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ABSTRACT 
 
Research of cellular and molecular processes by way of histological methods allows for some 

insight, but comes with a fundamental set of constraints that are challenging to overcome. 

Traditional histological methods are laborious, as well as severely limiting for in-depth study of 

developmental processes or disease processes in vivo. In traditional histology, fixing and 

sectioning tissue necessarily eliminates its dynamic function, while tissue section thickness 

limits the scope of investigation with conventional imaging tools. Noninvasive in vivo study of 

tissues and biomarkers is therefore paramount in gaining a fuller understanding of the 

pathophysiology surrounding conditions like congenital heart disorders. Light-sheet 

fluorescence microscopy (LSFM) is a powerful and noninvasive optical microscopy tool that can 

image in vivo tissue function in 4D (3D + time).  LSFM boasts benefits such as short pixel dwell 

time and therefore minimal photobleaching) while maintaining the ability to image a high 

dynamic range, as well as deep-tissue optical sectioning. Researchers have been seeking to 

overcome this problem by developing tissue clearing techniques to attempt to homogenize the 

refractive index across the tissue via removal of light-scattering pigments and lipids.  

Even so, anisotropy and light scatter are pervasive effects stemming from tissue thickness and 

refractive index mismatching of mounting media, making optical sectioning with perfectly 

tuned acquisition parameters difficult to achieve. Therefore, pre- and post-processing 

techniques are critical for yielding images suitable for biomedical research. Two such novel 

techniques are presented here. 
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CORRECTING ANISOTROPIC INTENSITY IN LIGHT SHEET IMAGES USING 
DEHAZING AND IMAGE MORPHOLOGY 
 
In biomedical research, there has long been a demand for specimen images that are free of 

aberrations in the region of interest (ROI)7. However, in LSFM, unfocused fluorescence in the 

axial direction while scanning deeper into tissue creates a challenge in distinguishing 

foreground from background7. Additionally, light scatter due to refractive index heterogeneity 

throughout the tissue and in the mounting medium10 results in axial and lateral blurriness11, 

making isotropic resolution of volumetric reconstruction challenging, especially in high density 

tissue samples.  

To correct anisotropic intensity in a raw image [Figs. 1(a), 1(c), 2(a), 3(b), 3(e), and 4(a)], the 

dark channel prior (DCP) illumination correction algorithm was used in conjunction with a 

background subtraction method. First, dehazing was performed with the DCP algorithm, which 

was used under the assumption that light is traveling underwater rather than through air12-15 

and is highly sensitive to noise while correcting medium-dependent attenuation along the line 

of sight16. Dehazing takes atmospheric light and transmission distance into account, resulting in 

restoration of object radiance at zero viewing distance without loss of information or addition 

of noise7 [Fig. 3(c)]. 

The DCP algorithm also tends to restore autofluorescence experiencing forward scatter [Figs. 

1(e) and 3(c)], so background subtraction with a rolling ball averaging algorithm is used to 

eliminate the scatter7 [Figs. 1(b), 1(d), 2(b), 2(d), and 3(d)]. The background subtraction isolates 

fluorescence-tagged structures in the field of view (FOV) and subtracts out-of-focus objects7. 



 

Anisotropy of the fluorescent bead in manifests as skew in the axial and lateral resolution point 

spread function (PSF) graphs7. After dehazing by DCP, axial and lateral resolution improvements 

were seen in the PSF7. Random noise introduced by deconvolution was then eliminated with an 

edge preserving bilateral smoothening filter7. Performing deconvolution on background 

subtracted images using dehazed PSF has shown to be a promising method for symmetric 

restoration of objects in the focal plane7 [Figs. 2(c), 2(e), and 3(e)]. 

 
Figure 17. Achieving uniform intensity of zebrafish cranial vasculature with a combination of 
dehazing and background subtraction. (a) Raw image acquired with oblique scanning super-
resolution stage on a light sheet fluorescence microscope. Scale bar: 200 μm. (b) Magnified view of 
ROI in red box from (a). Intensity was restored by dehazing to fix attenuation, and background 
subtracting to remove diffuse light. Scale bar: 100 μm. (c) Raw image acquired using the same 
methods as (a). Scale bar: 200 μm. (d) Intensity-corrected version of (c). Scale bar: 200 μm. (e) Z-stack 
images acquired using light sheet fluorescence microscope with dual-sided illumination. White stars: 
poor separation of objects results in indistinguishable local morphology. This is due to light scatter in 
the FOV due to refractive index mismatch, which saturates the ROI and yields poorly delineated 
overlapping structures.  (f) Processed 3D image. Intensity is uniform and edges of overlapping objects 
in the z-stack are enhanced, resulting in spatial integrity in the 3D image. 



