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As new Al technologies such as Large Language Models (LLM) quickly evolve, the need for enhancing general-purpose LLMs with physical knowledge to
better serve the manufacturing community has been increasingly recognized. This paper presents a method that tailors GPT-3.5 with domain-specific
knowledge for intelligent aircraft maintenance. Specifically, aircraft ontology is investigated to curate maintenance logs with encoded component
hierarchical structure to fine-tune GPT-3.5. Experimental results demonstrate the effectiveness of the developed method in accurately identifying defective
components and providing consistent maintenance action recommendations, outperforming general-purpose GPT-3.5 and GPT-4.0. The method can be

adapted to other domains in manufacturing and beyond.
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1. Introduction

Over the past few years, the field of Artificial Intelligence (AI)
has undergone a significant transformation enabled by Large
Language Models (LLMs). Examples include the Large Language
Model Meta Al by Meta [1], Generative Pre-trained Transformer 3
(GPT-3) and the subsequent ChatGPT (GPT-3.5) and GPT-4.0 by
OpenAl [2], and Bidirectional Encoder Representations from
Transformers (BERT) and Gemini by Google [3]. These models are
predominantly built upon the transformer architecture and
drastically advanced the field of Natural Language Processing
(NLP) by enabling models to be pre-trained on extensive datasets
from the Internet, and to learn language structures and nuances
without explicitly labelled data through self-supervised learning
[4]. After meta-training, the pre-trained models can be aligned to
human preferences to enhance their relevance and applicability
across a broad spectrum of language-based tasks.

As an example, LLM models are widely recognized for their text-
generation capabilities, making them advantageous in content
creation from drafting news articles to generating creative fictions.
Their proficiency in understanding languages has been leveraged
for developing chatbots and virtual assistants, enhancing customer
services and interactive experiences [5]. With a foundation in deep
learning, LLMs have shown effectiveness in tackling diverse,
complex tasks such as information extraction, summarization, and
coding assistance [6-7], further highlighting their pivotal in
accelerating the evolution of general-purpose Al

With their increasing popularity, the limitations of LLMs in
performing domain-specific tasks, such as predictive maintenance
and automation, have also been increasingly noted. This is because
LLMs are trained on broad-based datasets that do not necessarily
cover specialized technical data pertinent to manufacturing [8].
The lack of domain knowledge in general-purpose LLMs can lead
to difficulty in proper contextual understanding, which is a
prerequisite for correctly interpreting the nuances of domain-
specific terminologies and processes. For example, in predictive
maintenance, if a machine contains multiple components with the
same part name (e.g., Seal), these components must be correctly
associated with the machine’s hierarchical structure to avoid
confusion for reliable performance analysis and maintenance

decisions. This requires the LLMs to understand the component
hierarchical structure and correctly interpret the maintenance
logs. The issue is exacerbated by the fact that the description of the
same component recorded in the maintenance logs may vary from
worker to worker, leading to erroneous analysis and maintenance
recommendations based on the reasoning of general-purpose
LLMs. To bridge this gap, using domain knowledge to fine-tune
LLMs has emerged as a solution.

The process of fine-tuning involves training the existing LLMs on
datasets that are curated for the target domain, allowing
maximizing domain-specific performance while retaining the
reasoning capability of the initial model. For example, BERT has
been fine-tuned with climate data, resulting in ClimateBERT that
has improved BERT’s performance in climate-related tasks [9].
Also, GPT has been tailored to KAI-GPT, a language model for
transparent, accurate, and safe customer banking service [10].

This study investigates LLMs for manufacturing by fine-tuning
GPT-3.5 and converting it to an intelligent maintenance assistant
for aircraft (see Fig. 1). Towards this end, the ontology of aircraft
structure is first investigated to curate the original maintenance
logs into conversational data. The goal is to alleviate the
constraints of typical LLM fine-tuning approaches from overly
reliant on structured data that limits model generalizability and
adaptivity. The conversational data is used as inputs to fine-tune
the GPT-3.5 model, achieving contextual understanding of
components’ hierarchical structure. This sets the technological
basis for pinpointing defective components and recommending
consistent maintenance actions. Results from a case study using
aircraft have shown that the finetuned GPT-3.5 model outperforms
both the general-purpose GPT-3.5 and GPT-4.0 models in
effectively identifying defective components, thereby better
supporting predictive aircraft maintenance. The developed
method holds significant promise beyond aviation, extendable to
various manufacturing scenarios where maintenance and
production systems share similar challenges and requirements.

