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ABSTRACT

Resistance Spot Welding (RSW) is one of the largest
automated manufacturing processes in industry, consequently
making it also one of the most researched. While this ubiquity
has led to advancements in the consistency of this process, RSW
is innately uncertain due to the high degree of interplaying
mechanics that occur during the process. Additionally, to
ensure the quality of a completed weld empirically, expensive
analysis tools are required to inspect the result. One solution to
removing this monetary and temporal cost is in-line process
monitoring. During the weld, various signals can be measured
and evaluated to predict the weld quality in real-time. The most
common signal to measure is the Dynamic Resistance (DR) due
to its ease of sensor implementation and richness of
information. Other common signals are the electrode force and
displacement. These give a more inclusive look into the overall
process, especially the mechanical aspects, but these are
typically limited to lab settings due to the increased cost of
deploying them at scale. One solution to realize the insight of
these other process signals on the factory floor is to utilize
Machine Learning techniques to create virtual sensors that
convert extant sensing data to other domains. This would allow
for more robust and interpretable signal processing without
incurring additional costs or downtime. To account for the
strong non-linear relationship between physical and virtual
sensing signals, a computational efficient technique called
Resistance Inferred Process Time-series by Dense Encoder
(RIPTIDE) is developed. RSW domain knowledge, such as
expulsion defect-induced DR drops, have been integrated into
the encoder to enhance the performance and interpretability of
data-driven model. Experimental results have shown that
RIPTiDE-based virtual sensing complements physical sensing
in better characterizing the RSW process dynamics and
predicting the part qualities.
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1. INTRODUCTION

Resistance Spot Welding (RSW) is one of the most vital
processes of industrial assemblies. Widely used within
aerospace and automotive sectors, this joining operation creates
permanent bonds between sheet metal parts [1]. RSW employs
an electrical current to melt a localized area of the components
within a stack-up. This area cools and solidifies into a nugget,
a continuous region of metal bridging the components [2]. The
advantage of RSW over other joining operations is that it only
takes a single step to form the bond. Conversely, fasteners
require an additional pre-processing step in addition to needing
additional components that can increase the overall weight of
the assembly.

These benefits are offset by the inherent inconsistency of
the RSW process. This inconsistency is the result of the many
mechanical phenomena that occur during the formation of the
nugget. Electrical, thermal, fluid, and structural mechanics
operate and influence one another through the process, adding
many avenues of uncertainty. While universal manufacturing
concerns, such as tool wear or fit-up conditions, are present, the
multiple phase changes make material variations, such as grain
structure or element composition, much more impactful [3].
This complexity and inconsistency have two detrimental
effects: quality control and process planning. For quality
control, confirming if a nugget has formed is trivial, but there
are two primary defects that could have occurred during the
process. The first is an underdeveloped nugget, which would
lack the strength of a fully formed bond. The second defect is
expulsion, which is a sudden ejection of molten metal from the
forming nugget, again leading to a weaker bond. At present,
determining if an adequate nugget has formed is primarily done
with costly and time-consuming ultrasonic or x-ray testing [4].
With respect to process planning, most welding schedules are
developed by trial-and-error to determine the input parameters
required to maximize the likelihood of a successful weld [5].



This makes it costly and inefficient to develop new stack-ups,
stymieing innovation. In order to improve quality control and
streamline schedule development, inline process monitoring is
needed on the shop floor.

Process monitoring is one of the main pillars of “Industry
4.0”. It allows for data-driven analytics and algorithms to
improve defect detection, quality assurance, and schedule
planning [6]. But gaining these benefits comes with a cost.
While the price of sensors is obvious, there are other, more
subtle, investments needed for producers to transition to this
new paradigm. Firstly, mature computational hardware and
networks are needed to handle the data produced by the sensors
and the algorithms deployed to analyze the process. Secondly,
installation of sensors into extant production lines incur
downtime, lowering productivity [7]. Luckily, many production
RSW lines are already equipped with process sensors and
appropriate IT infrastructure. This makes RSW a good starting
point for manufacturers to explore the benefits of inline process
monitoring with minimal investment.