 
Figure 27. Dehazing and deconvolution. (a) Raw image acquired with light sheet fluorescence 
microscope using oblique scanning super-resolution stage. Scale bar: 200 μm. (b) Magnification of 
blue box ROI from image (a). Image is background subtracted and dehazed. Scale bar: 100 μm. (c) 
Blurred overlapping depth structures in image (b), due to axial gradient refractive index, are now 
visible after deconvolution. Scale bar: 100 μm. (d) The same procedure is performed on an attenuated 
image with the light sheet passing through the critical object to compare against saturated image (b) 
where the light sheet is perpendicular to the critical object. Scale bar: 100 μm. (e) Contour in the ROI 
is defined after deconvolution. An edge preserving bilateral smoothening filter is applied to images (c) 
and (e) to remove noise introduced by deconvolution. Scale bar: 100 μm. 

 

Next, a top-hat morphological transform was used to 1) remove vague connections between 

ROI leftover from the background subtraction step, and 2) further resolve image boundaries7. 

Finally, a bottom-hat transform improves blurred depth details caused by autofluorescence 

impacts to the axial resolution7. 

This method was successfully applied to images acquired with various LSFM modalities 

including single/dual selective plane illumination microscopy (SPIM), multiview SPIM with dual 

illumination, and the voxel super-resolution technique using an oblique scanning stage with 

dual illumination7. In all instances, regardless of image dimensions, anisotropy was resolved, 

and isotropic structural integrity was achieved7 [Figs. 1(f), 3(b), 3(b’)-3(b’’’), and 4]. 

 



 
Figure 37. Image processing to resolve fine details. (a) Unprocessed image. Scale bar: 200 μm. (a’) 
Magnification of middle mesencephalic artery. (a’’) Magnification of primordial hindbrain. (a’’’) 
Magnification of posterior cerebral vein. Scale bar for (a’ )–(a’’’ ): 50 μm. (b) Super-resolved image. Scale 
bar: 200 μm. Scale bar (b’)–(b’’’): 50 μm. (c) Autofluorescence or tissue scattering are amplified along with 
the fluorescent signal after dehazing. Scale bar: 200 μm. Blue squares: local pixel patch with 
autofluorescence. (d) Fluorescent signal to noise ratio of zebrafish vasculature is enhanced using 
background substraction. Scale bar: 200 μm. (e) Fine vasculature is resolved after deconvolution of 
dehazed PSF. Scale bar: 200 μm. Scale bar (e’) and (e’’): 50 μm. 

 

 
Figure 47. Application of technique to super-resolution image acquired via oblique scanning 
method. (a) 3D reconstruction of the vasculature of a 4 days post fertilization (dpf) zebrafish. (b) High 
resolution image taken from the large FOV. Scale bar: 100 μm. (c) Intensity of image (b) is corrected 
and edges between features are resolved through dehazing and background subtraction. Scale bar: 
100 μm. (d) Magnification of red box area from image (c) showing detail of super-resolution scanning. 



Scale bar: 30 μm. (e) High resolution image taken from the large FOV. Scale bar: 100 μm. (f) Intensity 
correction and resolution of edges between features of image (e) achieved through dehazing and 
background subtraction. Scale bar: 100 μm. (g) Super-resolution details from red box area in image 
(f). Scale bar: 30 μm. 

 
 
FEATURE DETECTION TO SEGMENT CARDIOMYOCYTES FOR INVESTIGATING 
CARDIAC CONTRACTILITY 
 
Based on recovering the anisotropic fluorescent intensity, further application to in vivo 

zebrafish heart for biomechanical quantification. Myocardial contractility is an important factor 

of healthy cardiac function17. Contractility is regulated by cardiomyocytes, which comprise a 

significant portion of the myocardium18. Proper investigation of cardiomyocyte physiology and 

pathophysiology depends on the ability to visualize individual cardiomyocytes with respect to 

the surrounding tissue19. For instance, precise counting of cardiomyocytes to understand cell 

proliferation during cardiogenesis20,21 can only be achieved if separate and distinct 

cardiomyocytes are observable. Limitations of invasive histological investigation, such as small 

sampling size and low cell viability, make it difficult to demonstrate statistical significance4. 

Imaging transgenic zebrafish with LSFM enables in vivo 4D optical sectioning for study of 

cardiac architecture6,7,23,24. Even so, specimen movement and sampling artifacts negatively 

affect focus, making it a challenge to quantify biomarker data5. 

