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Abstract

Low resolution coarse-grained (CG) models provide remarkable com-
putational and conceptual advantages for simulating soft materials.
In principle, bottom-up CG models can reproduce all structural and
thermodynamic properties of atomically detailed models that can be
observed at the resolution of the CG model. This review discusses
recent progress in developing theory and computational methods for
achieving this promise. We first briefly review variational approaches
for parameterizing interaction potentials and their relationship to ma-
chine learning methods. We then discuss recent approaches for si-
multaneously improving both the transferability and thermodynamic
properties of bottom-up models by rigorously addressing the density-
and temperature-dependence of these potentials. We also briefly dis-
cuss exciting progress in modeling high resolution observables with low-
resolution CG models. More generally, we highlight the essential role
of the bottom-up framework not only for fundamentally understand-
ing the limitations of prior CG models, but also for developing robust
computational methods that resolve these limitations in practice.
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1. Introduction

By judiciously representing systems in reduced detail, coarse-grained (CG) models enable
efficient simulations on length- and time-scales that cannot be effectively addressed with
atomically detailed models (1, 2). Conversely, by retaining key molecular features, CG
models provide insight into fluctuations and interactions that are hidden from mean field
and continuum models (3). Moreover, CG models provide profound conceptual advantages
by focusing effort on the essential aspects of physical phenomena (4). Consequently, CG
models continue to enjoy rapidly growing popularity for studying soft materials (5).

This review addresses “bottom-up” approaches that parameterize CG models based
upon information from higher resolution models (6). We first briefly discuss variational
approaches for parameterizing interaction potentials. We then focus on recent theoretical
and computational advances for improving the accuracy and transferability of bottom-up
models. In particular, we emphasize the density- and temperature-dependence of effective
potentials and their impact upon the transferability and thermodynamic properties of CG
models. Readers are referred to a number of excellent recent reviews for a much broader

perspective on bottom-up coarse-graining approaches (7, 8, 9, 10, 11, 12, 13, 14, 15).

2. The bottom

Bottom-up models rely on an accurate high resolution model, which we shall refer to as an
all-atom (AA) model. We denote the AA potential by u(r) = u(r; V), wherer = (r1,...,ry)
denotes the configuration for n atoms and V' is the volume. In the canonical ensemble at a
given volume and temperature, T, the AA model samples configurations according to

pe(r) = exp[—pBu(r)]/z 1.
z = /drexp[—ﬂu(r)], 2.

n

where z = z(V,T') is the canonical configuration integral and 8 = 1/kgT (16). The config-
uration integral defines the excess (Helmholtz) free energy of the AA model:

axs = axs(V,T) = —kgTIn V™ "2(V,T) = u — T'xs. 3.

Here w = u(T,V) = (u(r)) is the mean AA potential and the angular brackets denote an
average according to p;(r), while sxs is the excess configurational entropy

Sxs = $xs(T, V) = —kp /W(Llr pr(r) In [pe(r)/q:(r)] <0, 4.

where ¢;(r) = V™" denotes the uniform distribution for n non-interacting atoms with a
potential, uia(r) = 0. Eq 4 expresses sxs as the Kullback-Leibler (KL) divergence (see KL
divergence sidebar) between p, and ¢ (17). The AA free energy varies according to

days = —pndV — sy.dT, 5.

th _

th = 5V, T') = (pus(r, V) is the thermodynamic excess pressure and

where p
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The first term in Eq. 6 gives the virial contribution in terms of the AA forces, f; = —9u/0r;.
The second term accounts for any explicit density-dependence in the AA potential. The
instantaneous internal pressure of the AA model is then

Pint (1, V) = nkpT /V + pxs(r, V). 7.

KL divergence

Kullback and Leibler (KL) interpreted ¢(z) = In[pi(x)/p2(x)] as the information available at z for distin-
guishing two probability distributions, p1(z) and p2(z). (17) The KL divergence, or relative entropy,

Dipi|[p2] = / de p1 () In [p1 (@) f2(@)] SB1

is defined as the average of ¢(x) with respect to pi(x). The Gibbs inequality implies that D[p:||p2] > 0 and
only vanishes if py = ps. (18) Thus, D[p1||p2] provides an important metric for quantifying the difference
between p1 and ps. If p; is the canonical distribution, p;(z) = V™" exp [Ba; — Bui(z)], then D[p1||p2] =
B(ar — az) — B (u1(x) — uz(x)),, where the average is performed with respect to pi. (19) Sanov’s theorem
implies another important property of the KL divergence. (20, 21) Suppose one obtains ns statistically
independent samples, {1, ..., T, }, from a probability distribution, ps(x). These ns samples determine the
empirical probability distribution, p(z) = ns " >72 6(x — x;). Sanov’s theorem implies that, as ns — oo,
the probability, or likelihood, of observing an empirical distribution, p(z), that deviates from the sampling
distribution, ps(x), exponentially decays with n, at a rate determined by D[p||ps]:

P[p] ~ exp {—nsD[pl|ps]} - SB2

In the context of parameterizing generative probabilistic models, one seeks to optimize the parameters, 6,
for a model with a probability distribution, pm(z;6), such that it reproduces the “ground truth” target
distribution, pr(z). In this case, one wishes to maximize the probability that sampling from the model,
ps(x) = pm(z; 6), generates an empirical probability that matches the ground truth: p(z) = pr(z). Thus, in
this maximum likelihood approach, one should optimize 6 by minimizing the KL divergence D[pr||pm(0)].

3. Coarse-grained representation

Bottom-up approaches define the CG representation for a particular system by a mapping,
M(r), that maps each AA configuration, r, to a CG configuration, R = M(r). This
mapping usually determines the coordinates, Ry, for each site, I = 1,..., N, as a linear
combination of atomic coordinates with constant coefficients:

n
R; = E crili. 8.
=1

If all of the atoms in a site are displaced by a vector, v, then the site should also be displaced
by the same vector. Consequently, the coefficients must be normalized ., ¢rs = 1 for
each site I (22). The mapping also defines a subensemble of AA configurations, M™!(R) =
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{r/M(r) = R}, that map to R. We refer readers to several reviews that discuss recent
insights into the CG mapping (8, 10, 23).

