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Abstract

Low resolution coarse-grained (CG) models provide remarkable com-

putational and conceptual advantages for simulating soft materials.

In principle, bottom-up CG models can reproduce all structural and

thermodynamic properties of atomically detailed models that can be

observed at the resolution of the CG model. This review discusses

recent progress in developing theory and computational methods for

achieving this promise. We first briefly review variational approaches

for parameterizing interaction potentials and their relationship to ma-

chine learning methods. We then discuss recent approaches for si-

multaneously improving both the transferability and thermodynamic

properties of bottom-up models by rigorously addressing the density-

and temperature-dependence of these potentials. We also briefly dis-

cuss exciting progress in modeling high resolution observables with low-

resolution CG models. More generally, we highlight the essential role

of the bottom-up framework not only for fundamentally understand-

ing the limitations of prior CG models, but also for developing robust

computational methods that resolve these limitations in practice.
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1. Introduction

By judiciously representing systems in reduced detail, coarse-grained (CG) models enable

efficient simulations on length- and time-scales that cannot be effectively addressed with

atomically detailed models (1, 2). Conversely, by retaining key molecular features, CG

models provide insight into fluctuations and interactions that are hidden from mean field

and continuum models (3). Moreover, CG models provide profound conceptual advantages

by focusing effort on the essential aspects of physical phenomena (4). Consequently, CG

models continue to enjoy rapidly growing popularity for studying soft materials (5).

coarse-grained (CG):
a lower resolution

model that

represents a system
in coarse detail

This review addresses “bottom-up” approaches that parameterize CG models based

upon information from higher resolution models (6). We first briefly discuss variational

approaches for parameterizing interaction potentials. We then focus on recent theoretical

and computational advances for improving the accuracy and transferability of bottom-up

models. In particular, we emphasize the density- and temperature-dependence of effective

potentials and their impact upon the transferability and thermodynamic properties of CG

models. Readers are referred to a number of excellent recent reviews for a much broader

perspective on bottom-up coarse-graining approaches (7, 8, 9, 10, 11, 12, 13, 14, 15).

2. The bottom

Bottom-up models rely on an accurate high resolution model, which we shall refer to as an

all-atom (AA) model. We denote the AA potential by u(r) ≡ u(r;V ), where r = (r1, . . . , rn)

denotes the configuration for n atoms and V is the volume. In the canonical ensemble at a

given volume and temperature, T , the AA model samples configurations according to

all-atom (AA): an
atomically detailed

high-resolution
model

pr(r) = exp[−βu(r)]/z 1.

z =

∫︂
V n

dr exp[−βu(r)], 2.

where z = z(V, T ) is the canonical configuration integral and β = 1/kBT (16). The config-

uration integral defines the excess (Helmholtz) free energy of the AA model:

axs ≡ axs(V, T ) = −kBT lnV −nz(V, T ) = u− Tsxs. 3.

Here u ≡ u(T, V ) ≡ ⟨u(r)⟩ is the mean AA potential and the angular brackets denote an

average according to pr(r), while sxs is the excess configurational entropy

sxs ≡ sxs(T, V ) ≡ −kB
∫︂
V n

dr pr(r) ln [pr(r)/qr(r)] ≤ 0, 4.

where qr(r) = V −n denotes the uniform distribution for n non-interacting atoms with a

potential, uid(r) = 0. Eq 4 expresses sxs as the Kullback-Leibler (KL) divergence (see KL

divergence sidebar) between pr and qr (17). The AA free energy varies according to

daxs = −pthxsdV − sxsdT, 5.

where pthxs ≡ pthxs(V, T ) ≡ ⟨pxs(r, V )⟩ is the thermodynamic excess pressure and

Kullback-Leibler
(KL) divergence: a
metric for

quantifying the
difference between

probability densities.
See associated
sidebar.

pxs(r, V ) ≡ 1

3V

n∑︂
i=1

fi · ri −
(︃
∂u

∂V

)︃
r

. 6.
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The first term in Eq. 6 gives the virial contribution in terms of the AA forces, fi = −∂u/∂ri.
The second term accounts for any explicit density-dependence in the AA potential. The

instantaneous internal pressure of the AA model is then

pint(r, V ) = nkBT/V + pxs(r, V ). 7.

KL divergence

Kullback and Leibler (KL) interpreted ϕ(x) ≡ ln[p1(x)/p2(x)] as the information available at x for distin-

guishing two probability distributions, p1(x) and p2(x). (17) The KL divergence, or relative entropy,

D[p1||p2] =
∫︂
dx p1(x) ln [p1(x)/p2(x)] , SB1

is defined as the average of ϕ(x) with respect to p1(x). The Gibbs inequality implies that D[p1||p2] ≥ 0 and

only vanishes if p1 = p2. (18) Thus, D[p1||p2] provides an important metric for quantifying the difference

between p1 and p2. If pi is the canonical distribution, pi(x) = V −n exp [βai − βui(x)], then D[p1||p2] =
β(a1 − a2) − β ⟨u1(x)− u2(x)⟩1, where the average is performed with respect to p1. (19) Sanov’s theorem

implies another important property of the KL divergence. (20, 21) Suppose one obtains ns statistically

independent samples, {x1, . . . , xns}, from a probability distribution, ps(x). These ns samples determine the

empirical probability distribution, p̂(x) ≡ ns
−1 ∑︁ns

i=1 δ(x − xi). Sanov’s theorem implies that, as ns → ∞,

the probability, or likelihood, of observing an empirical distribution, p̂(x), that deviates from the sampling

distribution, ps(x), exponentially decays with ns at a rate determined by D[p̂||ps]:

P[p̂] ≈ exp {−nsD[p̂||ps]} . SB2

In the context of parameterizing generative probabilistic models, one seeks to optimize the parameters, θ,

for a model with a probability distribution, pM(x; θ), such that it reproduces the “ground truth” target

distribution, pT(x). In this case, one wishes to maximize the probability that sampling from the model,

ps(x) = pM(x; θ), generates an empirical probability that matches the ground truth: p̂(x) = pT(x). Thus, in

this maximum likelihood approach, one should optimize θ by minimizing the KL divergence D[pT||pM(θ)].

3. Coarse-grained representation

Bottom-up approaches define the CG representation for a particular system by a mapping,

M(r), that maps each AA configuration, r, to a CG configuration, R = M(r). This

mapping usually determines the coordinates, RI , for each site, I = 1, . . . , N , as a linear

combination of atomic coordinates with constant coefficients:

RI =

n∑︂
i=1

cIiri. 8.

If all of the atoms in a site are displaced by a vector, v, then the site should also be displaced

by the same vector. Consequently, the coefficients must be normalized
∑︁n

i=1 cIi = 1 for

each site I (22). The mapping also defines a subensemble of AA configurations, M−1(R) =
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{r|M(r) = R}, that map to R. We refer readers to several reviews that discuss recent

insights into the CG mapping (8, 10, 23).

