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A bst r a ct

T h e esti m ati o n of 3 D h u m a n m oti o n fr o m vi d e o h as pr o-
gr ess e d r a pi dl y b ut c urr e nt m et h o ds still h a v e s e v er al k e y
li mit ati o ns. First, m ost m et h o ds esti m at e t h e h u m a n i n c a m-
er a c o or di n at es. S e c o n d, pri or w or k o n esti m ati n g h u m a ns
i n gl o b al c o or di n at es oft e n ass u m es a fl at gr o u n d pl a n e a n d
pr o d u c es f o ot sli di n g. T hir d, t h e m ost a c c ur at e m et h o ds r el y
o n c o m p ut ati o n all y e x p e nsi v e o pti miz ati o n pi p eli n es, li mit-
i n g t h eir us e t o of fli n e a p pli c ati o ns. Fi n all y, e xisti n g vi d e o-
b as e d m et h o ds ar e s ur prisi n gl y l ess a c c ur at e t h a n si n gl e-
fr a m e m et h o ds. We a d dr ess t h es e li mit ati o ns wit h W H A M
( W orl d- gr o u n d e d H u m a ns wit h A c c ur at e M oti o n), w hi c h a c-
c ur at el y a n d ef fi ci e ntl y r e c o nstr u cts 3 D h u m a n m oti o n i n a
gl o b al c o or di n at e s yst e m fr o m vi d e o. W H A M l e ar ns t o lift
2 D k e y p oi nt s e q u e n c es t o 3 D usi n g m oti o n c a pt ur e d at a a n d
f us es t his wit h vi d e o f e at ur es, i nt e gr ati n g m oti o n c o nt e xt a n d
vis u al i nf or m ati o n. W H A M e x pl oits c a m er a a n g ul ar v el o cit y
esti m at e d fr o m a S L A M m et h o d t o g et h er wit h h u m a n m oti o n
t o esti m at e t h e b o d y’s gl o b al tr aj e ct or y. We c o m bi n e t his
wit h a c o nt a ct- a w ar e tr aj e ct or y r e fi n e m e nt m et h o d t h at l ets
W H A M c a pt ur e h u m a n m oti o n i n di v ers e c o n diti o ns, s u c h
as cli m bi n g st airs. W H A M o ut p erf or ms all e xisti n g 3 D h u-
m a n m oti o n r e c o v er y m et h o ds a cr oss m ulti pl e i n-t h e- wil d

b e n c h m ar ks. C o d e will b e a v ail a bl e f or r es e ar c h p ur p os es
at htt p:// w h a m.is.t u e. m p g. d e/ .

1. I nt r o d u cti o n

O ur g o al is t o a c c ur at el y esti m at e t h e 3 D p os e a n d s h a p e
of a p ers o n fr o m m o n o c ul ar vi d e o. T his is a l o n gst a n di n g
pr o bl e m a n d, w hil e t h e fi el d h as m a d e r a pi d pr o gr ess, s e v-
er al k e y c h all e n g es r e m ai n. First, h u m a n m oti o n s h o ul d b e
c o m p ut e d i n a c o nsist e nt gl o b al c o or di n at e s yst e m. S e c o n d,
t h e m et h o d s h o ul d b e c o m p ut ati o n all y ef fi ci e nt, s u p p orti n g
r e al-ti m e pr o c essi n g. T hir d, t h e r es ults s h o ul d b e a c c ur at e,
t e m p or all y s m o ot h, d et ail e d, n at ur al l o o ki n g, a n d h a v e r e alis-
ti c f o ot- gr o u n d c o nt a ct. F o urt h, t h e c a pt ur e s h o ul d w or k wit h
a n ar bitr ar y m o vi n g c a m er a. T h es e c o nstr ai nts n e e d t o b e
s atis fi e d t o m a k e m ar k erl ess h u m a n m oti o n c a pt ur e wi d el y
a v ail a bl e f or a p pli c ati o ns i n g a mi n g, A R/ V R, a ut o n o m o us
dri vi n g, s p orts a n al ysis, a n d h u m a n-r o b ot i nt er a cti o n. We
a d dr ess t h es e c h all e n g es wit h W H A M ( W orl d- gr o u n d e d H u-
m a ns wit h A c c ur at e M oti o n) , w hi c h e n a bl es f ast a n d a c c ur at e
r e c o v er y of 3 D h u m a n m oti o n fr o m a m o vi n g c a m er a; s e e
Fi g. 1 .

It s e e ms n at ur al t h at, i n esti m ati n g 3 D h u m a ns fr o m vi d e o,

1

ar
Xi

v:
23

12
.0

75
31

v1
  
[c

s.
C

V]
  

12
 

De
c 

20
23

http://wham.is.tue.mpg.de/


we should be able to exploit the temporal nature of video.
Counter-intuitively, existing video-based methods for 3D
human pose and shape (HPS) estimation [6, 15, 17, 30, 43,
51] are less accurate than the best single-frame methods
[7, 14, 18, 21, 23, 25, 59, 59]. This may be an issue of
training data. There are large datasets of single images with
ground-truth 3D human poses containing a diversity of body
shapes, poses, backgrounds, lighting, etc. In contrast, video
datasets with ground truth are much more limited.

To address this, WHAM leverages both the large-scale
AMASS motion capture (mocap) dataset [32] and video
datasets. Our key idea is to learn about 3D human motion
from AMASS and then learn to fuse this information with
temporal image cues from video, getting the best of both.
Similar to previous work [60, 61], we use AMASS to gen-
erate synthetic 2D keypoints and ground-truth motion se-
quence pairs, from which we pretrain a motion encoder and
decoder to lift sequences of 2D keypoints to sequences of
3D poses. This motion encoder captures the essential motion
context recursively over time, while the decoder translates
this context into realistic 3D motion. Given the robustness
of recent 2D keypoint detection models [53, 58], our pre-
trained model does a good job of predicting human pose
from video.

Keypoints alone, however, are too sparse for accurate,
unambiguous, 3D mesh estimation. To improve accuracy, we
jointly train a new feature integrator network that merges in-
formation from video sequences and 2D-keypoint sequences.
Like the motion context, the image features are integrated
over time and the image encoder and feature integrator are
trained using video datasets with known 3D pose and shape
[11, 15, 33, 49]. This integration process supplements the
motion context extracted from the sparse input signal (i.e.,
2D keypoints) with dense visual context, significantly im-
proving the recovered pose and shape accuracy.