2. Ontology-integrated tuning of LLM

Central to the developed approach is the ontology of the aircraft,
which plays a crucial role in enabling maintenance log curation and
domain-specific fine-tuning of the LLMs.


http://www.sciencedirect.com/science/journal/00078506
http://www.elsevier.com/locate/cirp

O Ontology-based

O Large Language

O Adapted Intelligent

Data Curation Mode! Finetuning Assistant
Problem #1 Action #1 Problem #1
Problem #2 | Action #2 Problems Problem #2

Maintenance History Y New Issues
Input Training
Y Samples v
w @ Updated
o Weights
4 3 o 2 ad
Depth-First - Finetuned
ChatGPT 3.5
Ontology Search ChatGPT 3.5
Output Training
Y Samples
Component #1 @ Component #1 | Action #1
Component #2 A Component #2 | Action #2
Components

Component Extraction Components and Solutions

Figure 1. Ontology-integrated tuning of LLM for predictive maintenance
2.1 Aircraft structure ontology

To realize ontology-integrated LLM tuning as illustrated in Fig.
1, atree structure representing a segment of an aircraft's ontology
is developed, with a top-level concept of the ontology shown in Fig.
2. This hierarchical organization is crucial to curating the
maintenance logs and enhancing LLMs’ comprehension of aircraft-
specific issues, for two reasons. First, it addresses ambiguity when
the same type of components appears in different branches of the
structure. For instance, the component "Seal" is found not only in
the engine cylinder baffle but also in the engine cylinder intake.
Through the process of learning to describe each component
within its hierarchical context, LLMs acquire the ability to
distinguish and correctly identify these components, thereby
resolving the ambiguity. Second, the structure aids in reducing the
impact of inconsistencies commonly found in maintenance logs
that are created by multiple workers. Depending on their training,
personal choice, and company preference, variation may occur
when the logs are entered. A common cause is the use of
abbreviated descriptions, which omits the full hierarchical chain of
a component. For example, references to "engine" and "cylinder"
are often left out when mentioning related sub-components. This
leads to inaccurate interpretations by LLMs when not trained with
knowledge of the hierarchical structure, and consequently,
unreliable analysis. Furthermore, incorporating additional
domain-specific relationships like component-wear mechanism-
maintenance triplets into the LLM is envisioned to enable causal
reasoning underlying the maintenance recommendation. For this
purpose, comprehensive domain knowledge collection is needed
and will constitute part of future research.
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Figure 2. Aircraft ontology in a hierarchical structure
2.2 GPT fine-tuning

In this work, GPT-3.5 (containing 175 billion parameters)
instead of the state-of-the-art GPT-4.0 (containing 1 trillion
parameters) is selected as the foundational LLM model for fine-
tuning, due to its demonstrated performance in general-purpose
NLP task handling and user-friendly access to its fine-tuning
resources through OpenAl's Application Programming Interface

(API) [11]. Central to the fine-tuning effort is the preparation of
domain-specific data and iterative refinement of the fine-tuning
hyperparameters such that the tailored optimization of GPT-3.5
ensures reliable maintenance actions. Fine-tuning GPT-3.5
requires the training data to be prepared in a specific
conversational format where each conversation sample contains
three messages, and each message specifies a role (system, user, or
assistant) and the related content. For example, the system’s
message specifies the purpose of fine-tuning, while the user’s
message simulates the questions/messages asked by human users.
Finally, the assistant’s message indicates the responses generated
by the fine-tuned model. In Fig. 3 a conversation sample used for
model fine-tuning is illustrated.

