
RHLab: Towards Implementing a Partial

Reconfigurable SDR Remote Lab

Zhiyun Zhang1, Marcos Inoñan1, Pablo Orduña2, and Rania Hussein1

1 University of Washington, Seattle WA 98195, USA,
{zzyzzy42, minonan, rhussein}@uw.edu,
2 LabsLand, San Francisco, CA 94114, USA

pablo@labsland.com

Abstract. Software-Defined Radio (SDR) remote labs permit students
to experiment with real wireless communication, designing Radio Fre-
quency (RF) systems systems with minimal code adjustments. This fea-
ture allows them to create RF prototypes remotely in a fast way allowing
them to complement their theory of communication classes. While SDR
hardware suffices for most basic applications, some demand extensive
Signal Processing stages that surpass the capabilities of standard SDR
equipment. SDR devices are controlled by reprogrammable digital logic
devices like FPGA which have some limitations in terms of capabili-
ties/price factor. For this case Partial Reconfiguration (PR) emerges as
a solution, leveraging to use the resources of these devices more effi-
ciently. In the conventional approach, modifying FPGA designs required
users to undertake the laborious process of resynthesizing, implement-
ing, and programming the entire FPGA. Consequently, this procedure
is time-consuming and impedes users’ progress. However, with partial
reconfiguration, users only need to resynthesize and program the specific
portions or slices of the FPGA that necessitate modification. However,
it necessitates a specialized understanding of FPGA design, involving
the creation of modifiable regions. This paper takes initial strides to-
wards establishing a remote laboratory for students to explore wireless
communication concepts, harnessing PR for SDR devices.

Keywords: Software-Defined Radio, Remote Laboratory, Partial Re-
configuration, Embedded Systems

1 Introduction

In traditional Science, Technology, Engineering, and Mathematics (STEM) courses,
students typically engage in hands-on laboratory experiments using physical lab
kits provided by the instructional team in physical laboratories [1]. However, this
conventional approach has several drawbacks. First, it is not inclusive for stu-
dents with disabilities, as it requires them to physically attend school, which may
pose risks to their physical and mental well-being [2]. Secondly, this method can
lead to equipment damage, such as short circuits or the dropping of devices [3].
Lastly, it places a greater financial burden on educational institutions, as they

2 Zhiyun Zhang et al.

need to purchase and maintain a large number of lab kits [4]. Unfortunately,
these lab kits are often underutilized, as not all students use the devices simul-
taneously, which fails to capitalize on the potential for greater flexibility.

These disadvantages were largely addressed through the advent of remote
laboratories [5, 6]. Following the emergence of the internet, numerous educa-
tional institutions have shown an interest in creating laboratories that grant
students access to physical devices remotely [7]. Despite initial skepticism, re-
mote laboratories have demonstrated their effectiveness. Numerous engineering
educators and students have reaped the benefits of these remote facilities [8, 9].
In a study conducted during a college-level FPGA course at the University of
Washington, it was found that students exhibited improved analytical skills and
achieved higher overall scores when utilizing a remote hardware laboratory, as
compared to a hands-on laboratory. The flexible access to remote laboratories
also facilitated a greater number of students in completing their work [10].

Software-Defined Radios, commonly known as SDRs, are radio systems that
can be configured and controlled via software programming [11,12]. In contrast to
traditional hardware-based radios, which are constrained by fixed internal com-
ponents determining specifications like frequency range, bandwidth, and sam-
pling rate, SDR devices provide substantial advantages in terms of flexibility,
reconfigurability, and cost-effectiveness. They can be readily updated by repro-
gramming their software, and by replacing many hardware components with
software-driven solutions, SDR devices often exhibit improved power efficiency
and affordability [13, 14]. Over the past two decades, we have observed remark-
able progress in SDR devices. They have grown more robust and capable while
simultaneously reducing in size and cost [15].

As a result, a growing number of educational institutions have incorporated
telecommunication courses into their curriculum, aiming to provide students
with expertise in areas such as radio frequency (RF), wireless communication,
and software-defined radio (SDR) [16]. Additionally, many of these courses man-
date a laboratory section to give students a full learning experience. Address-
ing the limitations associated with conventional in-person labs, the Remote Hub
Lab (RHL/RHLab)3 group [17] and LabsLand4 have developed the RHL-RELIA
project [18]. This project, based on the MELODY model [19], seeks to establish
a remote laboratory facilitating student access to popular SDR devices, enabling
convenient and flexible usage from any location and at any time [20–22].