While the above approach produces accurate motion, we
want this motion in a global coordinate. Most previous meth-
ods, compute the body in camera coordinates. Estimating
the global human trajectory is particularly challenging when
the camera is moving because the motions of the body and
the camera are entangled. Recent work addresses this chal-
lenge by exploiting a learned prior distribution over human
motions, together with camera information from SLAM
methods [20, 41, 54] or dense 3D scene information from
COLMAP [28], to solve for global human motion using op-
timization. However, these optimization-based methods are
computationally expensive and far from real time. Recent
regression-based methods are faster but either constrain the
problem with static or known camera conditions [42, 60] or
have temporal jitter and limited accuracy [45]. We tackle this
challenge with two additional modules. First, we predict the
global orientation and egocentric velocity of the human from
the motion context by training a global trajectory decoder.

Specifically, we concatenate the camera’s angular velocity
to the context and train the global trajectory decoder to re-
cursively predict the current orientation and root velocity,
effectively factoring camera motion from human motion.
Global translation is computed by roll-out. WHAM takes the
camera’s angular velocity either from the output of a SLAM
method or from a camera’s gyroscope when available. We
demonstrate the use of both.

The above solution relies on knowledge of human motion
learned from AMASS. While this works well when people
are moving on a flat ground plane, it can fail to capture eleva-
tion changes when the surface is not flat, e.g. when ascending
the stairs. Even though we have no explicit ground-plane
assumption (unlike [54]), this occurs because AMASS has
a limited amount of such data. To address this, we intro-
duce foot contact as an additional explicit form of motion
context. We train WHAM to predict the likelihood of foot-
ground contact using estimated contact labels from both the
AMASS and 3D video datasets. We then train a trajectory
refinement network that outputs an update to the root ori-
entation and velocity based on the information about the
foot contact/velocity. This refinement based on foot contact
enables WHAM to accurately estimate human motion in a
global coordinate system even when the terrain is not flat.

WHAM has very low computational overhead because
it is an on-line algorithm that recursively predicts the pose,
shape, and global motion parameters. The network, exclud-
ing preprocessing (bounding box detection, keypoint detec-
tion, and person identification), runs at 200 fps, significantly
faster than prior methods. Also, despite not using global opti-
mization like [54], we obtain accurate 3D camera trajectories
and global body motions with minimal drift. Through exten-
sive comparisons on multiple in-the-wild datasets as well as
detailed ablation studies, we find that WHAM achieves state-
of-the-art (SOTA) accuracy on 3D human pose estimation as
well as global trajectory estimation (see Fig. 1).

In summary, in this paper we: (1) introduce the first ap-
proach to effectively fuse 3D human motion context and
video context for 3D HPS regression; (2) propose a novel
global trajectory estimation framework that leverages motion
context and foot contact to effectively address foot sliding
and enable the 3D tracking of people on non-planar surfaces;
(3) perform HPS in global coordinates efficiently; (4) achieve
state-of-the-art (SOTA) performance on multiple in-the-wild
benchmark datasets (3DPW [49], RICH [10], EMDB [16]).
WHAM is the first video-based method to outperform all
image-based and video-based methods on per-frame accu-
racy (MPJPE, PA-MPJPE, and PVE) while maintaining tem-
poral smoothness (Accel). Pretrained models and training
code will be available for research purposes.

2



2. Related Work
Image-based 3D HPS Estimation. There are two broad
classes of methods for recovering 3D HPS from images:
model-free [22, 27, 34] and model-based [7, 12–14, 21, 25,
35, 36]. Here we focus on model-based methods, which
estimate the low-dimensional parameters of a statistical
body model [29, 37, 38, 52]. While early work explores
optimization-based methods [2], here we focus on direct
regression methods based on deep learning.

Many existing methods follow the architecture of HMR
[14], which uses a pre-trained backbone to predict image
features followed by a multilayer perceptron (MLP) that re-
gresses SMPL [29] pose parameters from image features. To
train such networks it leverages paired images with SMPL
parameters, which are often pseudo-groundtruth SMPL pa-
rameters estimated from 2D keypoints [12, 21, 25, 35, 36].
Other architectures for HPS regression have also been pro-
posed [7, 18, 19, 23, 24, 59]. None of these methods use
video or estimate the body in global coordinates. While quite
accurate, when these image-based models are applied in-
dependently to frames of a video sequence, the shape and
pose can be temporally inconsistent. In contrast, WHAM ef-
fectively aggregates temporal information to provide frame-
accurate and temporally-coherent 3D HPS estimation.
Video-Based 3D HPS. Video-based methods typically en-
code temporal information by combining static features ex-
tracted by a backbone from each frame. HMMR [15] uses a
convolutional encoder, while VIBE [17] and MEVA [30] em-
ploy recurrent neural networks. TCMR [6] divides sequences
into past, future, and whole frames, aggregating information
to strongly constrain the output with motion consistency.
MPS-Net [51] uses attention to capture non-local motion
context and a hierarchical architecture to aggregate temporal
features. Both MAED [50] and GLoT [43] use transformer
architectures [48] to encode videos. MAED encodes videos
in both temporal (across frames) and spatial (within each
frame) dimensions and leverages the kinematic tree to iter-
atively regress each joint angle. GLoT encodes long-term
temporal correlations and refines local details by focusing
on nearby frames. Despite integrating information across
frames, all existing video-based methods have lower accu-
racy than the best single-frame methods.