-

IDENT PROBLEM ACTION
101223 #2 & 4 ROCKER COVERS LEAKING TIGHTENED ALL ROCKER
ON R/H ENGINE COVERS J

@'ru]e": "system", "content": "You are an aircraft service technician. Please reply to\
the logged issue in a fixed format: component of interest:, recommended action:."},
{"role": "user", "content": "#2 & 4 ROCKER COVERS LEAKING ON R/H

ENGINE"},
{"role": "assistant", "content": "Component of interest: Engine Cylinder Rocker
\Cover, Solution: TIGHTENED ALL ROCKER COVERS"} Y.

Figure 3. Sample fine-tuning system, user, and assistant message

Domain-specific knowledge is typically organized in a tree-
structure and has been extracted from historical data using a
similarity measure [12]. In the presented work, historical
maintenance logs have been explored to provide the basis for
developing an aircraft ontology, which is subsequently verified by
domain experts. The ontology is then incorporated into the
training data for fine-tuning GPT-3.5 by curating the original
maintenance log into a conversational format, where a new
content “component of interest” that pinpoints the hierarchical
structure of the defective component is added, as illustrated in Fig.
3. The ground truth “component of interest” is first generated from
“in-order traversal” algorithm-based depth-first search operations
[13], which compare the problem description to full hierarchical
ontology structure. The outcome is then examined by a domain
expert to remove the ambiguities. Compared to other options of
incorporating ontology into training data, e.g., decomposing the
entire ontology into conversational forms to indicate the
hierarchical structural organization of the components and mixing
them with maintenance log conversations, the presented approach
is advantageous in implicitly integrating ontology into
conversation samples that iteratively reinforce the GPT-3.5
model’s understanding of the aircraft structural composition.

The process of fine-tuning GPT-3.5 primarily utilizes a variant of
the cross-entropy loss function, which is used in training LLMs
based on the transformer architecture. In the context of language
models, the cross-entropy loss function quantifies how well the
model's predicted probability distribution over the next word q(x)
aligns with the actual word p(x) that appears in the training data:

H(p.@) = = ) p()logg () M

One-hot encoding is used for calculating the true distribution
p(x) when fine-tuning GPT-3.5. The actual next word is set with a
probability of 1 whereas all other words are set with a probability
of 0. Three hyperparameters for GPT-3.5 fine-tuning are provided
by the OpenAl API: number of epochs, learning rate, and batch size.
Selection of proper values of these hyperparameters depends on
the size and quality of the fine-tuning dataset, as well as the
complexity of the domain-specific applications. Due to the lack of
advanced options for fine-tuning and overfitting mitigation such as
early stop of model tuning, these hyperparameters are empirically
determined during the fine-tuning process in this study.



2.3 Evaluation of fine-tuned LLM model

To evaluate the quality of the fine-tuned GPT-3.5 in extracting
the component of interest from the problem description, the
Intersection over Union (IoU) score is used, which quantifies the
degree of word matching between the ground truth and model
response. The [oU score is suited for evaluating structured outputs
when constrained to a limited number of vocabularies. The IoU
score ranges from 0 to 1, where 0 indicates complete irrelevancy
of the extracted information and 1 denotes perfect extraction.

To quantify the performance of the fine-tuned GPT-3.5 in
predicting recommended maintenance actions given a problem
description, the semantics of the output must be considered, rather
than relying on word matching only. The potential large variation
in describing the same actions makes it difficult to predetermine a
constrained list of candidates. To overcome this challenge,
BERTScore is investigated. BERTScore leverages the contextual
embedding from BERT [3], which is a special transformation that
maps language vocabularies into a high-dimensional space such
that semantically similar words are clustered together while
words with little semantic similarity are separated [14]:
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where C and G can be intuitively considered as the list of words in
the predicted text and the reference ground truth, respectively.
BERT,,,;, is the function to compute the embedding of each entry
in C and G. cos[BERT,,,;,(c), BERT,,,;(g)] refers to the cosine
similarity between the embeddings from the predicted and the
reference texts. P and R are analogous to precision and recall,
which average the maximum cosine similarities for each entry in
the predicted text over the entries in the reference text, and vice
versa, leading to the final calculation of BERTScore in (4).

