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ABSTRACT

We present JOG, a framework for developing peephole optimiza-

tions and accompanying tests for Java compilers. JOG allows devel-

opers to write a peephole optimization as a pattern in Java itself.

Such a pattern contains code before and after the desired transfor-

mation defined by the peephole optimization, with any necessary

preconditions, and the pattern can be written in the same way that

tests for the optimization are already written in OpenJDK. JOG

automatically translates each pattern into C/C++ code as a JIT

optimization pass, and generates tests for the optimization. Also,

JOG automatically analyzes the shadow relation between a pair of

optimizations where the effect of the shadowed optimization is over-

ridden by the other. We used JOG to write 162 patterns, including

many patterns found in OpenJDK and LLVM, as well as some that

we proposed. We opened ten pull requests (PRs) for OpenJDK, on

introducing new optimizations, removing shadowed optimizations,

and adding generated tests for optimizations; nine of PRs have

already been integrated into the master branch of OpenJDK. The

demo video for JOG can be found at https://youtu.be/z2q6dhOiqgw.
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1 INTRODUCTION

Peephole optimizations [11, 13] belong to an essential class of com-

piler optimizations that examine a few adjacent code instructions

or a basic block, known as a window, and make targeted changes

to improve performance or reduce the code’s size, e.g., A + A is

transformed into A << 1. Peephole optimizations are widely used

in popular compilers such as GCC, LLVM, and Java Just-in-Time

compilers (Java JIT for short) [2, 9, 16].

Peephole optimizations are typically implemented as compiler

passes, such that each detects a window and replaces it with an

optimized form. Implementation of an optimization is commonly

done in the language in which the compiler itself is implemented
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(e.g., C/C++ for Java JIT), using the compiler infrastructure, e.g.,

internal data structure representation, to manipulate windows. This

low-level internal representation is quite different from the actual

code (written in Java) being optimized. The mismatch hinders devel-

opers from effectively reasoning about windows of interest, because

they have to repeatedly map instructions from high-level code (e.g.,

Java) to low-level code (e.g., C/C++) and data. The mismatch also

makes implementation error-prone [7, 8, 19, 24, 26ś28].

Alive [10] improves the traditional approach by introducing

patterns, which are written in a domain specific language (DSL)

and manipulate LLVM bitcode. Developers can write patterns in

the DSL which are then translated into compiler passes. However,

Alive still remains significantly detached from the programming

language it optimizes (C++), leading to a steep learning curve and

it lacks support for software tools, e.g., syntax highlighting in IDEs.

Our key insight is that many peephole optimizations can be ex-

pressed within the programming language being optimized, thus

avoiding complex patterns that manipulate low-level code repre-

sentations. In OpenJDK, a significant portion of JIT optimization

tests (known as IR tests) are written in Java and incorporate spe-

cific patterns within their code to trigger the optimizations being

evaluated [15]. We propose to extend the concept, not only to use

patterns to write IR tests but to comprehensively describe the en-

tire optimization, encompassing both code before and after the

optimization, which in turn implicitly describe IR tests.

We present JOG [25], which enables developers to write peephole

optimizations for Java JIT as high-level Java statements. These pat-

terns undergo Java compiler type-checking and are automatically

translated into compiler passes (in C/C++) by JOG. Furthermore,

JOG can automatically generate IR tests (in Java) from these pat-

terns. By writing patterns in Java for Java JIT, we ensure the mean-

ingfulness of statement sequences within programs, i.e., windows

can indeed appear in programs (a guarantee not always achieved

when working with IRs or compiler abstractions). Our approach

also simplifies the rationale behind each peephole optimization,

transforming what was once extensive comments or test cases into

self-explanatory patterns. Moreover, developers can leverage soft-

ware engineering tools like IDEs and linters while creating patterns

in JOG. Having patterns written in Java also opens the door for

future program equivalence checkers[1] compatible with both Java

code and bytecode, readily obtained by compiling JOG patterns.

