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The Josephus problem is a game of elimination that has been studied for nearly two millennia.
The earliest known formulation of the problem appears in the historical text [12] written by
historian Flavius Josephus. Josephus described a method of serial elimination by casting
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lots, which he and 40 of his soldiers applied while trapped in a cave by the Roman army and
facing imminent capture and inevitable massacre.

The general formulation of the problem is as follows: a certain number of people n is
arranged in a circle, and an execution method is established. An initial counting point and a
direction of rotation are fixed, and after £ — 1 number of people is counted, the next person
is executed and removed from the circle. This procedure is repeated with the remaining
people until only one person remains, who is released. The objective of this problem is to
determine the position of the survivor Jx(n) € {1,2,...,n} in the initial circle.

The Josephus problem received little attention throughout the first millennium, but new
formulations were proposed in the second millennium, such as the rhyming games traced
by Oring [17]. In the following centuries, more specific versions of the problem emerged,
and it was integrated into a certain category of puzzles or riddles. One notable example is
Bachet’s presentation [2]|, where was established a formal procedure to solve the case k = 3
and n = 41 with total accuracy. In 1776, Euler heuristically found a recursive formula
that connects the survivor’s position for a given number of condemned with the position
of the corresponding survivor when one more condemned is added; see [7]. This was a
significant development in the mathematical treatment of the problem, as it required logical
argumentation, appropriate symbolic notation, and exploration. However, the computational
aspect of the problem has received more attention in recent years, as the advancement of
technology allows for the efficient calculation of the survivor’s position Ji(n) for a large
number of people n and a fixed k. In [23], Tait presents some discussion and figures in
this direction, highlighting the importance of fast computational methods for solving the
problem. Over time, the problem has attracted the attention of mathematicians from various
areas, and the study of the problem was recently extended to the field of permutations.
Mathematicians such as Herstein, Kaplansky, Ball, and others studied the problem in group
theory and algorithmically; see, for instance, |6, 3, 11, 21, 1, 25|. The Josephus problem also
has various modern applications such as computer algorithms, card games, data structures,
and image encryption; see, for instance, [26, 4, 5, 14, 27|. When the number of jumps, k — 1,
is equal to one, Knuth derived a closed-form expression for Jy(n) as 2n — 2U°827+1 4 1 and
developed an efficient algorithm for evaluating J; for arbitrary values of k; see [13]. This
algorithm avoids the recursive nature of the Josephus function and is presented in [8]. We
invite the reader interested in delving deeper into the historical origin of this problem and
applications to review references such as [16, 10, 20, 19, 22, 18, 15] and [9, Appendix].

This paper introduces a new approach for analyzing the intrinsic properties of the discrete
Josephus function, J,. We formulate algebraic expressions that describe and characterize all
extremal points of J, and include recurrence formulas to compute low and high extremal
points. Additionally, we prove the existence of consecutive extremal and fixed points for all
k > 3, generalizing Knuth’s result for k = 2; see [8]. Moreover, by revealing the discrete and
piecewise linear structure of .J, between extremal points, we design an efficient algorithm for
evaluating Ji(n) for large n and a given reduction constant k. A comparative computational
study is conducted at the last section of the paper to evaluate the performance of the
proposed algorithm against established methods, such as Euler/Woodhouse |7, 26|, Knuth
[8], and Uchiyama [24]. The results of the numerical comparison indicate that the proposed
scheme is highly effective for computing Ji(n) for large inputs & and n.



1.1 Notation and definitions

The mathematical formulation of the classical Josephus problem can be stated as follows:
Let n be the number of people arranged in a circle which closes up its ranks as individuals are
picked out. Starting anywhere (person 1st spot), go sequentially around clockwise, picking
out each kth person (this number k is called the reduction constant) until but one person
is left (this person is called the survivor). The position of the survivor is denoted by Ji(n),
which belongs to the natural numbers N. This procedure is called the elimination process,
and it naturally generates a discrete function J, : N — N for each k > 2 that we call the
Josephus function. Given n > 1 and k£ > 2 integers, we say that the Josephus problem has
been solved once we have determined the value of J, at n. For any two integers ¢ and m
such that ¢ < m, let [[¢, m]] denote the set {¢,...,m}. Notice further that Jx(n) € [[1,n]]
for every n.