Bottom-up approaches typically focus on reproducing properties of the AA model at
the resolution of the CG model, i.e., the properties in the mapped ensemble (23). We define
the restricted configuration integral,

(R)= (R V.7) = [ drexpl-fu(n)s(M(r) - R), 9.
VTL
as the Boltzmann weight for the subensemble M ™' (R)). The mapped probability (density),
pr(R) = [ drp:(R)6(M(r) - R) = zr(R)/z, 10.
VTL

gives the probability that the AA model samples Mfl(R). The conditioned probability,

per(r|R) = pe(r)3(M(r) — R) /pr(R) = e *®5(M(r) — R) /2r(R), 11.

describes the distribution of AA configurations in M~ (R).
The mapping defines the “exact” potential (24, 25, 26, 27) for bottom-up CG models:
W@R)=W®R;V,T) = —kgTIn VY "2z (R; V,T). 12.

Because pr(R) o« e #W®)  CG simulations that employ W (R) as an effective potential
will perfectly reproduce the mapped probability distribution. The analogy between Eqs.

and 12 implies that W(R\) is the excess (Helmholtz) free energy of the AA model when it

is viewed at the resolution of the CG representation (10, 3). Consequently, it follows that
W(R)=Ew(R)—-TSw(R), 13.

where
Ew(R) = (u(r))g 14.

and the subscripted brackets denote an average according to p,r(r|R). The entropic con-
tribution to W,

Sw(R) = -k /Vglrprm(r\R) In [pyr(r|R)/q:r(r/R)] <0, 15.

is the excess configurational entropy associated with M~'(R) (28). Here ¢, r(r|R) =
VN="§(M(r) — R) is the ideal conditioned distribution, such that Sy is (—kp times) the
KL divergence between p; g and ¢;|g. The analogy between Eqs. 3 and 12 also implies (29)

N
dW == "f; - (dRy)y — PeedV — SwdT. 16.
I=1

Here (dRr),, denotes variations in configuration at constant volume, i.e., (dRr), =
V1/3dR; where Rr = R;/V1/3 and

?1 = f[(R,VY,T) = <f[(I‘)>R 17.

is the conditioned average of the AA net force, fr(r) = >, ., fi(r), on site I in the AA
configuration r.(30, 31, 22) Because the gradients of W are (conditioned) mean forces, W
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is commonly referred to as the many-body potential of mean force (PMF) (24). Similarly,

in Eq. 16, p,, is the mean excess pressure of the AA model at the CG resolution, i.e.,
N
1 - ow
2L NUF 18.
-t (5v),

which reflects the mean-force virial and also the explicit density-dependence of the PMF.

T?xs = ?xs(R” ‘/7 T) <pXS(r V

Consequently, if W(R,;V,T) is known as a function of both configuration and thermody-
namic conditions, then the CG model should be able to perfectly reproduce all structural
and thermodynamic properties of the AA model at the resolution of the CG model.

4. Configuration-dependence and structure
4.1. Approximate interaction potentials

In practice, Eq. 9 cannot be evaluated and the PMF must be approximated by a simpler

interaction potential, U. In many cases, U may be expressed

UR) =D Uc(the(Ra)). 19.

<

Here (¢ indicates a particular type of interaction, U¢ indicates a corresponding potential that
depends upon a scalar variable ¢ that is a function of the coordinates, Ry, for a particular
set, A, of CG sites. For instance, if ( = 2 indicates an intermolecular pair interaction,
U = U, is a pair potential, Ry = {R, R} is the coordinates for the pair, A = {I, J}, and
Ye(Rx) = Ris(R) = [Rs
approximate potential determines the equilibrium distribution for the CG model:

ALY 20.

— R| is the distance between the pair in configuration, R. The

Pr(R;U) = exp[-BU(R

where Z[U] = Z[V,T; U] = [,,xdRexp[-BU(R)].

4.2. Relative entropy

Shell and coworkers pioneered a relative entropy (RE) variational principle (19, 32, 33) for
optimizing the approximate interaction potential, U, by minimizing
pr(R)
SreilU] = | dRpr(R)In | =——=—~| > S;a[W] = 0. 21.
a1 = [ Ry | 2] > 5w

Thus, the exact PMF is the global minimizer of S;e1[U]. More generally, given a space of
approximate potentials, the minimizing potential, U, = argming; S;e1[U], corresponds to the
equilibrium distribution, Pr(R;U.), that is “closest”
D[pr||Pr(U)]) to the mapped distribution, pr(R).

In practice, one typically minimizes Sye1[U] with respect to the interaction potentials,
U¢(x), that are included in Eq 19.

(as measured by the KL divergence,

It is convenient to re-express Eq 19 (34, 35)

= Z/dz Uc(2)pc (2 R) 22.
¢

) = > 0 (c(Ry) — 2). 23.
A
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radial distribution
function (RDF): a
correlation function,
g(r), describing the
spatial density
around particles that
has been normalized
with respect to the
bulk density (16).

Inverse Monte Carlo
(IMC): an early
structure-based
approach introduced
in (34) for
parameterizing CG
models to accurately
reproduce structural
observables,
including the RDF.

Iterative Boltzmann
Inversion (IBI): a
structure-based
approach introduced
in (36) for
parameterizing CG
models to accurately
reproduce the
mapped RDF.

Force-matching
(FM): a variational
approach for
parameterizing
approximate
potentials to match
gradients of a target
potential.

Multiscale
coarse-graining
(MS-CG): a
bottom-up
approach (39, 10)
that employs the
FM variational
principle to
parameterize the
approximate CG
potential.

For each U¢(z), pc(2;R) serves as a corresponding conjugate operator that quantifies the
number of times that U¢(z) contributes to U(R). In this case,

6Srel [U}

———— = BN, — Pe(z,U 24.

S0y = Ve tpe() — Rz )
where N¢ is the number of instances of the ( interaction in the model, while p¢(z) and
P¢(z;U) give the probability (densities) that ¢¢ = z in the mapped ensemble and in the
equlibrium ensemble for the approximate CG model, respectively:

1

pe(z) = A V]\(}RPR(R)Z’AZ?R) 25.
P:(z;U) = % VJ\(fiR Pr(R;U)pc (2 R). 26.

According to Eq 24, the relative entropy is minimized with respect to Uc(z) when
Pe(%,U) = pe(2), i.e., when simulations with the CG model reproduce the mapped proba-
bility distribution for the corresponding degree of freedom. In particular, if U¢(z) = Ua(r)
corresponds to a non-bonded pair potential, then p¢(r)/r® and P:(r)/r? are proportional
to the corresponding radial distribution function (RDF) in the mapped ensemble and in
the simulated CG ensemble, respectively.  Therefore, Srel[U] provides a variational frame-
work for deriving and generalizing structure-based methods, (37, 32, 35) such as Iterative
Boltzmann Inversion (IBI) (36) or the Inverse Monte Carlo (IMC) method (34), that op-
timize interaction potentials to reproduce conjugate structural correlation functions. In
practice, P¢(z;U) cannot be determined without explicitly simulating the CG potential, U.
Consequently, minimizing Syel[U] generally requires simulating a sequence of approximate
potentials until the CG model reproduces the relevant mapped distributions (38).

