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Abstract. Direct Numerical Simulation (DNS) of spatially-developing turbulent boundary layers (SDTBL) is performed over
isothermal/adiabatic flat plates for incompressible and compressible-subsonic (M∞ = 0.5 and 0.8) flow regimes. Similar low
Reynolds numbers are considered in all cases with the purpose of assessing modest flow compressibility on low/high order flow
statistics of Zero Pressure Gradient (ZPG) flows. The considered molecular Prandtl number is 0.72. Additionally, temperature is
regarded as a passive scalar in the incompressible SDTBL with the purpose to examine differences in the thermal transport phe-
nomena of subsonic flows, i.e., passive vs. active scalar. It was found that the Van Driest transform and Morkovin scaling are able
to collapse incompressible and subsonic quantities very well.

INTRODUCTION
The transport of scalar fields in turbulent boundary layer is a typical physical phenomenon in fluid dynamics.
An active scalar changes the physical fluid properties, such as density and viscosity, according to the local scalar
concentration. Examples of active scalars can be found in research areas such as magnetohydrodynamics, natural
convection and Navier-Stokes with Eckman friction [1, 2]. In active scalar transport there are two-way coupling
(fluid-scalar), and Lagrangian trajectories are coupled with the scalar forcing [1]. A passive scalar (tracer), on the
other hand, does not affect the thermodynamic and transport properties of the fluid; nevertheless, there is still a
transport equation to be solved. Furthermore, a passive scalar is defined as a diffusive contaminant that exists in such
a low concentration in a flow that it has no effect on the dynamics of the fluid motion, Warhaft [3]. However, that
low concentration of passive scalar is sufficient to cause a significant impact on energy expenditures, air pollution
and design of chemical processes. The turbulent transport of passive scalars is crucial in many industrial applications
of technological importance, such as heat transfer in electronic/mechanical devices, chemicals dissolved in gases,
contaminant/humidity dispersed in atmospheric flow, to name a few.
In general, active and passive scalars have been analyzed and contrasted in incompressible flows. Celani et al. [4]
focused on the problem of relating the Eulerian properties to the Lagrangian ones in the transport phenomena of
active scalar. Frisch et al. [5] proposed a Lagrangian method to compute multiple correlations in passive scalar
convection. In terms of compressible flows, experimental knowledge was documented on subsonic and supersonic
turbulent boundary layers, mostly by inspecting scaling laws with respect to Reynolds and Mach number effects
[6]. A DNS study over subsonic adiabatic SDTBL for M∞ = 0.3, 0.5, 0.7 and 0.85 was performed by [7] with the
following mesh resolution at M∞ = 0.85: 18.4-15.1, 0.69-0.57 and 6-4.9 along the streamwise, first off wall-normal
and spanwise directions, respectively. Additionally, compressible turbulent flow in a circular pipe was carried out by
[8] at bulk Mach numbers between 0.2 to 3. According to [9], compressibility effects on the wall shear stress were
non-negligible even at low Mach numbers (around 0.3) based on experiments performed over compressible pipe
flows.
In all above mentioned references [7, 8], the full compressible Navier-Stokes equations for a perfect shock-free
heat-conducting gas (equation of state) were solved, including low Mach number cases around 0.2-0.3. Furthermore,
low-Mach formulations assume a linear expansion for the thermodynamics variables so that one can use a state equa-
tion. In the incompressibility approximation, the pressure does not prevail a thermodynamic variable anymore, taking
a “buffer” role in incompressible flow to ensure the zero-divergence condition in the velocity field. Therefore, pressure
and velocity are coupled in the continuous domain via the Poisson equation for pressure, which ensures that continuity



FIGURE 1. Boundary layer schematic for the Mach 0.8 case. Iso-surfaces of instantaneous static temperature (in red), contours of
instantaneous temperature in extracted planes (flow from left to right).

TABLE 1. DNS Cases.
Case M∞ Tw/T∞ Reδ2 δ+ Lx × Ly × Lz ∆x+,∆y+min/∆y+max, ∆z+

Incompressible 0 Isothermal 302-582 144-261 45δinl × 3.5δinl × 4.3δinl 14.7, 0.2/13, 8
Subsonic 0.5 1.045 300-552 142-254 42.6δinl × 3δinl × 3δinl 13.8, 0.18/13, 7.6
Subsonic 0.8 1.115 309-571 146-253 43δinl × 3δinl ×3δinl 14, 0.18/13.4, 7.8

is satisfied. In this study, the temperature effect on first and second order statistics of the fluid velocity field is evaluated
for compressible turbulent boundary layers in the low and high subsonic flow regimes via direct simulations of the
coupled continuity, Navier-Stokes and energy equations. For an unbiased point of compressibility effect assessment
in the subsonic flow regime (M∞ = 0.5 and 0.8), DNS of incompressible SDTBL (by solving the Poisson equation
for pressure) is taken into account with thermal boundary layer evolution and temperature regarded as a passive scalar.