In addition to the BERTScore, BLEU (Bilingual Evaluation
Understudy) [14] is considered for evaluating how the LLM-
recommended maintenance action follows similar vocabulary as
the referenced ground truth. BLEU examines the frequency of n-
grams (sequential groups of n words), which appear in both the
prediction and the ground truth. The metric calculates a score
based on the matches of the n-grams as [15]:

N
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where p, is the ratio of the number of n-grams in the predicted text
that matches the ground truth to the total number of n-grams in
the predicted text, w,, is the weight assigned to each n-gram (set
uniformly in this study), and N denotes the maximum length of n-
grams used. Brevity Penalty (BP) is designed to penalize predicted
texts that are too short compared to the reference, ensuring that
shorter texts don't unfairly receive higher scores due to a higher
likelihood of n-gram matching [15]. BERTScore and BLEU range
from -1 to 1 and 0 to 1, respectively, with higher values indicating
higher similarity between the predicted and the reference texts.

3. Experimental evaluation and results

The developed method is evaluated using a publicly available
aviation maintenance dataset [16]. The dataset contains 6,169
maintenance logs, each is represented by a triplet of problem
identification number (IDENT), problem description (PROBLEM),
and maintenance action that has been taken (ACTION) (see Fig. 3

for an example). Upon examination, significant repetitions are
identified after the first 2,000 logs. As a result, the first 2,000 logs
were chosen for this study. Among the 2,000 logs, 1,500 were
randomly selected to fine-tune the GPT 3.5 model while the
remaining 500 logs were reserved for testing. Considering the
generative nature of GPT, each testing log is evaluated five times
when evaluating the performance of the fine-tuned GPT-3.5 in
terms of randomness in its response generation.

3.1 GPT 3.5 fine-tuning

Restricted by the fine-tuning AP], only three hyperparameters
(i.e., epoch, batch size, and learning rate) are tuneable, and no
advanced training mechanisms (e.g., early stopping) are provided.
Iterative hyperparameter refinement has been conducted, and a
combination of default batch size, learning rate and one training
epoch has yielded the most satisfactory performance, as shown in
Fig. 4. Beyond the 1st training epoch, severe overfitting is
observed, as reflected in the divergence between training and
validation losses. The fast convergence indicates that the structure
ontology as formulated in this study are relatively straightforward
to learn by GPT-3.5, which was pretrained using a large dataset.
This highlights the advantage of leveraging a general-purpose LLM
for specific problem-solving in manufacturing.

Training Validation

6 Training loss: 0.1344
Validation loss: 0.1927

Cross-entropy loss

0 50 100 150 201 250 300 350
Fine-tuning steps

Figure 4. Progression of GPT-3.5 fine-tuning
3.2 Results and discussions

To evaluate the performance of the fine-tuned GPT-3.5 on
generating domain-specific responses to airplane maintenance
logs, three LLMs are compared: fine-tuned GPT-3.5 (GPT-3.5 FT),
non-fine-tuned GPT-3.5 (GPT-3.5 NFT), and non-fine-tuned GPT-
4.0 (GPT-4.0 NFT). Shown in Fig. 5 are sample responses from
these 3 LLMs. Each response contains two parts: component of
interest and recommended maintenance actions. It is noted
qualitatively that GPT-3.5 FT outperforms both GPT-3.5 NFT and
GPT-4.0 NFT in general, especially in identifying which component
the maintenance log was referring to. This is because the non-fine-
tuned GPTs use the keywords directly from the original problem
description to output their responses. For example, they extracted
“Right Engine #4 Air Baffle” from the problem description “RIGHT
ENG#4 AIR BAFFLE IS CRACKED” only, whereas GPT-3.5 FT is able
to trace back the entire hierarchical structure for improved
accuracy in defective component identification.

To quantitively assess the LLMs’ performance, loU score is first
calculated to evaluate the models’ response in determining
component of interest. Subsequently, BERTScore and BLEU are
computed to quantify the models’ performance on recommending
actions. Considering the generative nature of the LLM models, each
metric is computed five times to evaluate the consistency and
variation of the models’ responses.

