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ABSTRACT 
Resistance Spot Welding (RSW) is one of the largest 

automated manufacturing processes in industry, consequently 

making it also one of the most researched. While this ubiquity 

has led to advancements in the consistency of this process, RSW 

is innately uncertain due to the high degree of interplaying 

mechanics that occur during the process. Additionally, to 

ensure the quality of a completed weld empirically, expensive 

analysis tools are required to inspect the result. One solution to 

removing this monetary and temporal cost is in-line process 

monitoring. During the weld, various signals can be measured 

and evaluated to predict the weld quality in real-time. The most 

common signal to measure is the Dynamic Resistance (DR) due 

to its ease of sensor implementation and richness of 

information. Other common signals are the electrode force and 

displacement. These give a more inclusive look into the overall 

process, especially the mechanical aspects, but these are 

typically limited to lab settings due to the increased cost of 

deploying them at scale. One solution to realize the insight of 

these other process signals on the factory floor is to utilize 

Machine Learning techniques to create virtual sensors that 

convert extant sensing data to other domains. This would allow 

for more robust and interpretable signal processing without 

incurring additional costs or downtime. To account for the 

strong non-linear relationship between physical and virtual 

sensing signals, a computational efficient technique called 

Resistance Inferred Process Time-series by Dense Encoder 

(RIPTiDE) is developed. RSW domain knowledge, such as 

expulsion defect-induced DR drops, have been integrated into 

the encoder to enhance the performance and interpretability of 

data-driven model. Experimental results have shown that 

RIPTiDE-based virtual sensing complements physical sensing 

in better characterizing the RSW process dynamics and 

predicting the part qualities. 

Keywords: Resistance Spot Welding, Virtual Sensing, 

Neural Networks   

 

1. INTRODUCTION 
Resistance Spot Welding (RSW) is one of the most vital 

processes of industrial assemblies. Widely used within 

aerospace and automotive sectors, this joining operation creates 

permanent bonds between sheet metal parts [1]. RSW employs 

an electrical current to melt a localized area of the components 

within a stack-up. This area cools and solidifies into a nugget, 

a continuous region of metal bridging the components [2]. The 

advantage of RSW over other joining operations is that it only 

takes a single step to form the bond. Conversely, fasteners 

require an additional pre-processing step in addition to needing 

additional components that can increase the overall weight of 

the assembly. 

These benefits are offset by the inherent inconsistency of 

the RSW process. This inconsistency is the result of the many 

mechanical phenomena that occur during the formation of the 

nugget. Electrical, thermal, fluid, and structural mechanics 

operate and influence one another through the process, adding 

many avenues of uncertainty. While universal manufacturing 

concerns, such as tool wear or fit-up conditions, are present, the 

multiple phase changes make material variations, such as grain 

structure or element composition, much more impactful [3]. 

This complexity and inconsistency have two detrimental 

effects: quality control and process planning. For quality 

control, confirming if a nugget has formed is trivial, but there 

are two primary defects that could have occurred during the 

process. The first is an underdeveloped nugget, which would 

lack the strength of a fully formed bond. The second defect is 

expulsion, which is a sudden ejection of molten metal from the 

forming nugget, again leading to a weaker bond. At present, 

determining if an adequate nugget has formed is primarily done 

with costly and time-consuming ultrasonic or x-ray testing [4]. 

With respect to process planning, most welding schedules are 

developed by trial-and-error to determine the input parameters 

required to maximize the likelihood of a successful weld [5]. 
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This makes it costly and inefficient to develop new stack-ups, 

stymieing innovation. In order to improve quality control and 

streamline schedule development, inline process monitoring is 

needed on the shop floor. 

Process monitoring is one of the main pillars of “Industry 

4.0”. It allows for data-driven analytics and algorithms to 

improve defect detection, quality assurance, and schedule 

planning [6]. But gaining these benefits comes with a cost. 