Given limited video training data with ground truth SMPL
poses, several single-frame methods infer a mesh from
2D/3D keypoints [5, 8, 31, 34, 39] and use the keypoints
as a proxy for training. Another set of approaches exploits
3D mocap data, which is plentiful [32], to train a network
to lift 2D joints to 3D poses, which are used as a proxy
for ground truth 3D. MotionBERT [61] synthesizes 2D key-
points through orthographic projection to learn unified mo-
tion representation. ProxyCap [60] creates virtual cameras
with heuristic pose distribution, on which synthetic 3D key-
points are projected. Despite benefiting from the scale of

the mocap dataset, these approaches do not fully utilize the
visual information available in the video at test time. In
our work, we propose a combined network architecture and
training strategy that leverages both proxy representations
of human pose (lifting) and visual context extracted from
video.
Global 3D Motion Estimation with Dense Sensors. Sev-
eral methods augment video data with other sensors to es-
timate 3D HPS in world coordinates. The 3DPW dataset
[49] employs pre-calibrated body-worn inertial sensors and
a handheld camera to jointly optimize the camera and human
motion in challenging environments. Similarly, the EMDB
dataset [16] uses electromagnetic sensors with an RGB-D
camera, enabling accurate human motion capture in the
world. Although body-worn sensors aid reconstruction of
global human motion, they are intrusive, require cooperation,
and do not help with archival video. BodySLAM++ [9] in-
troduces a rapid optimization method using a visual-inertial
sensor, comprising stereo cameras and an IMU. In contrast,
we use a standard monocular camera, balancing accessibility
and accuracy without the need for specialized equipment.
While WHAM can take the camera gyro as input, this is not
required.
Monocular Global 3D Human Trajectory Estimation.
Estimating the global human trajectory from a monocular
dynamic camera is challenging. Previous work relies on
learned prior distributions of human motion to separate hu-
man motion from camera motion. GLAMR [57] predicts the
global trajectory based on a predicted and infilled 3D motion
sequence and optimizes it across multiple individuals in the
scene. However, since GLAMR does not consider camera
motion cues, the output trajectory may be noisy when the
camera is rotating. SLAHMR [54] and PACE [20] use off-
the-shelf SLAM algorithms [46, 47] and jointly optimize
the camera and human motion to minimize the negative log
likelihood of a learned motion prior [40]. While they achieve
good results, their optimization approach is computationally
expensive. TRACE [45] is a pure regression method that
utilizes optical flow as a motion cue and estimates multi-
ple people at once, but lacks temporal consistency. GloPro
[42] regresses the uncertainty of the global human motion
in real time, but requires known camera poses. In contrast,
WHAM leverages both explicit and implicit prior knowledge
of human motion and efficiently reconstructs accurate and
temporally coherent 3D human motion in world coordinates.

3. Methods

3.1. Overview

An overview of our World-grounded Human with Accu-
rate Motion (WHAM) framework is illustrated in Fig. 2. The
input to WHAM is a raw video data {I(t)}Tt=0, captured by a

3



𝐼!

𝐼"

𝐼#

𝐼#$"

In
pu

t V
id

eo
Image 

Encoder
𝑬𝑰

Motion 
Encoder
𝑬𝑴

Camera Coordinates

World Coordinates

SLAM or 
Gyroscope

image feature

𝜙!
"

motion feature

𝜙#
"

camera angular velocity 

									𝜔 "

updated feature

𝜙$#
"

Motion 
Decoder
𝑫𝑴

contact probability

𝑝 "

2D
 D

etection

RNN layers MLP layers CNN / ViT layers

Feature
Integrator

𝑭𝑰

initial trajectory

Γ$
" , 𝑣$

"
global trajectory

Γ " , 𝜏 "

SMPL parameters

𝜃 " , 𝛽 "

camera

𝑐 "

Trajectory 
Refiner
𝑹𝑻

⋯

High contact 
probability

Trajectory 
Decoder

𝑫𝑻

Figure 2. An Overview of WHAM. WHAM takes the sequence of 2D keypoints estimated by a pretrained detector and encodes it to the
motion feature. WHAM then updates the motion feature using another sequence of image features extracted from the image encoder through
the feature integrator. From the updated motion feature, the Local Motion Decoder estimates 3D motion in the camera coordinate system and
foot-ground contact probability. The Trajectory Decoder takes the motion feature and camera angular velocity to initially estimate the global
root orientation and egocentric velocity, which are then updated through the Trajectory Refiner using the foot-ground contact. The final
output of WHAM is pixel-aligned 3D human motion with the 3D trajectory in the global coordinates.

camera with possibly unknown motion. Our goal is to predict
the corresponding sequence of the SMPL model parameters
{Θ(t)}Tt=0, as well as the root orientation {Γ(t)}Tt=0 and
translation {τ (t)}Tt=0, expressed in the world coordinate sys-
tem. We use ViTPose [53] to detect 2D keypoints {x(t)

2D}Tt=0

from which we obtain motion features {ϕ(t)
m }Tt=0 using the

motion encoder. Additionally, we use a pretrained image
encoder [7, 21, 25] to extract static image features {ϕ(t)

i }Tt=0

and integrate them with {ϕ(t)
m }Tt=0 to obtain fine-grained mo-

tion features {ϕ̂(t)
m }Tt=0 from which we regress 3D human

motion in the world coordinate system.

3.2. Network Architecture

Uni-directional Motion Encoder and Decoder. In contrast
to existing methods [6, 30, 43, 51, 61], which use windows
with a fixed time duration, we use uni-directional recurrent
neural networks (RNN) for the motion encoder and decoder,
making WHAM suitable for online inference. The objective
of the motion encoder EM is to extract the motion context
ϕ
(t)
m from the current and previous sequence of 2D keypoints

and the initial hidden state h
(0)
E :

  \phi _m^{(t)} = E_M\big {(}x_{2D}^{(0)}, x_{2D}^{(1)}, ..., x_{2D}^{(t)} | h_{E}^{(0)} \big {)}. 
 







 









We normalize keypoints to a bounding box around the person
and concatenate the box’s center and scale to the keypoints,
similar to CLIFF [25]. The role of the motion decoder DM

is to recover SMPL parameters (θ, β), weak-perspective
camera translation c, and foot-ground contact probability p,
from the motion feature history:  \big {(}\theta ^{(t)}, \beta ^{(t)}, c^{(t)}, p^{(t)} \big {)}= D_M\big {(} \hat {\phi }_m^{(0)}, ..., \hat {\phi }_m^{(t)} | h^{(0)}_{D} \big {)}. 