Bottom-up approaches typically focus on reproducing properties of the AA model at

the resolution of the CG model, i.e., the properties in the mapped ensemble (23). We define

the restricted configuration integral,

zR(R) ≡ zR(R;V, T ) ≡
∫︂
V n

dr exp[−βu(r)]δ(M(r)−R) , 9.

as the Boltzmann weight for the subensemble M−1(R). The mapped probability (density),

pR(R) ≡
∫︂
V n

dr pr(R)δ(M(r)−R) = zR(R)/z, 10.

gives the probability that the AA model samples M−1(R). The conditioned probability,

pr|R(r|R) ≡ pr(r)δ(M(r)−R) /pR(R) = e−βu(r)δ(M(r)−R) /zR(R), 11.

describes the distribution of AA configurations in M−1(R).

The mapping defines the “exact” potential (24, 25, 26, 27) for bottom-up CG models:

W (R) ≡W (R;V, T ) ≡ −kBT lnV N−nzR(R;V, T ). 12.

Because pR(R) ∝ e−βW (R), CG simulations that employ W (R) as an effective potential

will perfectly reproduce the mapped probability distribution. The analogy between Eqs. 3

and 12 implies that W (R) is the excess (Helmholtz) free energy of the AA model when it

is viewed at the resolution of the CG representation (10, 3). Consequently, it follows that

W (R) = EW (R)− TSW (R), 13.

where

EW (R) ≡ ⟨u(r)⟩R 14.

and the subscripted brackets denote an average according to pr|R(r|R). The entropic con-

tribution to W ,

SW (R) ≡ −kB
∫︂
V n

dr pr|R(r|R) ln
[︁
pr|R(r|R)/qr|R(r|R)

]︁
≤ 0, 15.

is the excess configurational entropy associated with M−1(R) (28). Here qr|R(r|R) =

V N−nδ(M(r)−R) is the ideal conditioned distribution, such that SW is (−kB times) the

KL divergence between pr|R and qr|R. The analogy between Eqs. 3 and 12 also implies (29)

dW = −
N∑︂

I=1

f I · (dRI)V − pxsdV − SWdT. 16.

Here (dRI)V denotes variations in configuration at constant volume, i.e., (dRI)V =

V 1/3dR̂I where R̂I = RI/V
1/3, and

f I ≡ f I(R;V, T ) ≡ ⟨fI(r)⟩R 17.

is the conditioned average of the AA net force, fI(r) =
∑︁

i∈I fi(r), on site I in the AA

configuration r.(30, 31, 22) Because the gradients of W are (conditioned) mean forces, W
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is commonly referred to as the many-body potential of mean force (PMF) (24). Similarly,

in Eq. 16, pxs is the mean excess pressure of the AA model at the CG resolution, i.e.,

pxs ≡ pxs(R;V, T ) ≡ ⟨pxs(r;V )⟩R =
1

3V

N∑︂
I=1

f I ·RI −
(︃
∂W

∂V

)︃
R

, 18.

which reflects the mean-force virial and also the explicit density-dependence of the PMF.

potential of mean
force (PMF): a
potential from which

average forces can
be calculated as

gradients. In this
work, PMF refers to

W (R).
Consequently, if W (R;V, T ) is known as a function of both configuration and thermody-

namic conditions, then the CG model should be able to perfectly reproduce all structural

and thermodynamic properties of the AA model at the resolution of the CG model.

4. Configuration-dependence and structure

4.1. Approximate interaction potentials

In practice, Eq. 9 cannot be evaluated and the PMF must be approximated by a simpler

interaction potential, U . In many cases, U may be expressed

U(R) =
∑︂
ζ

∑︂
λ

Uζ(ψζ(Rλ)). 19.

Here ζ indicates a particular type of interaction, Uζ indicates a corresponding potential that

depends upon a scalar variable ψζ that is a function of the coordinates, Rλ, for a particular

set, λ, of CG sites. For instance, if ζ = 2 indicates an intermolecular pair interaction,

Uζ = U2 is a pair potential, Rλ = {RI ,RJ} is the coordinates for the pair, λ = {I, J}, and
ψζ(Rλ) = RIJ(R) = |RI −RJ | is the distance between the pair in configuration, R. The

approximate potential determines the equilibrium distribution for the CG model:

PR(R;U) ≡ exp[−βU(R)]/Z[U ], 20.

where Z[U ] ≡ Z[V, T ;U ] ≡
∫︁
V N dR exp[−βU(R)].

4.2. Relative entropy

Shell and coworkers pioneered a relative entropy (RE) variational principle (19, 32, 33) for

optimizing the approximate interaction potential, U , by minimizing

Srel[U ] ≡
∫︂
V N

dR pR(R) ln

[︃
pR(R)

PR(R;U)

]︃
≥ Srel[W ] = 0. 21.

Thus, the exact PMF is the global minimizer of Srel[U ]. More generally, given a space of

relative entropy
(RE): another
common name for

the KL

divergence (20).

approximate potentials, the minimizing potential, U∗ = argminU Srel[U ], corresponds to the

equilibrium distribution, PR(R;U∗), that is “closest” (as measured by the KL divergence,

D[pR||PR(U)]) to the mapped distribution, pR(R).

In practice, one typically minimizes Srel[U ] with respect to the interaction potentials,

Uζ(x), that are included in Eq 19. It is convenient to re-express Eq 19 (34, 35)

U(R) =
∑︂
ζ

∫︂
dz Uζ(z)ρ̂ζ(z;R) 22.

ρ̂ζ(z;R) ≡
∑︂
λ

δ (ψζ(Rλ)− z) . 23.
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For each Uζ(z), ρ̂ζ(z;R) serves as a corresponding conjugate operator that quantifies the

number of times that Uζ(z) contributes to U(R). In this case,

δSrel[U ]

δUζ(z)
= βNζ {pζ(z)− Pζ(z;U)} , 24.

where Nζ is the number of instances of the ζ interaction in the model, while pζ(z) and

Pζ(z;U) give the probability (densities) that ψζ = z in the mapped ensemble and in the

equlibrium ensemble for the approximate CG model, respectively:

pζ(z) ≡ 1

Nζ

∫︂
V N

dR pR(R)ρ̂ζ(z;R) 25.

Pζ(z;U) ≡ 1

Nζ

∫︂
V N

dR PR(R;U)ρ̂ζ(z;R). 26.

According to Eq 24, the relative entropy is minimized with respect to Uζ(z) when

Pζ(z;U) = pζ(z), i.e., when simulations with the CG model reproduce the mapped proba-

bility distribution for the corresponding degree of freedom. In particular, if Uζ(z) = U2(r)

corresponds to a non-bonded pair potential, then pζ(r)/r
2 and Pζ(r)/r

2 are proportional

to the corresponding radial distribution function (RDF) in the mapped ensemble and in

the simulated CG ensemble, respectively. Therefore, Srel[U ] provides a variational frame-

radial distribution
function (RDF): a
correlation function,

g(r), describing the
spatial density

around particles that

has been normalized
with respect to the

bulk density (16).

Inverse Monte Carlo
(IMC): an early

structure-based

approach introduced
in (34) for

parameterizing CG
models to accurately

reproduce structural

observables,
including the RDF.

