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Abstract

Geo-tagged images are publicly available in large
quantities, whereas labels such as object classes
are rather scarce and expensive to collect. Mean-
while, contrastive learning has achieved tremen-
dous success in various natural image and lan-
guage tasks with limited labeled data. However,
existing methods fail to fully leverage geospa-
tial information, which can be paramount to dis-
tinguishing objects that are visually similar. To
directly leverage the abundant geospatial infor-
mation associated with images in pre-training,
fine-tuning, and inference stages, we present
Contrastive Spatial Pre-Training (CSP), a self-
supervised learning framework for geo-tagged im-
ages. We use a dual-encoder to separately encode
the images and their corresponding geo-locations,
and use contrastive objectives to learn effective
location representations from images, which can
be transferred to downstream supervised tasks
such as image classification. Experiments show
that CSP can improve model performance on
both iNat2018 and fMoW dataset. Especially, on
iNat2018, CSP significantly boosts the model per-
formance with 10-34% relative improvement with
various labeled training data sampling ratios'.

1. Introduction

Low-data or few-shot regimes (Zhai et al., 2021; Wang
et al., 2020) is a prevalent challenge in the geospatial do-
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Figure 1: The importance of geospatial information demonstrated
by two visually similar species (a)(c), and their distinct patterns in
image locations (b)(d).

main, where we usually have access to massive amounts of
unlabeled data while only limited amount of labeled data is
available. For example, users on Flickr, Google Photos, and
iNaturalist App? upload millions of geo-tagged images ev-
ery day, and multiple satellites continuously capture remote
sensing (RS) images with corresponding geo-coordinates all
over the world. These geo-tagged data form large publicly
available unlabeled datasets that are inexpensive to obtain.
In contrast, desired labels for many geospatial tasks (e.g.,
object class labels, object bounding boxes, and land use
type labels, etc.) are rather scarce and expensive to col-
lect. Moreover, even well-curated and widely used labeled
geospatial datasets such as UC Merced Land Use Dataset
(Yang & Newsam, 2010) and BigEarthNet (Sumbul et al.,
2019) have limited sizes, geographic coverage, and poten-
tially oversimplified label distributions. This lack of labeled
data coverage severely limits the ability to generalize, es-
pecially in a geographic sense, of models trained on these
labeled geospatial datasets (Goodchild & Li, 2021).

Meanwhile, numerous previous studies have shown the great
potential of leveraging geospatial information as comple-
mentary information for visual cues to help improve the
model performance on various computer vision tasks (Tang
et al., 2015; Chu et al., 2019; Mac Aodha et al., 2019; Klo-

%iNaturalist is one of the world’s most popular nature apps to
help users identify species given the uploaded images.



CSP: Self-Supervised Contrastive Spatial Pre-Training for Geospatial-Visual Representations

Image 1———> f{ P(y[1) : Class A Point Y
} H Pre-Training Loss: Class A
(1) ImageNet
> Image 1 (2) Tile2Vec Image 1 P(y|T)-t-1>
A t (3) Geo-SSL or SeCo
H Class B (4) GeoKR 0 Class B

N o)—»E’—W(yIX)
Point

(a) Sup. Only: Geo-aware Supervised Learning (Mac Aodha
et al., 2019; Mai et al., 2020b)

Pre-Training Loss:
(1) ImageNet

(b) Img. Only: Image Encoder Pre-Training with Geographic Knowledge (Jean et al., 2019; Ayush et al.,
2021; Manas et al., 2021; Li et al., 2021a). Here we show four previous approaches to pre-train the image
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(c) Contrastive Spatial Pre-Training (CSP). It adds a location encoder pre-training stage (red box). The pre-trained f () is used as an unsupervised feature extractor to generate
image embeddings f (I) which are used for contrastive learning with location embedding e(x). Both f() and e() are fine-tuned in a supervised manner (green and blue box).