  





  







Here, ϕ̂(t)
m is the motion feature integrated with the image

feature ϕ
(t)
i (described below). During pre-training on syn-

thetic data, the image feature is not available and we set
ϕ̂
(t)
m = ϕ

(t)
m . As the encoder and decoder are tasked with

reconstructing a dense 3D representation Θ from a sparse
2D input signal x2D, we design an intermediate task to pre-
dict the 3D keypoints x3D and use them as the intermediate
motion representation. This cascaded approach guides ϕm

to represent the implicit context of motion and the 3D spa-
tial structure of the body. We initialize the hidden states of
the motion encoder and decoder,

(
h
(0)
E , h

(0)
D

)
, following PIP

[56]; See Sup. Mat. for details.
Motion and Visual Feature Integrator. We use the AMASS
dataset to synthetically generate 2D sequences by projecting
3D SMPL joints into images with varied camera motions.
This provides effectively limitless training data that is far
more diverse than existing video datasets that contain ground
truth 3D pose and shape. Although we leverage the temporal
human motion context, lifting 2D keypoints to 3D meshes is
an ambiguous task. A key idea is to augment this 2D keypoint
information with image cues that can help disambiguate the
3D pose. Specifically, we use an image encoder [1, 7, 21,
25], pretrained on the human mesh recovery task, to extract
image features ϕi, which contain dense visual contextual
information related to the 3D human pose and shape. We
then train a feature integrator network, FI , to combine ϕm

with ϕi, integrating motion and visual context. The feature
integrator uses a simple yet effective residual connection:

  \hat {\phi }_m^{(t)} = \phi _m^{(t)} + F_I\Big {(}\text {concat} \big {(} \phi _m^{(t)}, \phi _i^{(t)} \big {)} \Big {)}. 
 

 






 







This supplements motion features pre-trained on the 2D-to-
3D lifting task using AMASS with visual context, resulting
in enriched motion features that use image evidence to help
disambiguate the task.
Global Trajectory Decoder. We design an additional de-
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coder, DT , to predict the rough global root orientation Γ
(t)
0

and root velocity v
(t)
0 from the motion feature ϕ(t)

m . Since ϕm

is derived from the input signals in the camera coordinates,
it is highly challenging to decouple the human and camera
motion from it. To address this ambiguity, we append the
angular velocity of the camera, ω(t), to the motion feature,
ϕ
(t)
m , to create a camera-agnostic motion context. This design

choice makes WHAM compatible with both off-the-shelf
SLAM algorithms [46, 47] and gyroscope measurements
that are widely available from modern digital cameras. We
recursively predict global orientation, Γ(t)

0 , using the uni-
directional RNN.Similar to GLAMR [57], we use the ego-
centric root velocity to make the prediction invariant to the
global orientation:  \big {(} \Gamma _0^{(t)}, v_0^{(t)} \big {)} = D_T \big {(} \phi _m^{(0)}, \omega ^{(0)}, ..., \phi _m^{(t)},\omega ^{(t)}\big {)}. 



 









   

 



Contact Aware Trajectory Refinement. Good 3D motion
in world coordinates in most scenarios implies accurate foot-
ground contact without sliding. We want WHAM to general-
ize beyond flat ground planes, which are typically assumed
in prior work. Specifically, our new trajectory refiner aims
to resolve foot sliding and enables WHAM to generalize
well to diverse motions, including climbing stairs. The re-
finement involves two stages. First, we adjust the ego-centric
root velocity to ṽ(t) to minimize foot sliding, based on the
foot-ground contact probability p(t):

  \tilde {v}^{(t)} = v_0^{(t)} - \big {(} \Gamma _0^{(t)} \big {)}^{-1} \bar {v}_f^{(t)},  













where v̄
(t)
f is the averaged velocity of the toes and heels in

the world coordinate when their contact probability, p(t), is
higher than a threshold. However, this velocity adjustment
often introduces noisy translation when the contact and pose
estimation is inaccurate. Therefore, we propose a simple
learning mechanism in which a trajectory refining network,
RT , updates the root orientation and velocity to address this
issue. Finally, the global translation is computed through a
roll-out operation:(
Γ(t), v(t)

)
= RT

(
ϕ(0)
m ,Γ

(0)
0 , ṽ(0), ..., ϕ(t)

m ,Γ
(t)
0 , ṽ(t)

)
,

τ (t) =
t−1∑
i=0

Γ(i)v(i).

In summary, this full process reconstructs accurate 3D
human pose and shape in both the camera and world coordi-
nates from a single monocular video sequence (Fig. 2).

3.3. Training

Pretraining on AMASS. We train in two stages: (1) pretrain-
ing with synthetic data, and (2) fine-tuning with real data
(Fig. 3). The objective of the pretraining stage is to teach the

Motion 
Encoder

P
re

tra
in

in
g 

on
 A

M
A

S
S

Fi
ne

tu
ni

ng
 o

n 
Vi

de
o 

D
at

a

Image 
Encoder

Keypoints 
Detector

synthetic data generation

Motion 
Decoder

Trajectory 
Decoder

Motion 
Decoder

Trajectory 
Decoder

Motion 
Encoder

Feature 
Integrator

Figure 3. WHAM’s Two-Stage Training Scheme. During pre-
taining, we generate synthetic 2D keypoint sequences from AMASS
[32] and train a motion encoder and decoder on the generated data
(top). We then leverage video datasets with ground truth SMPL
parameters, for which there is much less data. We use the fixed-
weight pre-trained image encoder and keypoints detector ( ) to
extract image features and 2D keypoints. In this stage, we train the
feature integration network while fine-tuning the motion encoder
and motion/trajectory decoders, marked (bottom).

motion encoder to extract motion context from the input 2D
keypoint sequence. The motion and trajectory decoders then
map this motion context to the corresponding 3D motion and
global trajectory spaces (i.e. they lift the encoding to 3D).
We use the AMASS dataset [32] to generate an extensive set
of synthetic pairs consisting of sequences of 2D keypoints
together with the ground truth SMPL parameters.