While the price of sensors is obvious, there are other, more 

subtle, investments needed for producers to transition to this 

new paradigm. Firstly, mature computational hardware and 

networks are needed to handle the data produced by the sensors 

and the algorithms deployed to analyze the process. Secondly, 

installation of sensors into extant production lines incur 

downtime, lowering productivity [7]. Luckily, many production 

RSW lines are already equipped with process sensors and 

appropriate IT infrastructure. This makes RSW a good starting 

point for manufacturers to explore the benefits of inline process 

monitoring with minimal investment.  

The most used signal in industry and research is the 

Dynamic Resistance (DR) due to its ability to reflect the 

thermal and electrical mechanics [8]. Classical process analysis 

techniques have been used in concert with the DR signal to 

detect improper sheet fit-up conditions [9], electrode 

misalignment [10], and weld nugget strength [11]. The signal 

has also shown promise with Machine Learning (ML) 

algorithms. Recurrent neural networks have been investigated 

to predict the Heat Affected Zone (HAZ) [12], a neuro-fuzzy 

interface model allowed the prediction of weld strength [13], 

random forest models were able to classify cold or expulsed 

welds [14], and Support Vector Regression (SVR) was used to 

predict overall quality [15]. 

While less used in industry, electrode displacement and 

expansion force are popular signals for research due to their 

reflection of the thermal strain and expansion that occur during 

welding [16]. These signals give a more rounded picture of the 

RSW process, providing a more thorough explanation to what 

is occurring as opposed to just observing the electrical signals. 

Like the DR, the force and displacement signals have been 

shown to be useful for inline fault monitoring. They have been 

used to detect expulsion occurrences [17 ,18], different sheet 

fit-up conditions [19], and shunting, a defect caused when the 

welding current partially flows through a previous nugget [20]. 

Additionally, they have been used to predict weld penetration 

[21] and electrode wear [22].  

Combining the information from all three discussed 

sensors allows for the observation and detection of individual 

phases of the RSW process [23]. Features derived from these 

phases, and the multiple process signals, can reveal important 

process information when paired with a simple ML model. The 

myriad of applications makes it clear that the best decision 

making can be made with the most signals. For lines with extant 

DR sensing capabilities, incorporating force and displacement 

signals is possible using physical sensors. Alternatively, we can 

also employ virtual sensors to generate the desired information 

from the existing DR signal, removing the temporal and 

financial cost of installation. 

The generation of a processing signal through indirect 

measurement can be done with a virtual sensor. This “sensor” 

is a model that converts one or more signals and inputs into 

another desired, but unmonitored, signal. For industrial 

purposes, this method was developed in chemical production 

plants to observe chemical concentrations [24]. For 

manufacturing, virtual sensing has been sparsely researched, 

but the technology shows promise.  For example, an empirical-

based virtual sensor was developed to correlate input pressures 

to nozzle pressure in injection molding [25]. Additionally, 

simple ML models, such as SVM or Particle Filters, have been 

used to estimate tool wear in cutting machines through the 

vibration and force signals [26, 27]. For welding, virtual 

sensing seems to be entirely unexplored, in spite of the vast 

amount of data and popularity for the process. In this, there is 

an opportunity to leverage advances in ML signal generation to 

improve the understanding and monitoring of RSW. 

With the rapid advancement of the ML field, there are a 

myriad of avenues that could be explored for the general 

structure of a virtual sensor. The obvious choice is the popular 

Generative Adversarial Network (GAN) [28]. This structure 

works by training a generator and discriminator. The 

discriminator is fed both real signals and signals made by the 

generator. The discriminator determines whether it was given a 

real or generated signal, making its objective function a 

maximization of classification accuracy. The generator is 

trained to “fool” the discriminator by creating signals 

indistinguishable from the real ones. This structure has been 

shown to be applicable for signal generation, but it is primarily 

kept for augmentation of training data as opposed to creating a 

virtual sensor conversion [29]. Since the purpose of this work 

is to generate a time series based on given information of the 

system, the use of forecasting algorithms was explored. 

Forecasting models are designed to predict the future given 

a precedent signal. For manufacturing, these models are 

typically used in concert with condition monitoring to predict 

when a machine or tool will fail. Typical models for this are 

SVR [30] and Long Short-Term Memory (LSTM) [31]. 