Definition 1 (Fixed and extremal points). A fized point of Jj is a value n, such that
n, = Ji(n,). Additionally, an extremal point n. is defined as a point that satisfies either
Je(ne) € [[1,k — 1]] or Ji(ne) € [[ne — k + 2,n.]]. If Ji(n.) € [[1,k — 1]], we refer to n. as a
low extremal point. On the other hand, if Ji(n.) € [[n. — k + 2, n.]], we refer to n. as a high
extremal point.

Note that, a fixed point n, is also a high extremal point because Ji(n,) = n,. However,
there are high extremal points that are not fixed points; see Figure 1.

2 Properties of the Josephus function

In this section, we begin by recalling a recursive formula, which first appeared in Euler’s
paper |7, pp. 130-131] and establishes a way of determining Jy(n + 1) in terms of Jy(n).

Theorem 2 (Euler’s formula). Let k > 2 and n > 1, and define p := Jy(n). Then
Jn+1)=p+k—Lln+1),
ifp+ke[l(n+1)+1,(0+1)(n+1)]] for some non-negative integer £.

Remark 3. For some special values of the reduction constant k, we have the following obser-
vations:

(a) If K <n—+1, then the formula given in Theorem 2 can be simplified as follows:

p+k, ifp+k<n+1;
p+k—(n+1), ifp+k>n+1.

J(n+1) = { (1)

(b) When k = 3, (1) holds for every n. In fact, we just need to check (1) for n = 1. In this
case, we have Js3(n+1) = J3(2) =2=J3(1)+3—-(14+1) = J3(n) + k— (n + 1).

(c) When k = 2, no recursive formula is necessary hereafter since Knuth [8] has deduced
the following explicit formula: Jy(n) = 2n — 2Ues27+1 1 1 for all n.

3
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Figure 1: Graphs of the Josephus functions J3 and Ji.

(d) It is possible for two consecutive values of n to have the same image under J;. For
example, when k£ = 8, J3(3) = Js(4) = 3.

(e) If n <k —1, then Ji(n) < n < k — 1, which implies that n is a low, and also high,
extremal point. Moreover, if n > 2k — 3, then there is an alternating sequence of pure
low and high extremal points for the Josephus function Ji for every k > 2.

In Figure 1, we present the graphs of J; and Jyo for various values of n. The extremal
points of Ji, n, i.e., Jp(n.) € [[1,k — 1]] U [[ne — k + 2,n.]], which are studied in the next
subsection, are indicated in blue. Moreover, the fixed points n, of Ji, i.e., n, = Ji(n,), that
are also extremal points, are depicted in red.

Note that for n. to be both a low and high extremal point,

Je(ne) € [[1,k = 1] N [[ne — k + 2,n.]],

which always happens if n. < k — 1. In addition, if n. > 2k — 3 is a high extremal point
then n, + 1 is a low extremal point, which reveals a sequence of alternated extremal points.
The two graphs depicted in Figure 1 exhibit the intrinsic piecewise linear structure of Jj
between its low and high extremal points. Moreover, in general the fixed points for k£ > 3
exhibit a chaotic behavior in contrast with the case k = 2; see Figure 1 for the cases k = 3
and k = 10, and also Table 1 with £ =2,3,...,12,15. Note that the fixed points of J; can
be described by the formula: n](f) = 2 — 1, where 7 is a natural number. Note further that
Jo(2%) = 1, which makes n. = 2’ be a low extremal point, for every i; see [13, pp. 184].

In Table 1, we illustrate the first fixed points of the Josephus functions J; for some values
of k.

Now based on Theorem 2, we present a formula for the Josephus function for the value
of n =n,+ 1, ie., just after a fixed point n, = Ji(n,) is attained.

Proposition 4 (Values of J;, after reaching a fixed point). Let k > 2 and n, be a fized point.



Fixed points Functions Jo | Jz | Ja | I Je Jr| Js | Jo J10 Jin | Jiz J1s
1st 1 1 1 1 1 1 1 1 1 1 1 1
2nd 3 2 21 2 20 2 3 2 4 2 10 2
3rd 7 13 38 46 51 3 13 7 475 4 11 52
4th 15 20 51 542 794 12 15 8 8177 5 19 388
5th 31 46 | 122 | 2587 | 953 68 26 15 11217 | 49 55 1899
6th 63 | 157 | 163 | 3234 | 17629 | 274 | 1276 | 17 | 28954 54 | 111 | 30003
7th 127 | 236 | 689 | 6317 | 21155 | 593 | 1905 | 375 | 126567 | 188 | 290 | 136887

Table 1: First seventh fixed points of Ji for k =2,3,...,12,15.