To synthesize 2D keypoints from AMASS, we create vir-
tual cameras onto which we project 3D keypoints derived
from the ground truth mesh. Unlike MotionBERT [61] and
ProxyCap [60], which use static cameras for keypoint pro-
jection, we employ dynamic cameras that incorporate both
rotational and translational motion. This choice is based on
two main reasons. First, it accounts for the inherent differ-
ences between human motion captured in static and dynamic
camera setups. Second, it enables the learning of a camera-
agnostic motion representation, from which the trajectory
decoder can reconstruct the global trajectory. We also aug-
ment the 2D data with noise and masking. For details of the
synthetic generation process see Sup. Mat.
Fine-tuning on Video Datasets. Starting with the pre-
trained motion encoder and decoders, we fine-tune WHAM
on four video datasets: 3DPW [49], Human3.6M [11], MPI-
INF-3DHP [33], and InstaVariety [15]. For the human mesh
recovery task, we supervise WHAM on ground-truth SMPL
parameters from AMASS and 3DPW, 3D keypoints from Hu-
man3.6M and MPII3D, and 2D keypoints from InstaVariety.
For the global trajectory estimation task, we use AMASS,
Human3.6M, and MPII3D. Additionally, during training
we experiment with adding BEDLAM [1](which we call
WHAM-B), a large synthetic dataset with realistic video and
ground truth SMPL parameters.
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The fine-tuning has two objectives: 1) exposing the net-
work to real 2D keypoints, instead of training it solely on syn-
thetic data, and 2) training the feature integrator network to
aggregate motion and image features. To achieve these goals,
we jointly train the entire network on the video datasets while
setting a smaller learning rate on the pre-trained modules
(see Fig. 3). Consistent with prior work [6, 17, 30, 43, 51],
we employ a pre-trained and fixed-weight image encoder
[21] to extract image features. However, to leverage recent
network architectures and training strategies, we also ex-
periment with different types of encoders [1, 7, 25] in the
following section.

4. Experiments
Datasets. We evaluate WHAM on three in-the-wild bench-
marks: 3DPW [49], RICH [10], and EMDB [16]. Following
previous work [1, 6, 14, 17, 21, 25, 30], we perform the eval-
uation in camera coordinates. The estimated global trajectory
is evaluated on a subset of EMDB (EMDB 2) for which they
provide ground truth global motion with dynamic cameras
(used for evaluation). We also test on new sequences cap-
tured using an iPhone with ground-truth camera angular
rotation from the gyroscope. See Sup. Mat. for more details
of the datasets and iPhone results.
Evaluation metrics. To evaluate the accuracy of 3D hu-
man pose and shape estimation, we compute Mean Per
Joint Position Error (MPJPE), Procrustes-aligned MPJPE
(PA-MPJPE), and Per Vertex Error (PVE) measured in mil-
limeters (mm). We compute Acceleration error (Accel, in
m/s2)1 to measure the inter-frame smoothness of the recon-
structed motion. We also evaluate the motion reconstruc-
tion and trajectory estimation accuracy in the world-frame.
Following previous work [20, 54], we split sequences into
smaller segments of 100 frames and align each output seg-
ment with the ground-truth data using the first two frames
(W-MPJPE100) or the entire segment (WA-MPJPE100) in
mm. These previous metrics give an unrealistic picture of
3D performance as they do not measure drift over long se-
quences. Therefore, we also evaluate the error over the entire
trajectory after aligning with the initial camera pose and
measure the Root Orientation Error (ROE in deg) and Root
Translation Error (RTE in m). We also assess the consistency
of human motion in the global coordinate system using the
Ego-centric Root Velocity Error (ERVE) and Ego-centric
Foot Velocity Error (EFVE) in mm/frame.

4.1. 3D Human Motion Recovery

Per-frame accuracy. In Table 1, we present a comprehen-
sive comparison of WHAM and the existing state-of-the-art
per-frame and video-based methods across three benchmark
1Previous work follows [15] in reporting Accel in mm/frame2. To remove
the dependency on frame rate, we convert all previously reported results to
m/s2.
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Figure 4. Qualitative comparison with previous state-of-the-art
methods for 3D human pose and shape estimation. See text.

datasets [10, 16, 49]. WHAM (Res), WHAM (HR), and
WHAM (ViT) correspond to different architectures for the
pre-trained image encoders, derived from SPIN (ResNet-50)
[21], CLIFF (HRNet-W48) [1, 25], and HMR2.0 (ViT-H/16)
[7], respectively. Not surprisingly, WHAM (HR) is more
accurate than WHAM (Res), while the transformer-based
version, WHAM (ViT), is the most accurate. The backbone
matters, with WHAM (ViT) outperforming all previous meth-
ods on all per-frame metrics (MPJPE, PA-MPJPE, and PVE)
on all benchmarks. Because none of the methods are exposed
to data from RICH or EMDB during training, results on these
datasets are indicative of each method’s ability to generalize.
Even with the simplest ResNet backbone, WHAM (Res)
outperforms every method with the exception of BEDLAM-
CLIFF on RICH. Unlike BEDLAM-CLIFF, WHAM (Res)
is not trained on the BEDLAM dataset. Note that training on
BEDLAM consistently improves accuracy in prior work (see
[1, 3]), and we find the same here when we add BEDLAM to
the training data (WHAM-B). SLAHMR results for 3DPW
and RICH are from [54], while EMDB results are computed
with their released code.
Inter-frame smoothness. We also evaluate the inter-frame
smoothness using the acceleration error. Compared with
state-of-the-art per-frame methods [1, 7, 23, 25], WHAM
has significantly lower acceleration error. This indicates that
WHAM reconstructs smooth and more plausible 3D human
motion across frames while not sacrificing high per-frame
accuracy. Conversely, when compared to recent temporal
methods [6, 43, 51], WHAM exhibits marginally higher ac-
celeration error. However, we observe that these video-based
methods tend to over-smooth the human motion, resulting in
lower accuracy on per-frame metrics.