The brevity of patterns eases the analysis of relations between op-

timizations. Java JIT compilers contain a large number of peephole

optimizations. The maintenance becomes difficult as new optimiza-

tions are included. When developers want to add a new optimiza-

tion, they have to be careful that this optimization’s effect is not

overridden by some existing optimization. For instance, consider

two optimizations,𝑋 and 𝑌 :𝑋 transforms (a - b) + (c - d) into

(a + c) - (b + d), and 𝑌 transforms (a - b) + (b - c) into a
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1 @Test

2 @IR(failOn = {IRNode.ADD})

3 @IR(counts = {IRNode.SUB, "1"})

4 // Checks (a - b) + (c - a) => (c - b)

5 public long test8(long a, long b, long c) {

6 return (a - b) + (c - a);

7 }

Figure 1: An example IR test available in OpenJDK (SHA

fd910f7) [18].

- c, with variables a, b, c, and d. Notably, any expression matching

(a - b) + (b - c) (𝑌 ) also matches (a - b) + (c - d) (𝑋 ). If

𝑋 is always applied before 𝑌 in a compiler pass, the effect of 𝑋 will

shadow 𝑌 . JOG can automatically report this shadow relation.

Using JOG, we wrote 162 optimization patterns: 68 from Open-

JDK, 92 adapted from LLVM, and two entirely new. Most OpenJDK

patterns were taken from existing tests or hand-written examples in

C/C++ comments. Our most complex pattern is just 115 characters,

compared to the 462-character C/C++ counterpart that manipulates

the IR. Our evaluation confirms that JOG-generated code maintains

JIT optimization effectiveness. Using JOG, we identified a bug in the

Java JIT where one optimization was unreachable due to shadowing

by another. Using these patterns, we submitted ten pull requests

(PRs) to OpenJDK: eight for new optimizations, one to fix shadowed

optimizations, and one for new JOG-generated IR tests. Nine PRs

have been accepted and merged.

JOG is open source and publicly available at https://github.com/

EngineeringSoftware/jog.

2 EXAMPLE

Figure 1 shows a test written using the IR test framework [17] which

is a recommended approach to testing JIT peephole optimizations

in OpenJDK. The test is expected to compile the annotated (@Test)

method test8 and optimize (a - b) + (c - a) to c - b; the

expected transformation is written as a comment. The IR shape

of the compiled method is checked against certain rules specified

using the @IR annotation (lines 2ś3). The rules validate that the

compiled method does not contain ADD node (line 2) and contains

exactly one SUB node (line 3).

Using JOG, developers can write an optimization, i.e., (a - b)

+ (c - a) to c - b, in a way that mirrors the existing IR test. In

Figure 2a, a pattern written in JOG is a Java method annotated with

@Pattern. The method’s parameters (line 2 in Figure 2a) declare

variables (a, b, and c), specifying the data type of each as long.

Inside the method, two API calls, before((a - b) + (c - a))

(line 3 in Figure 2a) and after(c - b) (line 4 in Figure 2a), define

the expressions before and after the optimization. Both calls follow

the format of existing IR tests. before((a - b) + (c - a))

directly reuses code from the existing test return (a - b) + (c

- a); (line 6 in Figure 1), and after(c - b) is taken from the

comment // Check (a - b) + (c - a) => (c - b) (line 4 in

Figure 1). Moreover, since the pattern and the test follow the same

structure, not only does JOG enable developers to write patterns,

but it can also automatically generate IR tests from patterns.

JOG automatically translates a pattern into C/C++ code for direct

inclusion in a JIT optimization pass (Figure 2b). Figure 2c displays

hand-written code extracted from OpenJDK, achieving the same

JIT peephole optimization to transform (a - b) + (c - a)

1 @Pattern

2 public void ADD8(long a, long b, long c) {

3 before((a - b) + (c - a));

4 after(c - b);

5 }

(a) Pattern written using JOG.

1 Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {...