Then
k-1, ifk<n,+1;

n,+1, ifk=s,+1 for somel>1;

ki —1, ifk=s;+ ki for somel>1 and 2 <k <ny,;

Ny, if k = spy1 for some € > 1,

where s; = {(n, + 1). Moreover, Ji(n,) = n, if and only if Jy(n, +1) = k — 1 whenever
n, >k —1.

Jk(”p +1) =

Proof. Let us consider the four cases for the values of k with respect to n, as follows:

Case 1: Assume k <n, + 1. Note that s; + 1 =n, +2 <n, + k < 2n, + 1 < s9. It follows
from Theorem 2 that Jy(n, +1)=n,+k—s1=n,+k—(n,+1) =k —1.

Case 2: Assume k = sy + 1. So, n, + k = s¢+1. Then by Theorem 2,

Ji(np +1)=n, +k—s,=mnp+ 1.

Case 3: Assume k = s, + k1 (2 < k1 < n,). Note that
Sg+1+1 Snp—l—k:g 2np+sz:s@+1+np—1 < Sp42.

Then by Theorem 2, Ji(n, +1) =n, + k — spp1 = k1 — 1.

Case 4: Assume k = syp;. Then sp11 +1 <n, + k < sp12. Theorem 2 implies

Jp(np +1) =np +k — 541 =ny,.

On the other hand, assume that k < n, + 1 and Ji(n, + 1) = k — 1. By using Euler’s
formula backwards, we can determine the value of p = Ji(n,). In particular, p must satisfy
the equation k—1 = p+k—s, for some non-negative integer ¢. This is equivalent to p = s,—1.
If ¢ =0, then p = —1, which is not possible. If £ > 2, then p > s, —1 > 51 — 1 = n,,, which is
also not possible. Hence ¢ = 1 and p = n,, which implies that n, is a fixed point of J,. [
Remark 5. If n, is a fixed point, then the following interesting facts can be derived from

Proposition 4:

(a) If n, > k — 1, then Jg(n, + 1) = k — 1. In particular, Js3(n, + 1) = 2 for any n,,.
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(b) It is possible for two consecutive fixed points to exist for a given value of k. For

example, if £k =9, then the values for n = 7 and n = 8 are both fixed points of J.

(c) Note that, if a fixed point n, < k — 1, then n, is also a low extremal point.

We now provide a formal presentation of a partially generalized version of Euler’s formula,
which was previously stated without proof in [20, pp. 47].

Lemma 6 (Generalization of Euler’s formula). Let n > 1 and k > 2 be positive integers and
define p := Ji(n). Then

(a)
(b)

If p+ km < n+m, for any m >0, then Jp(n+m) =p+ km.

If m > 0 is the smallest value for which p + km > n + m, then

Je(n+m)=p+km— (n+m).

Proof.

(a)

Let m be any natural number. First of all, p+km < n+m if and only if m < (n—p)/(k—
1). Thus p+ km < n+m for every 0 < m < m. Let us define the finite sequences:
Tm = mn+m, and t; := Ji(ry) for every integer m = 0,...,m. Since, p+ k < n+ 1,
by Theorem 2, we get t; = p+ k. Now, since t; +k =p+k(2) <n+2=r; + 1, again
by Theorem 2, we get t, = t; + k. By applying this procedure m times, we get that
tm =tm_1 + k for m € [[1,m]]. Then

Jk(n+m) = Jk<7"m) :tm:tmfl_'—k: e :p_|_km,
proving item (a).

Let us write p’ := p+k(m—1) and n’ := n+ (m—1). Note that p’ < n’ by hypothesis.
Thus by part (a), Jix(n') = p’. Moreover p'+k > n’+1. We claim that p'+k < 2(n’+1).
Otherwise, 2(n+m) =2(n'+1) < p'+k <n'+k = (n+m)+k— 1, which implies that
n+m < k—1. Then k < p+k(m—1) < (n+m)—1 < k—2, which is a contradiction.
Hence it follows from equation (1) that

Jen+m)=J(n+1)=p' +k—n'+1)=p+k—(n+m),
which proves item (b).

]

In the following subsection, we use Lemma 6 to derive several general conclusions regard-
ing the behavior of the Josephus function Jg.



2.1 Characterization of extremal points
We start by characterizing some initial extremal points for the Josephus function.

Corollary 7 (The first known high extremal point). The point 2k — 2 is always an extremal
point for Ji. In particular,

; 2%k —3, if Ji(2k—2) <k—1;
2k -2, if J(2k—2) >k —1,

(2)

15 a high extremal point and n. + 1 s a low extremal point.

