## 3D plants: Integrating science, technology, and design in STEAM+Ag education using emergent technologies



Common milkweed

Sandra Arango-Caro, Ph.D., Sr. Education Researcher Tiffany Langewisch, Ph.D., Postdoctoral Fellow Kaitlyn Ying, Undergraduate Intern Michelle Arellano, Ph.D., Collaborator Nate Ly, Undergraduate Inter Kristine Callis-Duehl, Ph.D., Director of Education



## Science Learning



Source: ESB Professional

#### Challenges in science learning:

- memorization
- abstract concepts
- overload of content
- no application to real live situations
- disconnect with other disciplines

#### Importance:

- science literacy
- scientific thinking
- becoming a scientist
- accessible to all

## Technology and Design



Technology is part of our daily lives

Technology-enabled learning

Nontraditional/interdisciplinary instruction

Emergent technologies & applications Augmented and virtual reality Digital design

Closing the digital use and access divide

Need of 21<sup>st</sup> century skills

Workforce

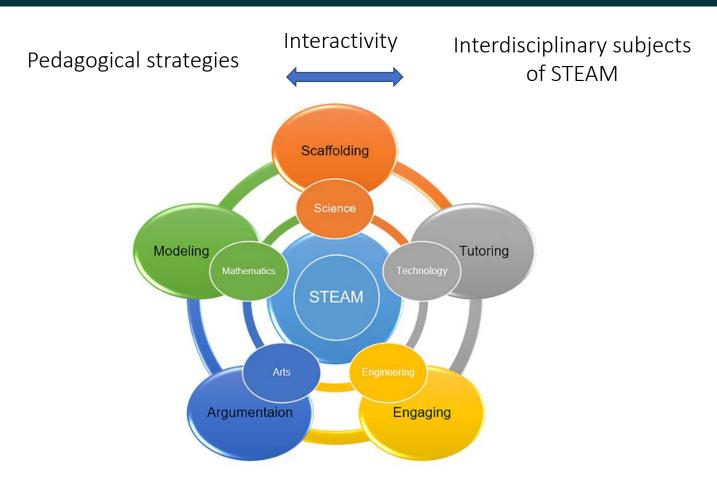
# 3D Plants: Students build AVR plant models to understand the role of design in STEM



#### Goal

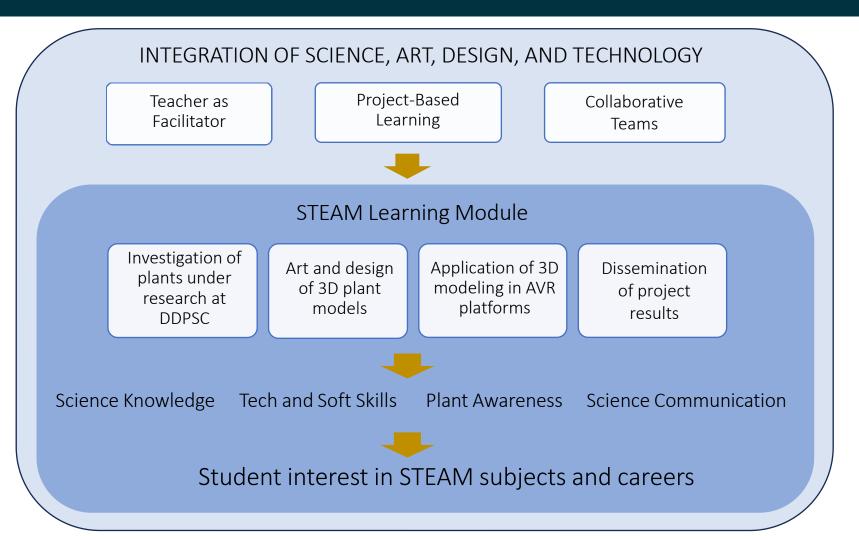
To address the disconnect between science, design, and technology at the high school level using 3D plant modeling

#### Objectives


- 1. Integrate art/design into STEM education (STEAM)
- 2. Foster plant science knowledge
- 3. Apply augmented and virtual reality (AVR) technologies
- 4. Inspire interest in and provide skills for future STEAM careers.