4.3. Force-matching

Voth and coworkers (39, 40, 41) pioneered the multiscale coarse-graining (MS-CG) force-
matching (FM) variational principle for optimizing U by minimizing

(U] = <?jvz|f,(r> —FU;I<M<r>>|2>. 2.

Here fr(r) = >, fi(r) is the net AA force on site I, while Fy ;(R) = —VU(R) is the
force specified by U(R) and V; = d/0R;. The sidebar on least squares and conditioned
means implies (22) that

=W+ [ AR p(R)ZE ST BR) - Fos®) > W],

where f7(R) = —V;W(R) is the many-body mean force. Thus, the exact many-body PMF
is the global minimizer of x*[U]. More generally, given a space of approximate potentials,
the minimizing MS-CG potential optimally approximates (in a least squares sense) the
gradients and, thus, the configuration-dependence of the exact PMF (22).

Equation 28 has a beautiful geometric interpretation in a vector space of force fields.
Each element of this vector space specifies a configuration-dependent, vector-valued force

Noid et al.



Least squares and conditioned means

Let = denote a microscopic random variable with probability (density), p(z). Let f(z) be a microscopic
)

observable with mean p = [ dz p(z)f(z) and variance 0 = [ dz p(x)|f(z) — p|?>. For any constant c,

={(lf@) —c*) =0+ |p—cf SB3.

In Eq. the angular brackets denote an average with respect to p(z) and the second equality follows from
the simple identity (f(z) — u) = 0. Because o2 is independent of ¢, we see that the mean, x, minimizes x?.
Now let us define a mapping, M (x) : ¢ — X = M(x), that determines a “coarse-grained” description of
z. This determines a marginal probability, P(X) = [ dz p(z)d(M(z) — X), and a conditioned probability,
p(z|X) = p(z)d(M(z) — X)/P(X). For any CG function, C(X), the reasoning that led to Eq. also
implies
(1f(z) — CM@) ), = 52(X) + [B(X) - CCO. SBA.

Here the subscripted angular brackets denote the conditioned average according to p(z|X), i(X) = (f(z)) x
is the conditioned mean, and 6°(X) = (|f(z) — ﬂ(X)|2>X is the conditioned variance quantifying micro-
scopic fluctuations in f(z) over the subensemble of microstates, z, that map to the CG state, X. By
averaging Eq. with respect to P(X), we see that

X*[C] = (If (2) — C(M(2))I*) = x*[1] + /dX P(X)|(X) = C(X)I* 2 X*[A] SBS.

Thus, among all CG functions C(X), the conditioned mean, i(X) = (f(z))y, provides the optimal fit to
the microscopic function, f(z) (12). Moreover, Eq. may be interpreted as a statement of Pythagorean’s
theorem for the distance between a fluctuating microscopic function, f(z), and an arbitrary CG function,
C(X). Consequently, if one considers a particular subspace of CG functions, then the function within this
subspace that minimizes x?[C] also is closest to the conditioned mean, fi(X).

on each CG site, I =1,...,N. The AA potential, u(r), specifies one particular force field,
f. = {fr(r)}. Within this space, there exists a vector subspace of CG force fields that
depend only upon the CG representation of the AA configuration, F = {F;(M(r))}. The
PMF, W(R), specifies the CG force field, Fy = {f;(M(r))}, that is defined by the mean
forces, f7(R)." Given two force fields, f) and f (), we define an inner product ® (43, 44)

£V o f® = 3—/drpr Zf(l) £ (r). 29.

In the case of two CG force fields, F") and F®, Eq simplifies to an average over the

1From the perspective of the CG configuration space, f7(r), is a fluctuating random function,

while f7(R) is its deterministic conditioned mean. Consequently, f;(R) may be considered the
projection of fr(r) into the CG configuration space. Accordingly, Fyy may be considered the
projection of f, into the subspace of CG force fields (12).
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mapped ensemble

N
FOop® = L / dRpr(R)Y_FV(R) FP(R). 30.
3N Jy~ —
This inner product then defines a norm for the space of force fields, ||f||> = f ® f.

Given these definitions, we see that x2[U] = ||f. — Fu||> and x*[W] = ||f. — Fw||?,
while the last term in Eq. is ||[Fw — FU||2. Consequently, Eq. is a statement of the
Pythagorean theorem in the space of force fields (22, 45, 30)

162 — Full? = [Ifu — Fw|? + |[Fu — Full’. 31,

Because ||[Fw — Fy||* > 0 and only vanishes when Fy, = Fyy, Eq 31 implies that the mean
force field, Fyw, is the CG force field closest to the AA force field, f,. Accordingly, Fw
may be considered the geometric projection of f,, into the subspace of CG force fields. By
minimizing x2[U] = ||f. — Fv||?, the FM variational principle determines the approximate
CG force field that minimizes the distance ||Fw — Fy||°.
Eq. 19 defines a force field “basis set” for performing the FM variational calculation (22,
). Specifically, for each interaction potential, U¢(z), that governs a mechanical degree of
freedom, v, we define a force function, F¢(z) = —dU;(z)/dz, and a force field vector,
Gc(z) ={G¢;1(z;R)}, that specifies the direction of these forces:

GerlzR) = 3 (25 Yo welra) - ). 32,

The approximate force field, Fr;, may then be expressed in analogy to Eq
Fy = Z/dz Fe(2)Gc(2), 33.
¢

where G¢(z) acts as a basis vector and F¢(z) acts as the corresponding coefficient. The FM
minimizing condition for the MS-CG force functions (47, 22) may be expressed

Z/dz' Geer(z, 2 ) For (2') = be(2), 34.
CI
where
Geer(2,2) = Ge(2) ©Ge(2) = ?%N <Z Geir(2; M(r)) ‘ggf;I(ZI;M(r))> 35.

is a Gram matrix describing the inner product between basis vectors, (418) while

be(z) =Ge(z) 0f, = 3LN <Zf1(r) “Geir (2 M(I‘))> 36.

corresponds to the projection of the AA force field onto the basis vector, G¢(z) (48). Impor-
tantly, Geer (2, 2") and b (z) are both expressed as averages over the AA canonical ensemble.
Consequently, Eq 34 determines the optimal MS-CG potential directly from an AA simu-
lation without requiring simulations of approximate CG potentials.

