Attention Is Not Enough

Joshua Miller! (jmill233@vols.utk.edu)
Department of Mathematics, University of Tennessee, Knoxville
Knoxville, TN 37904 USA

Shawheen Naderi! (snaderi@csus.edu)
Department of Mathematics, California State Univeristy, Sacramento
Sacramento, CA 95819, USA

Chaning B. Mullinax (cbm5d @mtmail.mtsu.edu)
Department of Computer Science, Middle Tennessee State University,
Murfreesboro, TN 37132 USA

Joshua L. Phillips (Joshua.Phillips @mtsu.edu)
Department of Computer Science, Middle Tennessee State University,
Murfreesboro, TN 37132 USA

Abstract

The human ability to generalize beyond interpolation, often
called extrapolation or symbol-binding, is challenging to recre-
ate with computational models. Biologically plausible mod-
els incorporating indirection mechanisms have demonstrated
strong performance in this regard. Deep learning approaches
such as Long Short-Term Memory (LSTM) and Transform-
ers have shown varying degrees of success, but recent work
has suggested that Transformers are capable of extrapolation
as well. We evaluate the capabilities of the above approaches
on a series of increasingly complex sentence-processing tasks
to infer the capacity of each individual architecture to extrapo-
late sentential roles across novel word fillers. We confirm that
the Transformer does possess superior abstraction capabilities
compared to LSTM. However, what it does not possess is ex-
trapolation capabilities, as evidenced by clear performance dis-
parities on novel filler tasks as compared to working memory-
based indirection models.

Keywords: Deep Neural Networks, Long Short Term Mem-
ory, Transformers, Indirection

Introduction

Generalization is the process of applying previously learned
abilities and knowledge to novel experiences. It is an essen-
tial human faculty because no two experiences are exactly
the same. One may have earlier experienced similar compo-
nents of an event but the exact manner these components are
arranged in, or even the components themselves, likely will
not be identical. For instance, one is often able to infer the
meaning of a sentence even if it contains a word outside of
one’s lexicon. While deep artificial neural networks (ANNs)
are computational systems capable of some forms of gener-
alization, challenges remain when generalizing given novel
inputs. One important thread of research in this area focuses
on symbol processing, or “the ability to represent information
in the form of abstract variables that can be bound to arbi-
trary values”, which plays an important role in one’s ability
to generalize using working memory (Kriete, Noelle, Cohen,

'Equal contribution. Listing order is alphabetical by last name.

& O’Reilly, 2013). In this paper, we build off of previous re-
search regarding deep ANN models also reported to exercise
this ability. We evaluate their capabilities on a series of in-
creasingly complex sentence-processing tasks and are there-
fore able to infer the capacity of each individual architecture
to extrapolate to novel inputs.

Background
Biologically Plausible Indirection

The interacting subsystems of the brain thought to underlie
human working memory may allow for functionality analo-
gous to the concept of pointers from computer science via
a process called indirection (Kriete et al., 2013). Using in-
direction, abstract values located in one region of memory
can store the "addresses" of arbitrary values located in an-
other memory region. The prefrontal cortex (PFC) contains
stripes of densely intraconnected neurons which are sparsely
interconnected to one another (Elston, Benavides-Piccione,
Elston, Manger, & Defelipe, 2011) and appears suited to ac-
tive maintenance of memory traces. These stripes are strongly
linked with the basal ganglia (BG) which is appears suited for
controlling active memory gating/updating (Alexander, De-
Long, & Strick, 1986). Consequently, Kriete et al. hypothe-
sized that different PFC stripes may be employed to maintain
pointer-like memory traces and thereby implement a form of
indirection with the BG responsible for the gating/updating
of information in PFC stripes and proposed a biologically
plausible computational model with generalization capabil-
ities that utilize indirection (Kriete et al., 2013).