Proof. When J(2k —2) < k—1, by the definition of low extremal point, we have that 2k —2
is a low extremal point and hence n, = 2k — 3 is a high extremal point proving the first part
of equation (2).

On the other hand, when J;(2k —2) > k — 1 we have

Je(2k—2) > k= (2k—2)—k+2€ [[(2k —2) — k+2,2k — 2]].

Hence n. = 2k — 2 is a high extremal point, as desired. The rest of the statement of the
corollary follows from the definition of low extremal points. O]

In the following, we present our main results. From now on, let us assume that k£ > 2
and n > k — 1, which allows an alternating sequence of low and high extremal points for the
Josephus function J; where k£ > 2. We next reveal a recurrence procedure to find successive
extremal points of the function Ji. In particular, we prove that there is an infinite number
of fixed points for Jj.

First, we introduce the following sequences:

o , 1, ifr<j—1;
) F-Zh—1 o with 4 =47 ’ 3
(Ok(r,J))rmoim1 Wi k(T 7) 0. ifr>j_1, (3)
1) — 1
(a7 Ly with () = PP OED) ()
oo k—2. k— . . n—r .

The meaning of each sequence term can be summarized as follows: 0y (r,j) serves as a
variation of Kronecker’s delta, while ax(n,r) is associated with the extremal points of the
Josephus function. Lastly, My(n,r,j) defines the upper bound of an interval where the
Josephus function exhibits linear behavior. We outline some important properties of these
sequences in the following lemma.

Lemma 8 (Properties of the Josephus function). Define j := Ji(n+1). Then

—(i—1
a) If j € [[1,k—1]], t.e., n+ 1 is a low extremal point, then my := w 15 the
kE—1
largest nonnegative integer m that satisfies the inequality
J+Ekm<n+1+m. (6)

and [[0,my]] is the solution set of (6). Moreover, mg > 1 ifn >k —2+ j.

7



(b)

(c)

If j € [[1,k —1]], ice., n+ 1 is a low extremal point, and n = r (mod k — 1), then
moy = Mk(n,’l",j) and n + 1+ moy = a’k’(nar) - 5k(r7])

ai(n,r) is an integer if and only if n =r (mod k — 1).

Proof.

(a)

First note that (6) is equivalent to m < (n — (5 —1))/(k — 1). Then since n > k — 1,
we have mg = [(n— (7 —1))/(k —1)] as the largest non-negative integer satisfying
(6). Therefore, any non-negative integer m satisfying 0 < m < my clearly satisfies the
inequality (6), since 0 is a trivial solution. Now, note that n > k — 2 + j happens
automatically when n > 2k — 3 for j < k — 1. Moreover, since

n—(j-1) _2k-3-(k-2)
k-1 — k—1

=1,

we have mg > 1.

On the other hand, if n € [[k — 1,2k — 4]] then from a direct inspection to the value of
(n—(j—1))/(k—1), we get that

0, if k—2+7;
mo:{, un < + 75 (7)

1, ifn>k—2+j.

So, in this case, it follows from (7) that m = 1 is the largest integer satisfying (6) if
n > k — 2+ 7, proving this item.

Suppose that n = r (mod k — 1). Note that

(‘7'—1)—7“e 1 7-1
k—1 k—1"k—1

} C (0,1)

when r < j — 1, and

r—(-1 1 j
K1 elk—rl k—1]cwﬂ)

when r > j — 1. Thus using the definition of Mjy(n,r,j) given in (5), we get

(ln—7r (j—1) —r n—r . , )
- = -1, if —1;
{k—l k-1 J F_1 o0 MrsITd
n—r : : .
moy = —k—l’ lfT:j—l; :Mk(n’r,]).
ner e GeU| _ner
= f —1;
ik—1+ k—1 J -1 N

The equality n + 1 4+ mg = ag(n,r) — dx(r, j) follows directly from previous equation
and by the definition of ax(n,r) and dx(r, j) in (3) and (4), respectively.



kEn+1)—(r+1)

(c) If ag(n,r) = ]

this case,

is an integer, clearly k(n+1)=r+1 (mod k—1). In

n=kn—(k—1n=kn=k(n+1)—k=r+1—-k=r—(k—1)=r (modk—1).

Now if n =7 (mod k — 1) then
kn+1)=n+1+(k—-1)n+1)=n+1=r+1 (modk —1),

which implies that ax(n,r) is an integer.