Figure 2: Different training strategies for geo-aware image classification. Our proposed method CSP is presented in Figure 2c.

cek et al., 2019; Mai et al., 2020b; 2022d; Yang et al., 2022).
For example, Figure 1a and 1c are images of two different
fox species: Arctic fox and bat-eared fox, with which the
vision-based models, or even humans, can be confused due
to the high visual similarity of the two species and their
surrounding environments. Fortunately, these two species
have distinct geospatial distribution patterns (shown in Fig-
ure 1b, 1d), and it is very easy to tell them apart based
on the geo-locations. Motivated by these observations, we
ask whether we can build a multi-modal self-supervised
learning framework between geo-locations and images
that learns the alignments between geo-location and image
representations using large unlabeled geo-tagged datasets.

In this work, we propose CSP (Contrastive Spatial Pre-
Training), a self-supervised learning framework, which
pre-trains deep spatial representations from unlabeled geo-
tagged images by predicting image features or image iden-
tities based on their geo-locations as shown in Figure 2c.
Given one location-image pair (x;,1;), a dual-encoder sep-
arately encodes x; and I; into the embedding space with a
location encoder e() and an image encoder f() and contrast
against related locations and images to form a contrastive
learning objective (the red box in Figure 2c). After the
location encoder and image encoder pre-training stage, both
e() and f() can be fine-tuned on a small amount of labeled
data (the green and blue box in Figure 2c) separately and

do inference jointly, which is compatible with prior works
(Mac Aodha et al., 2019; Mai et al., 2020b).

To perform contrastive learning, we explore a combina-
tion of three different ways to form positive and negative
pairs for the location encoder pre-training stage of CSP as
shown in Figure 3: (a) In-batch negative sampling: given
a mini-batch of unlabeled location-image pairs, create mis-
matching location-image pairs as negative samples; (b) Ran-
dom negative location sampling: uniformly sample neg-
ative locations from the study area (e.g., the whole earth
surface) to form negative pairs; (c) SimCSE-based sam-
pling: create a positive pair by encoding the same location
with two location encoders, which share all the parameters
but use different dropout masks. We also compare several
self-supervised learning objectives including Mean Square
Error loss (M SE), Noise Contrastive Estimation loss
(NCE), and Contrastive Multi-classification loss (MC).

We conduct experiments on geo-aware image classification
tasks including fine-grained species recognition (Chu et al.,
2019; Mac Aodha et al., 2019; Mai et al., 2020b; Yang
et al., 2022), and remote sensing (RS) image classification
(Christie et al., 2018; Ayush et al., 2021; Manas et al., 2021;
Li et al., 2021a). Results show that our CSP can boost the
model performance on both datasets.

In summary, the contributions of our work are:
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* We propose an effective multi-modal self-supervised pre-
training method CSP that leverages abundant unlabeled
geo-tagged images to better learn location representations
that can be transferred to few-shot learning tasks.

* We explore three ways to construct positive and negative
training examples for contrastive learning. We find that
the combination of them achieves the best performance.

* We explore three self-supervised losses including M SE,
NCE, and MC. We find out that using CSP with MC
usually yields the best result.

* We apply CSP to fine-grained species recognition
(iNat2018) and remote sensing image classification task
(fMoW) in few-shot learning and fully supervised settings,
and demonstrate advantages on both datasets. CSP can
significantly boost model performances with 10-34% rel-
ative improvements on the iNat2018 dataset at few-shot
settings by stratified sampling {5%, 10%, 20%} of the
training data. On both datasets, when training models on
the whole training dataset in a fully supervised manner,
we find that adding the CSP pre-training objective can
still improve the model performance.

2. Related Work

Unsupervised/Self-Supervised Learning on Geotagged
Images Multiple unsupervised or self-supervised frame-
works have been proposed to pre-train image encoder by
utilizing geographic knowledge such as Tile2Vec (Jean et al.,
2019), Geo-SSL (Ayush et al., 2021), SeCo (Manas et al.,
2021), and GeoKR (Li et al., 2021a).

Tile2Vec (Jean et al., 2019) is an unsupervised learning
framework to pre-train image encoder based on the spatial
relations among RS images. Given an anchor RS image,
location information is only used to obtain one nearby tile
and a distant tile. An unsupervised triplet loss is formed
to pre-train image encoder to make nearby tiles similar in
the embedding space while distant tiles dissimilar. Geo-
locations are not part of the model input and cannot be used
during the model fine-tuning or inference stage.