In Kriete et al., the abstract variables are three possible
roles in a three word sentence: agent, verb, and patient. The
arbitrary values are known as fillers and are the concrete
words which correspond to each role. For example, in the
sentence “Tom Ate Food” the agent is “Tom”, the verb is
“Ate”, and the patient is “Food”. The function of the model
is to take the previously discussed three word sentence and
individually encode each role and filler into working mem-

ory. Then, the model will be queried using the role, and the
filler which was stored with the associated role will be re-
called. The model was tested on three tasks, each requiring a
different form of generalization performance:

» Standard Generalization (SG) — During training, every
filler has been used in every role and all fillers have been in
the same sequence together. For instance, if the fillers are
"apple", "bat", and "cat" and the roles are their respective
ordering in the sequence, during training the model may
have been presented with "apple bat cat", "cat apple bat",
and "bat cat apple". Thus, "apple"”, "bat", and "cat" had all
been used in every role and had been used in the same se-
quence. During testing, unique combinations of role-filler
pairs are employed, for example: "cat bat apple".

* Spurious Anticorrelation (SA) — During training, every
filler has been used in every role but not all fillers have
been in the same sequence together. For instance, if the
fillers are "apple", "bat", "cat", and "dog" and the roles are
their respective ordering in the sequence, during training
the model may have been presented with "apple bat cat”
and "cat bat dog". During testing, unique sequences of
role-filler pairs are presented that have not been in the same
sequence together, for example: "apple bat dog". In this ap-
proach, "apple", "bat", "cat", and "dog" had been trained in
every role. However, while "apple" and "dog" had not been
in the same sequence during training, they were together in
the testing sequence.

* Full Combinatorial (FC) — During training, not all fillers
have been used in every role. For instance, if the fillers
are "apple", "bat", "cat", and "dog" and the roles are their
respective ordering in the sequence, during training the
model may have been presented with "dog bat cat", "dog
apple cat", and "dog bat apple". During testing, a sequence
of role-filler pairs is presented to the model where a filler
is in a role it had not experienced during testing: for exam-
ple, "apple bat cat". Thus, "apple" was tested in the first
role but this filler had never been in the first role during
training.

Since the model utilized one-hot encodings for the output
layer response tokens (each output unit corresponding to one
of the possible filler words), some previous exposure to all
filler words was required via pretraining on a simple associ-
ation task prior to any of the above experiments. These trials
consisted of requiring the model to respond with the same
word which was immediately provided as input. The Indi-
rection model’s performance on the SG, SA, and FC tasks
described above was compared with a simple recurrent net-
work (SRN), a working memory (WM) model, and a work-
ing memory model with the addition of output-gating mecha-
nisms (WMO) but lacking indirection mechanisms. The gen-
eralization abilities of the Indirection model were found to
surpass the SRN and WM on all three tasks, and performance
was similar to the WMO model for the SG and SA tasks, but
far superior on the FC task (Kriete et al., 2013).

Artificial Indirection Models

Since the indirection model by Kriete et al. was designed for
biological plausibility, it contains many biologically plausible
mechanisms which result in slower model training and testing
compared to deep learning models which abstract away many
of these details. Therefore, Jovanovich developed an artificial
indirection model that employed Holographic Reduced Rep-
resentations (HRRs) (Plate, 1995) to replace recurrent PFC
layers and utilized temporal difference reinforcement learn-
ing, specifically SARSA, to replace Perceived Value Learned
Value (PVLV) layers (O’Reilly, Frank, Hazy, & Watz, 2007).
This model was tested on SG, SA, FC, but also on an ad-
ditional task for the model to complete (Kriete et al., 2013;
Jovanovich, 2017):

* Novel Filler (NF) — During training, some fillers are not
observed in any role nor in any sequence. Some poten-
tial training examples might be: "apple bat cat", "bat apple
cat", and "cat apple bat". During testing, the model is pre-
sented with "zoo bat cat". In this case, "z00" is a novel filler
since "z00" is tested in the first role, but never observed in
any roles during training.

Jovanovich’s model performed approximately the same as
the model from Kriete et al. on the three shared tasks (SG,
SA, and FC) (Jovanovich, 2017). However, on the new task,
NF, the performance was poor due to a lack of pretraining.
While pretraining could have been leveraged to overcome this
limitation, similarly to Kriete et al., it was seen as an unsatis-
fying way to meet the challenge of the NF task, since the goal
is to assess how a model will perform when provided a word
which it truly has never seen before. The model’s internal rep-
resentations were instead analyzed and the results indicated
that it was holding onto and providing the correct informa-
tion to the one-hot-encoded actor network for the task, but a
solution to this dilemma was left for future work.