Iterative Boltzmann
Inversion (IBI): a
structure-based

approach introduced

in (36) for
parameterizing CG

models to accurately

reproduce the
mapped RDF.

work for deriving and generalizing structure-based methods, (37, 32, 35) such as Iterative

Boltzmann Inversion (IBI) (36) or the Inverse Monte Carlo (IMC) method (34), that op-

timize interaction potentials to reproduce conjugate structural correlation functions. In

practice, Pζ(z;U) cannot be determined without explicitly simulating the CG potential, U .

Consequently, minimizing Srel[U ] generally requires simulating a sequence of approximate

potentials until the CG model reproduces the relevant mapped distributions (38).

4.3. Force-matching
Force-matching
(FM): a variational
approach for

parameterizing

approximate
potentials to match

gradients of a target

potential.

Multiscale
coarse-graining
(MS-CG): a
bottom-up
approach (39, 40)
that employs the
FM variational

principle to
parameterize the

approximate CG
potential.

Voth and coworkers (39, 40, 41) pioneered the multiscale coarse-graining (MS-CG) force-

matching (FM) variational principle for optimizing U by minimizing

χ2[U ] ≡

⟨︄
1

3N

N∑︂
I=1

|fI(r)− FU ;I(M(r))|2
⟩︄
. 27.

Here fI(r) =
∑︁

i∈I fi(r) is the net AA force on site I, while FU ;I(R) = −∇IU(R) is the

force specified by U(R) and ∇I = ∂/∂RI . The sidebar on least squares and conditioned

means implies (22) that

χ2[U ] = χ2[W ] +

∫︂
V N

dR pR(R)
1

3N

N∑︂
I=1

⃓⃓
f I(R)− FU ;I(R)

⃓⃓2 ≥ χ2[W ], 28.

where f I(R) = −∇IW (R) is the many-body mean force. Thus, the exact many-body PMF

is the global minimizer of χ2[U ]. More generally, given a space of approximate potentials,

the minimizing MS-CG potential optimally approximates (in a least squares sense) the

gradients and, thus, the configuration-dependence of the exact PMF (22).

Equation 28 has a beautiful geometric interpretation in a vector space of force fields.

Each element of this vector space specifies a configuration-dependent, vector-valued force

6 Noid et al.



Least squares and conditioned means

Let x denote a microscopic random variable with probability (density), p(x). Let f(x) be a microscopic

observable with mean µ =
∫︁
dx p(x)f(x) and variance σ2 =

∫︁
dx p(x)|f(x)− µ|2. For any constant c,

χ2(c) ≡
⟨︁
|f(x)− c|2

⟩︁
= σ2 + |µ− c|2 SB3.

In Eq. SB3 the angular brackets denote an average with respect to p(x) and the second equality follows from

the simple identity ⟨f(x)− µ⟩ = 0. Because σ2 is independent of c, we see that the mean, µ, minimizes χ2.

Now let us define a mapping, M(x) : x→ X =M(x), that determines a “coarse-grained” description of

x. This determines a marginal probability, P (X) ≡
∫︁
dx p(x)δ(M(x) −X), and a conditioned probability,

p(x|X) ≡ p(x)δ(M(x) − X)/P (X). For any CG function, C(X), the reasoning that led to Eq. SB3 also

implies ⟨︁
|f(x)− C(M(x))|2

⟩︁
X

= σ̃2(X) + |µ̃(X)− C(X)|2. SB4.

Here the subscripted angular brackets denote the conditioned average according to p(x|X), µ̃(X) ≡ ⟨f(x)⟩X
is the conditioned mean, and σ̃2(X) ≡

⟨︁
|f(x)− µ̃(X)|2

⟩︁
X

is the conditioned variance quantifying micro-

scopic fluctuations in f(x) over the subensemble of microstates, x, that map to the CG state, X. By

averaging Eq. SB4 with respect to P (X), we see that

χ2[C] ≡
⟨︁
|f(x)− C(M(x))|2

⟩︁
= χ2[µ̃] +

∫︂
dX P (X)|µ̃(X)− C(X)|2 ≥ χ2[µ̃] SB5.

Thus, among all CG functions C(X), the conditioned mean, µ̃(X) ≡ ⟨f(x)⟩X , provides the optimal fit to

the microscopic function, f(x) (42). Moreover, Eq. SB5 may be interpreted as a statement of Pythagorean’s

theorem for the distance between a fluctuating microscopic function, f(x), and an arbitrary CG function,

C(X). Consequently, if one considers a particular subspace of CG functions, then the function within this

subspace that minimizes χ2[C] also is closest to the conditioned mean, µ̃(X).

on each CG site, I = 1, . . . , N . The AA potential, u(r), specifies one particular force field,

fu ≡ {fI(r)}. Within this space, there exists a vector subspace of CG force fields that

depend only upon the CG representation of the AA configuration, F ≡ {FI(M(r))}. The

PMF, W (R), specifies the CG force field, FW ≡ {f I(M(r))}, that is defined by the mean

forces, f I(R).1 Given two force fields, f (1) and f (2), we define an inner product ⊙ (43, 44)

f (1) ⊙ f (2) ≡ 1

3N

∫︂
V n

dr pr(r)

N∑︂
I=1

f
(1)
I (r) · f (2)I (r). 29.

In the case of two CG force fields, F(1) and F(2), Eq 29 simplifies to an average over the

1From the perspective of the CG configuration space, fI(r), is a fluctuating random function,
while fI(R) is its deterministic conditioned mean. Consequently, fI(R) may be considered the
projection of fI(r) into the CG configuration space. Accordingly, FW may be considered the
projection of fu into the subspace of CG force fields (42).

www.annualreviews.org • Rigorous coarse-graining progress 7



mapped ensemble

F(1) ⊙ F(2) =
1

3N

∫︂
V N

dR pR(R)

N∑︂
I=1

F
(1)
I (R) · F(2)

I (R). 30.

This inner product then defines a norm for the space of force fields, ||f ||2 ≡ f ⊙ f .

Given these definitions, we see that χ2[U ] = ||fu − FU ||2 and χ2[W ] = ||fu − FW ||2,
while the last term in Eq. 28 is ||FW − FU ||2. Consequently, Eq. 28 is a statement of the

Pythagorean theorem in the space of force fields (22, 45, 30)

||fu − FU ||2 = ||fu − FW ||2 + ||FW − FU ||2 . 31.

Because ||FW − FU ||2 ≥ 0 and only vanishes when FW = FU , Eq 31 implies that the mean

force field, FW , is the CG force field closest to the AA force field, fu. Accordingly, FW

may be considered the geometric projection of fu into the subspace of CG force fields. By

minimizing χ2[U ] = ||fu − FU ||2, the FM variational principle determines the approximate

CG force field that minimizes the distance ||FW − FU ||2.
Eq. 19 defines a force field “basis set” for performing the FM variational calculation (22,

46). Specifically, for each interaction potential, Uζ(z), that governs a mechanical degree of

freedom, ψζ , we define a force function, Fζ(z) ≡ −dUζ(z)/dz, and a force field vector,

Gζ(z) ≡ {Gζ;I(z;R)}, that specifies the direction of these forces:

Gζ;I(z;R) ≡
∑︂
λ

(︃
∂ψζ(Rλ)

∂RI

)︃
δ (ψζ(Rλ)− z) . 32.