Building upon the achievements of the existing remote laboratory, where
users were empowered to program ADALM-PLUTO (PlutoSDR) through a web
interface, we are advancing the platform by introducing additional features. Spe-
cialized courses are being developed to harness the capabilities of this remote
lab, including the creation of practical applications such as a radar remote lab-
oratory. Moreover, we are in the final stages of integrating another cost-effective
SDR device, the Red Pitaya, into the project. This paper covers our effort to
incorporate partial reconfiguration into the existing RHL-RELIA system. This

3 https://rhlab.ece.uw.edu
4 https://labsland.com

RHLab: Towards Implementing a Partial Reconfigurable SDR Remote Lab 3

step is aimed at optimizing the use of these more economical FPGAs and en-
abling students to explore the potentials of partial reconfiguration [23].

The paper is structured into the following sections: Section 2 provides an
overview of partial reconfiguration using Zynq SoCs and explores its feasibility
within the SDR domain. Section 3 summarizes our approach to implementing
PR within an established hardware platform. Section 4 showcases our current
progress in this endeavor. The final section, Section 5, offers a conclusion of the
paper and outlines the forthcoming steps.

2 Background

Partial reconfiguration (PR) refers to the process of updating specific portions
or slices of the FPGA while leaving other sections unchanged5. This allows for
flexibility and adaptability in SDR programs, enabling improved performance
and functionality [24–26].

The majority of inexpensive SDRs are equipped with Zynq 7000 System-on-
Chips (SoCs), which belong to the Xilinx family of SoCs comprising a Processing
System (PS) and a Programmable Logic (PL). The PL component is built around
an FPGA, offering high-performance real-time computing capabilities. However,
SDRs in the price range of $200 to $400 commonly utilize Zynq Z-7010 or Z-
7020 SoCs, both of which are cost-optimized members within the Zynq-7000
SoC family. They come with a limited number of logic cells and Look-Up Tables
(LUTs). For instance, the Z-7010 SoC features 28,000 logic cells and 17,600
LUTs, which are only about 1/10 of the logic cells and 1/10 of the LUTs found
in the mid-range Z-7035, which boasts 275,000 logic cells and 171,900 LUTs6.

Inexpensive SDRs often deplete the FPGAs rapidly if not used efficiently,
given that most signal processing applications are resource-intensive and con-
sume a significant number of processing logic cells and LUTs. Partial recon-
figuration provides a solution to this issue by allowing specific sections of an
FPGA to be updated and modified, adapting to the current operational mode
as needed7. The effectiveness of partial reconfiguration has been demonstrated
in the Software-Defined Radio domain. A study using the USRP E310 SDR re-
vealed that performing partial reconfiguration is over four times faster than a
full configuration of the entire FPGA. In their signal processing design, partial
reconfiguration takes 33 ms, while a full reconfiguration lasts 143 ms [27].

Dynamic Partial Reconfiguration (DPR) stands out as a specialized form of
Partial Reconfiguration (PR) that empowers engineers to modify specific por-
tions of an FPGA while it is actively processing data [28–30]. In a study con-
ducted by a research team at Cairo University, an assessment of DPR in wireless
communication technologies like WiFi, Bluetooth, and LTE revealed that DPR

5 https://www.xilinx.com/products/design-tools/partial-reconfiguration.html
6 https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html#
productTable

7 https://www.xilinx.com/products/design-tools/partial-reconfiguration.html

4 Zhiyun Zhang et al.

can significantly reduce FPGA slice utilization and minimize power consump-
tion. The findings indicate that DPR contributed to a 10.19% reduction in total
area and a substantial 76.71% decrease in average power consumption when
compared to system designs lacking DPR [31].

PR has found applications in remote laboratories [32]. In a particular project,
researchers engineered a scalable remote System-on-Chip (SoC) virtual labora-
tory designed to offer training support and exercises for students delving into
digital and embedded system design. Their utilization of partial reconfiguration
aimed to enable “hardware multitasking”, a feature that empowered their remote
lab to concurrently execute up to four distinct FPGA designs from students [33].