On the whole, optical microscopy offers a vast spectrum of complex image attributes available 

for feature selection1, which presents an obstacle in research that relies on confidence in 

biomarker data. With a large range of target attributes available across image datasets, manual 

analysis becomes impractical and unreliable2,3. Feature detection methods can be employed to 

discard irrelevant attributes and reduce data dimensionality1,2. This is useful in volumetric 



reconstruction of images, which requires high sensitivity in feature detection. This applies to 

aberrations like tissue protrusions, illumination changes, scaling differences, and motion27, 

which can all cause feature redundancy in images26. 

Manual boundary delineation of fused cardiomyocyte nuclei volumes is time-consuming 

because boundaries are poorly defined or entirely undiscernible5 [Fig. 5(a)]. Additionally, 

because of background fluorescence present in light sheet fluorescence microscopy5, poor 

contrast between neighboring cardiomyocytes is a pervasive issue7 [Figs. 6(a) and 6(d)]. Further 

contributing to the problem are low sampling rates, autofluorescence, and dynamic motion of 

the heart convoluting the lateral and axial imaging planes and interfering with optimal image 

quality5 [Figs. 5(b)-5(d)]. 

Intensity-based separation techniques like Otsu’s method, iso data thresholding, entropy-based 

thresholding, and adaptive thresholding can be used for automated cell tracking, but these 

methods are known to perform poorly when noise is present, and consequently do not allow 

separation of clustered objects into distinctly individual objects28. These techniques are further 

hindered by optical aberrations, short exposure times, movement of cells in and out of the field 

of view, and poor contrast between cells3,27. The watershed algorithm is another popular 

strategy, but it is highly prone to over-segmentation, and factors like noise or complex cell 

morphology can result in false detection of features3,28. Owing to these limitations, an alternate 

method is needed for separating the target biomarker from its immediate surroundings and 

creating distinct and meaningful biological regions. 



 
Figure 55: Using Difference of Gaussian filter and watershed algorithm to individualize 
cardiomyocyte nuclei. (A) 2 dpf volumetric reconstruction of zebrafish cardiomyocytes, acquired 
using light sheet fluorescence microscopy and used to visualize time dependent motion of 
cardiomyocytes. (B-D) Magnifications of image (A) showing tight clusters of cardiomyocytes. Tracking 
and counting cardiomyocytes is hampered by density of clusters. (E) Difference of Gaussian (DoG) 
method is applied along with the watershed algorithm to individualize clustered cardiomyocytes. (F-
H) Magnifications of image (E) demonstrating distinctness of each cardiomyocyte compared to those 
seen in images (B-D). (I-J) 2D lateral and axial views showing object overlap due to increased noise 
from complex tissue morphology. Scale bar: 50 μm. (K-L) Lateral and axial segments as binary data are 
used to verify curvature of the marker cardiomyocytes. Scale bar: 50 μm. 

 

The pre-processing technique that addresses this need involves first the difference of Gaussian 

(DoG) scale-space bandpass operation to reduce noise and minimize false positives29. Rather 

than relying on brightness variation to identify features as binary images, this detection 

technique instead focuses on sensitivity to edges through the human visual perception (HVP) 

model26,30,31. Next, the watershed algorithm is used, yielding segmented cardiomyocytes even 

in a relatively dense 48 hours post fertilization (hpf) cluster of cells5 [Figs. 5(e)-5(h)]. Since the 

processed images were binary, the watershed algorithm doesn’t over-segment by detecting 

background or autofluorescent noise. 



Because the DoG method filters out high frequency noise, under-detection of features is a 

possiblility25. In comparatively dense fields of 72 and 96 hpf cardiomyocytes, low pixel 

intensities produced by the DoG edge detector results in under-segmentation and incorrect cell 

tracking5 [Figs. 6(b) and 6(e)]. Such under-detection is counteracted through application of local 

contour detection with the Hessian matrix22. The HPV-based Hessian difference of Gaussian 

(HDoG) strategy locates saddle points32, which are points in a function that represent neither an 

intensity maximum nor minimum and can indicate merged nuclei borders5. allows for precise 

identification of cardiomyocyte nuclei boundaries and individual volumes even in dense cell 

environments5 [Figs. 6(c) and 6(f)].  