The approximate force field, FU , may then be expressed in analogy to Eq 22

FU =
∑︂
ζ

∫︂
dz Fζ(z)Gζ(z), 33.

where Gζ(z) acts as a basis vector and Fζ(z) acts as the corresponding coefficient. The FM

minimizing condition for the MS-CG force functions (47, 22) may be expressed∑︂
ζ′

∫︂
dz′ Gζζ′(z, z

′)Fζ′(z
′) = bζ(z), 34.

where

Gζζ′(z, z
′) ≡ Gζ(z)⊙ Gζ′(z

′) =
1

3N

⟨︄
N∑︂

I=1

Gζ;I(z;M(r)) · Gζ′;I(z
′;M(r))

⟩︄
35.

is a Gram matrix describing the inner product between basis vectors, (48) while

bζ(z) ≡ Gζ(z)⊙ fu =
1

3N

⟨︄
N∑︂

I=1

fI(r) · Gζ;I(z;M(r))

⟩︄
36.

corresponds to the projection of the AA force field onto the basis vector, Gζ(z) (48). Impor-

tantly, Gζζ′(z, z
′) and bζ(z) are both expressed as averages over the AA canonical ensemble.

Consequently, Eq 34 determines the optimal MS-CG potential directly from an AA simu-

lation without requiring simulations of approximate CG potentials.

8 Noid et al.



Because the many-body mean force field, FW , is the projection of the AA force field,

fu, into the subspace of CG force fields, Eq 36 implies that bζ(z) = Gζ(z)⊙FW . Moreover,

because the mean forces are related to gradients of the mapped probability distribution,

i.e., f I(R) = −∇IW (R) = kBT ∇IpR(R)/ pR(R), bζ(z) can be directly determined from

structural correlations within the mapped ensemble (47, 43, 44). Therefore, Eq 34 allows

one to perform the variational FM calculation directly from structural information within

the mapped ensemble, i.e., one can perform force-matching without force information (45).

Eq 34 also has an instructive geometric interpretation (48, 45). By employing Eqs 30,

33, and 35, along with bζ(z) = Gζ(z)⊙ FW , Eq. 34 may be re-expressed

Gζ(z)⊙ FU = Gζ(z)⊙ FW . 37.

Thus, the FM variational principle determines the optimal MS-CG potential by geometri-

Yvon-Born-Green
(YBG) equation: an
integral equation

that relates the

potential and
equilibrium

structural

correlations of a
liquid (18).

cally projecting the many-body mean force field, FW , onto the CG force field basis set that

is specified by Eq 19 for the approximate CG potential, U . By matching the projected mean

forces - and thus the gradients of the exact many-body PMF - the MS-CG potential approx-

imates the configuration-dependence ofW . In fact, the force-balance relation, Eq 37, corre-

sponds to a rigorous generalization of the Yvon-Born-Green (YBG) integral equation (18).

The YBG equation has typically been interpreted as an exact relationship between the 2-

and 3-body correlation functions of a simple liquid with a known pair potential. However,

this generalized-YBG equation not only treats arbitrarily complex potentials, but also pro-

vides a direct (i.e., non-iterative) variational approach for solving the inverse problem of

deducing the potentials that generated observed structural correlations (47, 43, 44, 45).

However, the force field basis set for physics-based CG models is usually highly in-

complete and cannot represent the exact many-body PMF. Moreover, Eq 37 determines

the MS-CG force functions to match projected mean forces based upon averages over the

mapped distribution, pR(R), and not the distribution, PR(R;U), for the approximate poten-

tial (47, 48). Consequently, simulations with physics-based MS-CG potentials are not guar-

anteed to reproduce any particular structural properties of the mapped ensemble (49, 50).

Recently, the MS-CG FM variational principle has been generalized in several exciting

directions. In particular, Voth and coworkers have extended the FM variational principle

to treat virtual sites, (51, 52, 53) as well as ultra-CG models in which the state of CG sites

dynamically varies with configuration (54, 55, 56). Kalligiannaki et al. have generalized FM

to treat nonlinear CG maps, (30) while Huang and Nguyen introduced a torque-matching

variational principle to optimize orientation-dependent interactions between anisotropic CG

sites (57). Furthermore, Dequidt and coworkers have developed a Bayesian stochastic tra-

jectory matching approach that employs FM with time-averaged forces (58, 59).

4.4. Coarse-graining and generative models

Recently, a growing number of bottom-up models have employed machine learning (ML)

tools, such as artificial neural networks (60, 61, 62, 63, 64) and kernel methods, (65, 66, 67)

to represent much more flexible interaction potentials that more accurately approximate

the many-body PMF. Perhaps more importantly, there exists a fundamental relation-

machine-learning
(ML): a class of

modern
computational

approaches for
modeling data.

ship between bottom-up coarse-graining and generative probabilistic ML methods (68). In

particular, energy-based ML models determine an energy function, E(x; θ), such that the

model distribution, pM(x; θ) ≡ Z−1(θ) exp[−E(x; θ)], accurately approximates the target

“ground truth” distribution, pT(x) (69). This is perfectly analogous to bottom-up methods
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parameterizing U(R) such that PR(R;U) accurately approximates pR(R).

As discussed in the KL divergence sidebar, the RE variational principle determines the

potential, U , that maximizes the likelihood that the CG model will sample the mapped

distribution (19, 35). Consequently, the RE variational principle corresponds to maximum

likelihood methods that are commonly adopted to parameterize probabilistic ML models.

However, these maximum likelihood methods are limited by the need to treat Z[U ]. Even

though U(M(r)) can be readily evaluated, Srel[U ] cannot be calculated from the mapped

ensemble because Z[U ] cannot be evaluated. In practice, minimizing Srel[U ] requires a series

of simulations with approximate potentials because Pζ(z;U) cannot be determined without

explicitly simulating U (38). In the case of CG models with computationally expensive ML

potentials, this series of simulations can require significant computational resources.

The FM variational principle can also be re-expressed in terms of information theoretic

quantities that are employed to parameterize modern generative probabilistic models. Kull-

back and Leibler interpreted Φ(R;U) ≡ ln pR(R)/PR(R;U) as the information available in

CG configuration, R, for distinguishing pR and PR(U) (17). The gradients of Φ directly

compare the forces due to the PMF and the approximate potential (70)

∇IΦ(R;U) = β
[︁
f I(R)− FU ;I(R)

]︁
. 38.

Consequently, Eq. 28 may be expressed

χ2[U ] = χ2[W ] +
1

3Nβ2

∫︂
V N

dR pR(R)

N∑︂
I=1

|∇IΦ(R;U)|2 . 39.

Thus, while the RE variational principle minimizes Φ, the FM variational principle mini-

mizes the gradients of Φ.

The FM variational principle is closely related to a “score-matching” method that pa-

rameterizes the ML model distribution, pM(x; θ), to match the scores of the target distri-

bution, pT(x) (71). Given a probability function, p(x), the (Stein) score, s(x), is defined

s(x) ≡ d
dx

ln p(x) (72, 73). Importantly, the Stein score is independent of the normalization

Z(θ) and, consequently, can be directly evaluated from x. In the case of equilibrium physi-

cal models and energy-based ML models, the Stein score corresponds to a force that drives

the system to more likely configurations. By definition, gradients of Φ give the difference

in the Stein scores of the mapped distribution, pR(R), and the approximate distribution,

PR(R;U) (70). Thus, the FM and score-matching methods both seek to minimize gradients

of Φ. By eliminating Z, the FM and score-matching functionals can be minimized directly

from the mapped ensemble without requiring multiple, potentially expensive, simulations.