Noid et al.



Because the many-body mean force field, Fy, is the projection of the AA force field,
f., into the subspace of CG force fields, Eq 36 implies that b¢(z) = G¢(z) © Fw. Moreover,
because the mean forces are related to gradients of the mapped probability distribution,
ie., fr(R) = =V/W(R) = ksT Vrpr(R)/pr(R), b¢(2) can be directly determined from
structural correlations within the mapped ensemble (47, 43, 44). Therefore, Eq 34 allows
one to perform the variational FM calculation directly from structural information within
the mapped ensemble, i.e., one can perform force-matching without force information (45).
Eq also has an instructive geometric interpretation (48, 45). By employing Egs 30,
, and 35, along with b¢(2) = G¢(2) © Fw, Eq. 34 may be re-expressed

Gi(2) OFy =G¢(2) OFw. 37.

Thus, the FM variational principle determines the optimal MS-CG potential by geometri-
cally projecting the many-body mean force field, Fyy, onto the CG force field basis set that
is specified by Eq 19 for the approximate CG potential, U. By matching the projected mean
forces - and thus the gradients of the exact many-body PMF - the MS-CG potential approx-
imates the configuration-dependence of W. In fact, the force-balance relation, Eq 37, corre-
sponds to a rigorous generalization of the Yvon-Born-Green (YBG) integral equation (18).
The YBG equation has typically been interpreted as an exact relationship between the 2-
and 3-body correlation functions of a simple liquid with a known pair potential. However,
this generalized-YBG equation not only treats arbitrarily complex potentials, but also pro-
vides a direct (i.e., non-iterative) variational approach for solving the inverse problem of
deducing the potentials that generated observed structural correlations (47, 43, 44, 45).

However, the force field basis set for physics-based CG models is usually highly in-
complete and cannot represent the exact many-body PMF. Moreover, Eq determines
the MS-CG force functions to match projected mean forces based upon averages over the
mapped distribution, pr(R), and not the distribution, Pg (R; U), for the approximate poten-
tial (47, 48). Consequently, simulations with physics-based MS-CG potentials are not guar-
anteed to reproduce any particular structural properties of the mapped ensemble (49, 50).

Recently, the MS-CG FM variational principle has been generalized in several exciting
directions. In particular, Voth and coworkers have extended the FM variational principle
to treat virtual sites, (51, 52, 53) as well as ultra-CG models in which the state of CG sites
dynamically varies with configuration (54, 55, 56). Kalligiannaki et al. have generalized FM
to treat nonlinear CG maps, (30) while Huang and Nguyen introduced a torque-matching
variational principle to optimize orientation-dependent interactions between anisotropic CG
sites (57). Furthermore, Dequidt and coworkers have developed a Bayesian stochastic tra-
jectory matching approach that employs FM with time-averaged forces (58, 59).

4.4. Coarse-graining and generative models

Recently, a growing number of bottom-up models have employed machine learning (ML)
tools, such as artificial neural networks (60, 61, 62, 63, 64) and kernel methods, (65, 66, 67)
to represent much more flexible interaction potentials that more accurately approximate
the many-body PMF. Perhaps more importantly, there exists a fundamental relation-
ship between bottom-up coarse-graining and generative probabilistic ML methods (68). In
particular, energy-based ML models determine an energy function, E(zx;0), such that the
model distribution, pm(z;0) = Z71(0) exp[—E(x;0)], accurately approximates the target
“ground truth” distribution, pr(z) (69). This is perfectly analogous to bottom-up methods
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parameterizing U(R) such that Pr(R;U) accurately approximates pr(R).

As discussed in the KL divergence sidebar, the RE variational principle determines the
potential, U, that maximizes the likelihood that the CG model will sample the mapped
distribution (19, 35). Consequently, the RE variational principle corresponds to maximum
likelihood methods that are commonly adopted to parameterize probabilistic ML models.
However, these maximum likelihood methods are limited by the need to treat Z[U]. Even
though U(M(r)) can be readily evaluated, Sye1{U] cannot be calculated from the mapped
ensemble because Z[U] cannot be evaluated. In practice, minimizing S:e1[U] requires a series
of simulations with approximate potentials because P;(z;U) cannot be determined without
explicitly simulating U (38). In the case of CG models with computationally expensive ML
potentials, this series of simulations can require significant computational resources.

The FM variational principle can also be re-expressed in terms of information theoretic
quantities that are employed to parameterize modern generative probabilistic models. Kull-
back and Leibler interpreted ®(R;U) = Inpr(R)/Pr(R;U) as the information available in
CG configuration, R, for distinguishing pr and Pr(U) (17). The gradients of ® directly
compare the forces due to the PMF and the approximate potential (70)

VieR;U) =B [fi(R) — Fua(R)]. 38.
Consequently, Eq. may be expressed

1

U= W+ 5

/stR(R)Z |Vi®R;U)|. 39.

I=1

Thus, while the RE variational principle minimizes ®, the FM variational principle mini-
mizes the gradients of ®.

The FM variational principle is closely related to a “score-matching” method that pa-
rameterizes the ML model distribution, pm(z;6), to match the scores of the target distri-
bution, pr(z) (71). Given a probability function, p(z), the (Stein) score, s(x), is defined
s(z) = £ Inp(z) (72, 73). Importantly, the Stein score is independent of the normalization
Z(0) and, consequently, can be directly evaluated from z. In the case of equilibrium physi-
cal models and energy-based ML models, the Stein score corresponds to a force that drives
the system to more likely configurations. By definition, gradients of ® give the difference
in the Stein scores of the mapped distribution, pr(R), and the approximate distribution,
Pr(R;U) (70). Thus, the FM and score-matching methods both seek to minimize gradients
of ®. By eliminating Z, the FM and score-matching functionals can be minimized directly
from the mapped ensemble without requiring multiple, potentially expensive, simulations.
Consequently, many studies have employed the FM variational principle to parameterize
computationally expensive ML potentials (61, 62, 63, 65, 66, 67, 64).