Next Generation Science Standards
National Coalition for Core Art Standards






## Pedagogical STEAM Model



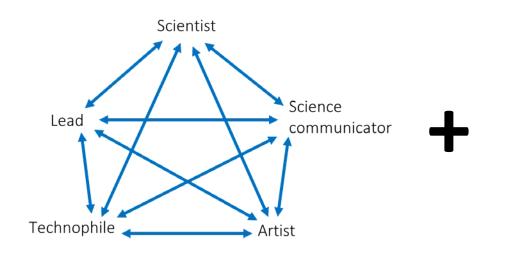
Lin & Tsai, 2021

## SADT Approach



## Research Questions




What are the students' learning and skills gains from using the SADT approach?

What is the impact of the SADT approach on students' interest in STEAM subjects and careers?



### Collaboration

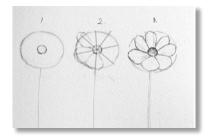
Teams made of art-, science-, tech-oriented students

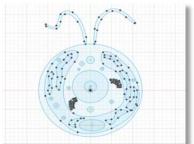


### Support:

- Teacher
- Protocols, training
- Scientists
- 3D modeler

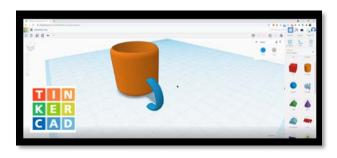
## Investigation of plant species under research at DDPSC





| Wheat (Triticum aestivum)      | Flower       |   | Scientific advisors: Dr. Blake Meyers (BMeyers@danforthcenter.org) Ryan DelPercio (RDelPercio@danforthcenter.org) Sebastien Belanger |
|--------------------------------|--------------|---|--------------------------------------------------------------------------------------------------------------------------------------|
| Barley<br>(Hordeum<br>vulgare) | Flower       |   | (SBelanger@danforthcenter.org)  Lab website  Research Program: To enable the hybridization                                           |
| Soybean<br>(Glycine max)       | Root nodules | 3 | of entirely new crops by understanding the mechanisms underlying pollen development.                                                 |
| Oat (Avena<br>sativa)          | Flower       | * |                                                                                                                                      |

- Plant biology: life form, habitat, distribution, reproduction
- Importance: e.g., fix nitrogen, crop, climate adaptation
- Danforth research: e.g., seed dispersal, model plant

## Art and Design of 3D models


# The concept art







3D modeling self-training





3D model creation





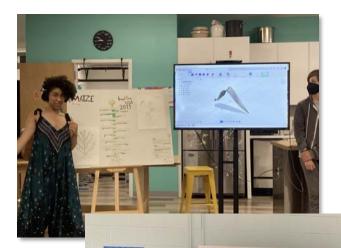
## Applications of 3D models in AVR

## **z**Space



Augmented Reality (AR)








Virtual Reality (AR)

## Dissemination of Project Results

#### Posters



#### One-page handout



#### Websites



Digital presentations

## Mix-Methods Approach

#### Qualitative

Pre/Post Reflection questions about the STEAM learning and skills gains, outcomes, and interest in STEAM careers. (Deductive coding)

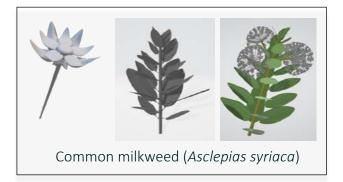
#### Quantitative

Pre/Post Survey on student perceptions of STEAM disciplines and careers

(Adapted from the STEM Semantics Survey by Tyler-Wood et al. 2010)

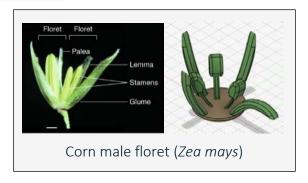


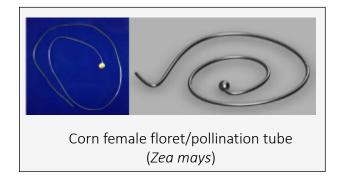
IRB approval
Parent consent
Student assent