To provide intuition for these numbers, we qualitatively
compare WHAM with TCMR [6] and GLoT [43] in Fig. 4.
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3DPW (14) RICH (24) EMDB (24)

Models PA-MPJPE MPJPE PVE Accel PA-MPJPE MPJPE PVE Accel PA-MPJPE MPJPE PVE Accel
pe

r-
fr

am
e

SPIN [21] 59.2 96.9 112.8 31.4 69.7 122.9 144.2 35.2 87.1 140.3 174.9 41.3
PARE∗ [18] 46.5 74.5 88.6 – 60.7 109.2 123.5 – 72.2 113.9 133.2 –
CLIFF∗ [25] 43.0 69.0 81.2 22.5 56.6 102.6 115.0 22.4 68.1 103.3 128.0 24.5
HybrIK∗ [23] 41.8 71.6 82.3 – 56.4 96.8 110.4 – 65.6 103.0 122.2 –
HMR2.0 [7] 44.4 69.8 82.2 18.1 48.1 96.0 110.9 18.8 60.6 98.0 120.3 19.8
BEDLAM-CLIFF∗ [1] 43.0 66.9 78.5 31.0 50.2 84.4 95.6 29.3 60.6 98.0 111.6 36.1

te
m

po
ra

l

PACE [20] – – – – 49.3 – – 8.8 – – – –
TCMR∗ [6] 52.7 86.5 101.4 6.0 65.6 119.1 137.7 5.0 79.6 127.6 147.9 5.3
VIBE∗ [17] 51.9 82.9 98.4 18.5 68.4 120.5 140.2 21.8 81.4 125.9 146.8 26.6
MPS-Net∗ [51] 52.1 84.3 99.0 6.5 67.1 118.2 136.7 5.8 81.3 123.1 138.4 6.2
GLoT∗ [43] 50.6 80.7 96.4 6.0 65.6 114.3 132.7 5.2 78.8 119.7 138.4 5.4
GLAMR [57] 51.1 – – 8.0 79.9 – – 107.7 73.5 113.6 133.4 32.9
TRACE∗ [45] 50.9 79.1 95.4 28.6 – – – – 70.9 109.9 127.4 25.5
SLAHMR [54] 55.9 – – – 52.5 – – 9.4 69.5 93.5 110.7 7.1

WHAM (Res)∗ 41.7 65.7 78.7 6.6 53.1 91.4 105.6 5.3 58.9 90.3 106.1 5.7
WHAM (HR)∗ 40.9 64.5 77.7 6.8 50.7 88.0 100.8 5.7 58.4 89.5 107.7 6.5
WHAM (ViT)∗ 37.8 60.8 72.5 6.8 46.2 84.1 95.5 5.5 53.4 87.3 102.9 5.7
WHAM-B (ViT)∗ 37.2 59.4 71.0 6.9 44.7 82.6 93.2 5.6 48.8 80.7 93.7 5.9

Table 1. Quantitative comparison of state-of-the-art models on the 3DPW [49], RICH [10], and EMDB [16] datasets. Ordering of per-frame
and temporal methods is done separately by descending MPJPE on EMDB. For testing on EMDB, we follow the protocol of EMDB 1 [16].
Parenthesis denotes the number of body joints used to compute MPJPE and PA-MPJPE, and ∗ denotes models trained with the 3DPW
training set. Bold numbers denote the most accurate method in each column. Accel is in m/s2, all other errors are in mm.

EMDB 2

Models PA–MPJPE W-MPJPE100 WA-MPJPE100 RTE ROE ERVE

DPVO (+ HMR2.0) [7, 47] 49.6 2320.9 662.9 17.5 44.4 112.8
GLAMR [57] 56.0 756.1 286.2 16.7 74.9 18.0
TRACE [45] 58.0 2244.9 544.1 18.9 72.7 370.7
SLAHMR [54] 61.5 807.4 336.9 13.8 67.9 19.7

WHAM (w/ DPVO [47]) 41.9 446.6 169.0 8.8 40.4 14.8
WHAM (w/ DROID [46]) 41.9 439.2 166.1 8.4 36.0 14.7
WHAM (w/ GT gyro) 41.9 436.4 165.9 7.1 26.3 14.8

Table 2. Global motion estimation accuracy on EMDB [16].

While producing smooth results, TCMR and GLoT fail to
capture the bending of the left knee when the subject is as-
cending the stairs, while WHAM more accurately recon-
structs the 3D human pose. For more qualitative results
please see the Supplemental Video.

4.2. 3D Global Trajectory Recovery

To evaluate global trajectory recovery, we compare
WHAM with the state-of-the-art methods and a baseline that
combines a SLAM method (DPVO [47]) and a per-frame
method (HMR2.0 [7]); see Table 2. WHAM is agnostic to
the source of the camera angular velocity and we compare
results using DPVO, DROID-SLAM [46] and the ground
truth angular velocity (gyro).

As shown in Table 2, WHAM outperforms the existing
methods on all metrics. Specifically, combining WHAM

Screenshot from 2023-10-30 04-02-50.png

TRACE SLAHMR WHAM (Ours)

Figure 5. Qualitative comparison with TRACE [45] and SLAHMR
[54] on global human motion estimation with dynamic cameras.

with DPVO is more accurate than the global trajectory esti-
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Ground truth GLAMR TRACE SLAHMR WHAM (w/ DROID) WHAM (w/ GT gyro)

Figure 6. Comparison of global trajectory estimation on EMDB
[16]. Overall, WHAM shows better alignment to ground truth data
compared to GLAMR [57], TRACE [45], and SLAHMR [54].

EMDB 2

Methods PA-MPJPE PVE RTE ROE ERVE EFVE

w/o FI 44.1 84.9 9.4 41.6 15.1 20.7
w/o lifting 108.9 187.5 18.5 98.3 29.4 36.8
w/o traj. ref. 41.9 74.7 9.0 40.4 14.4 20.9
w/o ω 40.7 74.5 18.3 77.1 14.4 20.8
WHAM (Ours) 41.9 74.7 8.8 40.4 14.8 19.8

Table 3. Ablation experiments. See text.

mation of DPVO combined with HMR2.0, illustrating that
our method actively refines the global trajectory instead
of performing a simple integration. DROID-SLAM gives
slightly better results than DPVO. Furthermore, WHAM
significantly outperforms TRACE on egocentric root and
foot velocities. We further demonstrate this in Figs. 5 and
1, where WHAM captures more consistent and plausible
human motion in the global coordinate system than TRACE
and SLAHMR for videos captured by dynamic cameras. As
depicted in Fig. 6, WHAM outperforms GLAMR, TRACE,
and SLAHMR in capturing the pattern of human motion in
the global coordinate system. See the Supplemental Video
for more examples.