Eqgs and provide important insight for developing CG potentials from mapped
ensembles with metastable basins (69). Suppose that the CG configuration space space, S,
contains two basins, S; and Sz, that are separated by a rarely sampled barrier region, Sy.
Let 7o be the probability for each region, such that w1 + 72 + m = 1 and 7, ~ 0. The
mapped distribution may then be expressed

pr(R) = mip1(R) + m2p2(R) + mps(R) 40.

where po(R) is normalized over S, and po(R) = 0 for R ¢ S,. For each region, S., we
define W, (R) = —kpT In[V™ps(R)], which only reflects sampling in So. We also define
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o = axs — kT In7,, where axs is the excess free energy of the AA model. The PMF in
the two basins is

R ifReS
(R)—{WI( Jfar HRES Al

WQ(R) + as ifReS,
Note that Aa = az — a1 = —kpT Inma /71 determines the relative depth of the two basins.
Because the RE variational principle considers probabilities, it can estimate Aa based upon
the ratio m2/m1 without requiring information from the rarely sampled barrier region. How-
ever, the mean forces contain no information about a1 or as:

_ VWi (R ifReS
F(R) = 1(R) i €Sy
_VWa(R) RES,

42.

Consequently, even in the limit of a complete basis set, the FM variational principle cannot
determine Aa without information from S,.

>
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(c) { {

Figure 1

Gedanken of Zavadlav and coworkers illustrating difficulties that may arise when force-matching

systems with distinct metastable states (74). From top to bottom, the solid black curves indicate
the mapped probability distribution, pr, the corresponding many-body PMF, W = —kgT Inpg,
and the corresponding mean force, f = —VW. The red points in panel a indicate well-sampled
regions of configuration space. The dashed blue and dotted orange curves in panel ¢ present two
interpolations of the mean force into the barrier region. The corresponding curves in panel b
present the resulting approximations for W.

Figure 1 illustrates these considerations with the gedanken of Zavadlav and cowork-
ers (74). Consider two CG configurations, R1 € S; and Rz € Sa, that correspond to the min-
ima of two basins in the mapped ensemble with different depths, AW = W (R2) — W(R1).
If the approximate potential, U, reproduces this difference, then AU — AW = kT AP = 0.
However, the FM variational principle optimizes the CG potential based upon local gradi-
ents, V®. Consequently, in order for the MS-CG potential to accurately approximate AW,
it must reproduce the integrated mean force along a path between R; and Ra, i.e.,

Ry
ksTAD = AU~ AW = [ {E(R) — Fy(R)} - dR ~ 0. 43.

Ry
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Das and Andersen
(DA): pioneered a
bottom-up approach
for coarse-graining
at constant

pressure (92).

12

This requires that the mapped ensemble contains sufficient information to accurately de-
termine the mean force in the rarely sampled barrier region, Sy, between S; and Sz. Con-
sequently, while it is computationally efficient, the FM variational principle may become
relatively data expensive for complex systems with multiple basins.

The flow-matching approach of Clementi, Noé, and coworkers appears a promising ap-
proach for combining the data efficiency of the RE variational principle with the computa-
tional efficiency of the FM variational principle (75). The flow-matching approach employs
the RE variational principle to parameterize a normalizing flow (76, 77) that can be ef-
ficiently sampled to generate data for parameterizing U via the FM variational principle.
Alternatively, it may be useful to employ contrastive learning (78) or classification based
approaches (60, 68, 79) to parameterize CG models.

5. Density-dependence and the internal pressure

Historically, bottom-up approaches have focused on parameterizing U to reproduce the
configuration-dependence of the PMF, while neglecting its density dependence. These CG
models have typically calculated the internal pressure according to

N

1
¢ — }:
P (R,V) :Nk‘BT/VJ’_WI:lFI‘RI’ 44

int

which assumes that the CG interaction potential does not explicitly depend on density,
ie., (OU/OV)g = 0. However, as illustrated in Fig. 2 (80), Eq. often dramatically
overestimates the internal pressure of the AA model (81, 82) because the effective potentials
indeed vary significantly with density (83, 84, 85, 86, 87). In principle, one can adopt
an “active approach” that treats this density dependence when calculating the internal
pressure (88, 89, 90). In practice, though, bottom-up approaches have typically modified
U such that Eq reasonably approximates the internal pressure of the AA model. For
instance, many studies modify IBI pair potentials with linear “ramp corrections” of the form
—A(1 —r/rc) that are tuned to reproduce the average density of the AA model (36, 91).

5.1. Volume potentials

Das and Andersen (DA) derived a fundamentally new approach by treating the volume, V,
as a CG variable (92). In this framework, the relevant mapped distribution is

PRV (R, V' pext) o pr(R; V) exp|—Fpext V], 45.

where pr(R; V) is the canonical mapped distribution defined by Eq. and pext is the
external pressure. In order to reproduce pry, the CG potential must reproduce not only
the configuration-dependence, but also the volume-dependence of the modified PMF:

Wp(R,V)=W(R;V) — (n— N)kgTIn(V/Vy), 46.

where the first term is defined by Eq 12, the second term corresponds to the ideal contribu-
tion from the n — N particles that have been eliminated from the CG model, and V) is an
arbitrary dimensional constant. If U(R, V) = Wp(R, V), then the CG model will perfectly
reproduce both the mapped distribution, prv (R, V; pext), and also the AA pressure at the

Noid et al.
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Figure 2

Impact of density upon AA and CG models for OTP (80). Panel a compares the internal pressure
of the models. The gray points indicate the internal pressure, pint(r, V'), of configurations sampled
by a constant NPT AA simulation, while the solid black curve indicates the AA equation of state.
The blue points indicate the naive internal pressure, P2, (M(r), V), of the CG model obtained by

int
evaluating Eq 44 for the sampled AA configurations. The dashed blue curve indicates the
simulated pressure equation of state for the CG model when including the volume potential. Panel

b presents the MS-CG pair potentials calculated at T" = 650 K for the three indicated densities.

resolution of the CG model, i.e., P,y (R, V) = (pint(r, V)) gy » Where the average is evaluated
with respect to p,r (r|R; V') over the subensemble of AA configurations that map to (R, V).
DA approximated Wp(R, V) with the effective potential, U(R,V) = Ur(R) + Uv(V),
where Ur(R) is a density-independent interaction potential, while Uv (V') is a configuration-
independent “volume potential” (92). Because Uy (V') does not generate forces on the CG
sites, it does not impact the canonical configuration distribution at a fixed volume. Rather,
it directly contributes Fyy/ (V) = —dUv (V) /dV to the internal pressure, as already recognized
in the early work of Dijkstra et al (93, 27). Consequently, simulating volume potentials only
requires modifying the barostat equation of motion to account for Fy (V).
DA represented the volume potential by
Uy(V)=N {wl (V/Van) 412 (1 - V/VAA)2} ) 47.
where Vaa is the average volume of the AA model, while 1; and v are parameters that
directly contribute to the internal pressure and compressibility, respectively, of the CG
model at the reference state point. Given the fixed interaction potential, Ur, they optimized
Uv by minimizing a “pressure-matching” functional:

XV [Uv; Ur] = (|Apine (r, V) = Fv(V)[?) 48.