Geo-SSL (Ayush et al., 2021) is a self-supervised con-
trastive learning objective to pre-train an RS image encoder
based on the MoCo-V2 (Chen et al., 2020b) framework. In-
stead of using augmented images as positive pairs as MoCo-
V2 does, they used co-located RS images at different times
as positive pairs. This contrastive image loss is combined
with a geo-location classification pre-text loss during pre-
training, which uses the image encoder to predict which
geo-location cluster the image might come from. Here, the
spatiotemporal information is only used in the pre-training
stage. During the fine-tuning and inference stage, the model
prediction relies entirely on the pre-trained image encoder.

SeCo (Manas et al., 2021) is a similar self-supervised con-
trastive learning framework for an RS image encoder f().
It also uses MoCo-V2 as the backbone and uses spatially
aligned RS images at different times as novel temporal aug-
mented samples. The difference is that SeCo uses both the
temporal augmented samples and synthetic samples based
on artificial augmentations as either positive or negative
samples so that the pre-trained f() can be either invariant
or sensitive to the temporal or artificial augmentations.

GeoKR (Li et al., 2021a) is proposed as an unsupervised
framework for an RS image encoder. GeoKR first obtains
a spatially aligned land cover map M based on an RS im-
age. The image encoder is pre-trained in a teacher-student
network to predict the distribution of land cover types in the
current scene with a KL loss.

Figure 2b illustrates the general idea of those four models
while Figure 6 in Appendix A.1 provides a detailed compar-
ison. None of them directly takes geo-locations as model
input but use locations as auxiliary information to pre-train
the image encoder. Moreover, after pre-training, location
information is completely ignored during fine-tuning and in-
ference stage which leads to significantly suboptimal results.
In contrast, our CSP utilizes the location-image pairs in a
direct and explicit manner by separately encoding them and
contrasting them against each other. The pre-trained loca-
tion encoder can be utilized in the model inference process
jointly with the image encoder so that both the visual and
spatial clue can be used for prediction.

Location Representation Learning Zhai et al. (2018)
learned location representation from image-location pairs
for image localization. So in this context, locations are su-
pervision signals. Instead of using the original geo-locations,
they grouped locations (or times) into different bins and uti-
lized them in the cross entropy loss. This practice cannot
leverage the continuity of the approximated function. Most
existing location encoding approaches (Tang et al., 2015;
Christie et al., 2018; Chu et al., 2019; Mac Aodha et al.,
2019; Mai et al., 2020b; 2022d; Yang et al., 2022) are devel-
oped and trained in a supervised learning framework while
massive unlabeled geographic data cannot be used. Figure
2a illustrates the dual-encoder supervised learning idea both
Mac Aodha et al. (2019) and Mai et al. (2020b) used for geo-
aware image classification. In contrast, this work focuses on
training location encoders in a self-supervised manner based
on unlabeled geotagged images. The pre-trained location
encoder can later be utilized jointly with the image encoder
for model prediction (See Figure 2c).

Spatially Explicit Artificial Intelligence Previous works
showed that naively applying existing state-of-the-art Al
models to geospatial tasks usually yielded suboptimal re-
sults (Mai et al., 2019; Chu et al., 2019; Mac Aodha et al.,
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2019; Ayush et al., 2021; Yan et al., 2018). Spatially Explicit
Artificial Intelligence aims at improving the performances
of Al models on various geospatial tasks by incorporating
spatial thinking, spatial principles and spatial inductive bi-
ases into the Al model design (Janowicz et al., 2020; Liu &
Biljecki, 2022; Zhu et al., 2022; Mai et al., 2022b). Several
important spatial principles have been considered by previ-
ous works including spatial dependency (Mai et al., 2019;
Yan et al., 2018; 2019; Li et al., 2021b; Huang et al., 2022;
2023), spatial heterogeneity (Chu et al., 2019; Mac Aodha
et al., 2019; Mai et al., 2020b; Zhu et al., 2021; Xie et al.,
2021; Goodchild & Li, 2021; Xie et al., 2023), temporal
continuity (Cai et al., 2020; He et al., 2021; Cong et al.,
2022), temporal periodicity (Cai et al., 2020; Rao et al.,
2020), earth spherical geometry nature (Cohen et al., 2018;
Esteves et al., 2018; Jiang et al., 2019; Mai et al., 2022d),
and so on. CSP contributes to the Spatially Explicit Artifi-
cial Intelligence research by learning effective multi-scale
location representations from unlabeled images.