4.3. Ablation Study

To provide further insight into our approach, we con-
duct ablation studies to analyze the contribution of each
component to the performance. As shown in Table 3, our
entire system (WHAM) outperforms the different variants
of WHAM that ablate a single component. To be specific,
first, we observe that adding feature integration improves
both motion and global trajectory estimation accuracy when
compared with an ablated version without feature integra-
tion (w/o FI ). Similarly, the removal of the pre-training on
the 2D-to-3D lifting task using AMASS [32] (w/o lifting)
shows significant performance degradation. In addition, we
observe that WHAM without the trajectory refinement (w/o
traj. ref.) gives higher root translation and foot velocity er-
ror, indicating that our refinement approach contributes to
improving the global trajectory estimation and helps reduce
foot sliding. Last, we experiment with WHAM to decode
trajectory solely based on the motion context without using
the estimated camera angular velocity (w/o ω). Although this

version shows robust performance on predicting 3D human
pose, it suffers from the entanglement of camera and human
motion, resulting in significantly high global trajectory errors
(RTE and ROE).

5. Conclusion
WHAM is a new method to recover accurate 3D human

motion in global coordinates from a moving camera more ef-
ficiently and accurately than the state-of-the-art approaches.
Our approach leverages the AMASS dataset to train a net-
work to recursively lift 2D sequences of keypoints to se-
quences of 3D SMPL parameters. But keypoints alone lack
valuable information about the body and its movement. Con-
sequently, we integrate image context information over time
and learn to combine it with the motion context to better esti-
mate human body shape and pose. Additionally, our method
takes an estimate of the camera angular velocity, which can
either be computed from a SLAM method or from the cam-
era’s gyro when available. Finally, we combine all this in-
formation with an estimate of foot contact to recover the
3D human motion in global coordinates from a monocular
video sequence. WHAM significantly outperforms the exist-
ing state-of-the-art methods (both image-based and video-
based) on challenging in-the-wild benchmarks in both 3D
motion and the world-coordinate trajectory estimation accu-
racy. Because of its speed and accuracy, WHAM provides a
foundation for in-the-wild motion capture applications.

Limitations: WHAM learns about human motion from
AMASS, limiting generalization to motions that are out of
distribution. For example, since AMASS does not contain
people riding bicycles or skateboards, WHAM does not cap-
ture global motion in these cases. Our contact estimation
only applies to the feet and should be extended to include
other body parts that may be in contact with the scene. Since
WHAM relies on an estimate of the camera’s angular veloc-
ity, errors in this estimate can accumulate over time, leading
to drift in the global trajectory. While we employ random
masking as part of our data synthesis process, our generating
approach mainly assumes the scenario where the full body
is within the field of view. This can be addressed with ad-
ditional augmentation during training (cf. [18, 26]). See the
Supplemental Video. for example failure cases.

Future directions: WHAM opens up many directions for
future work. For example, while we use SLAM to estimate
the camera’s angular velocity, SLAM could also provide
camera intrinsics and extrinsics as well as information about
the 3D scene that could be used to enforce consistency be-
tween the scene and the human. While WHAM is an online
method, designed for real-time applications, it could also
initialize an optimization-based post-processing akin to bun-
dle adjustment, which would optimize the camera, scene,
and human motion together. Furthermore, a real-time and
phone-based implementation of WHAM should be feasible.
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A. Supplementary Materials
As promised in the main paper, this supplemental docu-

ment provides details of our synthetic data generation, the
datasets we use, our network training, and the run-time cost.
Additionally, please refer to our Supplemental Video for
results that illustrate our method and recent SOTA methods
applied to video sequences.

A.1. Synthetic data generation

To address the scarcity of the video data with paired 3D
ground truth, we pretrain WHAM on an extensive number
of synthetic 2D keypoint sequences for which we have the
ground truth 3D poses. In this section, we describe the pro-
cess of data synthesis from AMASS [32].

2D keypoint sequence synthesis. During training, we
sample sequences of SMPL poses of length L = 81 from
AMASS. Then, similar to MEVA [30], we uniformly up-
sample or downsample the frames to speed up or down the
motion by up to 50% of the original speed. Furthermore, we
apply a random root rotation ∆Γ ∼ U(0◦, 360◦) to the axis
that is vertical to the ground plane and Gaussian noise to
the shape parameter ∆β ∼ N (0, 0.1). Given the augmented
SMPL sequence, we extract 3D keypoints that correspond to
the MS-COCO keypoints and add 3D noise modeled follow-
ing previous work [44]. Finally, we apply a random mask
with the average probability of p = 0.15 to the 3D keypoints
and project them onto the virtual camera as described below.

Contact label generation. The goal of generating a con-
tact label is to train the motion decoder to detect the foot-
ground contact accurately. Previous work [60] uses both the
velocity and height of the feet to generate contact labels.
However, in order to generalize our approach to arbitrary
ground conditions such as slopes or stairs, we only use foot
velocity to compute the ground truth contact labels, similar
to TransPose [55]. We use heel and toe vertices of each foot
to define foot-ground contact and compute the probability as
below:

  \hat {p}^{(t)} = \frac {1}{1 + e^{\alpha (v^{(t)} - v_t)/v_t}}. 


 


We set the threshold velocity vt = 1cm/frame and the coef-
ficient α = 5.

Camera motion synthesis. We begin with generating the
initial pose of the virtual camera, followed by the modeling
of the camera motion. We model the initial roll and pitch
angles of the camera using Gaussian distributions:

γ(0)
r ∼ N (0◦, 5◦),

γ(0)
p ∼ N (5◦, 22.5◦).

Here, we do not model the initial yaw angle since it is already
handled by the random SMPL root rotation ∆Γ.

Subsequently, we sample the initial camera translation,
using a mix of unfiorm and normal distributions, to capture
the ground-truth 3D pose in the camera coordinates

T (0)
z ∼ U(2m, 12m)−

(
R(0)t(0)

)
z
,

T (0)
x ∼ N (0, 0.25d) d−

(
R(0)t(0)

)
x
,

T (0)
y ∼ N (0, 0.25d) d−

(
R(0)t(0)

)
y
.