Despite extensive research, we discovered a gap in remote laboratories utiliz-
ing the unique capability of partial reconfiguration for SDR projects. One of our
objectives is to facilitate advanced FPGA-focused students in learning the intri-
cacies of designing PR modules, while simultaneously offering radio frequency
students the opportunity to delve into the creation and synergy of various com-
ponents within a radio system.

3 System Design

This section provides an overview of the current RHL-RELIA system setup,
elucidating its structure and components, in Section 3.1 and our plan to integrate
partial reconfiguration into the existing architecture in Section 3.2.

3.1 RHL-RELIA System

The RHL-RELIA system comprises a user-friendly web interface, a server over-
seeing the allocation of SDR combinations per session, and a physical lab housing
all hardware components such as SDRs, Raspberry Pis, and servers. Through this
setup, students can upload their SDR designs from GNU Radio. Subsequently,
the server uploads these programs onto Raspberry Pis, which then program the
connected SDRs via USB cables. Once configured, users can observe and analyze
real-time outputs and actively engage with the SDRs [20].

3.2 Integrating Partial Reconfiguration into the Architecture

To integrate partial reconfiguration into the RHL-RELIA network, there are
two distinct architectural models that facilitate this feature: one based on a user
interface (UI) and another using a command-line approach.

User Interface (UI)-Based Architecture The first approach centers on inte-
grating the Vivado Design Suite, an intuitive user interface application developed
by Xilinx8. This tool empowers users to craft FPGA programs tailored for their
System-on-Chips (SoCs), encompassing the Z7000 series among others.

8 https://www.xilinx.com/products/design-tools/vivado.html

RHLab: Towards Implementing a Partial Reconfigurable SDR Remote Lab 5

Students are required to craft their partial reconfigurable FPGA programs
using Vivado on their personal computing devices. This process encompasses
project creation, design implementation, and synthesis. Upon error-free comple-
tion, students can generate bitstreams primed for uploading onto FPGA boards
across different SDRs. Subsequently, these bitstreams can be uploaded onto
RHL-RELIA’s web user interface. Within Vivado’s hardware manager window as
depicted in Figure 1, students can select and upload their preferred bitstreams,
either complete programs or partial programs, onto remote SDRs. The resultant
output is promptly accessible for viewing on the website.

Fig. 1: Hardware manager window in Vivado Design Suite 2020.1.

UI-Based Hardware Setup The hardware setup for UI-based partial recon-
figuration involves an X86 computer, a JTAG programmer compatible with Zynq
FPGAs, an SDR device, and a Raspberry Pi. The X86 architecture-based com-
puter is essential since Vivado exclusively operates on this architecture9. The
JTAG programmer receives bitstreams from the X86 computer, performing the
task of uploading and programming the Zynq FPGA [27, 34]. Its reliability is
crucial; any incorrect FPGA programming often requires a hard reset, involv-
ing a complete power cycle to restore the device to its default mode. Once the
successful upload of bitstreams is accomplished, the SDR device transmits data
to a Raspberry Pi, which then displays the output on the RHL-RELIA website.
Figure 2 provides a visual illustration of this interconnected configuration.

Command Line-Based Architecture The second approach focuses on inte-
grating the command prompt within the existing RHL-RELIA system to facili-
tate partial configuration through Linux commands. Students gain the ability to
upload both full and partial bitstreams onto the RHL-RELIA website and subse-
quently onto the FPGAs using specific commands. Although less intuitive than
the UI-based interface, this method offers cost reductions in hardware setup.

9 https://support.xilinx.com/s/question/0D52E00006hprrpSAA/
vivado-on-arm-linux?language=en US

6 Zhiyun Zhang et al.

Fig. 2: RHL-RELIA architecture for UI-based FPGA PR.

Command-Based Hardware Setup The setup cost for a command-based
architecture is lower compared to a UI-based architecture due to the exclusion
of an X86 computer and JTAG programmer. While both devices serve as vital
bridges between the Vivado Design Suite and the FPGA, their necessity dimin-
ishes when a UI is not utilized. A command-based architecture solely necessitates
a Raspberry Pi and an SDR device. The Raspberry Pi serves dual functions as
both a programmer and data collector: it programs the SDR’s FPGA via Se-
cure Shell Protocol (SSH), a widely-used network protocol, and retrieves data
from the SDR, displaying it on the RHL-RELIA website. The command-based
architecture is shown in Figure 3.

Fig. 3: RHL-RELIA architecture for command line-based FPGA PR.