Long Short-Term Memory

Recurrent Neural Networks (RNNs) are helpful for process-
ing sequential data (eg. text sequences) and may be viewed
as an approximate form of working memory in deep learn-
ing research. They function by storing information from one
time step to another through the use of hidden, internal states.
This allows for an accumulation of information from the past
states to impact current states (Karpathy, 2015). A problem
that arises with RNNs are exploding and vanishing gradients.
The former refers to the "large increase of the norm of the
gradient during training" and the later to the gradient dimin-
ishing to zero (Pascanu, Mikolov, & Bengio, 2013). To sur-
mount this challenge, a specific type of RNN, long short-term
memory (LSTM) (Hochreiter & Urgen Schmidhuber, 1997),
was developed. LSTMs deploy a mechanism of input, out-
put, and forget gates that allow the model to more effectively
remember useful information over time and greatly reduce
the impact of the exploding and vanishing gradients prob-
lem (Goodfellow, Bengio, & Courville, 2016).

Novel Role-Filler Generalization

To partially overcome the pretraining limitations observed by
Jovanovich, Mullinax utilized LSTM-based models to con-
struct word embeddings which could be passed to an artifi-
cial indirection model with three memory stripes (Mullinax,
2020). Mullinax also replaced the SARSA algorithm, used by
Jovanovich, with Q-Learning to operate the input and output
gates that determined how a filler would be stored. However,
HRRs were still used to encode role information. The model
was constructed in a nested fashion where an outer LSTM
(OL) encoder-decoder was used to learn word embeddings
from character-level tokens, and an inner artificial indirec-
tion (IND) model would utilize these learned embeddings in
place of the HRRs used for fillers in prior work (Cho et al.,
2014; Sutskever, Vinyals, & Le, 2014).

Encoder-decoder models built from LSTM layers demon-
strate standard generalization, SG, capabilities. Compared
with the works above, this approach allowed for pretraining
of the OL component in a more realistic manner and one that
could fulfill the requirements of the NF task at the sentential-
level. For example, pretraining the outer model on the fillers
"boy" and "cat" would allow the outer model to successfully
encode and decode the filler "bat". This manner of pretrain-
ing is analagous to our learning experience of spoken lan-
guage as well, where the individual letters above correspond
to individual phonemes. Even novel words can be properly
encoded and decoded by this outer, OL, component, so long
as they consist of letters (or phonemes) with which the model
is already familiar. Therefore, word-level embeddings con-
structed by the outer component, OL, were more flexible than
the one-hot or HRR encodings used in the prior approaches,
leaving the more difficult task of examining the meaning of
the novel filler in its sentential role up to the inner component,
IND. Thus, standard generalization is used to encode whole
word representation for fillers (OL), but these representations
can then be referenced using indirection to avoid confusion
when processed through the inner model (IND). Therefore,
we refer to this approach as the OL/IND model.

The OL/IND model was compared to a nested model which
used an outer LSTM (OL) encoder-decoder and inner LSTM
(IL) encoder-decoder: OL/IL (see Figure 2). Critically, the
outer component for both of these models was the same and
was pretrained as explained above. However, the inner com-
ponent of the OL/IL model was an encoder-decoder model
constructed using LSTM layers, meaning it lacked any in-
direction capabilities and is the deep learning-equivalent of
the WMO model employed by Kriete et al. above. Both
models were trained and tested with three, five letter-long,
fillers (agent, role, and patient) using all four task types de-
scribed above: SG, SA, FC, and NF. The performance of the
models were evaluated by comparing letter-level and word-
level accuracy (see eqns. (2)—(3)). Letter-level accuracy mea-
sured the percentage of correct letters in the correct positions,
and word-level accuracy quantified the percentage of correct
words produced in the correct positions. The latter metric

necessitates that each entire words must be spelled correctly
to qualify as an accurate response, but letter-level accuracy
can discern partially correct responses. The results indicated
that the OL/IND model could learn to generalize perfectly
across all four tasks using the realistic pretraining regime de-
scribed above. However, the OL/IL model only performed
well on the SG and SA tasks. Given prior research, it was
not surprising that the OL/IL model failed to learn the NF
task well, but this model actually performed even worse on
FC. This was a somewhat surprising result, and suggests that
some form of representational interference is preventing the
OL/IL model from performing well on the FC task as prior
work with one-hot and HRR encodings had suggested. Even
though the OL/IND model showed better performance after
training, it’s reliance on reinforcement learning meant signif-
icantly longer training times.