Numerical Details: Turbulent Inflow Generation and Boundary Conditions
Unsteady three-dimensional simulations of SDTBL via DNS demand high mesh resolution to resolve even the small-
est turbulence scales (Kolmogorov and Batchelor scales). Moreover, the computational box must be large enough to
appropriately capture the dynamics of the large-scale turbulent motions. Additionally, it requires the prescription of
physically sound turbulent inflow conditions to circumvent the space and time consuming laminar-transition computa-
tion. We are employing a type of rescaling-recycling technique ([10]) as proposed by [11], and adapted to compressible
flow in [12]. The idea is to extract the flow solution (mean and fluctuating flow components) from a downstream plane
(called “recycle”) and to apply scaling laws to absorb the streamwise non-homogeneous condition, to finally re-inject
it at the inlet plane. In Figure 1, it can be seen the streamwise locations of the inlet and downstream recycle plane.
The reader can access to more detailed information at [11, 12]. Direct simulations have been carried out via a highly
accurate, very efficient, and highly scalable flow solver. PHASTA is an open-source, parallel, hierarchic (2nd to 5th

order accurate), adaptive, stabilized (finite-element) transient analysis tool for the solution of compressible [13] or in-
compressible flows (Jansen [14]). PHASTA has been extensively validated in a suite of DNS under different external
conditions [11, 12, 15]. Turning to boundary conditions, at the wall the classical no-slip condition is imposed for all
velocity components. An adiabatic wall condition (Tw/Tr = 1) is prescribed for the thermal field with the ratio Tw/T∞
= 1.045 and 1.115, respectively. Here, Tw is the wall temperature, T∞ is the freestream temperature and Tr is the
recovery or adiabatic temperature. The lateral boundary conditions are handled via periodicity; whereas, freestream
values are prescribed on the top surface. Table 1 depicts the characteristics of the evaluated three DNS databases of flat
plates in the present study: one incompressible case and two subsonic cases (M∞ = 0.5 and 0.8). Numerical details are
reproduced here for readers’ convenience. The time steps (∆t+) in wall units were fixed to 0.38, 0.15 and 0.31 for the
incompressible, Mach 0.5 and Mach 0.8 runs, respectively. In all cases, the number of mesh points in the streamwise,
wall-normal and spanwise direction is 440 × 60 × 80 (roughly a 2.1-million point mesh). The cases were run in 96
cores in HPE SGI 8600-Gaffney (NAVY, DoD).
The most relevant DNS results (due to limited space) are shown. Fig. 2 (a) depicts the time-averaged streamwise
velocity profiles in wall units for present DNS. The Van Driest transform is applied in both subsonic cases (M∞ = 0.5
and 0.8), which enables absorption of compressibility effects; and, therefore direct comparison with incompressible
cases. In addition, external incompressible DNS profiles are included ([16, 17, 18, 19]). Overall, a satisfactory collapse
is seen among incomprensible and subsonic cases. Because of the low Reynolds numbers considered, the log region
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FIGURE 2. (a) Mean streamwise velocity and (b) skin friction coefficient.

seems pretty short, or at a steeper slope. The skin friction coefficients [C f = 2(uτ/U∞)2ρw/ρ∞] as a function of the
momentum thickness Reynolds numbers (Reθ for incompressible cases and Reδ2 for compressible cases) are exhibited
in fig. 2 (b). As the Mach number increases, the C f profiles move downward, mostly due to the decrease of the ρw/ρ∞
ratio in adiabatic flat plates, showing somehow similar slopes. Present incompressible C f values agree quite well with
the empirical correlation proposed by Schoenherr for flat plates (particularly by the end of the computational domain),
as well as with DNS by [17] and experiments by [20]. Furthermore, DNS data by [7] is included at M∞ = 0.3, 0.5 and
0.85 with decreasing values of C f , showing a fairly good agreement with present DNS at similar compressibility levels,
i.e., Mach numbers. Turbulence intensities and Reynolds shear stresses are depicted by fig. 3 (a) in wall units. The
present incompressible DNS results contrast quite well with those of [17] at very similar Reynolds numbers, except
in u′+ peaks with discrepancies in the order of 5%. In subsonic quantities, the Morkovin scaling is implemented to
account for wall-normal density variation. While the collapse of present DNS cases (i.e., Incompressible, Mach 0.5
and Mach 0.8) is not absolute (particularly, at peak value locations), the profile affinity is encouraging. Turning to the
mean static temperature in compressible flow, the T/T∞ and U/U∞ relationship is expressed in terms of the Walz’s
equation,
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where r is the recovery factor (= Pr1/3) and Tr the well known recovery temperature. Figure 3 (b) shows the mean
static temperature vs. mean streamwise velocity both normalized by the corresponding freestream value. Overall, the
Walz equation gives excellent predictions for the adiabatic subsonic flat plates, backing present DNS of active scalars.
Fig. 4 shows the wall-normal turbulent fluxes for incompressible and subsonic cases normalized by freestream values
(U∞ and T∞). All profiles peak at approximately one-fourth of the boundary layer thickness; however, the normalized
values are significantly much larger for the incompressible case according to the selected scales. This can be explained
by the fact that the freestream product U∞T∞ is substantially bigger in the subsonic regimes.

Final Remarks
DNS of turbulent thermal boundary layers is performed. The incompressible flow regime (temperature as a passive
scalar) is compared to the subsonic regime (temperature affecting the momentum transport and viscosity). Overall, the
Van Driest transform and Morkovin scaling have been able to absorb compressibility effects reasonably well. Future
work involves coherent structure analysis inside momentum and thermal boundary layers.
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FIGURE 3. (a) Turbulence intensities and Reynolds shear stresses, and (b) mean static temperature.

FIGURE 4. Wall-normal turbulent heat fluxes in outer units.
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