4 Results

This section outlines the strides made by us in advancing the RHL-RELIA sys-
tem to facilitate students in conducting real-time partial reconfiguration on SDR
devices.

RHLab: Towards Implementing a Partial Reconfigurable SDR Remote Lab 7

4.1 Testing Partial Reconfiguration: Evaluating Blackboard for
UI-Based Architecture

Before experimenting with PR on an SDR, we initially assessed the feasibility of
executing PR using the UI-based architecture on an economical evaluation board
called Blackboard. This board integrates a Zynq 7007 SoC and incorporates a
USB 2.0 transceiver capable of programming the FPGA10.

The assessment starts with two basic calculator programs: a 4-bit calculator
and an 8-bit calculator. Both programs allocate a region for PR. This segment
can perform either addition or subtraction. Both full and partial bitstreams are
uploaded onto the Zynq FPGA utilizing the hardware manager within Vivado.
Initial findings are depicted in Table 1.

Both programs yield a complete bitstream of approximately 2 MB and partial
bitstreams averaging around 100 KB. This leads to an average of 5.1% reduc-
tion in file size compared to a complete program with embedded child (partial)
bitstreams. Consequently, the upload time for a partial bitstream is only 50.2%
to 57.7% of that required for a full bitstream.

Table 1: Blackboard PR Program Size & Upload Time Comparison

4-Bit Calculator 8-Bit Calculator

Full Bitstream Child 1 Child 2 Full Bitstream Child 1 Child 2

File Size (KB) 2036 104 104 2083 106 106

Upload Time (s) 4.09 2.12 2.36 4.40 2.34 2.21

4.2 SDR Selection

After confirming the feasibility of PR using Vivado on an economical evaluation
board, we proceeded to choose the initial SDR platform. Our selection criteria
favored an SDR with a programmable Zynq FPGA and an active community.
After thorough research, we settled on the Red Pitaya.

Red Pitaya, often abbreviated as RP (to avoid confusion with PR for par-
tial reconfiguration), stands as an open-source SDR renowned for its compact
size, affordability, and robust capabilities. The engineers at Red Pitaya are not
only open to exploring new concepts but also provide valuable assistance. Two
RP models gained our attention: STEMlab 125-1411 and SDRlab 122-1612. In
comparison to the entry-level model, the STEMlab 125-14, the slightly upgraded
SDRlab 122-16 boasts a more powerful Zynq 7020 SoC. This advanced model
offers a substantial increase in specifications, including 204% more logic cells,
133% more block RAMs, and 175% more DSP slices. Consequently, the SDR-
lab 122-16 became our primary choice. For a detailed comparison between the
STEMlab 125-14 and SDRlab 122-16, refer to Table 2.

10 https://www.realdigital.org/hardware/blackboard
11 https://redpitaya.com/stemlab-125-14/
12 https://redpitaya.com/sdrlab-122-16/

8 Zhiyun Zhang et al.

Table 2: Red Pitaya STEMlab 125-14 & SDRlab 122-16 Specifications

STEMLab 125-14 SDRlab 122-16

SoC Zynq 7010 Zynq 7020

Connectivity USB 2.0, 1 Gb Ethernet

Number of RF Input Channels 2

Number of RF Output Channels 2

RF Input Bandwidth DC - 60 MHz 300 kHz - 550 MHz

RF Output Bandwith DC - 60 MHz 300 kHz - 60 MHz

Input Sampling Rate (MS/s) 125 122.88

Output Sampling Rate (MS/s) 125 122.8

Input Resolution (bit) 14 16

Output Resolution (bit) 14

4.3 Analysis: SDR PR via Vivado vs. Command-Line Approach

Next, we conducted PR experiments on the Red Pitaya, employing Vivado and
command-line approaches to assess the feasibility of the previously proposed
architectures. The first subsection provides an overview of the PR outcomes
on a Red Pitaya SDRlab 122-16 utilizing Vivado, while the second subsection
outlines the results achieved through command-line PR execution.

SDR PR with Vivado Hardware Manager The process involved initiating
an SDR project using a manufacturer-provided program and modifying it13.
Subsequently, Vivado’s hardware manager facilitated the upload of generated
bitstreams onto the Red Pitaya. The hardware setup comprised an X86 Windows
computer, a JTAG-HS3 programmer cable, and a Red Pitaya SDRlab 122-16.
The JTAG-HS3 is an inexpensive programmer cable compatible with most Zynq
FPGAs, including the Z7020 on the Red Pitaya14. It is available at approximately
60 USD. In contrast, the official Platform Cable USB II programmer costs nearly
300 USD (the prices are of January 2024).