Pext

where Aping(r, V) = pine (r, V)= P2, (M(r), V), while the angular brackets denote an average
over the AA isothermal-isobaric ensemble.

Subsequently, Dunn and Noid developed a self-consistent pressure-matching approach
that quantitatively reproduces the AA equation of state by minimizing the relative entropy
with respect to Uv (V) (82, 94). This self-consistent pressure-matching method has accu-
rately modeled the internal pressure for a variety of liquids, (94, 95, 87) as illustrated in
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local density (LD): a
microscopic density
defined by the local
environment of a
given molecule.

dissipative particle
dynamics (DPD): a
popular
coarse-graining
approach that
originally developed
from computational
fluid dynamics (104).
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Fig. 2 for ortho-terphenyl (OTP) (80).
accurately predicted as a function of solution composition (

Moreover, the resulting volume potential can be
) and temperature (96, 87).

5.2. Local density potentials

Volume potentials provide a simple and robust means for modeling the cohesive free energy
density of homogeneous fluids. Local density (LD) potentials appear similarly promis-
ing for modeling liquid interfaces and other inhomogeneous systems. Pagonabarraga and
Frenkel pioneered LD potentials (
(DPD) method (98,

that generated quadratic pressure equations of state, (

) for the many-body dissipative particle dynamics
). While early DPD models employed purely repulsive pair potentials
) Pagonabarraga and Frenkel (97)
employed LD potentials as a local free energy that could be tuned to model liquid-vapor
coexistence and other non-trivial thermodynamic behavior. Independently, Wolynes and
coworkers introduced LD potentials to describe many-body solvation effects in CG protein
). Since the work of Allen and Rutledge, (102,
have demonstrated that LD potentials provide similar advantages for bottom-up models.

models ( ) a growing number of studies

The local density, pr, around site I is defined
prR) = Y w(Ru), 19.

J(AD)

where w is a non-increasing weighting function that vanishes beyond a finite distance, ..
LD potentials generate pair-additive forces and, thus, provide similar computational scaling
to conventional pair-additive potentials (97). In particular, if all interactions are described
with a pair potential, Uz, and a LD potential, U,, then the net force on molecule I due to

molecule J is along the intermolecular vector, ﬁu = (Rr — Ry) /R1s, with a magnitude
Fri(R) = Fo(Rr1y) + [Fp(pr) + Fo(ps) @' (Ris), 50.

where Fy(r) = —dUz(r)/dr and F,(p) = —dU,(p)/dp. Note that Eq.

U, and U, are not independent. For any constant, ¢, if one simultaneously transforms

Ua(r) — Uz(r) + cw(r) and U,(p) — U,(p) — cp/2, then Fr;(R) is left invariant (105).
When the local density is defined over a sufficiently long and slowly varying length-

implies that

scale, then it is reasonable to simply equate the LD potential with the volume potential
that is obtained from self-consistent pressure-matching, i.e., U,(p) = N~ 'Uyv(N/p). Sim-
ulations with this LD potential quite accurately reproduce both the local structure and
pressure-density equation of state of bulk methanol, but generate significant artifacts at
liquid-vapor interfaces (106). Conversely, if the local density is defined over a sufficiently
short length-scale, then LD potentials provide remarkable accuracy and transferability for
describing both homogeneous liquids and also their interfaces (105). For instance, Fig.

presents the results of DeLyser and Noid for a film of liquid methanol adsorbed against a
solid substrate (107).

employed the MS-CG variational principle to simultaneously determine an effective external

DeLyser and Noid represented each molecule with a single site and

potential, Vext, as well as pair and LD potentials to describe intermolecular interactions.
Interestingly, the MS-CG equation for the external field generalizes the first YBG equa-
tion (107, 18).
the liquid film, including the liquid-solid and liquid-vapor interfaces, as well as the RDF

Figure 3 demonstrates that the MS-CG model quite accurately describes

and internal pressure of bulk methanol. Subsequently, DeLyser and Noid (108) introduced

Noid et al.



potentials that depend upon the square gradient of the local density:

N

UR) =Y U2(Ris)+ Y {Us(pr) + Us(pr) [Vipr*}, 51.
(1,J) =1

which appears similar to a van der Waals density functional (18). We anticipate that Eq. 51
may prove particularly useful for bottom-up models of highly inhomogeneous systems, as
well as for phenomenological top-down models of exotic phases with many interfaces.

1.5

075 >

0
g r100 g
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= 0 5
73
173
o
0 T 1 . —1000

0 7.5 15 14 14.5 15

z[nm] p [nm?]
Figure 3

AA (solid black) and 1-site MS-CG models (dashed red) for a film of adsorbed methanol. Panel
(a) presents the simulated density profile. The insets highlight the solid-liquid and liquid-vapor
interfaces. Panels (b) and (c) present the RDF and pressure-density equation of state from
constant pressure simulations of the bulk fluid. The dashed curve in panel (b) presents the shape
of the LD weighting function, w. Adapted with permission from Ref. 107; M. DeLyser and W. G.
Noid. J Chem Phys 153 224103; copyright 2020 AIP Publishing.

While our group and the Voth group (109) have primarily employed LD potentials to
model liquids and liquid interfaces, other groups have employed LD potentials to accu-
rately model a wide range of complex systems. For instance, Shell and coworkers have
demonstrated that bottom-up LD potentials can accurately reproduce many-body solva-
tion effects that drive the collapse of hydrophobic polymers, (110) the aggregation of hy-
drophobic solutes, (110) and the phase separation of immiscible liquids (111). Similarly,
bottom-up LD potentials can accurately describe the structure and thermodynamic prop-
erties of polymer melts (112, 113, 114). Consequently, LD potentials appear very promising
for accurately modeling thermodynamic properties, interfacial structures, and many-body
solvation forces, while providing outstanding transferability between bulk and interfacial
environments. Furthermore, we anticipate that LD potentials may provide a unique con-
nection between structure-based bottom-up approaches and DPD models for nonequilibrium
energy transfer and chemical reactions (115, 116, 117).
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6. Temperature-dependence and energy/entropy

The exact PMF depends upon temperature according to (0W/90T)r,y = —Sw, where
Sw(R) quantifies the excess configurational entropy associated with M~!(R) (28). This
not only limits the transferability of approximate interaction potentials, but also complicates
the description of energetic and entropic quantities. Because W = Ew — T'Sw, the PMF
cannot be employed to model atomic energetics (3, 84, 10). Similarly, atomic entropies

cannot be determined without accounting for the mapping entropy (19, 70, 118)
Smap = /dR pR(R)Sw(R) 52.