The most used signal in industry and research is the
Dynamic Resistance (DR) due to its ability to reflect the
thermal and electrical mechanics [8]. Classical process analysis
techniques have been used in concert with the DR signal to
detect improper sheet fit-up conditions [9], -electrode
misalignment [10], and weld nugget strength [11]. The signal
has also shown promise with Machine Learning (ML)
algorithms. Recurrent neural networks have been investigated
to predict the Heat Affected Zone (HAZ) [12], a neuro-fuzzy
interface model allowed the prediction of weld strength [13],
random forest models were able to classify cold or expulsed
welds [14], and Support Vector Regression (SVR) was used to
predict overall quality [15].

While less used in industry, electrode displacement and
expansion force are popular signals for research due to their
reflection of the thermal strain and expansion that occur during
welding [16]. These signals give a more rounded picture of the
RSW process, providing a more thorough explanation to what
is occurring as opposed to just observing the electrical signals.
Like the DR, the force and displacement signals have been
shown to be useful for inline fault monitoring. They have been
used to detect expulsion occurrences [17 ,18], different sheet
fit-up conditions [19], and shunting, a defect caused when the
welding current partially flows through a previous nugget [20].
Additionally, they have been used to predict weld penetration
[21] and electrode wear [22].

Combining the information from all three discussed
sensors allows for the observation and detection of individual
phases of the RSW process [23]. Features derived from these
phases, and the multiple process signals, can reveal important
process information when paired with a simple ML model. The
myriad of applications makes it clear that the best decision
making can be made with the most signals. For lines with extant
DR sensing capabilities, incorporating force and displacement
signals is possible using physical sensors. Alternatively, we can
also employ virtual sensors to generate the desired information

from the existing DR signal, removing the temporal and
financial cost of installation.

The generation of a processing signal through indirect
measurement can be done with a virtual sensor. This “sensor”
is a model that converts one or more signals and inputs into
another desired, but unmonitored, signal. For industrial
purposes, this method was developed in chemical production
plants to observe chemical concentrations [24]. For
manufacturing, virtual sensing has been sparsely researched,
but the technology shows promise. For example, an empirical-
based virtual sensor was developed to correlate input pressures
to nozzle pressure in injection molding [25]. Additionally,
simple ML models, such as SVM or Particle Filters, have been
used to estimate tool wear in cutting machines through the
vibration and force signals [26, 27]. For welding, virtual
sensing seems to be entirely unexplored, in spite of the vast
amount of data and popularity for the process. In this, there is
an opportunity to leverage advances in ML signal generation to
improve the understanding and monitoring of RSW.

With the rapid advancement of the ML field, there are a
myriad of avenues that could be explored for the general
structure of a virtual sensor. The obvious choice is the popular
Generative Adversarial Network (GAN) [28]. This structure
works by training a generator and discriminator. The
discriminator is fed both real signals and signals made by the
generator. The discriminator determines whether it was given a
real or generated signal, making its objective function a
maximization of classification accuracy. The generator is
trained to “fool” the discriminator by creating signals
indistinguishable from the real ones. This structure has been
shown to be applicable for signal generation, but it is primarily
kept for augmentation of training data as opposed to creating a
virtual sensor conversion [29]. Since the purpose of this work
is to generate a time series based on given information of the
system, the use of forecasting algorithms was explored.

Forecasting models are designed to predict the future given
a precedent signal. For manufacturing, these models are
typically used in concert with condition monitoring to predict
when a machine or tool will fail. Typical models for this are
SVR [30] and Long Short-Term Memory (LSTM) [31].
Recently, the development of the transformer model has shown
that a feed-forward residual network is a powerful structure for
forecasting [32]. Conversely, while transformers outperform
carlier forecasting models, they are outclassed by more
primitive linear networks [33]. For this reason, the virtual
sensor structure takes inspiration from the recently developed
Time-series Dense Encoder or TiDE [34]. TiDE combines the
powerful skip connections used in LSTM and Transformer
models with the forecasting capabilities of an MLP.

This paper presents the development and applicability of a
novel virtual sensor for use in RSW production lines. By taking
the TiDE architecture as inspiration, we can develop a data-
driven virtual sensor model that is able to convert the available
electrical based DR signal into the two mechanical based
displacement and force signals. The result is the Resistance
Inferred Process Time-series by Dense Encoder or RIPTiDE



model. RIPTiDE will allow producers to understand and
observe more facets of the RSW process while minimizing their
investment for better decision making and process monitoring.

2. DENSE ENCODER FOR VIRTUAL SENSING
GENERATION
This section presents information about residual blocks, the
original TiDE network, and the development and final
architecture of the RIPTiDE model.