Consequently, many studies have employed the FM variational principle to parameterize

computationally expensive ML potentials (61, 62, 63, 65, 66, 67, 64).

Eqs 38 and 39 provide important insight for developing CG potentials from mapped

ensembles with metastable basins (69). Suppose that the CG configuration space space, S,
contains two basins, S1 and S2, that are separated by a rarely sampled barrier region, Sb.

Let πα be the probability for each region, such that π1 + π2 + πb = 1 and πb ≈ 0. The

mapped distribution may then be expressed

pR(R) = π1p1(R) + π2p2(R) + πbpb(R) 40.

where pα(R) is normalized over Sα, and pα(R) = 0 for R /∈ Sα. For each region, Sα, we

define Wα(R) = −kBT ln[V Npα(R)], which only reflects sampling in Sα. We also define

10 Noid et al.



aα = axs − kBT lnπα, where axs is the excess free energy of the AA model. The PMF in

the two basins is

W (R) =

{︄
W1(R) + a1 if R ∈ S1

W2(R) + a2 if R ∈ S2

41.

Note that ∆a ≡ a2 − a1 = −kBT lnπ2/π1 determines the relative depth of the two basins.

Because the RE variational principle considers probabilities, it can estimate ∆a based upon

the ratio π2/π1 without requiring information from the rarely sampled barrier region. How-

ever, the mean forces contain no information about a1 or a2:

f(R) =

{︄
−∇W1(R) if R ∈ S1

−∇W2(R) if R ∈ S2

42.

Consequently, even in the limit of a complete basis set, the FM variational principle cannot

determine ∆a without information from Sb.
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Figure 1

Gedanken of Zavadlav and coworkers illustrating difficulties that may arise when force-matching

systems with distinct metastable states (74). From top to bottom, the solid black curves indicate

the mapped probability distribution, pR, the corresponding many-body PMF, W = −kBT ln pR,
and the corresponding mean force, f = −∇W . The red points in panel a indicate well-sampled

regions of configuration space. The dashed blue and dotted orange curves in panel c present two

interpolations of the mean force into the barrier region. The corresponding curves in panel b
present the resulting approximations for W .

Figure 1 illustrates these considerations with the gedanken of Zavadlav and cowork-

ers (74). Consider two CG configurations, R1 ∈ S1 andR2 ∈ S2, that correspond to the min-

ima of two basins in the mapped ensemble with different depths, ∆W ≡W (R2)−W (R1).

If the approximate potential, U , reproduces this difference, then ∆U −∆W = kBT∆Φ = 0.

However, the FM variational principle optimizes the CG potential based upon local gradi-

ents, ∇Φ. Consequently, in order for the MS-CG potential to accurately approximate ∆W ,

it must reproduce the integrated mean force along a path between R1 and R2, i.e.,

kBT∆Φ = ∆U −∆W =

∫︂ R2

R1

{︁
f(R)− FU (R)

}︁
· dR ≈ 0. 43.
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This requires that the mapped ensemble contains sufficient information to accurately de-

termine the mean force in the rarely sampled barrier region, Sb, between S1 and S2. Con-

sequently, while it is computationally efficient, the FM variational principle may become

relatively data expensive for complex systems with multiple basins.

The flow-matching approach of Clementi, Noé, and coworkers appears a promising ap-

proach for combining the data efficiency of the RE variational principle with the computa-

tional efficiency of the FM variational principle (75). The flow-matching approach employs

the RE variational principle to parameterize a normalizing flow (76, 77) that can be ef-

ficiently sampled to generate data for parameterizing U via the FM variational principle.

Alternatively, it may be useful to employ contrastive learning (78) or classification based

approaches (60, 68, 79) to parameterize CG models.

5. Density-dependence and the internal pressure

Historically, bottom-up approaches have focused on parameterizing U to reproduce the

configuration-dependence of the PMF, while neglecting its density dependence. These CG

models have typically calculated the internal pressure according to

Pϕ
int(R, V ) ≡ NkBT/V +

1

3V

N∑︂
I=1

FI ·RI , 44.

which assumes that the CG interaction potential does not explicitly depend on density,

i.e., (∂U/∂V )R = 0. However, as illustrated in Fig. 2 (80), Eq. 44 often dramatically

overestimates the internal pressure of the AA model (81, 82) because the effective potentials

indeed vary significantly with density (83, 84, 85, 86, 87). In principle, one can adopt

an “active approach” that treats this density dependence when calculating the internal

pressure (88, 89, 90). In practice, though, bottom-up approaches have typically modified

U such that Eq 44 reasonably approximates the internal pressure of the AA model. For

instance, many studies modify IBI pair potentials with linear “ramp corrections” of the form

−A(1− r/rc) that are tuned to reproduce the average density of the AA model (36, 91).

5.1. Volume potentials

Das and Andersen (DA) derived a fundamentally new approach by treating the volume, V ,

as a CG variable (92). In this framework, the relevant mapped distribution is

pRV(R, V ; pext) ∝ pR(R;V ) exp[−βpextV ], 45.

where pR(R;V ) is the canonical mapped distribution defined by Eq. 10 and pext is the

Das and Andersen
(DA): pioneered a

bottom-up approach
for coarse-graining

at constant
pressure (92).

external pressure. In order to reproduce pRV, the CG potential must reproduce not only

the configuration-dependence, but also the volume-dependence of the modified PMF:

WP (R, V ) ≡W (R;V )− (n−N)kBT ln(V/V0), 46.

where the first term is defined by Eq 12, the second term corresponds to the ideal contribu-

tion from the n−N particles that have been eliminated from the CG model, and V0 is an

arbitrary dimensional constant. If U(R, V ) =WP (R, V ), then the CG model will perfectly

reproduce both the mapped distribution, pRV(R, V ; pext), and also the AA pressure at the

12 Noid et al.
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Impact of density upon AA and CG models for OTP (80). Panel a compares the internal pressure
of the models. The gray points indicate the internal pressure, pint(r, V ), of configurations sampled

by a constant NPT AA simulation, while the solid black curve indicates the AA equation of state.
The blue points indicate the näıve internal pressure, Pϕ

int(M(r), V ), of the CG model obtained by

evaluating Eq 44 for the sampled AA configurations. The dashed blue curve indicates the

simulated pressure equation of state for the CG model when including the volume potential. Panel
b presents the MS-CG pair potentials calculated at T = 650 K for the three indicated densities.

resolution of the CG model, i.e., pint(R, V ) ≡ ⟨pint(r, V )⟩RV , where the average is evaluated

with respect to pr|R(r|R;V ) over the subensemble of AA configurations that map to (R, V ).