The primary limitation of the JTAG-HS3 is its pinout disparity. While it has
a total of 14 pins, there are only six JTAG pins on the Red Pitaya. Consequently,
a 14-to-6-pin converter becomes necessary. However, these converters are pricey
compared to non-specialized alternatives. To economize, we devised a converter
by assembling a breadboard and jumper wires, detailed in Figure 4.

Upon programming the Red Pitaya using a PR program, data on file sizes and
resource usage were gathered and summarized in Table 3. Opting for PR rather
than generating complete programs containing both child programs resulted in
a file size reduction exceeding 5%.

13 https://redpitaya-knowledge-base.readthedocs.io/en/latest/learn fpga/4 lessons/
top.html#lessons

14 https://digilent.com/shop/jtag-hs3-programming-cable/

RHLab: Towards Implementing a Partial Reconfigurable SDR Remote Lab 9

Fig. 4: JTAG-HS3 and Red Pitaya connection.

Table 3: Red Pitaya PR Program Size Comparison

Program 1 Program 2

Fulll Bitstream Child 1 Child 2 Full Bitstream Child 1 Child 2

File Size (kB) 2096 106.3 106.3 4046 209.8 209.8

Additional specifics regarding resource usage for a specific SDR project are
outlined in Table 4. The child program’s LUT usage accounts for approximately
8.2% of the static program and utilizes about 16.9% of FFs. These figures closely
align with the LUT and FF savings observed when transitioning from a non-PR
program to a PR program with the same functionality.

Table 4: Red Pitaya PR Program Resource Usage

Full Program with Empty PR Slice Child 1 Child 2

LUT 4975 409 411

FF 5359 903 903

BRAM 32.0 0 0

SDR PR with Command Lines We also conducted tests on the architecture
using command lines, which presented a less intricate hardware setup compared
to using Vivado. We connected a Red Pitaya to a Raspberry Pi 4B using an
Ethernet cable.

Upon receiving the bitstreams, the Raspberry Pi initiates an SSH connection
into the Red Pitaya using its IP address and transfers all necessary bitstreams
onto it. Uploading partial bitstreams onto the FPGA involves asserting a PR
flag. We faced challenges when the FPGA froze after uploading partial bitstreams

10 Zhiyun Zhang et al.

using this approach. The FPGA becomes non-responsive after modifying the PR
regions until it is reprogrammed using a full bitstream. Upon consultation with
a Red Pitaya engineer, it was suggested that the issue might stem from using an
outdated image.

5 Conclusion and Future Work

This work documents our investigation into integrating PR within the RHL-
RELIA remote laboratory. Such a feature represents a high level of specializa-
tion in FPGA expertise, not common at the undergraduate level but valuable
in graduate classes and professional projects. It underscores the inherent mul-
tidisciplinary nature of electrical engineering, necessitating collaborative efforts
between FPGA and RF engineers.

Two distinct architectural models were introduced and assessed: a UI-based
system and a command line-based approach. The detailed hardware setups and
experimentation revealed the potential of PR in reducing upload times onto Zynq
FPGAs while significantly optimizing resource utilization.

The UI-based approach configures the FPGA by an X86 computer separate
from Raspberry Pis. This provides a high degree of flexibility, allowing changes
during SDR execution and fostering a more professional project environment.

Conversely, the command-line method configures remote SDRs entirely by
a Raspberry Pi, offering cost savings but lacking the flexibility of the UI-based
approach. Users can only upload programs to FPGAs using commands.

As future work, while the Red Pitaya satisfies most requirements for an edu-
cational SDR device, exploring options for interoperability among different types
of SDRs could enhance the system’s capabilities. Due to challenges encountered
in the command line-based approach, we will collaborate closely with Red Pitaya
engineers to resolve these issues and ensure its functionality.

Acknowledgements

This work is supported by the National Science Foundation’s Division Of Un-
dergraduate Education under Grant No. 2141798.