]

We now present formulas characterizing extremal points of the Josephus function Jj
and their images. These expressions are useful in determining recurrence formulas between
extremal points and a formula for the image of J; at any arbitrary n in terms of the high

and low extremal points.

Theorem 9 (Extremal point formulas). Let n. > 2k — 3 be a high extremal point and define

Jj = Jg(ne+1). Then
(a) Je(ne +1+m) = j+km, for all m € [[0, [(ne — (j —1))/(k = 1)]]].
(b) If ne =7 (mod k — 1), then the next high extremal point of Jy is
k(ne+1)—(r+1)

ng = p— = 0x(r, J)-
Moreover,
Je(ng) = ng = ou(r,g)(k —1) —r+( —1),
Je(nf +1) = (1= 0k(r,j))(k =1) =r+ (i = 1),
and

e +1) = (k= 1) = [nf = Ji(nf)].

(¢) ng is a fixred point of Jy. if and only if r — (7 — 1) =0 and n} = P

(d) Jg is a linear function on [[n. + 1,n7]].
Proof.
(a) By Lemma 8(a), j + km < n. + 1+ m for every m € [[0, mo]] where
mg = [(ne — (j —1))/(k = 1)].
Additionally, Lemma 6(a) implies that Jx(n. + 1+ m) = j + km for every
m € [0, [(ne — (7 —1))/(k = 1)]]]

as desired.

k(ne+1)—j



(b) Equation (8) follows directly from the previous item, and Lemma 8(b) that my > 1
and

Jr(nd) = Jr(ne + 1+ mo) = j + kmg

. ne_r . . .
_ Jj+k k—l_l)’ ifr<jg—1,
Ne — T i .
. > i1
7+ k k—l)’ ifr>j5-—1;
B ag(ne,r) —1—(k—=1)—(r—(j—1)), ifr<j-—1,
N ag(ne,r) — (r— (5 —1)), ifr>j5—1;

=n; = 0(rg)(k=1) —r+j-1,

where my = |[(n. — (j — 1))/(k — 1), which proves (9). Now using Lemma 6(b) and
Lemma 8(b), we have

Je(ntF+1)=Je(ne+ 1+ (mo+1)) =4+ k(mo+1) — (ne+ 1+ (mo+ 1))

{j+k Z:f>—n—1—z__f ifr<j—1;

)—ne—Q—%, ifr>j—1;

—(r=0-1), ifr <j—1
k=1 —-(r-0G-1) ifr=j-1
= =(r )k =1) =r+j -1,

establishing (10). On the other hand, since
(1 =0k(r,g))(k =1) —=r+j—1el,k—-1]],
n? is certainly the next high extremal point of Ji. Additionally,

(k=1) = [ni = J(nd)] = (k= 1) = [n& — (nd = 0k(r,j)(k —1) —r+j—1)]
= (k—=1) = [0k(r,j)(k=1) +r—7+1]
=(1—=0k(r,j))k—=1)—r+75—1
= Ji(nf + 1),

proving (11).

(c) If nt is a fixed point of Ji, then (9) implies that dx(r,j)(k — 1) +r—j+1 = 0.
Therefore, r — j+1 =0 and n} = ax(n.,j —1) = (k(n. +1) — j)/(k — 1). Conversely,
ifr—j+1=0and n; = (k(n.+1)—j)/(k—1), then (9) implies

Je(ni)=n}t = 0(r,j)(k—1)—r+j—1=n} —0(k—1)—0=n}.
Thus n} is a fixed point of Jj.

10



(d) Follows from (a).
[

The following results present a recurrence formula that allows us to compute successive
high extremal points for the Josephus function J;. We also provide algebraic expressions
for the images of J, at extremal points and at an arbitrary n. This recurrence relation is
of great importance in establishing the existence of fixed points and developing an effective
extremal algorithm for evaluating the Josephus function.

Corollary 10 (Recurrence formula for computing high extremal points). Let nt) > 2k —3
be a high extremal point of the Josephus function Jy, with corresponding functional value

Jo(nd). Given

ri=n  (mod k — 1), (12)
and ' '
1, ifr < k—2—n% +Jk(ng)); (13)
Ci = i i
0, ifr; >k—2—nt+ J(nd).
Then we can compute the next high extremal point
. i +1) = (r; + 1)
(i+1) _ ¢ g _ 14
ne k D 1 cl? ( )
and its functional value
() ()
‘ . ) 2ne’ — Jp(ne’) — (k=2
Tnf*0) = (k= 1) = 0 + Jy(nl?) + & { el RO
Moreover, for any n € [[n% + 1, n{"™V)], we have
Je(n) = k(n — n0tY) 4 J(nl+D). (16)

Proof. Assume that nt is a given high extremal point and its corresponding value through
Jj, is known. Then, by Theorem 9(c), we have Jy(nt) + 1) = (k — 1) — [n%) — J,(n$)].