DA approximated WP (R, V ) with the effective potential, U(R, V ) = UR(R) + UV(V ),

where UR(R) is a density-independent interaction potential, while UV(V ) is a configuration-

independent “volume potential” (92). Because UV(V ) does not generate forces on the CG

sites, it does not impact the canonical configuration distribution at a fixed volume. Rather,

it directly contributes FV(V ) = −dUV(V )/dV to the internal pressure, as already recognized

in the early work of Dijkstra et al (93, 27). Consequently, simulating volume potentials only

requires modifying the barostat equation of motion to account for FV(V ).

ortho-terphenyl
(OTP): a
glass-forming liquid

consisting of a

central benzene ring
with two benzene

ring substituents in

the ortho- position.

DA represented the volume potential by

UV(V ) = N
{︂
ψ1

(︁
V/V AA

)︁
+ ψ2

(︁
1− V/V AA

)︁2}︂
, 47.

where V AA is the average volume of the AA model, while ψ1 and ψ2 are parameters that

directly contribute to the internal pressure and compressibility, respectively, of the CG

model at the reference state point. Given the fixed interaction potential, UR, they optimized

UV by minimizing a “pressure-matching” functional:

χ2
V [UV;UR] =

⟨︁
|∆pint(r, V )− FV(V )|2

⟩︁
pext

, 48.

where ∆pint(r, V ) = pint(r, V )−Pϕ
int(M(r), V ), while the angular brackets denote an average

over the AA isothermal-isobaric ensemble.

Subsequently, Dunn and Noid developed a self-consistent pressure-matching approach

that quantitatively reproduces the AA equation of state by minimizing the relative entropy

with respect to UV(V ) (82, 94). This self-consistent pressure-matching method has accu-

rately modeled the internal pressure for a variety of liquids, (94, 95, 87) as illustrated in
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Fig. 2 for ortho-terphenyl (OTP) (80). Moreover, the resulting volume potential can be

accurately predicted as a function of solution composition (94) and temperature (96, 87).

5.2. Local density potentials

Volume potentials provide a simple and robust means for modeling the cohesive free energy

density of homogeneous fluids. Local density (LD) potentials appear similarly promis-

ing for modeling liquid interfaces and other inhomogeneous systems. Pagonabarraga and

Frenkel pioneered LD potentials (97) for the many-body dissipative particle dynamics

(DPD) method (98, 99). While early DPD models employed purely repulsive pair potentials

that generated quadratic pressure equations of state, (100) Pagonabarraga and Frenkel (97)

employed LD potentials as a local free energy that could be tuned to model liquid-vapor

coexistence and other non-trivial thermodynamic behavior. Independently, Wolynes and

coworkers introduced LD potentials to describe many-body solvation effects in CG protein

models (101). Since the work of Allen and Rutledge, (102, 103) a growing number of studies

have demonstrated that LD potentials provide similar advantages for bottom-up models.

local density (LD): a
microscopic density
defined by the local

environment of a

given molecule.

dissipative particle
dynamics (DPD): a
popular
coarse-graining

approach that

originally developed
from computational

fluid dynamics (104).

The local density, ρI , around site I is defined

ρI(R) =
∑︂

J (̸=I)

w(RIJ), 49.

where w is a non-increasing weighting function that vanishes beyond a finite distance, rc.

LD potentials generate pair-additive forces and, thus, provide similar computational scaling

to conventional pair-additive potentials (97). In particular, if all interactions are described

with a pair potential, U2, and a LD potential, Uρ, then the net force on molecule I due to

molecule J is along the intermolecular vector, ˆ︁RIJ = (RI −RJ) /RIJ , with a magnitude

FIJ(R) = F2(RIJ) + [Fρ(ρI) + Fρ(ρJ)]w
′(RIJ), 50.

where F2(r) = −dU2(r)/dr and Fρ(ρ) = −dUρ(ρ)/dρ. Note that Eq. 50 implies that

U2 and Uρ are not independent. For any constant, c, if one simultaneously transforms

U2(r) → U2(r) + cw(r) and Uρ(ρ) → Uρ(ρ)− cρ/2, then FIJ(R) is left invariant (105).

When the local density is defined over a sufficiently long and slowly varying length-

scale, then it is reasonable to simply equate the LD potential with the volume potential

that is obtained from self-consistent pressure-matching, i.e., Uρ(ρ) = N−1UV(N/ρ). Sim-

ulations with this LD potential quite accurately reproduce both the local structure and

pressure-density equation of state of bulk methanol, but generate significant artifacts at

liquid-vapor interfaces (106). Conversely, if the local density is defined over a sufficiently

short length-scale, then LD potentials provide remarkable accuracy and transferability for

describing both homogeneous liquids and also their interfaces (105). For instance, Fig. 3

presents the results of DeLyser and Noid for a film of liquid methanol adsorbed against a

solid substrate (107). DeLyser and Noid represented each molecule with a single site and

employed the MS-CG variational principle to simultaneously determine an effective external

potential, Vext, as well as pair and LD potentials to describe intermolecular interactions.

Interestingly, the MS-CG equation for the external field generalizes the first YBG equa-

tion (107, 18). Figure 3 demonstrates that the MS-CG model quite accurately describes

the liquid film, including the liquid-solid and liquid-vapor interfaces, as well as the RDF

and internal pressure of bulk methanol. Subsequently, DeLyser and Noid (108) introduced

14 Noid et al.



potentials that depend upon the square gradient of the local density:

U(R) =
∑︂
(I,J)

U2(RIJ) +

N∑︂
I=1

{︁
Uρ(ρI) + U∇(ρI) |∇IρI |2

}︁
, 51.

which appears similar to a van der Waals density functional (18). We anticipate that Eq. 51

may prove particularly useful for bottom-up models of highly inhomogeneous systems, as

well as for phenomenological top-down models of exotic phases with many interfaces.
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AA (solid black) and 1-site MS-CG models (dashed red) for a film of adsorbed methanol. Panel

(a) presents the simulated density profile. The insets highlight the solid-liquid and liquid-vapor
interfaces. Panels (b) and (c) present the RDF and pressure-density equation of state from

constant pressure simulations of the bulk fluid. The dashed curve in panel (b) presents the shape

of the LD weighting function, w. Adapted with permission from Ref. 107; M. DeLyser and W. G.
Noid. J Chem Phys 153 224103; 10.1063/5.0030103 copyright 2020 AIP Publishing.

While our group and the Voth group (109) have primarily employed LD potentials to

model liquids and liquid interfaces, other groups have employed LD potentials to accu-

rately model a wide range of complex systems. For instance, Shell and coworkers have

demonstrated that bottom-up LD potentials can accurately reproduce many-body solva-

tion effects that drive the collapse of hydrophobic polymers, (110) the aggregation of hy-

drophobic solutes, (110) and the phase separation of immiscible liquids (111). Similarly,

bottom-up LD potentials can accurately describe the structure and thermodynamic prop-

erties of polymer melts (112, 113, 114). Consequently, LD potentials appear very promising

for accurately modeling thermodynamic properties, interfacial structures, and many-body

solvation forces, while providing outstanding transferability between bulk and interfacial

environments. Furthermore, we anticipate that LD potentials may provide a unique con-

nection between structure-based bottom-up approaches and DPDmodels for nonequilibrium

energy transfer and chemical reactions (115, 116, 117).
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6. Temperature-dependence and energy/entropy

The exact PMF depends upon temperature according to (∂W/∂T )R,V = −SW, where

SW(R) quantifies the excess configurational entropy associated with M−1(R) (28). This

not only limits the transferability of approximate interaction potentials, but also complicates

the description of energetic and entropic quantities. Because W = EW − TSW, the PMF

cannot be employed to model atomic energetics (3, 84, 10). Similarly, atomic entropies

cannot be determined without accounting for the mapping entropy (19, 70, 118)

Smap =

∫︂
dR pR(R)SW(R). 52.

