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Abstract—Cyber-Physical Systems(CPS) are the integration
of sensing, control, computation, and networking with physical
components and infrastructure connected by the internet. The
autonomy and reliability are enhanced by the recent develop-
ment of safe reinforcement learning (safe RL). However, the
vulnerability of safe RL to adversarial conditions has received
minimal exploration. In order to truly ensure safety in physical
world applications, it is crucial to understand and address these
potential safety weaknesses in learned control policies. In this
work, we demonstrate a novel attack to violate safety that induces
unsafe behaviors by adversarial models trained using reversed
safety constraints. The experiment results show that the proposed
method is more effective than existing works.

I. INTRODUCTION

Reinforcement learning demonstrates efficacy in resolving
control problems, but it fails to incorporate safety for systems
operating in real-world environments [1]. To address this issue,
safe reinforcement learning (safe RL) has been developed
and has successfully enhanced exploration safety for cyber-
physical systems in recent years [2]. Safe RL researchers
approach the safety problem in two major ways: one thread
considers it an optimization problem that requires the user to
have a mathematical model of the system. The other thread
considers it a constrained Markov decision process (CMDP)
problem that employs formal specifications such as signal
temporal logic (STL) to maximize the probability of satisfying
defined safety constraints [3] [4].

However, we argue that a formal specification-guided policy
is not truly safe because it has vulnerabilities that a malicious
adversary can exploit to violate its safety constraint. In other
words, an adversary can make the system violate the safety
constraints by maliciously manipulating the sensor values
while the attack remains stealthy. Different attack scenarios
are considered depending on whether the adversary can access
the safe RL policy of the system or the mathematical model of
the system. We propose various attack methods for each attack
scenario and evaluate the performance of the attack on OpenAI
Safety Gym. Note that while attack reinforcement learning has
been researched in existing works, our study is the first to
consider violating the safety of the system and analyzing the
vulnerability of safe RL.

This paper demonstrates that the proposed attack methods
can successfully violate safety constraints, while the baseline
method has less potential to do so. A brief introduction of the
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methodology of our method is provided and we evaluate why
our attack methods can outperform the baselines.

II. FRAMEWORK DESIGN

Our work focuses on the vulnerability of formal language-
guided secure RL. Through theoretical analysis, we identify a
limitation in existing approaches targeting RL policy attacks,
highlighting their inefficiency in compromising the safety of
safe RL, which is crucial for real-world systems.

To address this gap, we propose the Safety Violation Attack
(SVA), which adds perturbation to the observation (sensor) of
the victim system to make it violate the safety constraints. It
comprises two primary components: firstly, the computation of
a malicious action causing the safety violation, and secondly,
the generation of sensor attacks to manipulate the policy
into taking the malicious action. In addition, the adversary
attack should be stealthy to prevent the system from being
noticed. We define stealthy as not only limiting the range of
perturbation, but also not decreasing the observed reward.

Depending on the adversary’s different knowledge, we de-
fine white box (WB) attack and black box (BB) attack that the
adversary can adopt under different attack scenarios. In the
WB attack, the adversary has full knowledge of the system’s
state transition function and control policy, so it can easily
generate the observation attack. Instead, the BB attack, which
trains an adversary model to compute the malicious action
and a surrogate control policy, can still realize the security
violation but is less efficient.

The experiment results show that the proposed SVA outper-
forms the existing baseline works, and the WB SVA achieves
the most efficiency in violating the security of the victim
system. The following section provides a detailed description
of the demonstration settings and evaluates the performance of
our proposed method in comparison to a baseline approach.

III. RESULT DEMONSTRATION

A. Demonstration settings

To demonstrate the effectiveness of our proposed attack,
we conduct the demonstration on two benchmarks of OpenAI
Safety Gym [5]: PointGoal and CarCircle to illustrate the
efficacy of our proposed framework.

Benchmark setting: The PointGoal scenario poses a reach-
avoid challenge, requiring the point to reach a goal while avoid
touching the three hazards. The point has 44 states including
16 lidars to measure the distance to hazards and another 16
lidars for the goal. On the other hand, the CarCircle benchmark
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Fig. 1: The PointGaol benchmark with three different attack
methods. The three blue circles represent hazards, and the
green circle is the reaching goal. The WB and BB SVA violate
the point safety while the baseline method fails to do so.
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Fig. 2: The CarCircle benchmark with three different attack
methods. The White-box and Black-box SVA result in the car
crashing into the wall, whereas the baseline method fails to
induce such collisions.

tasks a car with navigating within a circle of radius 1.5. The
car must evade collisions with two walls, each spanning a
length of 0.3, while maintaining velocity and staying within
the circle for 5000 time steps. Safety violations occur when
the car collides with a wall.

Model training: We employ Signal Temporal Logic to
specify the task and constraints. Then the STL formulation is
converted to a reward function for training the reinforcement
learning model. We assume the two benchmarks use Prox-
imal Policy Optimization (PPO) [6] as the system’s control
algorithm. Note that for the black-box scenario, the SVA
framework needs a surrogate control policy and an adversary
model that computes the malicious action. We utilize the Soft
Actor-Critic (SAC) [7] to train the surrogate control policy
and PPO to train the adversary model.

Baseline setting: We select the baseline attack method from
[8] for comparison with our proposed approach. The baseline
method involves training a policy with a reward function that
assigns negative rewards when the origin reward is positive.
Consequently, the baseline attack consistently predicts actions
aimed at reducing cumulative rewards and then generates
attacks that compel the system to take the actions. In the
following subsection, we assess the performance of White-
box and Black-box SVA, comparing their performance with
the baseline method.

B. Result

Fig. 1 and Fig. 2 show the result of three attacks: white-
box SVA, black-box SVA, and a baseline method on the two
benchmarks. In Fig. 1, it is evident that both white-box and
black-box SVAs successfully guide the point to touch the
hazard (depicted in blue). Conversely, the baseline methods
effectively keep the point away from the goal (depicted in
green) but fail to trigger a safety violation. This observation
is similarly reflected in Fig. 2 for the CarCircle benchmark,
where both white-box and black-box SVAs lead the car to

(a) PointGoal (b) CarCircle

Fig. 3: Trajectories of the agent under various attack methods:
White-box SVA (orange), Black-box SVA (black), and the
baseline method (purple). The attacks initiate from identical
starting positions, resulting in divergent trajectories.

crash into the wall, while the baseline method does not induce
such collisions. These results underscore the vulnerability of
formal language-guided safe RL to sensor attacks.

Fig.3 shows the trajectory of PointGoal and CarCircle with
three attack methods. Notably, the white-box SVA demon-
strates the highest efficiency in compromising agent safety,
resulting in unsafe trajectories. The black-box SVA also vio-
lates safety but with lower efficiency. In contrast, the baseline
attack method lacks the intention to drive the agent into
an unsafe state. These findings highlight that conventional
RL attack methods, primarily focused on reducing rewards,
fall short of violating safety. Conversely, our proposed SVA
exposes vulnerabilities, leading to more severe consequences.
Furthermore, the results suggest that the adversary’s level of
system knowledge correlates with the efficiency of the attack.

IV. CONCLUSION

This paper briefly introduces the proposed SVA framework
and demonstrates the experiment settings and results. The
demonstration illustrates the framework’s efficacy in compro-
mising the safety of formal language-guided safe RL.
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