2 Node* _JOG_in1 = in(1);

3 Node* _JOG_in11 = _JOG_in1 != NULL && 1 < _JOG_in1->req() ?

4 _JOG_in1->in(1) : NULL;

5 Node* _JOG_in12 = _JOG_in1 != NULL && 2 < _JOG_in1->req() ?

6 _JOG_in1->in(2) : NULL;

7 Node* _JOG_in2 = in(2);

8 Node* _JOG_in21 = _JOG_in2 != NULL && 1 < _JOG_in2->req() ?

9 _JOG_in2->in(1) : NULL;

10 Node* _JOG_in22 = _JOG_in2 != NULL && 2 < _JOG_in2->req() ?

11 _JOG_in2->in(2) : NULL;

12 if (_JOG_in1->Opcode() == Op_SubL

13 && _JOG_in2->Opcode() == Op_SubL

14 && _JOG_in11 == _JOG_in22) {

15 return new SubLNode(_JOG_in21, _JOG_in12);

16 }...

17 }

(b) Code generated from JOG.

1 Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {...

2 Node* in1 = in(1);

3 Node* in2 = in(2);

4 int op1 = in1->Opcode();

5 int op2 = in2->Opcode();

6 if (op1 == Op_SubL) {...

7 // Convert "(a-b)+(c-a)" into "(c-b)"

8 - if (op2 == Op_SubL && in1->in(1) == in1->in(2)) {

9 + if (op2 == Op_SubL && in1->in(1) == in2->in(2)) {

10 return new SubLNode(in2->in(1), in1->in(2));

11 }

12 }...

13 }

(c) Hand-written code (with bug) in OpenJDK.

Figure 2: An example of a peephole optimization as imple-

mented in OpenJDK and JOG, and associated test.

into c - b. The implementation matches expressions of interest

and then returns a new optimized equivalent expression. In this

example, the matched expression must meet four conditions: (1) It

is an addition expression (implicitly line 1 in Figure 2b because the

method belongs to AddLNode); (2) its left operand is a subtraction

expression (a - b) (line 12 in Figure 2b); (3) its right operand is

a subtraction expression (c - a) (line 13 in Figure 2b); and (4)

both subtraction expressions share a same operand (a) (line 14 in

Figure 2b). Once a match is found, the code constructs the new

subtraction expression (c - b) using b and c (line 15 in Figure 2b),

reducing the evaluation cost from two subtractions and one addition

to a single subtraction. Notably, a bug existed in the OpenJDK

code due to incorrect access to the right operand of the right sub-

expression (line 8 in Figure 2c), taking 13 years to discover it [19].

If JOG had been used for implementing the optimization, this bug

could have been avoided.

JOG analyzes the before and after API calls to infer conditions

and construct new expressions, eventually generating C/C++ code

as compiler passes. Figure 2b shows code generated from the pattern

in Figure 2a, preserving functionality and avoiding the bug found

in the hand-written code shown in Figure 2c.
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Input Patterns Translation Output

before((a-b)+(b-c));

eAST

eAST

Pattern ADD7

Pattern ADD2

after(a-c);

before((a-b)+(c-d));

after((a+c)-(b+d));

Compiler pass (C/C++)

IR test (Java)

ADD2 Shadows ADD7

Compiler pass (C/C++)

IR test (Java)

Figure 3: Overview of the JOG framework. In addition to

translation from a pattern to an optimization pass, JOG out-

puts IR tests for each optimization, as well as the list of shad-

owed patterns.

3 TECHNIQUE AND IMPLEMENTATION

Figure 3 shows a high-level overview of the workflow of the JOG

framework. In this section, we briefly describe the design and im-

plementation of patterns, translation details, test generation, and

shadow relation detection [25].