 
Figure 65. Segmenting overlapping cardiomyocyte nuclei using the watershed algorithm and Hessian 
Difference of Gaussian. (A, D) Unprocessed volumetric reconstructions of (A) 3 dpf and (D) 4 dpf 
zebrafish cardiomyocytes. Higher density of cardiomyocytes results in more light scattering, yielding 
blurred images. (B, E) Watershed algorithm and Difference of Gaussian (DoG) detector applied to (B) 
3 dpf and (E) 4 dpf volumes results in under segmentation and inaccurate cardiomyocyte tracking. 
Scale bar: 50 μm. (C, F) Watershed algorithm and Hessian Difference of Gaussian (HDoG) are applied 



to the (C) 3 dpf and (F) 4 dpf cardiomyocyte volumes, resulting in more sensitive and accurate blob 
detection and segmentation. Scale bar: 50 μm. 

 

This edge detection technique can be coupled with post-processing methods like top-hat and 

bottom-hat transform, to remove redundant binary features22,26, and applied to cell studies in 

developmental biology3,34. It has been used to identify and track cardiomyocyte nuclei, thereby 

allowing quantification of in vivo contractility in the zebrafish heart during distinct phases of 

development5. Using this technique, dynamic cardiomyocyte movement through the cardiac 

cycle was visualized at 48 hpf [Figs. 7(a)-7(d)], at 72 hpf [Figs. 7(e)-7(h)], and at 96 hpf [Figs. 7(i)-

7(l)]. The HDoG edge detector was able to segment the cardiomyocyte nuclei regardless of 

anisotropic Gaussian luminance, fast frame rates required for imaging, and the increasingly 

dense cell environments of more mature developmental stages5. The HDoG edge detector can 

be used not only for segmenting and counting cardiomyocytes, but for any other type of cell, no 

matter the orientation or heterogeneity of sizes5. 

 



 
Figure 75. Separating cardiomyocytes in differing tissue morphologies of multiple developmental 
stages. (A-D) Visualizations of dynamic 2 dpf zebrafish cardiomyocytes. Scale bar: 50 μm. (E-H) 3 dpf 
dynamic cardiomyocytes individualized through use of Hessian Difference of Gaussian detector. Scale 
bar: 50 μm. (I-L) 4 dpf cardiomyocytes are detected and isolated using the image processing methods, 
despite the fast frame rates needed to sample contractility. Scale bar: 50 μm. 

 

Application of this biomarker edge detection method is proving to be a useful tool in cell 

morphology studies, cell proliferation studies, developmental signaling mechanotransduction5. 

For instance, this method was used to demonstrate cardiac maturation through quantification 

of the outermost curvature having a higher area ratio than the innermost curvature5. 

Cardiomyocyte nuclei were tracked across developmental stages ranging from 48 hpf to 120 

hpf [Figs. 8(a)-8(h)]. Stretch level changes in the developing zebrafish heart were investigated 

along with area ratio comparisons between innermost and outermost curvature areas5. After 



analyzing the time course of area ratio using three cardiomyocytes as markers, it was found 

that the area ratio of the outermost curvature area the opposite side of the atrioventricular 

canal receiving blood pumped in from the atrium) displays a higher area ratio than the 

innermost curvature of the ventricle, though the area ratio for both regions increase 

consistently5 [Figs. 8(i) and 8(j)]. 

 

 
Figure 85. Area ratio analysis using selected markers. (A-D) 2D slice views of zebrafish dorsal area of 
ventricle highlighting the innermost curvature for (A) 2 dpf, (B) 3 dpf, (C) 4 dpf, and (D) 5 dpf 
zebrafish. Scale bar for (A): 30 μm. Scale bar for (B-D): 50 μm. (E-H) 2D slices of ventral part of 
zebrafish heart highlighting the outermost ventricle curvature for (E) 2 dpf, (F) 3 dpf, (G) 4 dpf, and (H) 
5 dpf zebrafish. Scale bar for (E): 30 μm. Scale bar for (F-H): 50 μm. (I) Three cardiomyocytes 
highlighted in (A-D) are tracked in area ratio for innermost curvature and demonstrate increasing 
contractility of the developing zebrafish heart. (J) Three cardiomyocytes (E-H) are tracked in area ratio 
of outermost curvature and show that the outermost curvature has higher contractility than the 
innermost curvature. 

 

Summary 



Novel image processing for LSFM adopted for biomechanical quantification would be able to 

solve important biological questions including developmental biology, molecular biology, and 

genetics in Mechanobiology manner.  Specifically, dynamic sample images, such as heart or 

rapid cell movement as well as calcium transient of tissue, previously remained challenging 

problems although other image modalities have been developed. Light-sheet microscope with 

high-end camera has been overcome aforementioned problems, still diminishing fluorescent 

intensity or tissue scattering exacerbated original image qualities to biomechanical 

quantification or cell signaling analysis. This recently published papers will be beneficial in 

various research society. 
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