Transformers

Transformers (T) are a neural network architecture first in-
troduced in a 2017 paper titled "Attention Is All You Need"
(Vaswani et al., 2017). One remarkable part of the Trans-
former architecture is its self-attention mechanism which al-
lows the network to focus on relevant input features by weigh-
ing the relations of distinct components of the input against
one-another. By comparing all tokens to all other tokens, the
model is better able to understand long-range dependencies.
This is because, unlike SRNs and LSTMs, Transformers can
process entire sequences of inputs simultaneously which pre-
cludes any bias due to sequential processing and allows for
faster, feed-forward training. Empirically, Transformers have
performed better than other models on tasks such as English-
to-German translation (Vaswani et al., 2017).

Emergent Symbol Binding Network

Since traditional deep neural networks have difficulties in-
ferring rules from high dimensional data, Webb et al. de-
veloped a model known as Emergent Symbol Binding Net-
work (ESBN) that can perform a simple form of indirec-
tion (Webb, Sinha, & Cohen, 2021). ESBN was trained and
tested on four tasks that involved learning abstract rules from
images: same/different discrimination, relational match-to-
sample, distribution-of-three, and identity rules (Webb et al.,
2021). Several deep learning architectures, including most
importantly the Transformer, were compared with the perfor-
mance of ESBN. The only clear advantage that ESBN had
over other approaches was that it did not require as many
training examples to learn the tasks. While this is clearly
advantageous, these results suggest that the Transformer ar-
chitecture is sufficient for performing indirection and symbol
binding given sufficient data. However, it is not clear whether
this was truly the case, or if the tasks were simply not chal-
lenging enough to delineate differences in performance be-
tween the tested architectures.

Methods

With the recent development and subsequent success of
Transformers, the task still stands to explore their strengths
as well as their shortcomings. While the Transformer ar-
chitecture has passed several abstraction-based challenges
(Vaswani et al., 2017) and indirection-based challenges
(Webb et al., 2021), previous indirection work involving the
SG, SA, FC, and NF data sets (Jovanovich, 2017; Mullinax,
2020) suggests that these tasks may be better suited to dis-
criminate between the capabilities of the LSTM, Transformer,
and IND approaches. Additionally, Transformer models can
be viewed as a replacement for RNN/SRN/LSTM compo-
nents, and therefore either the inner and/or outer LSTM com-
ponents in prior models. By replacing the LSTM components
of the OL/IL models with transformer components (T), we
hope to observe what advantages the Transformer architec-
ture might provide. This provides a framework for developing
and testing five different combinations of inner/outer compo-
nents: OL/IND, OL/IL, OL/IT, OT/IL and OT/IT. All outer
components can be pretrained as described above, and all
inner components can then be trained/tested across the four
tasks using the embeddings produced by the outer compo-
nents. An example of the encoding/decoding process is illus-
trated in Figure 1. In this way, we hope to expose any gener-
alization distinctions to be made among the different models.