2.1 Residual Blocks

The main building blocks of dense encoder networks are
Residual Blocks, shown on FIGURE 1. The defining aspect of
these blocks is their inclusion of skip connections. Skip
connections were developed when it was realized that deeper
networks did not produce better training performance than
shallower ones. This runs contrary to the theoretical
performance of Neural Networks (NN).
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FIGURE 1: REPRESENTATION OF A RESIDUAL BLOCK.
SIMPLIFIED DIAGRAM ON LEFT, DETAILED STRUCUTRE ON
RIGHT

Hypothetically, if a network reaches peak performance at a
certain depth, any subsequent layers should “learn” to converge
onto the identity function, in effect removing them from the
chain. This behavior would cause the network to be
mathematically equivalent to the more optimal, but shallower
network. However, this is not the case. It was observed that
overly developed models demonstrated clearly reduced
performance than appropriately shallow ones. This is known as
the degradation problem. The cause of this behavior is theorized
to be caused by NN models being unable to properly converge
to the identity function. To address this problem, Residual
Networks (ResNets) were developed, along with their unique
inclusion: skip connections [35]

Though skip connections were used to develop the LSTM
Recurrent Neural Network (RNN), ResNet was the first
instance of using them in feed forward networks [36]. Skip
connections effectively takes the inputs from one layer and add
them to the outputs of a layer further along in the network.
Typically, skip connections pass multiple layers before
reincorporating the values. Traditionally, skip connections were
simply the identity function, but more recent networks use a
trainable linear layer instead.

2.2 TiDE Overview

The original TiDE model is presented on the left of
FIGURE 2. The network is comprised of residual blocks (blue
mosaics) arranged to predict the future of the lookback signal
from the present (L) up to a future time horizon(L+H). In
addition to the lookback, the network takes two other inputs;
attributes and dynamic covariates. The attributes are static
constants within the system being predicted. The dynamic
covariates are relevant information that changes over the course
of the lookback and prediction. The dynamic covariates can be
viewed as a signal of length L+H, and there can be multiple
dynamic covariate signals depending on the system being
forecasted. In order to keep the network inputs reasonable, the
dynamic covariates channels are compressed using the Feature
Projection block, reducing the total input channels. The inputs
are then stacked and fed into the encoder-decoder, (yellow
block and pink block respectively) comprised of n, and ng
residual blocks respectively. The dense encoder produces the
salient features needed to predict the future of the lookback
signal. These features are then stacked with the reduced
dynamic covariates before being fed into the final temporal
decoder to reduce the stacked inputs to a single channel. This
resulting signal is then combined with the lookback signal that
was mapped to the appropriate length using a linear skip
connection (small blue rectangle).

TiDE Overview
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FIGURE 2: OVERVIEW OF TIDE (LEFT) AND RIPTIDE
(RIGHT) STRUCTURE. BLUE MOSAICS REPRESENT
RESIDUAL BLOCKS
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FIGURE 3: DETAILED RIPTIDE STRUCTURE WITH HYPERPARAMETERS

2.3 The Proposed RIPTIDE

The development of RIPTiDE was based around
modifications of the extant TiDE structure to make it applicable
to the virtual sensing task. An overview of these changes are
shown on the right side of FIGURE 2. The largest change is the
removal of the lookback, since this is no longer a forecasting
model, necessitating the removal of the associated skip
connection. Secondly, the dynamic covariates were replaced
with the DR signal, as this correlates with the known parameters
across the entire time range. Finally, the outputs are now
predicted across the input signal range as opposed to the future.

The first construction of RIPTiDE corresponded with the
hyperparameters as proposed in the original TiDE work for
power consumption prediction. The full details of this
architecture are shown on FIGURE 3. The model used two
encoders and decoders, all with a hidden layer size of 1024. The
encoder-decoder chain ended with 8 output channels. The
temporal decoder had 64 hidden neurons, an overall dropout
rate of 50% was used and LayerNorm was not used. Of note,
the original TiDE model stated that the encoder and decoder
blocks could have separate hyperparameters, but they were
always constructed with the same structure. For this reason, we
can present them as one repeated component, and display the
structure in a Compressed Chart to simplify and streamline the
model representation in FIGURE 4.