Set j := (k—1) — [n% — Jp(n™")]. Notice that j — 1 = k —2 —n"’ + J,(n™"). Find r; and
¢; by employing equations (12) and (13), respectively.

On the one hand, by Theorem 9(b), the next high extremal point of Jj, ngﬂ), is
kn +1) = (r; + 1)

— Gy,
k—1

which tell us that (14) holds. Also, it follows from Theorem 9(b) that:

(Z) y
; e ]_
Jk(néZ 1)) =j+k \‘—n 3 (]1 )J

n ) = ap(nl, i) = u(ri, 4) =

(4) (%)
=(k—1)—n® D)+ k i
(k= 1) = n + Ji(nf?) + { - ,

11



which verifies the validity of (15). Now, if n € [[ng) +1, ngﬂ)]], the point (n, Jix(n)) can be

determined by finding the intersection of the vertical line at (n,n) and the line with slope k
that passes through the point (nSV, Jy(nf")), which gives us (16). O

We now include a similar recurrence formula for the low extremal points.

Corollary 11 (Recurrence formula for computing low extremal points). Let Al > 2k — 3

be a low extremal point of the Josephus function Ji, with functional value Jk(ﬁg)). Given
i =1t (mod k— 1) and

1, i < (3
C; . — i
0, if > Je(nt).

Then we can compute the next low extremal point as follows:

(i+1) _ knd — i,

e ﬁ—ci—i-l, (17)

n

and its functional value as:

- (1) - (1)
, 4 : ORI S
T D) = k=A™ + J(a) + k Vk—kfn)J | "
Moreover, for any n € [[fzg) + 1, ngH)H, we have
Je(n) = kn 4 Jp () — (k — 1)al*h. (19)

Proof. The proof of the formulas for 2™ and Jk(hgﬂ)) are similar to Corollary 10. The
expression for Ji(n) follows directly from (16) and (11). O

Remark 12 (Knuth’s formula is recovered). When k = 2, the above corollary can be used to
derive Knuth’s formula for the low and high extremal (fixed) points, as well as the explicit
formula for Jy(n) for every n > 1. To do this, we substitute k = 2 into equations (17) and
(18), which yields 7, = 0 and ¢, = 1 for all ¢ > 1. More than that, Corollary 7 can be used to
start a straightforward induction argument, to show that the low extremal point hgi) = 2" and
the high extremal point, which in this case coincides with a fixed point, nz(,i) =a —1=12-1
for all @ > 1. Moreover, the explicit formula for J5(n) can be obtained directly from (19)
by observing that Jg(h&i)) = 1 and i = |log,n| whenever nt” is a low extremal point and
n>n". Specifically, we have Jy(n) = 2n — 2les2n)+1 4 1,

We are now ready to prove the existence of infinitely many fixed points for J, when k£ > 3,
which has already been established by Knuth for £k = 2. The approach we take to prove the
existence of fixed points involves applying the recurrence form of Corollary 10 successively.
We state this formally in the following theorem.

Theorem 13 (Existence of infinitely many fixed points). There exist infinitely many fized
points for the Josephus function Jj.

12



Proof. When k = 2 the result was proved by Knuth [13, pp. 162, 184]. So, let us assume
that £ > 3. Then if n > 2k — 3 and Ji(n) is known, and if n is either a low extremal point or
a point that is not a high extremal point, then we can reach a high extremal point by using
Lemma 6. Without loss of generality, we can assume that n is a high extremal point that is
not a fixed point of Ji, and we seek to find a fixed point.