These considerations are important for all CG models (119). For instance, top-down models

that reproduce configurational-dependent free energies necessarily map entropic contribu-

tions from the missing atomic degrees of freedom into the CG potential (120). Consequently,

CG models will generally fail to properly distinguish energetic and entropic driving forces

unless the entropic contributions to the CG potential are properly treated (121, 122).

Energy [ 103 kJ mol-1 ]

-66.5 -65.5 130.5 131.5

P
ro

b
a

b
ili

ty
 [
 1

0
-3
 m

o
l 
k
J

-1
 ]

0

3

6

r [ nm ]
0.5 1.0 2.01.5

P
o

te
n

ti
a

l 
[ 
k
J
 m

o
l-1

 ]

-40

0

40

80

(a) (b)

u(r)

U(R)

E(R)

E
2
(T

0
)

U
2
(MS-CG; T

0
)

U
2
(MS-CG; T)

U
2
(Pred; T

0
 → T)

-T
0
S

2
(T

0
)

Figure 4

Entropic consequences of coarse-graining for a 1-site model of OTP (10, 123). Panel a compares
the distribution of intermolecular energies (black) obtained from an AA simulation at T0 = 400 K

with the distribution obtained by evaluating U (red) and E (blue) for the configurations obtained

by a corresponding CG simulation that modeled interactions with U . Panel b compares the
MS-CG pair potentials, U2, calculated for T0 (solid red) and for T = 650 K (dashed red) with the

energetic pair operator, E2, (solid blue) calculated via energy matching at T0, as well as the pair

potential predicted for T via the dual approach (dashed orange).

Figure 4 illustrates the practical ramifications of these considerations for a one-site

MS-CG model of OTP (123). The left panel compares the AA distribution of intermolec-

ular energies with the distribution obtained by simply evaluating the MS-CG potential,

U , for configurations sampled by a corresponding CG simulation. The latter distribu-

tion completely fails to describe the cohesive energy of the AA model due to the en-

tropic contributions to U . These entropic contributions correspond to the temperature-

dependence of the corresponding MS-CG pair potentials, U2(T ), as illustrated in the right

panel (124, 125, 126, 87, 127, 128).

Accordingly, Voth and coworkers proposed calculating MS-CG potentials, U(T ), for a

range of temperatures and then approximating the entropic component of the PMF, SW,

based upon their observed temperature-dependence, i.e., SW ≈ −∆U(T )/∆T (129). More-

over, they quite reasonably estimated atomic entropies by evaluating this approximation S

for sampled CG configurations (127).
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6.1. Dual and observable-based approaches

Conversely, Lebold and Noid (LN) introduced a “dual approach” for modeling energetics

and predicting temperature-dependent potentials (130). In contrast to V , the AA potential,

u(r), is not a CG observable (109). However, the conditioned mean of the AA potential,

EW(R) ≡ ⟨u(r)⟩R, is a CG observable that describes energetics at the resolution of the

CG model. Moreover, if both W (R) and EW(R) are known at a given temperature, then

SW(R) = (EW(R)−W (R)) /T = −∂W/∂T determines the temperature-dependence ofW .

Lebold and Noid
(LN): introduced a

dual approach for

modeling energetics
and predicting

temperature-

dependent
potentials (130).

In practice, neitherW (R) nor EW(R) can be exactly calculated. Consequently, LN em-

ployed structure-based methods to determine a potential, U(R), that approximated W (R)

at a reference temperature, T0. Following the arguments of the least-squares sidebar, LN

determined an operator, E(R), that accurately approximated EW(R) by minimizing

χ2
E[E] ≡

⟨︁
|u(r)− E(M(r))|2

⟩︁
, 53.

which repurposes an early energy-matching method (131). Moreover, LN employed the

simple approximation S(R) ≡ (E(R) − U(R))/T0 ≈ SW(R) to predict the temperature-

dependence of U(R), i.e., (∂U/∂T )R,V ≈ −S. LN initially validated this dual approach for

an IBI model for water and a MS-CG model for methanol (130).

Figure 4 presents the results of this dual approach for the 1-site MS-CG model of

OTP (123). The solid blue curve in Fig. 4b presents the resulting pair energy function,

E2(T0). Clearly, E2 is far more attractive than the purely repulsive MS-CG pair poten-

tial, U2. In fact, OTP solidifies if one models interactions with E2. Thus, the entropic

contributions to U2 appear essential for modeling the liquid phase.

The dotted blue curve in Fig. 4a presents the distribution of energies that is obtained

by evaluating the energetic operator, E(R), for the configurations that are sampled by CG

simulations with the MS-CG potential, U(R). This distribution is necessarily more narrow

than the AA potential distribution because it averages over the subensemble, M−1(R),

of AA configurations that map to each CG configuration, R. Nevertheless, this distribu-

tion quite accurately reproduces the mean of the AA potential distribution and certainly

recovers the cohesion that stabilizes the condensed phase. Furthermore, the inferred en-

tropic contribution to the MS-CG potential, S2 = (E2 − U2)/T , very accurately predicts

the temperature dependence of the MS-CG potential over a range of 250 K.

Figure 4 suggests a fundamental inconsistency may arise in treating thermodynamic

energies with reduced CG models (10). If one determines an accurate energetic operator,

E(T ), for a range of temperatures, then one should be able to reproduce the thermodynamic

energy of the AA model at each temperature, u(T ). This would imply that the CG model

also should reproduce the (excess) specific heat, cV = ∂u/∂T , of the AA model. However,

the specific heat is related to the variance, σ2, in the AA potential fluctuations according

to, σ2 = kBT
2cV (16). This suggests a contradiction: the CG model should not be able

to reproduce cV because it cannot reproduce fluctuations due to AA degrees of freedom

that are missing from the CG resolution. The sidebar on hidden fluctuations provides

the key to resolving this suggested contradiction. Specifically, if one defines σ̃2(R) =⟨︁
|u(r)− EW(M(r))|2

⟩︁
R

as the variance in energetic fluctuations within M−1(R), then the

total atomic variance, σ2 can be reproduced by accounting for both the variance, Σ2, in

EW over the mapped ensemble and also the average of σ̃2(R) from the missing degrees of

freedom according to Eq. SB6 (132). Moreover, because W is a free energy and, thus, a

cumulant generating function, σ̃2(R) can be related to a configuration-dependent specific
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heat, CW ≡ (∂EW/∂T )R,V :(︃
∂2(−βW (R))

∂(−β)2

)︃
R

= kBT
2CW(R) = σ̃2(R). 54.