Design and implementation of patterns. As the example in Fig-

ure 2a shows, we define the syntax of patterns using a subset of

the Java programming language, where each optimization is rep-

resented as a Java method annotated with @Pattern. The parame-

ters of these methods declare variables used in patterns, with two

types: constant values (representing literals that are annotated with

@Constant) and free variables (representing any expression). We

also provide two API methods, void before(int expression),

which specifies the expression to match in the pattern, and void

after(int expression), which specifies the optimized expres-

sion (int can also be long). A valid pattern must contain both a

before and aftermethod call in the method body, which may also

feature if statements for preconditions and assignments for local

variable re-assignments.

Translation. JOG translates patterns into C/C++ code that imple-

ments compiler passes for JIT optimizations. JOG starts translation

with parsing the expression provided in the before API and con-

structing an extended abstract syntax tree (eAST) for it. The eAST

represents the structure of IR that matches the expression, which

is essentially a directed acyclic graph (DAG). JOG maps identifiers

in the pattern to eAST nodes. The same identifiers are reused to

construct eAST for the after API. Figure 4 shows the eASTs con-

structed from the pattern ADD8 (Figure 2a). Next, JOG creates an if

statement where the condition represents the necessary conditions

for expression matching. These conditions may check operators,

constants, identical identifiers, etc., and any preconditions specified

in the pattern. The łthenž branch of the if statement ends with a

return statement providing the optimized expression. Finally, JOG

prepends the if statement with proper variable declarations, con-

cluding translation of the pattern. When handling multiple patterns,

JOG follows the order specified in the provided file.

+

- -

a b c

(a) eAST of before expression.

-

c b

(b) eAST of after expression.

Figure 4: eASTs for pattern ADD8 in Figure 2a.

Test generation. We use the example in Figure 1 to describe how

JOG generates an IR test from the pattern in Figure 2a. The @Test

method first declares exactly the same free variables as the pattern

(long a, long b, long c), and returns exactly the expression

inside the beforeAPI in the pattern (return (a - b) + (c - a);).

One exception is that when the pattern has a constant variable, JOG

uses a random number to substitute the constant variable. Next,

JOG analyzes before and after in the pattern. JOG searches in

after’s eAST (c - b) to count the number of operators (one SUB),

and compares before’s and after’s eASTs to obtain the operators

that exist in before but not in after (ADD). JOG then maps the

operators to the corresponding IR node types used in IR tests and

creates @IR annotations (@IR(counts = IRNode.SUB, “1”) and

@IR(failOn = IRNode.ADD)).

Shadowing optimizations. Consider two optimizations 𝑋 and

𝑌 in an optimization pass, which are sequentially placed, i.e., 𝑋

followed by 𝑌 . If the set of instructions that 𝑌 matches is a subset of

the set of instructions that 𝑋 matches, then 𝑌 will never be invoked

because 𝑋 is always invoked before 𝑌 for any matched instructions.

In this case, we say 𝑋 shadows 𝑌 or 𝑌 is shadowed by 𝑋 , e.g., 𝑋

transforms (a - b) + (c - d) into (a + c) - (b + d), and 𝑌

transforms (a - b) + (b - c) into a - c, with variables a, b, c,

and d. Given a pair of optimizations expressed in patterns 𝑋 and

𝑌 , JOG rewrites the problem of whether 𝑋 shadows 𝑌 formally as

follows: For every expression 𝐸 matched by 𝑌 , is it also matched by

𝑋? JOG then encodes this problem in an SMT formula and leverages

a constraint solver (Z3 [5]) to obtain a result on the shadow relation

between the given pair of patterns [25].

4 TOOL INSTALLATION AND USAGE

JOG requires JDK 11 or later versions. We describe the installation

steps and usage instructions using a Linux system (Ubuntu 20.04)

with GNU Bash (version 5.0) as an example. We also provide a

docker image that contains a built OpenJDK and the cloned JOG

repository, which can be obtained by docker pull zzqut/jog:latest.

4.1 Installation

The first step is to clone the JOG repository1.

$ git clone https://github.com/EngineeringSoftware/jog

$ cd jog

To install JOG, one can execute the installation script like so:

$ ./tool/install.sh

1We provide the icse24-demo tag for the archive purpose.
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