The proof proceeds by contradiction. Assume that the repeated application of Corollary
10 generates only high extremal points, which are no fixed points of J;. Let n denote n.
So, n” +1is a low extremal point of J, and by Proposition 4, jj := Jk(ngo) +1) < k-1
Let 7o < k — 2 such that ' = r, (mod k£ — 1). Then by applying Corollary 10, the integer
nt is a high extremal point. Based on our general assumption rg # jo — 1. Notice that nt
can be written as follows:

To—l—l
k—1

—co=amn+1)+dy—1,

where o := k/(k — 1) and dy := (1 — ¢g) — (ro + 1)/(k — 1). Based on our assumption and
on Corollary 10, an infinite sequence (ngm))mzo of high extremal points can be generated,

where none of its terms is a fixed point such that j,, := Jk(ngm) +1) < k—1 (alow extremal
point), n™ =r,, (mod k — 1) (ry, # jm — 1), and for m > 1:

m—1
m™(n 4+ 1) + ( am“di> —1, (20)

=0

where d; == (1 —¢;) — (r; + 1)/(k — 1). Therefore (20) holds for all m > 1. Now, observe
that it can be rewritten as follows:

o d 1
(m) _ om—1 1 A
ny o <a(n +1)+ Z > am—1>
Jem=1 k 1 S (k=1d (k—1)m1
= 1 : —
k=11 (k—1(”+ >+k—1§ i o1

T (kz(n +1) + 2 (k —1)d; (k ; 1) B (kk;ll)m> : (21)

Note further that (k —1)d; = (kK — 1)(1 — ¢;) —r; — 1, where ; € [0,k — 2]] and ¢; € {0, 1}.
Hence if we define

m—1
1 kK—1)m™
z:O

then for all m > 1, (3, satisfies the inequalities

1<k(n—k+2)—1<Bn<k(n+k—1), (22)

13



where we have used that —(k—1) < (k—1)d; < k — 2, the fact that n > 2k — 3 implies that
n > k — 1 because k > 3, and

Using now (21), we get
(m) km—l
K * B
(M s a positive integer number for all m, if 3, grows as (k — 1)™ for m large,

or it approaches 0 as (’Z;l_)lm . These two possibilities do not occur because (22) guarantees

that (,, is uniformly far from 0 and bounded. Thus for some mg > 1, r,,, coincides with
0

and hence, n

Jme — 1, and n{™ is a fixed point by Theorem 9(c), proving the result. O

3 Numerical experiments

In this section, we present a numerical comparison of four algorithms to evaluate the Josephus
function. The computational experiments were carried out on an iMac 3.6 GHz 10-Core Intel
Core 19 with 32GB of RAM. The algorithms were implemented in the Julia programming
language v1.8.

3.1 The algorithms

First, let us describe three well-known methods for solving the Josephus problem (Euler’s,
Knuth’s, and Uchiyama’s algorithms); see, for instance, [8, 24, 26]. Moreover, we propose a
novel scheme for evaluating the Josephus function called the Extremal algorithm.

3.1.1 Euler’s algorithm

Euler’s algorithm is a natural interpretation of the recurrence relation proposed first in
[7, & 8, pp. 130-131]. In [26, pp. 57|, Woodhouse gave the following modern algorithmic
description:

Je(n) = ((-- (L4 K@) +E)@ + -+ K)o + k)

where for any positive integers r and s the symbol (7)) denotes the integer satisfying:
(1)sy = r (mod s) and 1 < (7)) < s. This scheme clearly has an intrinsic recursive
behavior and complexity O(n), i.e., there is necessary about n function evaluations to reach
the solution.

To compute the Josephus function J; at n, Euler’s algorithm requires evaluating J, for
all preceding values, that is, n — 1 evaluations of Jj.

14



3.1.2 Knuth’s algorithm

In equation (3.19) from [8, Chapter 3, Section 3, pp. 81] Knuth presents the following
algorithm:

D :=1;

While D < (k—1)ndo D := [%D—‘;

Jk(n) =kn+1-D.

Knuth’s algorithm significantly reduces the number of evaluations required to compute Ji(n)
compared to Euler’s algorithm. Instead of the recursive computation of Euler’s algorithm,
the Knuth’s algorithm only requires O(In(n)) evaluations before computing Ji(n). This
results in a more efficient computation process than Euler’s.

3.1.3 Uchiyama’s algorithm

In equation (11) from [24, Section 4, pp. 329|, Uchiyama presents the following algorithm:
Let ny = 1, set
1, if k is even;

s o= J(2) =
a=c=J2) {2, if K is odd.

For ¢ > 1 compute:

Nit1 = T r_1 ;

C?Jrl =G + (/{3 — 1)(ni+1 + 1) — /{:(nz + 1),

c . {C;Jrl (Inod Tit1 + 1), if 1 § Ci+1 S i1 —+ 1,
+1 =

Cii1s otherwise.
If n; <n <nyyq, then Jp(n) =c; + k(n —n; — 1).