References

1. Wang, L., Wang, J.: Design of laboratories for teaching mechatronics/electrical en-
gineering in the context of manufacturing upgrades. International Journal of Elec-
trical Engineering & Education 59(3), 251–265 (2022), https://doi.org/10.1177/
0020720919837856

2. Grout, I.: Supporting access to stem subjects in higher education for students with
disabilities using remote laboratories. In: Proceedings of 2015 12th International
Conference on Remote Engineering and Virtual Instrumentation (REV). pp. 7–13
(2015)

3. Love, T.: Addressing safety and liability in stem education: A review of important
legal issues and case law 1. Technology Studies 39, 28–41 (09 2013)

RHLab: Towards Implementing a Partial Reconfigurable SDR Remote Lab 11

4. Wei, C.: Research on university laboratory management and maintenance
framework based on computer aided technology. Microprocessors and Mi-
crosystems p. 103617 (2020), https://www.sciencedirect.com/science/article/pii/
S014193312030764X

5. Hussein, R., Maloney, R.C., Rodriguez-Gil, L., Beroz, J.A., Orduna, P.: Rhl-beadle:
Bringing equitable access to digital logic design in engineering education. In: 2023
ASEE Annual Conference & Exposition (2023)

6. Dominik May, Beshoy Morkos, A.J.N.J.H.A.I., Beyette, F.: Rapid transition of
traditionally hands-on labs to online instruction in engineering courses. European
Journal of Engineering Education 48(5), 842–860 (2023), https://doi.org/10.1080/
03043797.2022.2046707

7. Xu, Z., Chen, W., Qu, D., Hei, X., Li, W.: Developing a massive open online lab
course for learning principles of communications. In: TALE. pp. 586–590. IEEE
(2020)

8. Schnieder, M., Williams, S., Ghosh, S.: Comparison of in-person and virtual
labs/tutorials for engineering students using blended learning principles. Education
Sciences 12(3), 153 (Feb 2022), http://dx.doi.org/10.3390/educsci12030153

9. Schnieder, M., Ghosh, S., Williams, S.: Using gamification and flipped
classroom for remote/virtual labs for engineering students (2 2022), https:
//repository.lboro.ac.uk/articles/conference contribution/Using gamification
and flipped classroom for remote virtual labs for engineering students/19188251

10. Hussein, R., Wilson, D.: Remote versus in-hand hardware laboratory in digital
circuits courses. In: 2021 ASEE Virtual Annual Conference Content Access. ASEE
Conferences, Virtual Conference (July 2021), https://peer.asee.org/37662

11. Blossom, E.: Gnu radio: Tools for exploring the radio frequency spectrum. In: Linux
Journal (2004)

12. Tato, A.: Software defined radio: A brief introduction. In: XoveTIC Congress 2018.
XoveTIC 2018, MDPI (Sep 2018), http://dx.doi.org/10.3390/proceedings2181196

13. S
,
orecău, M., S

,
orecău, E., Sârbu, A., Bechet, P.: Real-time statistical measurement

of wideband signals based on software defined radio technology. Electronics 12(13),
2920 (Jul 2023), http://dx.doi.org/10.3390/electronics12132920

14. Perotoni, M.B., Ferreira, L., Maniçoba, A.: Low-cost measurement of electro-
magnetic leakeage in domestic appliances using software-defined radios. Revista
Brasileira de Ensino de Fı́sica 44, e20220009 (2022), https://doi.org/10.1590/
1806-9126-RBEF-2022-0009

15. Collins, T., Getz, R., Wyglinski, A., Pu, D.: (2018)

16. Hussein, R., Guo, M., Amarante, P., RodriguezGil, L., Orduña, P.: Digital twinning
and remote engineering for immersive embedded systems education. In: Frontiers
in Education (FIE) Conference. IEEE, USA (2023)

17. Hussein, R., Chap, B., Inonan, M., Guo, M., Monroy, F., Maloney, R., Alves, S.,
Kalisi, S.: Remote hub lab – rhl: Broadly accessible technologies for education
and telehealth. 20th annual International conference on Remote Engineering and
Virtual Instrumentation REV 2023 (2023)

18. Inonan, M., Paul, A., May, D., Hussein, R.: Rhlab: Digital inequalities and equi-
table access in remote laboratories. In: 2023 ASEE Annual Conference & Exposi-
tion (2023)