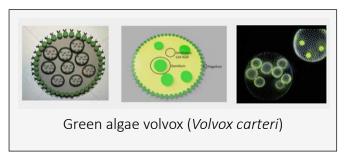

On-line surveys - Qualtrics



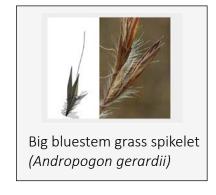
# Educational Institutions (Summer 2020 – Spring 2023)

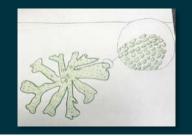

| Type of Institution | No. of institutions                       | No. of students |  |  |
|---------------------|-------------------------------------------|-----------------|--|--|
| Urban schools       | 7                                         | 119             |  |  |
| Rural schools       | 6                                         | 124             |  |  |
|                     |                                           |                 |  |  |
| Public schools      | 8                                         | 176             |  |  |
| Private schools     | 3                                         | 46              |  |  |
| Informal programs   | 2                                         | 21              |  |  |
|                     |                                           |                 |  |  |
| Total institutions  | 13                                        | 243             |  |  |
| Cities/Towns/States | 6 cities/towns in MO<br>2 city/town in IL | 41 MO<br>202 IL |  |  |


## 3D Plant Models
















# What are the students' learning and skills gains from using the SADT approach?

| Themes                                    | No. students<br>with only<br>pre responses |      | No. students<br>with pre and<br>post responses |      | No. students<br>with only post<br>responses |      | Total No.<br>students<br>per theme |      |
|-------------------------------------------|--------------------------------------------|------|------------------------------------------------|------|---------------------------------------------|------|------------------------------------|------|
|                                           | No.                                        | %    | No.                                            | %    | No.                                         | %    | No.                                | %    |
| Learning new/interesting things           | 11                                         | 17.5 |                                                |      |                                             |      | 11                                 | 17.5 |
| Learning about science                    | 5                                          | 7.9  |                                                |      | 5                                           | 7.9  | 10                                 | 15.9 |
| Learning about plants                     | 7                                          | 11.1 | 6                                              | 9.5  | 25                                          | 39.7 | 38                                 | 60.3 |
| Learning about research skills            | 3                                          | 4.8  |                                                |      | 13                                          | 20.6 | 16                                 | 25.4 |
| Learning about 3D modeling                | 15                                         | 23.8 | 9                                              | 14.3 | 11                                          | 17.5 | 35                                 | 55.5 |
| Learning about design/art                 | 8                                          | 12.7 | 1                                              | 1.6  | 7                                           | 11.1 | 16                                 | 25.4 |
| Learning soft skills                      |                                            |      |                                                |      |                                             |      |                                    |      |
| Learning about communication              | 1                                          | 1.6  |                                                |      | 7                                           | 11.1 | 8                                  | 12.7 |
| Learning about science communication      |                                            |      | 1                                              | 1.6  | 4                                           | 6.3  | 5                                  | 8.0  |
| Learning about teamwork/collaboration     |                                            |      |                                                |      | 17                                          | 27.0 | 17                                 | 27.0 |
| Learning about perseverance               |                                            |      |                                                |      | 3                                           | 4.8  | 3                                  | 4.8  |
| Learning about time management and memory |                                            |      |                                                |      | 6                                           | 9.5  | 6                                  | 9.5  |

Percentages are calculated with respect to a total of 63 students participating in the pre and post reflection questions (100%). Percentages per column or row do not add to one hundred since some students provided responses for more than one theme.

ER@L Education Research & Outreach Lab

DONALD DANFORTH PLANT SCIENCE CENTER



## Changes in interests in STEAM subjects and careers

Paired t-test comparisons between pre and post responses to the STEAM Semantics survey

| Subject          | Pre-survey<br>mean (SD) | Post-survey<br>mean (SD)* | t- value | P value |
|------------------|-------------------------|---------------------------|----------|---------|
| Science          | 2.8 (1.5)               | 2.6 (1.4)                 | 3.7      | 0.000   |
| Technology       | 2.9 (1.7)               | 2.8 (1.5)                 | 1.3      | 0.2     |
| Engineering      | 3.2 (1.6)               | 3.2 (1.5)                 | 0.3      | 0.8     |
| Mathematics      | 4.2 (1.8)               | 4.0 (1.8)                 | 2.6      | 0.008   |
| Design           | 2.9 (1.7)               | 2.5 (1.3)                 | 4.1      | 0.001   |
| Careers in STEAM | 2.8 (1.6)               | 2.8 (1.5)                 | 1.0      | 0.3     |

<sup>\*</sup> The smaller the mean values, the more positive the responses are. Students responded on a Likert scale of 1-7, with 1 being the most positive choice and 7 being the most negative choice for each of the five statements per subject. SD − Standard Deviation. Significant p-values equal ≤ 0.05.