Out
1024 — 8
64 — 2
Dense Encoder Dropout - 0.5
| Hidden — C,y LayerNorm: No

FIGURE 4: COMPRESSED CHART THAT IS EQUIVALENT TO
FIGURE 3

The model was trained to use the DR signal along with the
preprogrammed welding force and current to generate electrode
displacement and force signals. The initial results of the

network showed promise and would accurately recreate the
trends of the two target signals, it could even replicate expulsion
well. The primary issue with this structure is the generated
signal was much noisier than the true values. This is likely
because the expulsion cases enact much more noise than normal
welds, but the network has generalized to having some noise
throughout the signal. In addition, the magnitude of the signal
did not always match the true values. These results led to the
modification and tuning of the initial model.

During tuning, layer normalization was found to be
detrimental, and was not used. Additionally different model
structures (i.e., encoder amounts, encoder channels, hidden
residual block neurons), dropout rates, and activation functions
were explored. This resulted in three modified networks labeled
Dense, Dropout 20%, and Sigmoid f.

“Dense” doubled the number of hidden neurons in each
residual block, increased the number of encoders to 6, and
increased the number of encoder output channels to 16.
“Dropout 20%” reduced the dropout rate from 50% to 20%.
Finally, “Sigmoid f” replaced the ReLU activation function
with the sigmoid activation function.

While the sigmoid function produced worse results, the
higher density and lower dropout rate proved to be welcome
additions, both keeping closer to the true signal values, while
being slightly smoother. In order to promote further
smoothness, modifications to the loss function were attempted.
Both total variation and L1 losses were added to the MSE loss.
Due to magnitude disparity, the Total Variation loss had to be
scaled down to one ten thousandths of the original value.

While the total variation did produce smoother curves, it
also produced less accurate signals. Conversely, the L1 term
provided additional smoothness without the loss of accuracy.
With these insights, the tuned RIPTiDE model (RIPTiDE 1.5)
was made. It consisted of the “Dense” structure, a 20% dropout
rate, and was trained with the MSE plus L1 loss function. The
structure is shown on FIGURE 5.
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FIGURE 5: RIPTIDE 1.5 MODEL WITH MODIFIED
HYPERPARAMETERS

The generated signals of RIPTiDE 1.5 cleaved much
closer to the true values than the untuned model version, while
also improving on smoothness. These results were promising
overall, but the model still wasn’t producing signals as smooth
as the true values. This led to modifications of the underlying
structure of the model, as opposed to just hyperparameters.

The resulting structure is the proposed virtual sensor
model for RSW production, dubbed “RIPTiDE 2.0”, presented
in FIGURE 6. The purpose of this version was to solve the
smoothing problem, as the accuracy of the previous models
were acceptable at this time. This structure took the previously
discussed RIPTiDE 1.5 and added an additional input and
network layer to achieve this.
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FIGURE 6: RIPTIDE 2.0 WITH MODIFIED
HYPERPARAMETERS, ADDITIONAL INPUT, AND
ADDITIONAL FILTER

The first addition was the inclusion of the input called
“Large Drops” This is a sparse signal that only has significant
DR drops. Insignificant drops and all rises are set to zero. The

TABLE 1: DETAILS OF WELDING EXPERIMENTS

term “significant” was established as any drop with a magnitude
larger than the greatest rise, shown on EQUATION 1.

7 = {xm-, Xp; < —Mmaxx,
t 0, otherwise

)

where z; is the i entry of the large drop signal, x,; is the i
entry of the finite difference of DR signal. The purpose of this
inclusion was to emphasize expulsion events and times of large
noise as opposed to it generalizing to them occurring constantly.
The second addition was a convolution layer at the end of the
network with a size of 5 and pad of 2. This acts as a trainable
moving window filter that is unique to each signal to encourage
smoothness. It again used the MSE plus L1 loss function and is
the final iteration of the RIPTiDE virtual sensor.

3. EXPERIMENTAL SETUP AND DATA COLLECTION

In order to train and validate the proposed model,
experimental RSW data was required. These experiments
involved hundreds of RSW welds executed under different
welding conditions. The resulting process measurement data,
including DR, electrode force, and displacement, were
recorded, and collected for analysis.