3. Method
3.1. A Dual-Encoder for Geo-Tagged Images

We define an unlabeled geo-tagged image dataset as X =
{(x4,1;)|i =1, ..., M}, where 1, is an image, x; represents
the location (longitude and latitude) and optionally the time
the image was taken®. Inspired by recent image-text pre-
training models (Zhang et al., 2020; Radford et al., 2021a;
Jia et al., 2021; Zhai et al., 2021), CSP uses a dual-encoder
architecture — a location encoder e() and an image encoder
f() - to handle location x; and image I; separately.

The location encoder () is a function eg(x;) : S — RY,
which is parameterized by 6 and maps any coordinate x; =
(i, ¢;) in a spherical surface S? to a vector representation of
d dimension. Here longitude \; € [—, 7) and latitude ¢; €
[—7/2,7/2]. e() can be any existing 2D location encoders
(Mai et al., 2022c) such as tile (Tang et al., 2015), wrap
(Mac Aodha et al., 2019), Space2Vec’s grid and theory
(Mai et al., 2020b), or spherical location encoders such as
Sphere2Vec (Mai et al., 2022d). We assume that e() is
inductive and does not depend on the unlabeled dataset X
anymore once it is pre-trained.

The image encoder f() is a function f,(I;) : REXWxC
R?, which is parameterized by v) and maps any image with
height H, width W, and channel C' into an embedding of
d dimension. In this study we define f(I,) = W(F(I;))
where F() is an off-the-shelf deep image neural network
such as InceptionV3 (Szegedy et al., 2016) or Geo-SSL
(Ayush et al., 2021) pretrained ResNet50 (He et al., 2015),
which encodes any image into a /) dimension image fea-

3In this study we focus on the location information and leave
the time aspect to the future work.

ture vector. W() is a projection layer (similar to that of
SimCLR (Chen et al., 2020a) and MoCo-V2 (Chen et al.,
2020b)), which projects the image feature F(I;) € R4
into d dimension such that a contrastive learning objective
can be formed between e(x;) and f(I;). Please refer to
Appendix A.2.1 for a detailed description of f().

In our work, d¥) = 2048 and d = 512. This dual-encoder
architecture is shown in Figure 2c as well as Figure 3. We
simply denote the encoded representation of a location x;
as e(x;) and its associated image representation as f(I;).

3.2. Contrastive Spatial Pre-Training(CSP)

Contrastive Learning Objectives We consider different
contrastive objectives. The first is the noise contrastive esti-
mation (NCE) (Gutmann & Hyvirinen, 2010) loss, which
avoids calculation of the partition function and has been suc-
cessfully used in word embeddings (Mikolov et al., 2013)
and language modeling (Mnih & Teh, 2012):

Ince(P,N) = — E(ap)~p logo(s(a,b))

(1)
— E(ap-)enlog(l — a(s(a, b))

Here P = {(a,b)} is a set of positive pairs, and N' =
{(a,b™)} is a set of negative pairs. s(-,-) is a similarity
function (such as cosine()), and o(v) = €V /(1 + €?) is the
sigmoid function.

The second objective function is the multi-class classifica-
tion loss with temperature which takes the same form as
the InfoNCE loss (Van den Oord et al., 2018). It has been
successfully used in unsupervised learning for images (He
et al., 2020) and text (Gao et al., 2021):

lMC (737 N7 T)
. es(a,b)/r (2)
— H(a,b)~P es(ab)/T + Z(a,b— (a,b™)/7

)eNa €

where MC stands for “multi-class”. N, obtains a set of

negative pairs with first entry being a, P and s(-,-) are
defined as earlier. The temperature scaling parameter 7
determines how soft the softmax is (Hinton et al., 2015).
In practice it helps with the trade off between top ranked
classes (precision) versus reset of the classes (recall).