77 students, 385 responses per subject



# Changes in interests in STEAM subjects and careers

Responses to the post reflection question:

"Has participating in this project changed your interest in science and or art/design careers moving forward? If so, how?

| Themes                                             | No. students | %    |
|----------------------------------------------------|--------------|------|
| Statements expressing positive change              | 27           | 39.7 |
| More interest in science careers *                 | 10           | 14.7 |
| More interest in STEAM careers **                  | 12           | 17.6 |
| More interest in STEAM careers with other subjects | 1            | 1.5  |
| More interest in design careers                    | 3            | 4.4  |
| More interest in non-STEAM careers                 | 1            | 1.5  |
| Statements expressing no change                    | 41           | 60.3 |
| Already interested in science careers              | 4            | 5.9  |
| Already interested in STEAM careers                | 4            | 5.9  |
| Already interested in art/design careers           | 1            | 1.5  |
| Already interested in non-STEAM careers***         | 8            | 11.8 |
| Unknown reason                                     | 24           | 35.3 |
| Total students                                     | 68           | 100  |

<sup>\*</sup> Six students interested in plant science. \*\* One student interested in plant science. \*\*\* Three students acknowledged that the module helped them reinforce their interest in non-STEAM careers.



## Conclusions

What are the students' learning and skills gains from using the SADT approach?

- Learning about science, plant science, 3D modeling, and art/design
- Gaining new skills: teamwork, communication, perseverance, time management, and memory



## Conclusions

What is the impact of the SADT approach on students' interest in STEAM subjects and careers?

- Students showed a significant increase in interests in science, mathematics and design
- Students expressed more interests in science and STEM careers
- Many were already interested in STEM careers

#### What is next?

- Finish analyzing rural data from Spring 2024
- Examine student differences in learning and skills gain among institutions (urban vs rural, public vs private, etc.)
- Examine student outcomes related to productive failure, team dynamics, and science communication.



## Acknowledgements

STUDENTS FROM:

Cardinal Ritter College Prep High School

Center for Visual and Performing Arts High School

Cor Jesu Academy

DeSmet High School

Eureka High School

Gateway High School

Glendale High School

Grand Center Arts Academy

**Kairos Academies** 

Ladue Horton Watkins High School

Lafayette High school

Lindbergh High School

Metro High School

**MICDS** 

Montessori Adolescent Program - St. Louis

Nerix Hall

Parkway North High School

Parkway South High School

Parkway West High School

Pattonville High School

Thomas Jefferson School

University City High School

Visitation Academy of St. Louis

**TEACHERS** 

Emily Owen

Ruth Reese

Jen Fu

Kerry Stevison

Justin Lines

Laurie Blanner

Meredith Jacques

Laura Bradford

Christian Borja

Christine Pickett

Kaitlyn Edwards

zSPACE

Jody Attar training

PROJECT ADVISOR

Chris Branton

**EROL LAB MEMBERS** 

Parag Bhatt

Harini Gottumukula

Ash Kass

CODING

Kaitlyn Ying

Michelle Arellano

Tiffany Langewisch

3D MODELING ADVISOR, TRAINING

Nate Ly

SCIENTIST ADVISORS

Toby Kellogg

Armando Bravo

Christopher Topp





## Q & R

Sandra Arango-Caro, Ph.D. <a href="mailto:sarango-caro@danforthcenter.org">sarango-caro@danforthcenter.org</a>

Kristine Callis-Duehl, Ph.D. kcallis-duehl@danforthcenter.org

Education Technology Program Website