Each weld was manually performed using a Milco RSW
gun driven by a WTC medium frequency controller, which
measured the secondary welding current. The electrodes were
C15000 CuZr button caps with a face diameter of 6mm. A
Kistler strain gauge with 2% error precision was mounted on
the lower electrode arm to measure the electrode force. A
Heidenhain linear encoder with an accuracy of +5 microns was
mounted on the lower electrode arm to measure the electrode
displacement. The sheet metal used was Usibor® 1500, which
had been coated with a 40-micron layer of Aluminum Silicone.
The experiments were performed under 3 unique sets of sheet
thickness, welding force, and time. The welding forces used
were 5851bs, 8991bs, and 11241bs with welding times of 170ms,
200ms, and 240ms. The sheet thicknesses (¢) used were 1,1.4,
and 1.8 mm. These sheets were further differentiated by sorting

Force (Ibs) Time (ms) Thickness (mm) IDL (um) Current (kA)

4 49,5, 52(x3), 5.4(x4), 5.6, 6(x2), 6.2, 6.4, 6.6, 6.8, 7(x2), 7.2-8.8 (.2 inc), 9.1

7 5-7.2 (2 inc), 6.65,7.5,5.1, 5.4

585 170 ! 13 5,5.2,5.4(x2),5.5, 5.6, 5.8(x2), 6(x4), 6.2, 6.3, 6.4, 6.6, 6.9
31 5,5.2,5.4(x2),5.5, 5.6(x3), 5.8(x3), 6(x4), 6.2, 6.5
0 5,6.2,6.4,6.6,6.7,6.8,7(x3), 7.2(x4), 7.4, 7.7
290 200 4 10 6,6.1,6.2, 6.4(x3), 6.6(x4), 6.8,7,7.2,7.4,7.5,7.6,7.8, 8, 8.3
13 5.7,6(x2), 6.2(x4), 6.6, 6.65, 6.8(x2), 7, 7.3
26 6,6.2,6.6,6.7, 6.8(x2), 1(x4), 7.2(x4), 7.4, 7.7
6 6-6.8(.2 inc), 6.9, 7(x2), 7.2(x2), 7.4(x4), 7.6, 7.7, 7.8, 8, 8.3
8 6.6-7.4(.2 inc), 7.6(x2), 7.8, 7.9, 8(x2), 8.2(x2), 8.4(x4), 8.6, 8.9
1124 240 1.8

13 6.5, 6.6, 6.8(x2), 7(x4),7.2,7.4,7.6,7.8, 8, 8.3

27 6.6,6.8,7,7.2,7.4,7.6(x2), 7.8(x3), 7.9, 8(x2), 8.2(x2), 8.4(x4), 8.6, 8.9




them based on their measured IDL thickness. These sheets were
then welded under varying currents, as detailed in TABLE 1.

The initial configuration involved aligning two sheets to
create a stack-up. Subsequently, three spot welds were
executed, starting from the center, and progressing to one on
each side of the initial weld. Throughout the welding process,
if any noticeable expulsion occurred and was observed, the
respective weld was designated as having experienced
expulsion. Electrodes were dressed between each trial. Due to
the varying welding times, all three signal lengths were 0
padded to 240 ms.

4. RESULTS AND DISCUSSIONS

Each iteration of the RIPTiDE network was trained using
welding data described in SECTION 3. This data was split
80%/20% for training and validation. The networks leveraged
three inputs: the DR signal, the input current, and the input force
to generate the displacement and force signals. Presented here
are the results for the models described in SECTION 2.3.
Unless otherwise stated, the models were trained for 5000
epochs with the Adam optimizer with a learning rate of 0.0001.

For RIPTiDE 1.0, the generated signals were compared to
the true signals with the MSE loss function. Training was
performed for only 1000 epochs since the initial attempt was
only exploratory. Example results are shown on FIGURE 7. As
previously discussed, the trends were appropriate, but the noise
and magnitude were areas for improvement.
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FIGURE 8 shows how varying the loss function of the
network affected RIPTiDE’s performance. The “Baseline”
model is the original RIPTiDE model presented on FIGURE 3,
whereas the other two correspond to the associated loss
function. The inclusion of total variation does improve overall
smoothness, but at the cost of accuracy. L1 produces a smoother
signal than the baseline, but not as much as total variation. L1’s
greater accuracy, however, makes it a more desirable choice.
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The results of the exploratory changes to the
hyperparameters are shown on FIGURE 9. The baseline model
is again presented, with all other columns corresponding to the
associated changes to the model. While both the denser model
and lowered dropout provided marginal improvements to
accuracy and smoothness, the sigmoid function produced much
more chaotic signals, and was removed from consideration.