Recently, the development of the transformer model has shown 

that a feed-forward residual network is a powerful structure for 

forecasting [32]. Conversely, while transformers outperform 

earlier forecasting models, they are outclassed by more 

primitive linear networks [33]. For this reason, the virtual 

sensor structure takes inspiration from the recently developed 

Time-series Dense Encoder or TiDE [34]. TiDE combines the 

powerful skip connections used in LSTM and Transformer 

models with the forecasting capabilities of an MLP. 

This paper presents the development and applicability of a 

novel virtual sensor for use in RSW production lines. By taking 

the TiDE architecture as inspiration, we can develop a data-

driven virtual sensor model that is able to convert the available 

electrical based DR signal into the two mechanical based 

displacement and force signals. The result is the Resistance 

Inferred Process Time-series by Dense Encoder or RIPTiDE 
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model. RIPTiDE will allow producers to understand and 

observe more facets of the RSW process while minimizing their 

investment for better decision making and process monitoring.  

 

2. DENSE ENCODER FOR VIRTUAL SENSING 
GENERATION 
This section presents information about residual blocks, the 

original TiDE network, and the development and final 

architecture of the RIPTiDE model. 

 

2.1 Residual Blocks 
The main building blocks of dense encoder networks are 

Residual Blocks, shown on FIGURE 1. The defining aspect of 

these blocks is their inclusion of skip connections. Skip 

connections were developed when it was realized that deeper 

networks did not produce better training performance than 

shallower ones. This runs contrary to the theoretical 

performance of Neural Networks (NN). 

 
FIGURE 1: REPRESENTATION OF A RESIDUAL BLOCK. 
SIMPLIFIED DIAGRAM ON LEFT, DETAILED STRUCUTRE ON 

RIGHT 

 

Hypothetically, if a network reaches peak performance at a 

certain depth, any subsequent layers should “learn” to converge 

onto the identity function, in effect removing them from the 

chain. This behavior would cause the network to be 

mathematically equivalent to the more optimal, but shallower 

network. However, this is not the case. It was observed that 

overly developed models demonstrated clearly reduced 

performance than appropriately shallow ones. This is known as 

the degradation problem. The cause of this behavior is theorized 

to be caused by NN models being unable to properly converge 

to the identity function. To address this problem, Residual 

Networks (ResNets) were developed, along with their unique 

inclusion: skip connections [35] 

Though skip connections were used to develop the LSTM 

Recurrent Neural Network (RNN), ResNet was the first 

instance of using them in feed forward networks [36]. Skip 

connections effectively takes the inputs from one layer and add 

them to the outputs of a layer further along in the network. 

Typically, skip connections pass multiple layers before 

reincorporating the values. Traditionally, skip connections were 

simply the identity function, but more recent networks use a 

trainable linear layer instead. 

 

2.2 TiDE Overview 
The original TiDE model is presented on the left of 

FIGURE 2. The network is comprised of residual blocks (blue 

mosaics) arranged to predict the future of the lookback signal 

from the present (L) up to a future time horizon(L+H). In 

addition to the lookback, the network takes two other inputs; 

attributes and dynamic covariates. The attributes are static 

constants within the system being predicted. The dynamic 

covariates are relevant information that changes over the course 

of the lookback and prediction. The dynamic covariates can be 

viewed as a signal of length L+H, and there can be multiple 

dynamic covariate signals depending on the system being 

forecasted. In order to keep the network inputs reasonable, the 

dynamic covariates channels are compressed using the Feature 

Projection block, reducing the total input channels. The inputs 

are then stacked and fed into the encoder-decoder, (yellow 

block and pink block respectively) comprised of 𝑛𝑒  and 𝑛𝑑 

residual blocks respectively. The dense encoder produces the 

salient features needed to predict the future of the lookback 

signal. These features are then stacked with the reduced 

dynamic covariates before being fed into the final temporal 

decoder to reduce the stacked inputs to a single channel. This 

resulting signal is then combined with the lookback signal that 

was mapped to the appropriate length using a linear skip 

connection (small blue rectangle). 