Third, we also experimented with a regression loss, but it
does not work as well as the NCE and MC losses.

Self-Supervised Training Pair Construction In order
to learn useful representations, we need to choose appro-
priate distributions for positive pairs P and negative pairs
N for contrastive learning. In CSP, we use three sampling
methods to obtain positive and negative pairs: in-batch neg-
ative sampling (indicated as B), random negative location
sampling (indicated as L), and SimCSE-based sampling
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(c) SimCSE sampling (D) Two location encoders e()
and e’ () share all the parameters but apply different
dropout masks. Given a batch of unlabeled location-
image pairs, the same location x; is encoded by e()
and e’ () to form a positive pair, while other pairs are
treated as negative examples.

Figure 3: Three different ways to form positive and negative training pairs (red and gray boxes respectively).

(indicated as D). Figure 3 illustrates how we use these three
methods to do the positive and negative sampling. Each
of them includes methods to sample both the positive and
negative pairs so that one contrastive loss component can
be formed based on each of them. Some of them share the
same positive sampling method such as B and L. So we
summarize the positive and negative sampling methods be-
low. Given an unlabeled location-image pair (x;,I;) from a
mini-batch Xy = {(x1,I1), (x2,12), ..., (xn,In)} € X,
where X is a geo-tagged but unlabeled image set, we use the
following positive and negative instances:

* Geo-tagged positive P~ = {(e(x;), f(I;))} indicates
the original location-image pairs used as positive pairs.
This corresponds to the positive pairs used by B and L
methods — the red boxes in both Figure 3a and 3b.

* In-batch negatives NP = [J, NP, where N =
{(e(xi), FA;))7 € {1,2, ..., N}\ {i}}.N'B corresponds
to all mismatching location-image pairs in Xy —all gray
boxes (no-diagonal elements) in Figure 3a.

+ Sampled negative locations V'L = |J, N[, where
NE = {(e(x;;), f@))lj € {1,2,...,C}} indicates
C negative pairs for I;. Note that x; ; is sampled uni-
formly from the surface of the sphere at pre-training time,
and therefore they are different at each training epoch.
NE corresponds to all gray boxes in Figure 3b. This is
a common negative location sampling practice used by
Mac Aodha et al. (2019); Mai et al. (2020b).

* Dropout positive PP = {(e(x;), ¢/(x;))}, where given
two towers of the same location encoders e() and €’()
with two independently sampled dropout masks, we pass
the same input x; to them and obtain two embeddings
(e(x;),€'(x;)) as “positive pairs”. This is a data augmen-
tation strategy (so called SimCSE), which has been very
successful for sentence embeddings (Gao et al., 2021).
This corresponds to the red boxes in Figure 3c.

* Dropout negative NP = [J, NP, where NP =
{(e(xi), €' (x;)|F € {1,2,..., N} \ {j}}. NP indicates

the location embeddings from two location encoder tow-
ers based on different locations from the same mini-batch.
It corresponds to the gray boxes in Figure 3c.

As shown in Figure 3, those five positive/negative sampling
sets amount to three different sampling methods:

¢ In-batch negative sampling (B) (Zhang et al., 2020;
Radford et al., 2021b; Carlsson et al., 2021; Karpukhin
et al., 2020) uses P, N'B as positive and negative pairs.

¢ Random negative location sampling (L) (Mac Aodha
et al., 2019; Mai et al., 2020b; 2022d) uses P*, N as
positive and negative pairs.

¢ SimCSE-based sampling (D) (Gao et al., 2021) uses
PP NP as positive and negative pairs. Please refer to
Appendix A.3 for a detailed description.

Each corresponds to one loss component in our contrastive
learning loss function by using either NCE or MC objective
shown in Equation 1 and 2. So we define two versions of
contrastive losses which both have three components.