FIGURE 10. shows the results of RIPTiDE 1.5, and the
overall improvement of the model when compared to the initial
trial on FIGURE 7. We can see a marked improvement in
accuracy and lowered noise, but it could still use some
additional work to bring it more in line with the true signal.

Finally, the results of RIPTiDE 2.0 are shown on FIGURE
11. We can clearly see the generated signals follow the true data
closely both in magnitude and behavior. While it is still not as
smooth as a true signal, it is much less noisy than previous

iterations of the model.
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FIGURE 11: RESULTS FROM RIPTIDE 2.0 , TOP IS NORMAL
WELDS, BOTTOM ARE EXPULSED

While RIPTiDE produces visually impressive results, it
must also be used in a quantitative matter. Our previous work
demonstrated that the ability to algorithmically determine

individual phases of the RSW process is possible through
phenomena in the DR, force, and displacement signals. The
phase transitions occurred at 4 key points: Maximum
Resistance, Force Drop, Force Stabilization, and Maximum
Displacement. These times could be automatically extracted
through an algorithm that required topographic signal
processing and comprehensive selection logic. Salient features
could then be calculated from these points, such as the values
of individual signals at those points and rate of change between
two points. These features could then be leveraged to predict
coated material’s InterDiffusion Layer (IDL). It was also shown
that if the phases were known without the use of the two
mechanical signals, a network of high accuracy could be
produced with only information taken from the DR signal [23].

RIPTiDE was deployed to generate the two mechanical
signals needed for the feature extraction algorithm to determine
if it would serve as an acceptable substitution for real sensors.
Since the original extraction algorithm was tuned specifically
for the trends and behavior of the real process signals, there
needed to be some slight adjustments, primarily the addition of
a smoothing average filter along the generated displacement
curve since the noise spikes could drastically impact the
Maximum Displacement. These changes led to predicted points
that were relatively accurate, though the latter two phases were
less precise, as seen on FIGURE 12.
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FIGURE 12: EXAMPLE OF EXTRATED FEATURE TIMES
FROM RIPTIDE (DASHED LINES) AND TRUE FEATURE TIMES
(SOLID LINES). TOPARE NORMAL WELDS AND BOTTOM ARE
EXPULSED

To evaluate the performance of the generated features, all
663 unique DR signals were input into a fully trained RIPTiDE
model. The generate displacement and force signals were then
used as inputs to the previously discussed feature extractor.
From here, two datasets were compiled. The first leveraged
only the values of the DR signal at the phase points detected



(FIGURE 13.A.1). The second used values from the DR and the
two generated signals for its process features (FIGURE 13.A.2).
Each data set was used to train an MLP in the same manner as
[23]. The results were compared with the network performance
of the dataset leveraging only information gleanable from the
DR signal (FIGURE 13.B.1), and the theoretical maximum
performance of features taken from the DR signal if all key
points were known (FIGURE 13.B.2). The results of the IDL
prediction are shown on FIGURE 13.

Both RIPTiDE networks produced similar results, with the
more feature inclusive network being slightly more accurate.
Both were significant improvements over the DR only model,
and only slightly below the idealized performance. Examining
the standard deviation of the networks shows that the RIPTiDE
models were as consistent as the ones presented in the original
work, as seen in FIGURE 14. This demonstrates that the virtual
sensors are clearly able to add information about the RSW
process utilizing only DR signals. Though not as accurate as the
true process signals, RIPTiDE has demonstrated the ability to
reflect the underlying mechanical phenomena of the RSW
process and provide a noted performance improvement to
monitoring tasks with limited signals.
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5. CONCLUSSION

A computationally efficient technique called RIPTiDE is
developed for virtual generation of electrode force and
displacement signals upon physically measured DR signal in
RSW process monitoring. RSW domain knowledge, such as
expulsion defect-induced DR drops, have been integrated into
the encoder to enhance the performance and interpretability of
data-driven model. Experimental results have shown that
RIPTiDE-based virtual sensing could achieve comparable
performance as physical sensing in characterizing the RSW
process dynamics and predicting the part qualities. Future
research will investigate integration of more RSW physical
theories or empirical information into the RIPTiDE modeling in
order to generate virtual signals with less noises and better
alignment with process dynamics.
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