 
FIGURE 2: OVERVIEW OF TIDE (LEFT) AND RIPTIDE 

(RIGHT) STRUCTURE. BLUE MOSAICS REPRESENT 

RESIDUAL BLOCKS 
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2.3 The Proposed RIPTiDE  
The development of RIPTiDE was based around 

modifications of the extant TiDE structure to make it applicable 

to the virtual sensing task. An overview of these changes are 

shown on the right side of FIGURE 2. The largest change is the 

removal of the lookback, since this is no longer a forecasting 

model, necessitating the removal of the associated skip 

connection. Secondly, the dynamic covariates were replaced 

with the DR signal, as this correlates with the known parameters 

across the entire time range. Finally, the outputs are now 

predicted across the input signal range as opposed to the future. 

The first construction of RIPTiDE corresponded with the 

hyperparameters as proposed in the original TiDE work for 

power consumption prediction. The full details of this 

architecture are shown on FIGURE 3. The model used two 

encoders and decoders, all with a hidden layer size of 1024. The 

encoder-decoder chain ended with 8 output channels. The 

temporal decoder had 64 hidden neurons, an overall dropout 

rate of 50% was used and LayerNorm was not used. Of note, 

the original TiDE model stated that the encoder and decoder 

blocks could have separate hyperparameters, but they were 

always constructed with the same structure. For this reason, we 

can present them as one repeated component, and display the 

structure in a Compressed Chart to simplify and streamline the 

model representation in FIGURE 4. 

  

 
FIGURE 4: COMPRESSED CHART THAT IS EQUIVALENT TO 

FIGURE 3 

 

The model was trained to use the DR signal along with the 

preprogrammed welding force and current to generate electrode 

displacement and force signals. The initial results of the 

network showed promise and would accurately recreate the 

trends of the two target signals, it could even replicate expulsion 

well. The primary issue with this structure is the generated 

signal was much noisier than the true values. This is likely 

because the expulsion cases enact much more noise than normal 

welds, but the network has generalized to having some noise 

throughout the signal. In addition, the magnitude of the signal 

did not always match the true values. These results led to the 

modification and tuning of the initial model. 

During tuning, layer normalization was found to be 

detrimental, and was not used. Additionally different model 

structures (i.e., encoder amounts, encoder channels, hidden 

residual block neurons), dropout rates, and activation functions 

were explored. This resulted in three modified networks labeled 

Dense, Dropout 20%, and Sigmoid f.  

“Dense” doubled the number of hidden neurons in each 

residual block, increased the number of encoders to 6, and 

increased the number of encoder output channels to 16. 

“Dropout 20%” reduced the dropout rate from 50% to 20%. 

Finally, “Sigmoid f” replaced the ReLU activation function 

with the sigmoid activation function. 

While the sigmoid function produced worse results, the 

higher density and lower dropout rate proved to be welcome 

additions, both keeping closer to the true signal values, while 

being slightly smoother. In order to promote further 

smoothness, modifications to the loss function were attempted. 

Both total variation and L1 losses were added to the MSE loss. 

Due to magnitude disparity, the Total Variation loss had to be 

scaled down to one ten thousandths of the original value.  

While the total variation did produce smoother curves, it 

also produced less accurate signals. Conversely, the L1 term 

provided additional smoothness without the loss of accuracy. 

With these insights, the tuned RIPTiDE model (RIPTiDE 1.5) 

was made. It consisted of the “Dense” structure, a 20% dropout 

rate, and was trained with the MSE plus L1 loss function. The 

structure is shown on FIGURE 5. 
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FIGURE 5: RIPTIDE 1.5 MODEL WITH MODIFIED 

HYPERPARAMETERS 

 

 The generated signals of RIPTiDE 1.5 cleaved much 

closer to the true values than the untuned model version, while 

also improving on smoothness. These results were promising 

overall, but the model still wasn’t producing signals as smooth 

as the true values. This led to modifications of the underlying 

structure of the model, as opposed to just hyperparameters. 

 The resulting structure is the proposed virtual sensor 

model for RSW production, dubbed “RIPTiDE 2.0”, presented 

in FIGURE 6. The purpose of this version was to solve the 

smoothing problem, as the accuracy of the previous models 

were acceptable at this time. This structure took the previously 

discussed RIPTiDE 1.5 and added an additional input and 

network layer to achieve this. 

