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As new AI technologies such as Large Language Models (LLM) quickly evolve, the need for enhancing general-purpose LLMs with physical knowledge to 
better serve the manufacturing community has been increasingly recognized. This paper presents a method that tailors GPT-3.5 with domain-specific 
knowledge for intelligent aircraft maintenance. Specifically, aircraft ontology is investigated to curate maintenance logs with encoded component 
hierarchical structure to fine-tune GPT-3.5. Experimental results demonstrate the effectiveness of the developed method in accurately identifying defective 
components and providing consistent maintenance action recommendations, outperforming general-purpose GPT-3.5 and GPT-4.0.  The method can be 
adapted to other domains in manufacturing and beyond. 
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1. Introduction 
 

Over the past few years, the field of Artificial Intelligence (AI) 
has undergone a significant transformation enabled by Large 
Language Models (LLMs). Examples include the Large Language 
Model Meta AI by Meta [1], Generative Pre-trained Transformer 3 
(GPT-3) and the subsequent ChatGPT (GPT-3.5) and GPT-4.0 by 
OpenAI [2], and Bidirectional Encoder Representations from 
Transformers (BERT) and Gemini by Google [3]. These models are 
predominantly built upon the transformer architecture and 
drastically advanced the field of Natural Language Processing 
(NLP) by enabling models to be pre-trained on extensive datasets 
from the Internet, and to learn language structures and nuances 
without explicitly labelled data through self-supervised learning 
[4]. After meta-training, the pre-trained models can be aligned to 
human preferences to enhance their relevance and applicability 
across a broad spectrum of language-based tasks. 

As an example, LLM models are widely recognized for their text-
generation capabilities, making them advantageous in content 
creation from drafting news articles to generating creative fictions. 
Their proficiency in understanding languages has been leveraged 
for developing chatbots and virtual assistants, enhancing customer 
services and interactive experiences [5]. With a foundation in deep 
learning, LLMs have shown effectiveness in tackling diverse, 
complex tasks such as information extraction, summarization, and 
coding assistance [6-7], further highlighting their pivotal in 
accelerating the evolution of general-purpose AI. 

With their increasing popularity, the limitations of LLMs in 
performing domain-specific tasks, such as predictive maintenance 
and automation, have also been increasingly noted. This is because 
LLMs are trained on broad-based datasets that do not necessarily 
cover specialized technical data pertinent to manufacturing [8]. 
The lack of domain knowledge in general-purpose LLMs can lead 
to difficulty in proper contextual understanding, which is a 
prerequisite for correctly interpreting the nuances of domain-
specific terminologies and processes. For example, in predictive 
maintenance, if a machine contains multiple components with the 
same part name (e.g., Seal), these components must be correctly 
associated with the machine’s hierarchical structure to avoid 
confusion for reliable performance analysis and maintenance 

decisions. This requires the LLMs to understand the component 
hierarchical structure and correctly interpret the maintenance 
logs. The issue is exacerbated by the fact that the description of the 
same component recorded in the maintenance logs may vary from 
worker to worker, leading to erroneous analysis and maintenance 
recommendations based on the reasoning of general-purpose 
LLMs. To bridge this gap, using domain knowledge to fine-tune 
LLMs has emerged as a solution.  

The process of fine-tuning involves training the existing LLMs on 
datasets that are curated for the target domain, allowing 
maximizing domain-specific performance while retaining the 
reasoning capability of the initial model. For example, BERT has 
been fine-tuned with climate data, resulting in ClimateBERT that 
has improved BERT’s performance in climate-related tasks [9]. 
Also, GPT has been tailored to KAI-GPT, a language model for 
transparent, accurate, and safe customer banking service [10]. 