Uchiyama’s algorithm, like Knuth’s algorithm, improves to O(In(n)) the number of eval-
uations required to compute Ji(n) compared to Euler’s algorithm.

3.1.4 Extremal algorithm

To evaluate the Josephus function J;, we propose the Extremal algorithm, which employ
a strategy of computing recursively high extremal points nt? (t=1,2,...,m) until ni™ i
greater than or equal to n; see Corollary 10. This approach capitalizes on the linear piecewise
structure of the Josephus function, enabling the Extremal algorithm to efficiently compute
Jr(n) compared to other methods.

The Extremal algorithm for evaluating .J, at n > 2k — 3 can be described as follows. We
start by defining j := Ji(2k —2) and the first high extremal point nt" and Jk(ngl)) are given
by:

S
S

(n(l)7 J,

e

() = (2k—3,j+k—2), ifj<k-—1;
T 2k -2, 7), if j >k —1.
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For ¢ > 1 compute:

Zzn(’ (mod k — 1);

e

ity <k—2—n? 4+ L)
ifr; >k —2—n? + J(n);
z+1

] ; 26 J é k—2
= (k= 1) =0 + Je(n) + & | = k;n_i k=2

DG+ — B +1) = (ri + 1) e
c k—1 ’ )

If nt” < n < nl™Y then Je(n) = Ji(n Z+1)) + k(n — ngiﬂ)).
The Extremal algonthm is also more efficient than Euler’s algorithm. Like Knuth’s, and
Uchiyama’s algorithms, it requires O(In(n)) evaluations before computing Ji(n).

3.2 A comparative computational study

To compare the performance of all algorithms, we conducted extensive numerical experiments
by measuring their CPU time. We employed a performance profile testing a total of 452500
problems, uniformly distributed for n € [50000 : 100 : 100000] and k& € [50 : 10 : 1000].
We compared the Extremal algorithm with three other algorithms, namely Euler, Knuth,
and Uchiyama, and our results indicate that the Extremal algorithm outperformed the other
three in almost all problem instances (see Figure 2), making it an excellent choice for solving
the Josephus problem for large inputs.

1.00 1.00

%) %]

1S €

D 075 @ 075 F

Qo o)

o o

o o

“— o

o o

c 0.50 C 0.50

o 0

b= b=

o o

Q o

o o

& 025 A 025
Extremal
Uchiyama
Knuth Extremal
Euler Uchiyama

0.00 L L L L . 0.00 . . . ’
20 21 22 23 24 20.00 20.25 20.50 20.75 21.00
Within this factor of the best (log scale) Within this factor of the best (log scale)
(a) PP: All Methods. (b) PP: Extremal vs Uchiyama.

Figure 2: Performance profiles (PP) for n € [50000 : 100 : 100000], &£ € [50 : 10 : 1000].

To provide a more detailed analysis of our results, we present Table 2, which summarizes
descriptive statistics of the benchmark of problems, including the minimum (min), mean,
maximum (max), and standard deviation (std) of total CPU time. The Extremal algorithm
consistently performed better than Euler’s, Knuth’s, and Uchiyama’s algorithms, indicating
its superiority for solving the Josephus problem.
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Algorithms min mean max std

Euler 0.000813209 | 0.00120984 | 0.00161632 | 0.000231202
Knuth 0.000659197 | 0.00101147 | 0.00137245 | 0.00019701
Uchiyama 7.234e-5 0.000518487 | 0.0010305 0.000246989
Extremal 7.6873e-5 0.000367613 | 0.000633953 | 0.000144699

Table 2: Statistics of the experiments.

4 Concluding remarks

In this paper, we presented a novel study characterizing the Josephus function structure.
We use the function’s piecewise linear structure to identify extremal points (including fixed
points) of the Josephus function, Jj, via a recurrence formula. We have developed an efficient
algorithm for evaluating J, for large values of n based on the successive computation of the
high extremal points of J. The effectiveness of the proposed scheme was validated through
its comparison to established algorithms. The results of the comparative study demonstrate
the remarkable performance of the proposed approach in computing the Josephus function
for large inputs. It is noteworthy that we can employ the recurrence formula to calculate low
extremal points, and a similar approach can be designed to address the Josephus problem.
The analytical study presented in this paper can have substantial practical implications for
applications such as scheduling, network optimization, and distributed algorithms. However,
finding a recurrence formula for computing fixed points, analogous to the one we obtained
for extremal points, remains an open problem. Addressing this problem may lead to further
insights and improvements in solving the Josephus problem.
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