 
FIGURE 6: RIPTIDE 2.0 WITH MODIFIED 

HYPERPARAMETERS, ADDITIONAL INPUT, AND 

ADDITIONAL FILTER 

The first addition was the inclusion of the input called 

“Large Drops” This is a sparse signal that only has significant 

DR drops. Insignificant drops and all rises are set to zero. The 

term “significant” was established as any drop with a magnitude 

larger than the greatest rise, shown on EQUATION 1. 

 

 
𝑧𝑖 = {

𝑥∆𝑖 , 𝑥∆𝑖 < − max 𝑥∆

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1) 

 

where 𝑧𝑖  is the i
th entry of the large drop signal, 𝑥∆𝑖  is the i

th 

entry of the finite difference of DR signal. The purpose of this 

inclusion was to emphasize expulsion events and times of large 

noise as opposed to it generalizing to them occurring constantly. 

The second addition was a convolution layer at the end of the 

network with a size of 5 and pad of 2. This acts as a trainable 

moving window filter that is unique to each signal to encourage 

smoothness. It again used the MSE plus L1 loss function and is 

the final iteration of the RIPTiDE virtual sensor. 

3. EXPERIMENTAL SETUP AND DATA COLLECTION 

In order to train and validate the proposed model, 

experimental RSW data was required. These experiments 

involved hundreds of RSW welds executed under different 

welding conditions. The resulting process measurement data, 

including DR, electrode force, and displacement, were 

recorded, and collected for analysis. 

Each weld was manually performed using a Milco RSW 

gun driven by a WTC medium frequency controller, which 

measured the secondary welding current. The electrodes were 

C15000 CuZr button caps with a face diameter of 6mm. A 

Kistler strain gauge with 2% error precision was mounted on 

the lower electrode arm to measure the electrode force. A 

Heidenhain linear encoder with an accuracy of ±5 microns was 

mounted on the lower electrode arm to measure the electrode 

displacement. The sheet metal used was Usibor® 1500, which 

had been coated with a 40-micron layer of Aluminum Silicone. 

The experiments were performed under 3 unique sets of sheet 

thickness, welding force, and time. The welding forces used 

were 585lbs, 899lbs, and 1124lbs with welding times of 170ms, 

200ms, and 240ms. The sheet thicknesses (t) used were 1,1.4, 

and 1.8 mm. These sheets were further differentiated by sorting 

TABLE 1:  DETAILS OF WELDING EXPERIMENTS 

Force (lbs) Time (ms) Thickness (mm) IDL (µm) Current (kA) 

585 170 1 

4 4.9, 5, 5.2(x3), 5.4(x4), 5.6, 6(x2), 6.2, 6.4, 6.6, 6.8, 7(x2), 7.2-8.8 (.2 inc), 9.1 

7 5-7.2 (.2 inc), 6.65, 7.5, 5.1, 5.4 

13 5, 5.2, 5.4(x2), 5.5, 5.6, 5.8(x2), 6(x4), 6.2, 6.3, 6.4, 6.6, 6.9 

31 5, 5.2, 5.4(x2), 5.5, 5.6(x3), 5.8(x3), 6(x4), 6.2, 6.5 

899 200 1.4 

0 5,6.2,6.4,6.6,6.7,6.8,7(x3), 7.2(x4), 7.4, 7.7 

10 6, 6.1, 6.2, 6.4(x3), 6.6(x4), 6.8, 7, 7.2, 7.4, 7.5, 7.6, 7.8, 8, 8.3 

13 5.7, 6(x2), 6.2(x4), 6.6, 6.65, 6.8(x2), 7, 7.3 

26 6, 6.2, 6.6, 6.7, 6.8(x2), 7(x4), 7.2(x4), 7.4, 7.7 

1124 240 1.8 

6 6-6.8(.2 inc), 6.9, 7(x2), 7.2(x2), 7.4(x4), 7.6, 7.7, 7.8, 8, 8.3 

8 6.6-7.4(.2 inc), 7.6(x2), 7.8, 7.9, 8(x2), 8.2(x2), 8.4(x4), 8.6, 8.9 

13 6.5, 6.6, 6.8(x2), 7(x4), 7.2, 7.4, 7.6, 7.8, 8, 8.3 

27 6.6, 6.8, 7, 7.2, 7.4, 7.6(x2), 7.8(x3), 7.9, 8(x2), 8.2(x2), 8.4(x4), 8.6, 8.9 
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them based on their measured IDL thickness. These sheets were 

then welded under varying currents, as detailed in TABLE 1. 