Data Sets

The goal for all models described in the subsequent sections
is the reading and reproduction of three-word sentences fed
into each of the models. There are two principal classes of
data sets on which the models are trained. First is the pre-
training corpus which was the same across all models and
tasks; it consists of ten thousand 5 character-long lowercase
ASCII words or fillers. Another 10,000 word-long pretest-
ing corpus of different fillers was used for testing (SG con-
straints as described in the Background section). All outer
model components are trained and tested on the two corpi,
respectively, until reaching 100% accuracy on the pretesting
corpus. Component weights are fixed after training for these
(outer) components, so that they are only used to either embed
each separate word in a sentence for presentation to the inner
model component, or to decode the word representations pro-
duced by the output layers of the inner model. The second
class of data sets employed are the training/testing materials
for the inner model components which differ depending on
the task: SG, SA, FC or NF. Every training set for each of
the four tasks consists of two hundred three-word sentences,
each sentence being composed of words from the pretesting
corpus above. Therefore, for remainder of this work, we re-
fer to the pretesting corpus as simply the corpus since the
pretraining corpus is technically not used for any of the inner
component tasks. This procedure therefore insists on using
words that the outer component has never seen before to train
the inner components. The festing set for each task also con-
sists of words from the corpus, but obeying the rules of the

respective task. Note that an important distinction occurs in
the NF task: some fillers from the corpus are never observed
during model training, but are used during testing.

Models and Training Parameters

All models were created using Tensorflow/Keras [ver.
2.5.0]. Additionally, all models were developed with both
a coupled and decoupled version to either provide teacher-
forcing (for training) or remove teacher-forcing (for testing),
respectively. When encoding and decoding tokens, the com-
ponents (both outer and inner) are supplied with a start and
stop token, allowing for potentially variable word/sentence
lengths; though in this work each word was always composed
of five letters (for the outer components) and each sentence
was always composed of three words (for the inner compo-
nents). The hidden states of the encoder are passed to ini-
tialize the states of the decoder. While training, a coupled
version of these components is used, and during testing the
decoupled version of the component is used wherein the hid-
den states are passed through separate input layers to allow
separation between the encoder and decoder for testing with-
out teacher forcing. Instead of decoupling encoder-decoder
components, masking is another common method for remov-
ing teacher forcing and allowing for variable length inputs.
However, our pretraining approach requires the outer com-
ponents to be decoupled into a separate encoder and decoder
for embedding and decoding, respectively. Therefore, we uti-
lized consistent modeling efforts across both inner and outer
components for parsimony.

The first model developed was the nested inner/outer
LSTM (OL/IL) model which used an LSTM module to en-
code and decode fillers from the corpus into vector represen-
tations and then another LSTM to take three filler vectors and
amalgamate them into a representation for the entire sentence.
These are then decoded back into human-readable characters
by the outer component decoder. Key hyperparameters in-
volved are the dimension size of the OL into which each filler
is encoded, the dimension size of the IL wherein the three
filler vectors are combined into a vector representation of the
entire sentence. This model was then trained and fitted ac-
cording to the parameters shown in Table 1. The Adam opti-
mizer was used and updated using mean squared error (MSE)
and binary crossentropy (BCE) loss functions for the embed-
ding and start/stop token layers, respectively. The training
parameters for this model are given in Table 1.

The second model developed consisted of an outer LSTM
model wrapped around an inner Transformer (OL/IT). Both
the inner and outer components performed identical functions
as in the OL/IL model. In addition to replacing the IL with
the IT, the necessary addition of a position embedding layer
was added between the OL and before the transformer block.
Details in the training regimen and model constructions are
found in Table 1, and as above the Adam optimizer with MSE
and BCE loss functions for the embedding and start/stop to-
ken layers, respectively, were used to train.

In the third model, the roles are reversed and a Transformer

is used as the outer model which surrounds an inner LSTM
(OT/IL). The OT’s encoder and decoder utilizes a masked po-
sition embedding prior to the transformer block itself. Unlike
the previous models, this was trained using the Nadam opti-
mizer with MSE and BCE loss functions for the embedding
and start/stop token layers, respectively. Further details of the
model and training scheme are shown in Table 1.

The last model developed was the nested Transformer
model (OT/IT). Transformer blocks, each proceeded by a
masked position embedding layer, are used to encode and
decode both the corpus and the vector embeddings created
by the outer encoder. Training used the Adam optimizer up-
dated using MSE and BCE loss functions for the embedding
and start/stop token layers, respectively. Further details of the
model and training scheme are shown in Table 1.

A fifth model, used for state-of-the-art comparison, was the
outer LSTM and inner Indirection model (OL/IND) devel-
oped by (Mullinax, 2020) and described in the Background
section above. For further details on the model’s construction
and training/testing regimen see (Mullinax, 2020).