As shown in Fig. 6 (a), GPT-3.5 FT achieves a mean IoU score of
0.88, whereas the IoU scores of GPT-3.5 NFT and GPT-4.0 NFT are
0.43 and 0.40, respectively. The good match with the ground truth
achieved by GPT-3.5 is particularly noteworthy given the more
sophisticated architecture of GPT-4.0 as compared to GPT-3.5. The
result further highlights the importance of fine-tuning of general-
purpose LLM models in adaptation to manufacturing applications.
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Engine Cylinder Rocker Cover Gasket

ACTION
REMOVED & REPLACED ALL ROCKER GASKETS
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nmpunent of interest: “Valve covers” Component of interest:
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covers™ tighten screws”
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“Right Engine Valve Covers”
“Replace valve covers and
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Cover Gasket”
Recommended action: “REMOVED & REPLACED
ALL RIGHT ENGINE VALVE COVER GASKETS”

IoU score: 1.0; BERT score: 0.7; BLEU: 31.56

“Engine Cylinder Rocker

IDENT PROBLEM COMPONENT OF INTEREST ACTION
100032 RIGHT ENG #4 AIR BAFFLE IS CRACKED Engine Cylinder Baffle REMOVED & REPLACED #4 AIR BAFFLE

Component of interest: “Right engine #4 air baffle”
Recommended action: “Replace air baffle”

‘Component of interest:

install new air baffle™
IoU score: 0.33; BERT score: 0.46; BLEU: 0

GPT-3.5 NFT

“Right Engine #4 Air Baffle”
Recommended action: “Remove cracked baffle and

IoU score: 0.33; BERT score: 0.51; BLEU: 9.54

GPT-40NFT

Component of interest: “Engine Cylinder Baffle”
Recommended action: “FABRICATED &
INSTALLED #4 AIR BAFFLE REPAIR PATCH”

ToU score: 1.0; BERT score: 0.6; BLEU: 22.42

GPT-35FT

Figure 5. Sample responses from GPT-3.5 NFT, GPT-4.0 NFT, and GPT-3.5 FT, and their evaluation scores

The effectiveness of model fine-tuning is further substantiated
by the mean BERTScore and BLEU of GPT-3.5 FT for predicting
recommended actions, as seen in Fig. 6 (b). The mean BERTScore
of 0.46 indicates robust consistency between the predicted actions
and reference ground truth in terms of the text semantics, whereas
the BLEU metric, at 0.20, reflects a reasonable n-gram overlap with
the reference texts. In comparison, both non-fine-tuned models
have shown less favorable predictions for recommended
maintenance actions.

The small error bars observed across all three models indicate a
high level of consistency in the models' performance across the
five different tests conducted. This aspect is critical to predictive
maintenance for manufacturing, where reliability and
repeatability of performance are essential. Given the consistency
demonstrated by all model variants, the development of LLM
architectures provides a potentially stable foundation for
predictive maintenance tasks.
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Figure 6. Comparison among GPT-3.5 FT, GPT-3.5 NFT, and GPT-4.0 NFT:
a) loU scores for extraction of component of interest, b) BERTScore and
BLEU for prediction of recommended maintenance actions

4. Conclusions

This paper introduced an innovative approach to transforming
general-purpose LLMs into a domain-specific tool for intelligent
aircraft maintenance. Incorporating an aircraft structure ontology
into the fine-tuning process of GPT-3.5 enhances the model’s
performance in identifying aircraft components of interest and
recommending maintenance actions. The enhanced performance
of the fine-tuned GPT-3.5 over GPT-3.5 and GPT-4.0 in
maintenance log analysis, e.g., 0.88 vs. 0.43 and 0.40 in identifying
components of interests, not only demonstrates the feasibility of
tailoring LLMs for enhanced operations in manufacturing because
of the similarities in maintenance activities across different
domains, but also sheds light on their continued evolution and

roader applications in other fields of interest. Future research will
explore fine-tuning of LLMs with expanded domain knowledge
(including both ontology and domain-specific relationships and
attributes as represented by knowledge graphs), and further
investigate topics such as data bias and interpretability to facilitate
transfer learning and domain generalization across multiple
industrial sectors and more effectively integrate LLM into the
existing digital manufacturing platform for more comprehensive
and versatile Al-enhanced applications.
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