These considerations are important for all CG models (119). For instance, top-down models
that reproduce configurational-dependent free energies necessarily map entropic contribu-
tions from the missing atomic degrees of freedom into the CG potential (120). Consequently,
CG models will generally fail to properly distinguish energetic and entropic driving forces

unless the entropic contributions to the CG potential are properly treated (121, 122).
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Figure 4
Entropic consequences of coarse-graining for a 1-site model of OTP (10, 123). Panel a compares

the distribution of intermolecular energies (black) obtained from an AA simulation at Ty = 400 K
with the distribution obtained by evaluating U (red) and E (blue) for the configurations obtained
by a corresponding CG simulation that modeled interactions with U. Panel b compares the
MS-CG pair potentials, Us, calculated for Ty (solid red) and for T' = 650 K (dashed red) with the
energetic pair operator, Fa, (solid blue) calculated via energy matching at Ty, as well as the pair
potential predicted for T' via the dual approach (dashed orange).

Figure 4 illustrates the practical ramifications of these considerations for a one-site
MS-CG model of OTP (123). The left panel compares the AA distribution of intermolec-
ular energies with the distribution obtained by simply evaluating the MS-CG potential,
The latter distribu-
tion completely fails to describe the cohesive energy of the AA model due to the en-

U, for configurations sampled by a corresponding CG simulation.

tropic contributions to U. These entropic contributions correspond to the temperature-
dependence of the corresponding MS-CG pair potentials, U2(7T'), as illustrated in the right
panel (124, 125, 126, 87, 127, 128).

Accordingly, Voth and coworkers proposed calculating MS-CG potentials, U(T), for a
range of temperatures and then approximating the entropic component of the PMF, Sw,
based upon their observed temperature-dependence, i.e., Sw ~ —AU(T)/AT (129). More-
over, they quite reasonably estimated atomic entropies by evaluating this approximation S
for sampled CG configurations (127).

Noid et al.



6.1. Dual and observable-based approaches

Lebold and Noid
Conversely, Lebold and Noid (LN) introduced a “dual approach” for modeling energetics (EN())- i;tr;O du(:e da

and predicting temperature-dependent potentials (130). In contrast to V', the AA potential,  qual approach for
u(r), is not a CG observable (109). However, the conditioned mean of the AA potential, modeling energetics
Ew(R) = (u(r))g, is a CG observable that describes energetics at the resolution of the and predicting
CG model. Moreover, if both W(R) and Ew(R) are known at a given temperature, then (tiempe;atltlre—
K ependen

Sw(R) = (Ew(R) — W(R)) /T = —0W/JT determines the temperature-dependence of W. poi)entials (130).

In practice, neither W (R) nor Ew (R) can be exactly calculated. Consequently, LN em-
ployed structure-based methods to determine a potential, U(R), that approximated W (R)
at a reference temperature, Ty. Following the arguments of the least-squares sidebar, LN
determined an operator, E(R), that accurately approximated Fw (R) by minimizing

XB[E] = (Ju(r) — BE(M(r))[*), 53.

which repurposes an early energy-matching method (131). Moreover, LN employed the
simple approximation S(R) = (E(R) — U(R))/To = Sw(R) to predict the temperature-
dependence of U(R), i.e., (OU/IT)r,v = —S. LN initially validated this dual approach for
an IBI model for water and a MS-CG model for methanol (130).

Figure 4 presents the results of this dual approach for the 1-site MS-CG model of
OTP (123). The solid blue curve in Fig. 4b presents the resulting pair energy function,
E5(Tp). Clearly, E5 is far more attractive than the purely repulsive MS-CG pair poten-
tial, Uz. In fact, OTP solidifies if one models interactions with Fa. Thus, the entropic
contributions to Us appear essential for modeling the liquid phase.

The dotted blue curve in Fig. 4a presents the distribution of energies that is obtained
by evaluating the energetic operator, E(R), for the configurations that are sampled by CG
simulations with the MS-CG potential, U(R). This distribution is necessarily more narrow
than the AA potential distribution because it averages over the subensemble, M™*(R),
of AA configurations that map to each CG configuration, R. Nevertheless, this distribu-
tion quite accurately reproduces the mean of the AA potential distribution and certainly
recovers the cohesion that stabilizes the condensed phase. Furthermore, the inferred en-
tropic contribution to the MS-CG potential, S = (E2 — Us2)/T, very accurately predicts
the temperature dependence of the MS-CG potential over a range of 250 K.

Figure 4 suggests a fundamental inconsistency may arise in treating thermodynamic
energies with reduced CG models (10). If one determines an accurate energetic operator,
E(T), for a range of temperatures, then one should be able to reproduce the thermodynamic
energy of the AA model at each temperature, w(7). This would imply that the CG model
also should reproduce the (excess) specific heat, cy = 9u/9T, of the AA model. However,
the specific heat is related to the variance, o2, in the AA potential fluctuations according
to, 02 = kpT?cy (16). This suggests a contradiction: the CG model should not be able
to reproduce cy because it cannot reproduce fluctuations due to AA degrees of freedom
that are missing from the CG resolution. The sidebar on hidden fluctuations provides
the key to resolving this suggested contradiction. Specifically, if one defines %(R) =
{Ju(r) = Bw(M(r))|*), as the variance in energetic fluctuations within M~"(R), then the
total atomic variance, o2 can be reproduced by accounting for both the variance, %2, in
Ew over the mapped ensemble and also the average of 5%(R) from the missing degrees of
freedom according to Eq. (132). Moreover, because W is a free energy and, thus, a
cumulant generating function, &2 (R) can be related to a configuration-dependent specific
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heat, Cw = (aEw/aT)R,V:

P=BWR))\ _ 2 _ 52
(7{)(—@2 )R — kaT?Cw(R) = #*(R). 54.

More generally, one can define an operator A(R) = (a(r))g to model any microscopic
observable a(r) at the resolution of the CG model (109). These operators can be optimized
by simple least squares fitting, as illustrated in the dual approach, or by minimizing a

corresponding relative entropy (133). In recent years, CG operators have been developed
for modeling the pressure, surface tension, and specific heat (130, , , , ).

