-enabled CPS presents significant chal-
lenges. The first is context grounding. LLMs cannot inher-
ently understand the physical world and CPS contexts. There-
fore context grounding is necessary. Our approach should get
the actionable, context-aware formula for CPS tasks instead
of abstract, language-based outputs from LLMs. The sec-
ond challenge is safety and temporal requirements. CPS
tasks demand precise execution in terms of temporal order
and timing to ensure safety. The planning must satisfy both
the safety and temporal requirements. The third is Formal
Verification. After LLM generates a plan, verifying it meets
all requirements is crucial for safety. In addition, verifying
LLM-generated plans’ safety should go beyond mere true/false
assessment. LLM requires detailed feedback for improvement.

In summary, our research presents several key contributions:
(1) We have developed a framework that ensures the reliability
of LLM-enabled CPS. (2) This framework guarantees that
plans generated by LLMs meet both safety and temporal
requirements. (3) We conduct an evaluation of our proposed
framework, showcasing the enhanced effectiveness of our
proposed solution.

II. FRAMEWORK

Overview of the framework. Fig 1 illustrates our iterative

Fig. 1. Iterative Assurance Framework

assurance framework, comprising three primary components
highlighted in blue: context grounding, logic specification, and
formal verification.

In the context grounding component, depicted by orange
paths, task descriptions are converted into natural language



prompts by prompt engineering [7]. The LLM then generates
formal expressions to ground the context. If the design of the
prompt is not adequate, leading to the LLM being unable to
fully ground in the context, it may result in some basic errors.
Typically, we try some simple problems to ensure that the
LLM has understood the question. For the logic specification
component, indicated by green paths, safety and temporal
requirements are similarly transformed into natural language
prompts. The LLM then gives output in the form of logic
specifications corresponding to these requirements, such as
LTL formulas. We convert these formulas to automata using
formal tools after expert review. The problem’s formulas are
identical in iterations, so the manual effort required is minimal.
Once context grounding and logic specification formulation
are complete, the LLM can produce a preliminary plan for
the controllable agent, though its safety remains unverified.
The formal verification component, shown in blue paths, takes
two inputs: the planning candidate and the automaton derived
from the temporal requirements. If the plan passes formal
verification, it is sent to the controllable agent. If not verified,
the process offers detailed feedback for the LLM to adjust its
plan until it passes or hits the iteration limit.

III. RESULTS

Our evaluation aims to test the hypothesis that our frame-
work can ensure the reliability of LLM-enabled CPS. The
framework ensures LLM finally gives us the correct output or
reaches the iterative limit after iteratively executing the three
modules. The LLM used in the experiment is GPT-4. In our
framework, we use Z3 python API to verify safety constraints
expressed as first-order logic (FOL) formulas and use the veri-
fication tool SPOT to check the temporal constraints expressed
as linear temporal logic (LTL) formulas.

1st Prompt
You are a planner for Uber drivers. There are several
cities on the map and some paths between these cities,
for example, A-B means there is one path between
city A and city B. All the path ... you also have some
constraints on the visiting orders.
Here is an example problem and the correct result.
...
Now please give me the result of Problem 2 in the
same format. You do not need to give an explanation.
Problem 2:
Cities: A, B, C, D, E, F, G
Paths: A-B, B-C, A-E, E-D, B-F, F-G
Constraints: You should have been to C and D before
you go to G.
Init: City A, Object: City G

Illustrative Example. In this example, we consider a navi-
gation problem that requests LLM to find a plan for a driver
while not violating the safety and temporal constraints. In the
beginning, we introduce the problem to LLM and provide an
example problem with the correct result. Then ask LLM to
solve a new problem in the same format, the details are shown

in the 1st prompt above. Meanwhile, we ask LLM to give
us the FOL and LTL formulas for the safety and temporal
constraints. The LTL formula for this problem is shown as:
G(g → (c∧d)) where g, c, and d indicate the proposition that
the driver has already visited cities G, C, or D, respectively.

Then we get the 1st output from LLM as shown below.
We discovered the first three steps broke safety constraints,
as verified by Z3, including details like invalid steps. Based
on that, we construct the 2nd prompt to re-query the LLM,
detailing the earliest invalid steps. We get the 2nd output and
find that LLM has already corrected its previous mistake.
However, we can find a violation of the temporal constraint by
using SPOT. With this information, we re-query LLM using
the 3rd prompt. Finally, after three rounds of iteration, we
obtain a correct plan that passes all verifications, as shown in
the 3rd output. This experiment demonstrates that our method
can obtain the correct plan from LLM while assurance safety
and temporal constraints.

1st Output
A → B
B → C
B → F
F → G

2nd Prompt
A → B
B → C
B → F
is invalid.

2nd Output
A → B
B → C
C → B
B → F
F → G

3rd Prompt
A → B
B → C
C → B
B → F
F → G
is invalid.

3rd Output
A → B
B → C
C → B
B → A
A → E
E → D

D → E
E → A
A → B
B → F
F → G

IV. POSTER DESCRIPTION

In our proposed poster, we do an overall introduction of
the project in the first part, including the purpose, focus of
our work, etc. In the second part, we introduce our proposed
framework, and in the third part, we give an illustrative
example to demonstrate the effectiveness of the framework.

Acknowledgement
This work was supported in part by NSF CNS-2333980.

REFERENCES

[1] S. Huang et al., “Instruct2act: Mapping multi-modality instruc-
tions to robotic actions with large language model,” arXiv preprint
arXiv:2305.11176, 2023.

[2] K. Lin et al., “Text2motion: From natural language instructions to feasible
plans,” arXiv preprint arXiv:2303.12153, 2023.

[3] X. Zheng et al., “Testing learning-enabled cyber-physical systems
with large-language models: A formal approach,” arXiv preprint
arXiv:2311.07377, 2023.

[4] G. Katz et al., “Reluplex: An efficient smt solver for verifying deep neural
networks,” in CAV 2017. Springer, 2017.

[5] M. Liu et al., “Fail-safe: Securing cyber-physical systems against hidden
sensor attacks,” in RTSS. IEEE, 2022.

[6] L. Zhang et al., “Ai-enabled real-time sensor attack detection for cyber-
physical systems,” in AI Embedded Assurance for Cyber Systems.
Springer, 2023.

[7] P. Liu et al., “Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing,” ACM Computing
Surveys, vol. 55, no. 9, pp. 1–35, 2023.