This study investigates LLMs for manufacturing by fine-tuning 
GPT-3.5 and converting it to an intelligent maintenance assistant 
for aircraft (see Fig. 1). Towards this end, the ontology of aircraft 
structure is first investigated to curate the original maintenance 
logs into conversational data. The goal is to alleviate the 
constraints of typical LLM fine-tuning approaches from overly 
reliant on structured data that limits model generalizability and 
adaptivity. The conversational data is used as inputs to fine-tune 
the GPT-3.5 model, achieving contextual understanding of 
components’ hierarchical structure. This sets the technological 
basis for pinpointing defective components and recommending 
consistent maintenance actions. Results from a case study using 
aircraft have shown that the finetuned GPT-3.5 model outperforms 
both the general-purpose GPT-3.5 and GPT-4.0 models in 
effectively identifying defective components, thereby better 
supporting predictive aircraft maintenance. The developed 
method holds significant promise beyond aviation, extendable to 
various manufacturing scenarios where maintenance and 
production systems share similar challenges and requirements. 

 
2. Ontology-integrated tuning of LLM 
 

Central to the developed approach is the ontology of the aircraft, 
which plays a crucial role in enabling maintenance log curation and 
domain-specific fine-tuning of the LLMs. 
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Figure 1. Ontology-integrated tuning of LLM for predictive maintenance 

 
2.1 Aircraft structure ontology  
 

To realize ontology-integrated LLM tuning as illustrated in Fig. 
1, a tree structure representing a segment of an aircraft's ontology 
is developed, with a top-level concept of the ontology shown in Fig. 
2. This hierarchical organization is crucial to curating the 
maintenance logs and enhancing LLMs’ comprehension of aircraft-
specific issues, for two reasons. First, it addresses ambiguity when 
the same type of components appears in different branches of the 
structure. For instance, the component "Seal" is found not only in 
the engine cylinder baffle but also in the engine cylinder intake. 
Through the process of learning to describe each component 
within its hierarchical context, LLMs acquire the ability to 
distinguish and correctly identify these components, thereby 
resolving the ambiguity. Second, the structure aids in reducing the 
impact of inconsistencies commonly found in maintenance logs 
that are created by multiple workers. Depending on their training, 
personal choice, and company preference, variation may occur 
when the logs are entered. A common cause is the use of 
abbreviated descriptions, which omits the full hierarchical chain of 
a component. For example, references to "engine" and "cylinder" 
are often left out when mentioning related sub-components. This 
leads to inaccurate interpretations by LLMs when not trained with 
knowledge of the hierarchical structure, and consequently, 
unreliable analysis. Furthermore, incorporating additional 
domain-specific relationships like component-wear mechanism-
maintenance triplets into the LLM is envisioned to enable causal 
reasoning underlying the maintenance recommendation. For this 
purpose, comprehensive domain knowledge collection is needed 
and will constitute part of future research. 

 

 
Figure 2. Aircraft ontology in a hierarchical structure 

 
2.2 GPT fine-tuning 
 

In this work, GPT-3.5 (containing 175 billion parameters) 
instead of the state-of-the-art GPT-4.0 (containing 1 trillion 
parameters) is selected as the foundational LLM model for fine-
tuning, due to its demonstrated performance in general-purpose 
NLP task handling and user-friendly access to its fine-tuning 
resources through OpenAI’s Application Programming Interface 

(API) [11]. Central to the fine-tuning effort is the preparation of 
domain-specific data and iterative refinement of the fine-tuning 
hyperparameters such that the tailored optimization of GPT-3.5 
ensures reliable maintenance actions. Fine-tuning GPT-3.5 
requires the training data to be prepared in a specific 
conversational format where each conversation sample contains 
three messages, and each message specifies a role (system, user, or 
assistant) and the related content. For example, the system’s 
message specifies the purpose of fine-tuning, while the user’s 
message simulates the questions/messages asked by human users.  
Finally, the assistant’s message indicates the responses generated 
by the fine-tuned model. In Fig. 3 a conversation sample used for 
model fine-tuning is illustrated.  