Hidden fluctuations

We continue the arguments of the preceding sidebar and define, C'(X) = u, such that x> (1] = 2. Eq.

then allows us to decompose the total microscopic variance, o2:

=0 /dX P(X)5°(X) SB6.

where £% = [dX P(X)|(X) — pu|* quantifies the fluctuations that are visible at the CG representation,
while the second term in Eq. quantifies the fluctuations that have been eliminated by coarse-graining.

Pretti and Shell
(PS): introduced an
approach for
modeling a
microcanonical
partition function of
CG coordinates.

18

6.2. Microcanonical formalism and modeling fluctuations
Pretti and Shell (PS) have recently introduced an elegant microcanonical framework for

treating the entropic consequences of coarse-graining (136). Somewhat in analogy to the
DA framework, PS proposed directly modeling the joint configuration-energy distribution

pre(R, E;T) = / dr p:(r; 7)0(M(r) — R)é(u(r) — E), 55.
V"L
that is specified by the AA potential and the CG mapping. The central quantity in this
approach is not the PMF but rather the configuration-energy density of states
w(R, E) x / dr 6(M(r) — R)d(u(r) — E), 56.

n

which determines the exact distribution of energies sampled by the AA model in the
subensemble M~ (R). If the function w(R, E) is exactly known for all R and E, then
one can determine the exact PMF at every temperature via Laplace transform:

e PWERT) /dE e PPu(R, E). 57.

PS proposed approximating w(R, E) as a convolution of densities of state, Q¢(E¢, z), asso-
ciated with each term in Eq. 19. This convolution approximation leads to a corresponding
additive approximation for the PMF (136). PS proposed approximating §2¢ with a Gaussian,

(e — Feo(2))° .

QC (Ec, Z) X m exp |:— Q’YC (Z)
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where F¢oo(z) and 7¢(z) are temperature-independent functions that specify the mean
and variance in the distribution of potential energies associated with the ¢ interaction
when ¥¢(Rx) = z. This then determines an approximate density of states, Q(R, F) =~
w(R, E), and a corresponding approximation Pre(R, F) « e PPQ(R, E) for pre(R, E).
PS optimized E¢oo(2z) and 7¢(z) by minimizing the KL divergence between prg and Prg.

By analytically evaluating the relevant convolutions, PS determined temperature-
dependent approximations E(R) = >7. >, Ec(¢¢(Rx)) and UR) = > 37, Uc(¢¢(Ra))
for Ew(R) and W (R), respectively. Specifically,

E¢(2) = E¢(%T) = Ecoo(2) — B¢ (2) 59.
Uel) = Uels:T) = Beoo(2) = 57(2). 60.

While prior studies have extrapolated U(T) as a power series in 67 = T — Tp about a
finite reference temperature, Ty (129, , , 87, ), the microcanonical formalism lin-
early extrapolates U as a function of 8 = 1/kpT from T = co. In particular, as T — oo,
the effective interaction potential becomes purely energetic and temperature-independent
Ue(z;T) = E¢oo(2). In fact, this is consistent with Sw(R) being an excess configurational
entropy that should vanish when 7' — oo and p,r(r|R) equals the uniform distribution
@ r(t|R) = V- ""M§(M(r) — R) (28). PS employed the microcanonical formalism to pa-
rameterize one-site CG models that accurately reproduced the structure and energetic dis-
tributions of LJ tetramers and liquid water across a rather wide range of temperatures (1306).

More generally, this suggests the intriguing possibility of employing bottom-up models
to describe arbitrary AA observables, a(r). Back-mapping approaches that “invert” the
coarse-grained mapping provide one obvious approach for modeling AA observables. Tra-
ditional back-mapping approaches determine a representative configuration rg = M (R)
from the subensemble, M™*(R) = {r|[M(r) = R}, that maps to R (137, 62) However,
recent studies have demonstrated remarkable progress in more rigorously sampling the con-
ditioned distribution, p,r(r|R), for this subensemble (138, ). In particular, Rotskoff
and coworkers defined the notion of an “invertible coarse-graining” by the combination
(M, U, T) of a CG mapping, M, an approximate CG potential, U, and a normalizing flow,
T, for approximately sampling AA configurations according to py|g (64). Furthermore, they
introduced an intriguing “weak” consistency criterion for optimizing an invertible coarse-
graining, (M, U, T), in order to reproduce AA averages for a given family, 7 = {a(r)}, of
AA observables. Conversely, Jackson and coworkers have highlighted the promise of “by-
passing” back-mapping by directly modeling the distribution, par(a|R), of the observable
in M~!(R) (140). Specifically, Jackson and coworkers employed ML tools to model the
distribution of electronic energies for the ensemble of quantum states that map to a given
CG configuration (141, ). The PS microcanonical framework and the “predictive frame-
work” of Koutsourelakis and coworkers (142) similarly bypass backmapping. These exciting
ideas promise to radically extend the scope and utility of bottom-up CG methods.

7. Concluding thoughts

By employing information from accurate AA models, the bottom-up framework anchors
CG models in reality. Bottom-up models are often referred to as “structure-based” models
because early studies primarily focused on reproducing structural properties (34, 36). It
was quickly realized, though, that structure-based potentials not only provided limited
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transferability, but also provided a poor description of thermodynamic properties, which
was termed the “representability” problem (83, 91). The bottom-up formalism elucidates
the origin of the transferability and representability problems and reveals that they are two
weeds stemming from the same root (29). Moreover, the bottom-up formalism guides the
development of robust computational methods for rigorously addressing these problems in
practice. For instance, the DA framework beautifully addresses the density-dependence of
the PMF in order to accurately model the internal pressure (92). LD potentials appear a
promising approach for extending this framework to inhomogeneous systems. Similarly, the
dual (130) and microcanonical frameworks (136) provide predictive approaches for treating
the temperature-dependence of effective potentials in order to model energetic and entropic
quantities. More generally, recent studies have reported exciting bottom-up approaches for
modeling AA observables that would seem beyond the scope of CG models (138, , 64,

, , ). Furthermore, the bottom-up framework provides insight for coarse-graining
complex systems that are characterized by multiple conformational states (74, 75). Thus,
the bottom-up framework provides powerful insight for fundamentally understanding and
practically resolving the limitations of existing CG models. We anticipate this framework
will continue rapidly propelling the field into the future.
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