The initial configuration involved aligning two sheets to 

create a stack-up. Subsequently, three spot welds were 

executed, starting from the center, and progressing to one on 

each side of the initial weld. Throughout the welding process, 

if any noticeable expulsion occurred and was observed, the 

respective weld was designated as having experienced 

expulsion. Electrodes were dressed between each trial. Due to 

the varying welding times, all three signal lengths were 0 

padded to 240 ms. 

 

4. RESULTS AND DISCUSSIONS 
Each iteration of the RIPTiDE network was trained using 

welding data described in SECTION 3. This data was split 

80%/20% for training and validation. The networks leveraged 

three inputs: the DR signal, the input current, and the input force 

to generate the displacement and force signals. Presented here 

are the results for the models described in SECTION 2.3. 

Unless otherwise stated, the models were trained for 5000 

epochs with the Adam optimizer with a learning rate of 0.0001.  

For RIPTiDE 1.0, the generated signals were compared to 

the true signals with the MSE loss function. Training was 

performed for only 1000 epochs since the initial attempt was 

only exploratory. Example results are shown on FIGURE 7. As 

previously discussed, the trends were appropriate, but the noise 

and magnitude were areas for improvement.  

 
FIGURE 7: RESULTS FROM UNTUNED RIPTIDE MODEL, TOP 

ARE NORMAL WELDS, BOTTOM ARE EXPULSED 

 

FIGURE 8 shows how varying the loss function of the 

network affected RIPTiDE’s performance. The “Baseline” 

model is the original RIPTiDE model presented on FIGURE 3, 

whereas the other two correspond to the associated loss 

function. The inclusion of total variation does improve overall 

smoothness, but at the cost of accuracy. L1 produces a smoother 

signal than the baseline, but not as much as total variation. L1’s 

greater accuracy, however, makes it a more desirable choice. 

 
FIGURE 8: RESULTS FROM LOSS FUNCTION CHANGES TO 

RIPTIDE MODEL, TOP IS A NORMAL WELD, BOTTOM IS 

EXPULSED 
 

 
FIGURE 9: RESULTS FROM DISCRETE CHANGES TO 

RIPTIDE MODEL, TOP HALF ARE NORMAL WELDS, BOTTOM 

HALF ARE EXPULSED 
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FIGURE 10: RESULTS FROM RIPTIDE 1.5, TOP IS NORMAL 

WELDS, BOTTOM IS EXPULSED 

 

The results of the exploratory changes to the 

hyperparameters are shown on FIGURE 9. The baseline model 

is again presented, with all other columns corresponding to the 

associated changes to the model. While both the denser model 

and lowered dropout provided marginal improvements to 

accuracy and smoothness, the sigmoid function produced much 

more chaotic signals, and was removed from consideration. 

FIGURE 10. shows the results of RIPTiDE 1.5, and the 

overall improvement of the model when compared to the initial 

trial on FIGURE 7. We can see a marked improvement in 

accuracy and lowered noise, but it could still use some 

additional work to bring it more in line with the true signal. 

Finally, the results of RIPTiDE 2.0 are shown on FIGURE 

11. We can clearly see the generated signals follow the true data 

closely both in magnitude and behavior. While it is still not as 

smooth as a true signal, it is much less noisy than previous 

iterations of the model. 