 

 
Figure 3. Sample fine-tuning system, user, and assistant message 

 
Domain-specific knowledge is typically organized in a tree-

structure and has been extracted from historical data using a 
similarity measure [12]. In the presented work, historical 
maintenance logs have been explored to provide the basis for 
developing an aircraft ontology, which is subsequently verified by 
domain experts. The ontology is then incorporated into the 
training data for fine-tuning GPT-3.5 by curating the original 
maintenance log into a conversational format, where a new 
content “component of interest” that pinpoints the hierarchical 
structure of the defective component is added, as illustrated in Fig. 
3. The ground truth “component of interest” is first generated from 
“in-order traversal” algorithm-based depth-first search operations 
[13], which compare the problem description to full hierarchical 
ontology structure. The outcome is then examined by a domain 
expert to remove the ambiguities. Compared to other options of 
incorporating ontology into training data, e.g., decomposing the 
entire ontology into conversational forms to indicate the 
hierarchical structural organization of the components and mixing 
them with maintenance log conversations, the presented approach 
is advantageous in implicitly integrating ontology into 
conversation samples that iteratively reinforce the GPT-3.5 
model’s understanding of the aircraft structural composition.  

The process of fine-tuning GPT-3.5 primarily utilizes a variant of 
the cross-entropy loss function, which is used in training LLMs 
based on the transformer architecture. In the context of language 
models, the cross-entropy loss function quantifies how well the 
model's predicted probability distribution over the next word 𝑞𝑞(𝑥𝑥) 
aligns with the actual word 𝑝𝑝(𝑥𝑥) that appears in the training data: 

 

𝐻𝐻(𝑝𝑝, 𝑞𝑞) = −�𝑝𝑝(𝑥𝑥)log𝑞𝑞(𝑥𝑥)
𝑥𝑥

(1) 
 

One-hot encoding is used for calculating the true distribution 
𝑝𝑝(𝑥𝑥) when fine-tuning GPT-3.5. The actual next word is set with a 
probability of 1 whereas all other words are set with a probability 
of 0. Three hyperparameters for GPT-3.5 fine-tuning are provided 
by the OpenAI API: number of epochs, learning rate, and batch size. 
Selection of proper values of these hyperparameters depends on 
the size and quality of the fine-tuning dataset, as well as the 
complexity of the domain-specific applications. Due to the lack of 
advanced options for fine-tuning and overfitting mitigation such as 
early stop of model tuning, these hyperparameters are empirically 
determined during the fine-tuning process in this study. 



2.3 Evaluation of fine-tuned LLM model 
 

To evaluate the quality of the fine-tuned GPT-3.5 in extracting 
the component of interest from the problem description, the 
Intersection over Union (IoU) score is used, which quantifies the 
degree of word matching between the ground truth and model 
response. The IoU score is suited for evaluating structured outputs 
when constrained to a limited number of vocabularies. The IoU 
score ranges from 0 to 1, where 0 indicates complete irrelevancy 
of the extracted information and 1 denotes perfect extraction. 

To quantify the performance of the fine-tuned GPT-3.5 in 
predicting recommended maintenance actions given a problem 
description, the semantics of the output must be considered, rather 
than relying on word matching only. The potential large variation 
in describing the same actions makes it difficult to predetermine a 
constrained list of candidates. To overcome this challenge, 
BERTScore is investigated. BERTScore leverages the contextual 
embedding from BERT [3], which is a special transformation that 
maps language vocabularies into a high-dimensional space such 
that semantically similar words are clustered together while 
words with little semantic similarity are separated [14]: 

 

P =
1

|𝐶𝐶|�max𝑔𝑔∈𝐺𝐺 cos[BERT𝑒𝑒𝑒𝑒𝑒𝑒(𝑐𝑐), BERT𝑒𝑒𝑒𝑒𝑒𝑒(𝑔𝑔)]
𝑐𝑐∈𝐶𝐶

(2) 

R =
1

|𝐺𝐺|�max𝑐𝑐∈𝐶𝐶 cos[BERT𝑒𝑒𝑒𝑒𝑒𝑒(𝑐𝑐), BERT𝑒𝑒𝑒𝑒𝑒𝑒(𝑔𝑔)]
𝑔𝑔∈𝐺𝐺

(3) 