Here, d = w · Tz/2f is the maximum displacement of the
camera to capture the 3D keypoints within the field of view,
R(0) is the initial camera pose, t(0) is the initial human
translation, w is the image size, and f is the focal length.
Next, we sample the magnitude of change in the camera’s
extrinsics with the Gaussian distributions:

∆γy ∼ N (0◦, 45◦),

∆γr,∆γp ∼ N (0◦, 22.5◦),

∆Tx,∆Ty,∆Tz ∼ N (0m, 1m).

Finally, we interpolate the extrinsics and construct the cam-
era’s dynamic path. Here, we sample the time stamp with
20% of noise, instead of uniform sampling, to model the
non-linear camera motion.

We use 6.7M frames in total and uniformly sample them
during the synthetic data generation.

A.2. Datasets

In this section, we illustrate the datasets we use for train-
ing and testing our method.
Human3.6M [11] is an indoor dataset containing individuals
performing 15 distinct actions captured by both a motion-
capture (mocap) system and 4 calibrated video cameras.
The ground truth 3D keypoint locations are provided by the
mocap. Following previous work [6, 17, 43, 51], we use 5
subjects (S1, S5, S6, S7, and S8) to train our network after
downsampling the mocap data to 25 fps.
MPI-INF-3DHP [33] is a multi-view and markerless dataset
containing individuals performing various ranges of motion
with corresponding ground-truth 3D keypoint locations. To
train the network, we use the training set of the dataset,
containing 8 subjects and 16 videos per subject.
InstaVariety [15] is a large-scale in-the-wild video dataset
with large variations in subjects, motion, and environment.
The dataset contains pseudo-ground-truth 2D keypoints de-
tected by OpenPose [4]. We train our method on the training
split of the dataset.
3DPW [49] is an in-the-wild video dataset containing ground
truth 3D pose captured by a hand-held camera and 13 body-
worn inertial sensors. We use the train, validation, and test
splits of 3DPW for training, validating, and testing our
method.
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3DPW

Methods PA-MPJPE MPJPE PVE Accel

w/o Neural State Initialization 37.8 64.5 76.3 6.9
WHAM 37.8 60.8 72.5 6.8

Table 4. Quantitative analysis of neural state initialization on the
3DPW [49] dataset.

RICH [10] is a large-scale multi-view dataset captured in
both indoor and outdoor environments. RICH provides the
ground truth SMPL-X [38] parameters. Following previous
work [1], we use the test split of the dataset to evaluate our
method on 3D pose estimation accuracy.
EMDB [16] is a recently captured dataset that uses a dy-
namic camera and body-worn electromagnetic (EM) sensors.
EMDB provides ground-truth SMPL parameters as well as
the global trajectory of the individuals in a global coordinate
system. We use two distinct test splits, EMDB 1 and EMDB
2, to evaluate the performance on 3D pose and shape esti-
mation (EMDB 1) and global trajectory estimation (EMDB
2).
BEDLAM [1] is a recently proposed large-scale synthetic
dataset. BEDLAM introduces realistic modeling of diverse
clothing, hair, motion, skin tones, and scene environments
to synthesize videos. BEDLAM contains 1 million video
frames for individuals with ground truth SMPL/SMPL-X
parameters. We optionally use the train split of BEDLAM to
train the network.

A.3. Neural-network Initialization

Uni-directional RNNs introduce the challenge of differing
learning objectives between the initial frames and subsequent
ones due to the initialization state. Specifically, in traditional
RNNs, the initialization state is typically padded with zeros,
resulting in the first frame primarily relying on the input
signal. In contrast, the subsequent frames are trained to capi-
talize on both the input signal and information transferred
from the past. To resolve the disparity in learning objectives,
we use a neural initialization network, as proposed by [56],
to predict h0,E and h0,D from the 0-th frame pose, instead
of using zero-padding. During the training, we use pseudo-
ground-truth 3D pose [35] for the video datasets that do not
have the SMPL parameter annotation [11, 15, 33]. Note that
we do not supervise our network on the pseudo labels. At
test time, we use the pose and shape predicted by a single-
frame regressor as the initial state. As shown in Table 4, we
observe that the use of neural state initialization increases
the performance in 3D human pose and shape estimation.

Runtime: fps (ms)

Methods batch size = 1 batch size = 64

Bounding box detection 70 (14.3 ms) 265 (3.8 ms)
Bounding box tracking 7189 (0.1 ms) 7189 (0.1 ms)
2D keypoints detection 12.1 (82.6 ms) 88 (11.4 ms)
Image feature extraction 66 (15.2 ms) 237 (4.3 ms)
Rest of the framework 926 (1.1 ms) 1431 (0.7 ms)

Total 8.8 (113.3 ms) 49.3 (20.3 ms)

Table 5. Per-frame computation time (running time) of each module
in WHAM. We present this both as frames per second (fps) and
milliseconds (ms).

A.4. Run-time cost

While the core WHAM network presented here runs at
200fps, it relies on the input of several other methods. Here
we compute the run time of each module required by our
framework on the EMDB dataset [16]. The inference speed
of all methods was computed on a single A100 GPU. We
exclude running SLAM in this analysis as it can be obviated
if we use gyroscope data (though real-time SLAM meth-
ods exist). As shown in Table 5, our full method, with pre-
processing steps, runs at around 9 fps with online inference
(i.e., a batch size of 1 and no lag), and around 50 fps when
run in batch mode (with resulting lag). We compare the
core runtime of WHAM with SLAHMR [54], excluding
bounding box detection, person identification, and keypoints
detection, for which there are real-time solutions. In this con-
dition, WHAM takes 5 seconds (202 fps) for 1000 frames.
Specifically, WHAM takes 4.3 seconds (237 fps) for image
feature extraction and 0.7 seconds (1431 fps) to regress the
motion and global trajectory. This is significantly faster than
SLAHMR which takes 260 minutes (< 0.1 fps) per 1000
frames.

13


	. Introduction
	. Related Work
	. Methods
	. Overview
	. Network Architecture
	. Training

	. Experiments
	. 3D Human Motion Recovery
	. 3D Global Trajectory Recovery
	. Ablation Study

	. Conclusion
	. Acknowledgement
	. Supplementary Materials
	. Synthetic data generation
	. Datasets
	. Neural-network Initialization
	. Run-time cost