19. Inonan, M., Hussein, R.: Melody: A platform-agnostic model for building and eval-
uating remote labs of software-defined radio technology. IEEE Access 11, 127550–
127566 (2023), doi: 10.1109/ACCESS.2023.3331399

12 Zhiyun Zhang et al.

20. Inonan, M., Chap, B., Orduña, P., Hussein, R., Arabshahi, P.: Rhlab scalable soft-
ware defined radio (sdr) remote laboratory. 20th annual International conference
on Remote Engineering and Virtual Instrumentation REV 2023 (2023)

21. Hussein, R., Chap, B., Inonan, M., Guo, M., Monroy, F.L., Maloney, R., Alves, S.,
Kalisi, S.J.: Remote hub lab – rhl: Broadly accessible technologies for education
and telehealth. In: 20th Annual International Conference on Remote Engineering
and Virtual Instrumentation (REV) (2023)

22. Inonan, M., Orduña, P., Hussein, R.: Adapting a remote sdr lab to analyze digital
inequalities in radiofrequency education in latin america. Revista Innovaciones
Educativas (2023), in press

23. Vipin, K., Fahmy, S.A.: Zycap: Efficient partial reconfiguration management on
the xilinx zynq. IEEE Embedded Systems Letters 6(3), 41–44 (2014)

24. Bucknall, A.R., Fahmy, S.A.: Runtime abstraction for autonomous adaptive sys-
tems on reconfigurable hardware. In: 2021 Design, Automation Test in Europe
Conference Exhibition (DATE). pp. 1616–1621 (2021)

25. Bucknall, A.R., Shreejith, S., Fahmy, S.A.: Network enabled partial reconfiguration
for distributed fpga edge acceleration. In: 2019 International Conference on Field-
Programmable Technology (ICFPT). pp. 259–262 (2019)

26. Bucknall, A.R., Shreejith, S., Fahmy, S.A.: Build automation and runtime abstrac-
tion for partial reconfiguration on xilinx zynq ultrascale+. In: 2020 International
Conference on Field-Programmable Technology (ICFPT). pp. 215–220 (2020)

27. Grassi, S., Convers, A., Dassatti, A.: Fpga partial reconfiguration in software
defined radio devices. Proceedings of the GNU Radio Conference 5(1) (2020),
https://pubs.gnuradio.org/index.php/grcon/article/view/68

28. Bucknall, A.R., Fahmy, S.A.: Zypr: End-to-end build tool and runtime manager
for partial reconfiguration of fpga socs at the edge. ACM Trans. Reconfigurable
Technol. Syst. 16(3) (jun 2023), https://doi.org/10.1145/3585521

29. Vipin, K., Fahmy, S.A.: Fpga dynamic and partial reconfiguration: A survey of
architectures, methods, and applications. ACM Comput. Surv. 51(4) (jul 2018),
https://doi.org/10.1145/3193827

30. Pham, K., Koch, D., Vaishnav, A., Georgopoulos, K., Malakonakis, P., Ioannou, A.,
Mavroidis, I.: Moving compute towards data in heterogeneous multi-fpga clusters
using partial reconfiguration and i/o virtualisation. In: 2020 International Confer-
ence on Field-Programmable Technology (ICFPT). pp. 221–226 (2020)

31. Hosny, S., Elnader, E., Gamal, M., Hussien, A., Khalil, A.H., Mostafa, H.: A soft-
ware defined radio transceiver based on dynamic partial reconfiguration. In: 2018
New Generation of CAS (NGCAS). pp. 158–161 (2018)

32. Somanaidu, U., Telagam, N., Kandasamy, N., Nanjundan, M.: Usrp 2901 based
fm transceiver with large file capabilities in virtual and remote laboratory. In:
International Journal of Online Engineering. pp. 193–200. iJOE (2018)

33. Machidon, O., Machidon, A., Cotfas, P., Cotfas, D.: Leveraging web services and
fpga dynamic partial reconfiguration in a virtual hardware design lab. International
Journal of Engineering Education 33 (01 2017)

34. Hassan, A., Ahmed, R., Mostafa, H., Fahmy, H.A.H., Hussien, A.: Performance
evaluation of dynamic partial reconfiguration techniques for software defined radio
implementation on fpga. In: 2015 IEEE International Conference on Electronics,
Circuits, and Systems (ICECS). pp. 183–186 (2015)

	RHLab: Towards Implementing a Partial Reconfigurable SDR Remote Lab