BERTScore = 2
P∙R

P+R
(4) 

 
where C and G can be intuitively considered as the list of words in 
the predicted text and the reference ground truth, respectively. 
BERT𝑒𝑒𝑒𝑒𝑒𝑒 is the function to compute the embedding of each entry 
in C and G. cos[BERT𝑒𝑒𝑒𝑒𝑒𝑒(𝑐𝑐), BERT𝑒𝑒𝑒𝑒𝑒𝑒(𝑔𝑔)]  refers to the cosine 
similarity between the embeddings from the predicted and the 
reference texts. P and R are analogous to precision and recall, 
which average the maximum cosine similarities for each entry in 
the predicted text over the entries in the reference text, and vice 
versa, leading to the final calculation of BERTScore in (4).  

In addition to the BERTScore, BLEU (Bilingual Evaluation 
Understudy) [14] is considered for evaluating how the LLM-
recommended maintenance action follows similar vocabulary as 
the referenced ground truth. BLEU examines the frequency of n-
grams (sequential groups of n words), which appear in both the 
prediction and the ground truth. The metric calculates a score 
based on the matches of the n-grams as [15]: 

 

BLEU = BP exp(�𝑤𝑤𝑛𝑛 log 𝑝𝑝𝑛𝑛

𝑁𝑁

𝑛𝑛=1

) (5) 

 
where 𝑝𝑝𝑛𝑛 is the ratio of the number of n-grams in the predicted text 
that matches the ground truth to the total number of n-grams in 
the predicted text, 𝑤𝑤𝑛𝑛 is the weight assigned to each n-gram (set 
uniformly in this study), and 𝑁𝑁 denotes the maximum length of n-
grams used. Brevity Penalty (BP) is designed to penalize predicted 
texts that are too short compared to the reference, ensuring that 
shorter texts don't unfairly receive higher scores due to a higher 
likelihood of n-gram matching [15]. BERTScore and BLEU range 
from -1 to 1 and 0 to 1, respectively, with higher values indicating 
higher similarity between the predicted and the reference texts. 
 
3. Experimental evaluation and results 
 

The developed method is evaluated using a publicly available 
aviation maintenance dataset [16]. The dataset contains 6,169 
maintenance logs, each is represented by a triplet of problem 
identification number (IDENT), problem description (PROBLEM), 
and maintenance action that has been taken (ACTION) (see Fig. 3 

for an example). Upon examination, significant repetitions are 
identified after the first 2,000 logs. As a result, the first 2,000 logs 
were chosen for this study. Among the 2,000 logs, 1,500 were 
randomly selected to fine-tune the GPT 3.5 model while the 
remaining 500 logs were reserved for testing. Considering the 
generative nature of GPT, each testing log is evaluated five times 
when evaluating the performance of the fine-tuned GPT-3.5 in 
terms of randomness in its response generation. 

 
3.1 GPT 3.5 fine-tuning 
 

Restricted by the fine-tuning API, only three hyperparameters 
(i.e., epoch, batch size, and learning rate) are tuneable, and no 
advanced training mechanisms (e.g., early stopping) are provided. 
Iterative hyperparameter refinement has been conducted, and a 
combination of default batch size, learning rate and one training 
epoch has yielded the most satisfactory performance, as shown in 
Fig. 4. Beyond the 1st training epoch, severe overfitting is 
observed, as reflected in the divergence between training and 
validation losses. The fast convergence indicates that the structure 
ontology as formulated in this study are relatively straightforward 
to learn by GPT-3.5, which was pretrained using a large dataset. 
This highlights the advantage of leveraging a general-purpose LLM 
for specific problem-solving in manufacturing.    