 
FIGURE 11: RESULTS FROM RIPTIDE 2.0 , TOP IS  NORMAL 

WELDS, BOTTOM ARE EXPULSED 

 

While RIPTiDE produces visually impressive results, it 

must also be used in a quantitative matter. Our previous work 

demonstrated that the ability to algorithmically determine 

individual phases of the RSW process is possible through 

phenomena in the DR, force, and displacement signals. The 

phase transitions occurred at 4 key points: Maximum 

Resistance, Force Drop, Force Stabilization, and Maximum 

Displacement. These times could be automatically extracted 

through an algorithm that required topographic signal 

processing and comprehensive selection logic. Salient features 

could then be calculated from these points, such as the values 

of individual signals at those points and rate of change between 

two points. These features could then be leveraged to predict 

coated material’s InterDiffusion Layer (IDL). It was also shown 

that if the phases were known without the use of the two 

mechanical signals, a network of high accuracy could be 

produced with only information taken from the DR signal [23].  

RIPTiDE was deployed to generate the two mechanical 

signals needed for the feature extraction algorithm to determine 

if it would serve as an acceptable substitution for real sensors. 

Since the original extraction algorithm was tuned specifically 

for the trends and behavior of the real process signals, there 

needed to be some slight adjustments, primarily the addition of 

a smoothing average filter along the generated displacement 

curve since the noise spikes could drastically impact the 

Maximum Displacement. These changes led to predicted points 

that were relatively accurate, though the latter two phases were 

less precise, as seen on FIGURE 12. 

 

 
 

FIGURE 12: EXAMPLE OF EXTRATED FEATURE TIMES 

FROM RIPTIDE (DASHED LINES) AND TRUE FEATURE TIMES 

(SOLID LINES). TOP ARE NORMAL WELDS AND BOTTOM ARE 

EXPULSED 

 

To evaluate the performance of the generated features, all 

663 unique DR signals were input into a fully trained RIPTiDE 

model. The generate displacement and force signals were then 

used as inputs to the previously discussed feature extractor. 

From here, two datasets were compiled. The first leveraged 

only the values of the DR signal at the phase points detected 
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(FIGURE 13.A.1). The second used values from the DR and the 

two generated signals for its process features (FIGURE 13.A.2). 

Each data set was used to train an MLP in the same manner as 

[23]. The results were compared with the network performance 

of the dataset leveraging only information gleanable from the 

DR signal (FIGURE 13.B.1), and the theoretical maximum 

performance of features taken from the DR signal if all key 

points were known (FIGURE 13.B.2). The results of the IDL 

prediction are shown on FIGURE 13. 

Both RIPTiDE networks produced similar results, with the 

more feature inclusive network being slightly more accurate. 

Both were significant improvements over the DR only model, 

and only slightly below the idealized performance. Examining 

the standard deviation of the networks shows that the RIPTiDE 

models were as consistent as the ones presented in the original 

work, as seen in FIGURE 14. This demonstrates that the virtual 

sensors are clearly able to add information about the RSW 

process utilizing only DR signals. Though not as accurate as the 

true process signals, RIPTiDE has demonstrated the ability to 

reflect the underlying mechanical phenomena of the RSW 

process and provide a noted performance improvement to 

monitoring tasks with limited signals.  

 
FIGURE 13: PREDICTED VS TRUE IDL THICKNESSES AND 
ASSOCIATED R2 VALUES. THE A FIGURES CORRESPOND TO 

THE PERFORMANCE OF RIPTIDE. THE B FIGURES 

CORRESPOND TO THE PERFORMANCE OF PERFORMANCE 

OF THE ORIGINAL WORK 

 

 
FIGURE 14: R2 VALUES. WITH ASSOCIATED STANDARD 

DEVIATIONS. VALUES IN PARENTHESE CORRESPOND TO 

ASSOCIATED GRAPH ON FIGURE 13 

 

5. CONCLUSSION 
 

A computationally efficient technique called RIPTiDE is 

developed for virtual generation of electrode force and 

displacement signals upon physically measured DR signal in 

RSW process monitoring. RSW domain knowledge, such as 

expulsion defect-induced DR drops, have been integrated into 

the encoder to enhance the performance and interpretability of 

data-driven model. Experimental results have shown that 

RIPTiDE-based virtual sensing could achieve comparable 

performance as physical sensing in characterizing the RSW 

process dynamics and predicting the part qualities. Future 

research will investigate integration of more RSW physical 

theories or empirical information into the RIPTiDE modeling in 

order to generate virtual signals with less noises and better 

alignment with process dynamics.  
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