Table 1: Key Model and Training Parameters

Name Value Description
OL/IL
Outer size 100 Dimension size for corpus embeddings
Hidden size 300 Dimension size for embedding of sentence
I 0001 Learning rate for Adam optimizer
n 1600 Number of epochs
k 100 Batch size
OL/IL - Int. Embed.
Outer size 64 or 256 Dimension size for corpus embeddings
Hidden size 300 Dimension size for embedding of sentence
I 2 oo0r Learning rate for Adam optimizer
n 1600 Number of epochs
k 100 Batch size
oL/IT
Outer size 100 Dimension size for corpus embeddings
Num_heads 4 Number of attention heads in each transformer block
ff_dim 4 Hidden layer size in feed forward network in transformer
rate 0.1 Dropout rate for transformer
I 2 oo0r Learning rate for Adam optimizer
n 1600 Number of epochs
k 100 Batch size
OT/IL
Outer size 300 Dimension size for corpus embeddings
Hidden size 300 Dimension size for embedding of sentence
Num_heads 4 Number of attention heads in each transformer block
ff_dim 4 Hidden layer size in feed forward network in transformer
rate 0.1 Dropout rate for transformer
I 0001] Learning rate for Nadam optimizer
n 40 Number of epochs
k 25 Batch size
OT/IT
Outer size 300 Dimension size for corpus embeddings
Outer Num_heads 32 Number of attentions heads in outer transformer block
Inner Num_heads 4 Number of attention heads in inner transformer block
embed_dim 128 Embedding size for each token
Inner ff_dim 32 Hidden layer size in feed forward network in inner transformer
rate 0.1 Dropout rate for both inner and outer transformers
T o001 Learning rate for Adam optimizer
n 250 Number of epochs
k 50 Batch size

Training, Testing and Evaluation

Before evaluating performance, a hyperparameter search for
each model was performed manually until a set of values
yielded consistent and high-performing results for that model.
Certain key hyperparameters are shown in Table 1. Models
were then formally evaluated by training and testing them ten
times using the optimal hyperparameters found previously.

Sentence Encoding "Ate"

A w A 7
Inner Quter
Encoder Decoder

2 4 x P AR A X

Encoding 1 Encoding 2 Encoding 3 Encoding 1 Encoding 2 Encoding 3

“Tom" "Food"

Outer
Encoder

F A A N A

Inner
Decoder

"Tom" "Ate" "Food" Sentence Encoding

Figure 1: The figure above shows how the Inner/Outer En-
coder/Decoder operate. A sentence like "Tom Ate Food" is
passed to: 1) the Outer Encoder where each word is inde-
pendently encoded as a series of letter token and 2) sent into
the Inner Encoder which generates an encoding for the entire
sentence as a series of word embeddings, and 3) this sentence
encoding is then sent to the Inner Decoder which decodes
the sentence into independent word embeddings, and 3) the
word embeddings are sent to the Outer Decoder which de-
codes each one into the corresponding words (series of let-
ters).

We employed letter-level accuracy and word-level accuracy
to quantify how exactly the model was reproducing the test
sentences it was fed. We defined a function IS_EQ(x1,x2)
to compare words and characters from the model and testing
data set as follows:

1 X1 =X
IS_EQ(x1,x2) = 0 otherwise b

Since the testing data sets are one hundred sentences long,
word and letter accuracies are as follows:

WORD_ACC= ﬁ):}00 Z? IS_EQ(model’s word,test word) 2)

LETTER_ACC= WISS Y {OO):? Z? IS_EQ(model’s letter,test letter) 3)

Over the ten training runs, the word and letter-level accuracies
for each model were obtained and the mean (+/- 1.96 standard
errors) results were plotted for comparison with one another.