More generally, one can define an operator A(R) ≡ ⟨a(r)⟩R to model any microscopic

observable a(r) at the resolution of the CG model (109). These operators can be optimized

by simple least squares fitting, as illustrated in the dual approach, or by minimizing a

corresponding relative entropy (133). In recent years, CG operators have been developed

for modeling the pressure, surface tension, and specific heat (130, 132, 109, 134, 135).

Hidden fluctuations

We continue the arguments of the preceding sidebar and define, C(X) = µ, such that χ2[µ] = σ2. Eq. SB5

then allows us to decompose the total microscopic variance, σ2:

σ2 = Σ2 +

∫︂
dX P (X)σ̃2(X) SB6.

where Σ2 ≡
∫︁
dX P (X)|µ̃(X) − µ|2 quantifies the fluctuations that are visible at the CG representation,

while the second term in Eq. SB6 quantifies the fluctuations that have been eliminated by coarse-graining.

6.2. Microcanonical formalism and modeling fluctuations

Pretti and Shell (PS) have recently introduced an elegant microcanonical framework for

treating the entropic consequences of coarse-graining (136). Somewhat in analogy to the

DA framework, PS proposed directly modeling the joint configuration-energy distribution

pRE(R, E;T ) ≡
∫︂
V n

dr pr(r;T )δ(M(r)−R)δ(u(r)− E), 55.

that is specified by the AA potential and the CG mapping. The central quantity in this

Pretti and Shell
(PS): introduced an
approach for

modeling a

microcanonical
partition function of

CG coordinates.

approach is not the PMF but rather the configuration-energy density of states

ω(R, E) ∝
∫︂
V n

dr δ(M(r)−R)δ(u(r)− E), 56.

which determines the exact distribution of energies sampled by the AA model in the

subensemble M−1(R). If the function ω(R, E) is exactly known for all R and E, then

one can determine the exact PMF at every temperature via Laplace transform:

e−βW (R;T ) =

∫︂
dE e−βEω(R, E). 57.

PS proposed approximating ω(R, E) as a convolution of densities of state, Ωζ(Eζ , z), asso-

ciated with each term in Eq. 19. This convolution approximation leads to a corresponding

additive approximation for the PMF (136). PS proposed approximating Ωζ with a Gaussian,

Ωζ(Eζ , z) ∝
1√︁

2πγζ(z)
exp

[︃
− (Eζ − Eζ∞(z))2

2γζ(z)

]︃
, 58.
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where Eζ∞(z) and γζ(z) are temperature-independent functions that specify the mean

and variance in the distribution of potential energies associated with the ζ interaction

when ψζ(Rλ) = z. This then determines an approximate density of states, Ω(R, E) ≈
ω(R, E), and a corresponding approximation PRE(R, E) ∝ e−βEΩ(R, E) for pRE(R, E).

PS optimized Eζ∞(z) and γζ(z) by minimizing the KL divergence between pRE and PRE.

By analytically evaluating the relevant convolutions, PS determined temperature-

dependent approximations E(R) =
∑︁

ζ

∑︁
λEζ(ψζ(Rλ)) and U(R) =

∑︁
ζ

∑︁
λ Uζ(ψζ(Rλ))

for EW(R) and W (R), respectively. Specifically,

Eζ(z) ≡ Eζ(z;T ) = Eζ∞(z)− βγζ(z) 59.

Uζ(z) ≡ Uζ(z;T ) = Eζ∞(z)− 1

2
βγζ(z). 60.

While prior studies have extrapolated U(T ) as a power series in δT = T − T0 about a

finite reference temperature, T0 (129, 124, 125, 87, 130), the microcanonical formalism lin-

early extrapolates U as a function of β = 1/kBT from T = ∞. In particular, as T → ∞,

the effective interaction potential becomes purely energetic and temperature-independent

Uζ(z;T ) → Eζ∞(z). In fact, this is consistent with SW(R) being an excess configurational

entropy that should vanish when T → ∞ and pr|R(r|R) equals the uniform distribution

qr|R(r|R) = V −(n−N)δ(M(r)−R) (28). PS employed the microcanonical formalism to pa-

rameterize one-site CG models that accurately reproduced the structure and energetic dis-

tributions of LJ tetramers and liquid water across a rather wide range of temperatures (136).

More generally, this suggests the intriguing possibility of employing bottom-up models

to describe arbitrary AA observables, a(r). Back-mapping approaches that “invert” the

coarse-grained mapping provide one obvious approach for modeling AA observables. Tra-

ditional back-mapping approaches determine a representative configuration rR = M+(R)

from the subensemble, M−1(R) ≡ {r|M(r) = R}, that maps to R (137, 62) However,

recent studies have demonstrated remarkable progress in more rigorously sampling the con-

ditioned distribution, pr|R(r|R), for this subensemble (138, 139). In particular, Rotskoff

and coworkers defined the notion of an “invertible coarse-graining” by the combination

(M, U, T ) of a CG mapping, M, an approximate CG potential, U , and a normalizing flow,

T , for approximately sampling AA configurations according to pr|R (64). Furthermore, they

introduced an intriguing “weak” consistency criterion for optimizing an invertible coarse-

graining, (M, U, T ), in order to reproduce AA averages for a given family, F = {a(r)}, of
AA observables. Conversely, Jackson and coworkers have highlighted the promise of “by-

passing” back-mapping by directly modeling the distribution, pa|R(a|R), of the observable

in M−1(R) (140). Specifically, Jackson and coworkers employed ML tools to model the

distribution of electronic energies for the ensemble of quantum states that map to a given

CG configuration (141, 140). The PS microcanonical framework and the “predictive frame-

work” of Koutsourelakis and coworkers (142) similarly bypass backmapping. These exciting

ideas promise to radically extend the scope and utility of bottom-up CG methods.

7. Concluding thoughts

By employing information from accurate AA models, the bottom-up framework anchors

CG models in reality. Bottom-up models are often referred to as “structure-based” models

because early studies primarily focused on reproducing structural properties (34, 36). It

was quickly realized, though, that structure-based potentials not only provided limited
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transferability, but also provided a poor description of thermodynamic properties, which

was termed the “representability” problem (83, 91). The bottom-up formalism elucidates

the origin of the transferability and representability problems and reveals that they are two

weeds stemming from the same root (29). Moreover, the bottom-up formalism guides the

development of robust computational methods for rigorously addressing these problems in

practice. For instance, the DA framework beautifully addresses the density-dependence of

the PMF in order to accurately model the internal pressure (92). LD potentials appear a

promising approach for extending this framework to inhomogeneous systems. Similarly, the

dual (130) and microcanonical frameworks (136) provide predictive approaches for treating

the temperature-dependence of effective potentials in order to model energetic and entropic

quantities. More generally, recent studies have reported exciting bottom-up approaches for

modeling AA observables that would seem beyond the scope of CG models (138, 139, 64,

141, 140, 142). Furthermore, the bottom-up framework provides insight for coarse-graining

complex systems that are characterized by multiple conformational states (74, 75). Thus,

the bottom-up framework provides powerful insight for fundamentally understanding and

practically resolving the limitations of existing CG models. We anticipate this framework

will continue rapidly propelling the field into the future.
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