 

 
Figure 4. Progression of GPT-3.5 fine-tuning 

 
3.2 Results and discussions 
 

To evaluate the performance of the fine-tuned GPT-3.5 on 
generating domain-specific responses to airplane maintenance 
logs, three LLMs are compared: fine-tuned GPT-3.5 (GPT-3.5 FT), 
non-fine-tuned GPT-3.5 (GPT-3.5 NFT), and non-fine-tuned GPT-
4.0 (GPT-4.0 NFT). Shown in Fig. 5 are sample responses from 
these 3 LLMs. Each response contains two parts: component of 
interest and recommended maintenance actions. It is noted 
qualitatively that GPT-3.5 FT outperforms both GPT-3.5 NFT and 
GPT-4.0 NFT in general, especially in identifying which component 
the maintenance log was referring to. This is because the non-fine-
tuned GPTs use the keywords directly from the original problem 
description to output their responses. For example, they extracted 
“Right Engine #4 Air Baffle” from the problem description “RIGHT 
ENG#4 AIR BAFFLE IS CRACKED” only, whereas GPT-3.5 FT is able 
to trace back the entire hierarchical structure for improved 
accuracy in defective component identification.    

To quantitively assess the LLMs’ performance, IoU score is first 
calculated to evaluate the models’ response in determining 
component of interest. Subsequently, BERTScore and BLEU are 
computed to quantify the models’ performance on recommending 
actions. Considering the generative nature of the LLM models, each 
metric is computed five times to evaluate the consistency and 
variation of the models’ responses.  

As shown in Fig. 6 (a), GPT-3.5 FT achieves a mean IoU score of 
0.88, whereas the IoU scores of GPT-3.5 NFT and GPT-4.0 NFT are 
0.43 and 0.40, respectively. The good match with the ground truth 
achieved by GPT-3.5 is particularly noteworthy given the more 
sophisticated architecture of GPT-4.0 as compared to GPT-3.5. The 
result further highlights the importance of fine-tuning of general-
purpose LLM models in adaptation to manufacturing applications. 



The effectiveness of model fine-tuning is further substantiated 
by the mean BERTScore and BLEU of GPT-3.5 FT for predicting 
recommended actions, as seen in Fig. 6 (b). The mean BERTScore 
of 0.46 indicates robust consistency between the predicted actions 
and reference ground truth in terms of the text semantics, whereas 
the BLEU metric, at 0.20, reflects a reasonable n-gram overlap with 
the reference texts. In comparison, both non-fine-tuned models 
have shown less favorable predictions for recommended 
maintenance actions. 

The small error bars observed across all three models indicate a 
high level of consistency in the models' performance across the 
five different tests conducted. This aspect is critical to predictive 
maintenance for manufacturing, where reliability and 
repeatability of performance are essential. Given the consistency 
demonstrated by all model variants, the development of LLM 
architectures provides a potentially stable foundation for 
predictive maintenance tasks. 

 

 
Figure 6. Comparison among GPT-3.5 FT, GPT-3.5 NFT, and GPT-4.0 NFT: 
a) IoU scores for extraction of component of interest, b) BERTScore and 
BLEU for prediction of recommended maintenance actions 

4. Conclusions 

This paper introduced an innovative approach to transforming 
general-purpose LLMs into a domain-specific tool for intelligent 
aircraft maintenance. Incorporating an aircraft structure ontology 
into the fine-tuning process of GPT-3.5 enhances the model’s 
performance in identifying aircraft components of interest and 
recommending maintenance actions. The enhanced performance 
of the fine-tuned GPT-3.5 over GPT-3.5 and GPT-4.0 in 
maintenance log analysis, e.g., 0.88 vs. 0.43 and 0.40 in identifying 
components of interests, not only demonstrates the feasibility of 
tailoring LLMs for enhanced operations in manufacturing because 
of the similarities in maintenance activities across different 
domains, but also sheds light on their continued evolution and 

roader applications in other fields of interest. Future research will 
explore fine-tuning of LLMs with expanded domain knowledge 
(including both ontology and domain-specific relationships and 
attributes as represented by knowledge graphs), and further 
investigate topics such as data bias and interpretability to facilitate 
transfer learning and domain generalization across multiple 
industrial sectors and more effectively integrate LLM into the 
existing digital manufacturing platform for more comprehensive 
and versatile AI-enhanced applications. 
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