Results

According to the methodology described above, we trained
and tested the four models we developed—OL/IL, OL/IT,
OT/IL, and OT/IT-on the four tasks—SG, SA, FC and NF.
Additionally we also include the results from the OL/IND
model developed by (Mullinax, 2020). The results from the
five models tested on the four tasks are shown in Figure 2,
sorted according to the task they were tested on. One of the
most apparent trends in the data is the performance gap be-
tween the SG/SA and FC/NF tasks. All models perform the
SG and SA tasks with nearly 100% letter and word accuracy;

2w OL/IND -t OL/IL o ouIT = OT/IL | OT/IT]
Word level Letter level
100 E
HE 1T 1dc
HB 1] oo
80 1 mE I 7 I | 1o ¢
oo | 1oc
60 1 HE)0 ¢ T 17l oo
HB oo 1T 1oc
Yo ¢ oo
407 [X oo 1 1L xiec
HB yo ¢ (11| oo
oo | Nl 8 1oc¢
201 HB)0 ¢ 1T oo
HB oo 1T 1oc¢
04 -] oo
100 E
i i oo
80 T ‘.1. TI Xioc
HB - 1L oo
60] oo i A [o]
HB)0 ¢ 1T oo
i »o ¢ i oo
40 HB Yoo :::/ 1oc
= .) O C A1 oo
= 204 —— o o B == (1o c
= oo 1oc¢
X 0 - 1 Yo ¢ A TT 0o
Iy
©
3100 - 1
Q
< 7
fe .
B § HZ & B
60 E
o
)0 C
40 - b cFS
loc
oo
20 - ; 1 1 |
);c oo
oo 1oc¢
0-

Figure 2: Plots of the letter-level and word level accuracies
of the five models examined in this work. Formulas for these
accuracies metrics are given in eqns. (2)—(3). All models were
trained and tested N=10 times to obtain the mean (and +/-
1.96 standard errors shown by the black bars). Models are
composed of inner (I) and outer (O) components: LSTM (L),
Transformer (T), or indirection (IND).

SG

SA

FC

however, as we move to the FC and NF tasks, the letter and
word accuracies drop off significantly, most notably in the
OL/IL model. The OL/IL model performed to over 90% ac-
curacy on SG and SA for both world-level and letter-level ac-
curacy. However, OL/IL model performance was poor on FC
and NF (<40% and <65%, respectively). The OL/IL model
did noticeably better on letter-level accuracy than word-level
accuracy in all of these cases, and the study concludes that
the model produces the best matching fillers experienced dur-
ing training in these cases rather than the expected test fillers.
Using a Transformer as the outer model (OT/IL) did not sig-
nificantly increase performance: in fact, for the SG and SA
tasks, the OL/IL model outperforms OT/IL, suggesting that
the representations created by the OT may be, in a sense, con-
fusing to the inner IL. However, seemingly resilient across
all tasks at the letter-level were the OL/IT and OT/IT mod-
els, only showing poor word-level accuracy on the NF task.
All of these models, however, were ultimately out-performed
by the outer LSTM and inner indirection/working memory
model (OL/IND), which scored nearly 100% across all tasks
(see Figure 2). These results indicate that the Transformer
better approximates indirection mechanisms than LSTM, but
is not all that is needed to sufficiently handle novel fillers.

Conclusion

This work set out to evaluate certain neural network ar-
chitectures’ indirection and symbol binding capabilities
through testing on a series of increasingly difficult sentence-
processing tasks. Additionally, we examined possible syn-
ergy across the LSTM and Transformer architectures by cre-
ating nested models where the outer and inner components
were interchangeable. As demonstrated in Figure 2, we see
that models involving inner transformers (OL/IT, OT/IT) out-
performed the model composed entirely of LSTMs (OL/IL).
When employing transformers in conjunction with LSTMs,
we found care must be taken as the OT/IL model performed
far worse than the OL/IL model in the fairly easy SG and SA
tasks. Further research into the relationships and synergies
between the outer and inner encoders/decoders could help
elucidate why in the OT/IL model under-performed compared
to other model combinations but LSTMs were observed to
be more sensitive to representational complexity than Trans-
formers. Based on the OT/IT’s 100% scores on the SG, SA
and FC tasks, we confirm that the Transformer does possess
superior abstraction capabilities compared to LSTM. How-
ever, what it does not possess is indirection or symbol binding
capabilities, as evidenced by the clear disparity between the
OL/IND model and the four others in the NF task. However,
long training times are required for OL/IND models since
they use reinforcement instead of supervised learning. More
research is clearly needed to elucidate why the Transformer
fails to perform indirection; yet it is certain that more than
attention is needed to understand the unknown.

Acknowledgments

We thank three anonymous reviewers for their helpful feed-
back in improving the clarity of the manuscript. This work
was funded by NSF Grant #1757493 (Computational Model-
ing and Simulation in Applied Science) at Middle Tennessee
State University.

References

Alexander,
(1986).
circuits linking basal ganglia and cortex.
view of Neuroscience, 9, 357-381. doi:
nurev.ne.09.030186.00204 1

Cho, K., van Merriénboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learn-
ing phrase representations using RNN encoder—decoder for
statistical machine translation. In Proceedings of the 2014
conference on empirical methods in natural language pro-
cessing (EMNLP) (pp. 1724-1734). doi: 10.3115/v1/D14-
1179

Elston, G. N., Benavides-Piccione, R., Elston, A., Manger,
P. R., & Defelipe, J. (2011, 2). Pyramidal cells in pre-
frontal cortex of primates: Marked differences in neuronal
structure among species. Frontiers in Neuroanatomy, 1-17.
doi: 10.3389/fnana.2011.00002

Goodfellow, 1. J., Bengio, Y., & Courville, A. (2016).
Deep learning. Cambridge, MA, USA: MIT Press.
(http://www.deeplearningbook.org)

Hochreiter, S., & Urgen Schmidhuber, J. (1997). Long Short-
Term Memory. Neural Computation, 9(8), 1735-1780. doi:
10.1162/neco.1997.9.8.1735

Jovanovich, M. P. (2017). Biologically inspired task
abstraction and generalization models of working mem-
ory Middle Tennessee State University. Retrieved from
http://jewlscholar.mtsu.edu/xmlui/handle/mtsu/
5561

Karpathy, A. (2015). The unreasonable effec-
tiveness of recurrent neural networks. Retrieved
from http://karpathy.github.io/2015/05/21/rnn-
effectiveness

Kriete, T., Noelle, D. C., Cohen, J. D., & O’Reilly, R. C.
(2013). Indirection and symbol-like processing in the pre-
frontal cortex and basal ganglia. Proceedings of the Na-
tional Academy of Sciences of the United States of Amer-
ica, 110. doi: 10.1073/pnas.1303547110

Mullinax, C. B. (2020). Novel Role Filler Generalization for
Recurrent Neural Networks Using Working Memory-Based
Indirection Middle Tennessee State University. Retrieved
from https://jewlscholar.mtsu.edu/items/
e90deed2-fc9e-4eb1-8305-5b4747bc4394

O’Reilly, R. C., Frank, M. J., Hazy, T. E., & Watz, B. (2007).
PVLV: The Primary Value and Learned Value Pavlovian
Learning Algorithm. (Vol. 121) (No. 1). American Psycho-
logical Association. doi: 10.1037/0735-7044.121.1.31

G. E., DeLong, M. R, & Strick, P. L.
Parallel organization of functionally segregated
Annual Re-
10.1146/an-

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the dif-
ficulty of training recurrent neural networks. In Proceed-
ings of the 30th international conference on international
conference on machine learning (p. III-1310-111-1318).
JMLR.org.

Plate, T. A. (1995). Holographic reduced representations.
IEEE Transactions on Neural Networks, 6(3), 623-641.
doi: 10.1109/72.377968

Sutskever, 1., Vinyals, O., & Le, Q. V. (2014). Sequence to
sequence learning with neural networks. In Proceedings
of the 27th international conference on neural information
processing systems - volume 2 (p. 3104-3112). Cambridge,
MA, USA: MIT Press.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., ... Polosukhin, I. (2017). Atten-
tion is all you need. In Proceedings of the 31st interna-
tional conference on neural information processing systems
(p. 6000-6010). Red Hook, NY, USA: Curran Associates
Inc.

Webb, T. W, Sinha, I., & Cohen, J. (2021). Emergent sym-
bols through binding in external memory. In Proceedings
of the 9th international conference on learning representa-
tions. (https://arxiv.org/abs/2012.14601)