The self-supervised binary (NCE) loss IncE is defined as

Ince(X) = RerX) + Bilkce(X) + Bolicr (X)
= Ince(P*, NB) + Bilnce (0, NF) (3)
+ Balnce (PP, NP)
where (31 and (35 control the contribution of the last two loss

components. Note here we use empty set as the positive
pairs in 1% (X) since P has been considered in [ (X).

The self-supervised multi-class (MC) loss lyc is defined as
e (X) =lie(X) + a1 liie (X) + aalite(X)

=luc(PY ,NEB 70) + arluc(PX, N 1) @)
+ OéQlMC('PDM\/D, 7'2)
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where 1 and av; are hyper-parameters. Although 15 (X)
and {1 (X) use the same positive pairs P, they are em-
bedded in the Softmax function. So we need to use P~ in
both loss components.

A naive contrastive pre-training for this dual-encoder archi-
tecture is to jointly training both encoders from scratch as
CLIP (Radford et al., 2021a) and ALIGN (Jia et al., 2021)
do for the image and text encoder. However, from-scratch
training will be problematics in CSP. Unlike CLIP and
ALIGN’s dual-encoder framework in which the text and
image encoder have relatively the same number of trainable
parameters, the number of trainable parameters of the image
encoder f() is 100 times larger than that of the location
encoder e(). For example, the InceptionV3 image encoder
we used for iNat2018 dataset has 41.8 million trainable pa-
rameters while the Space2Vec location encoder we used
in both iNat2018 and fMoW dataset has only 0.4 million
trainable parameters. Jointly training both encoders from
scratch will yield overfitting issue for location encoder and
underfitting issue for the image encoder.

Moreover, in text-image pre-training literature, LiT (Zhai
et al., 2021) also reported that locking the image encoder
during pre-training leads to a significant performance im-
provement. So we follow the practice of LiT (Zhai et al.,
2021), and utilize a pre-trained image network F*() and lock
it during Contrastive Spatial Pre-Training. The pre-trained
image network F*() should not see the current image labels
during pre-training stage. In other words, we first do image
encoder pre-training as shown in the orange box of Figure
2c. Then we lock f() and use it to pre-train e() as shown
in the red box of Figure 2c. During CSP, only the image
projection layer W () is trained in the image encoder part.

3.3. Supervised Fine-Turning

After Contrastive Spatial Pre-Training, we follow the prac-
tice of Chu et al. (2019); Mac Aodha et al. (2019); Mai
et al. (2022d) and fine-tune the image encoder f() and lo-
cation encoder e() separately on a small labeled dataset
X = {(x,I,y)} to test its performance in a few-shot learn-
ing setting. The supervised fine-tuning stage corresponds to
the green and blue box in Figure 2c. Their predictions are
combined at the inference stage as Mac Aodha et al. (2019);
Mai et al. (2020b; 2022d) did.

Image Encoder Fine Tuning We drop the projection layer
‘W () and use a classification head g() to process the im-
age feature vector F(I) into logits over image labels, i.e.,
g(F(I)) € RP. We fine-tune g() with cross-entropy loss. Q
is the total number of classes. This process corresponds to
the green box in Figure 2c. Please refer to Appendix A.2.1
for a detailed description of f() fine-tuning.

Location Encoder Fine Tuning As shown in the blue box
of Figure 2c, we use image labels in the training objective for
location encoder fine tuning. Following Mac Aodha et al.
(2019), we used a presence-absence loss function which
converts the multi-class labels into binary multi-labels. A
class embedding matrix T € R%*? is used to supervisedly
train the location encoder where T, € R? indicates the
class embedding for the yth class. Given a set of training
samples X = {(x,I,y)} where y indicates the class label,

the loss function [*"?(X) is defined as:
1°*?(X) = Bince(PY,0) + Ince(0, NV UNT)  (5)

Here f3 is a hyperparameter for the weight of positive sam-
ples. The following positive and negative samples are used:

« Labeled positives P = {(e(x), T.,)|(x,y) € X}.

* Labeled negatives NV = {(e(x), T.y,)l(xy) €
X,y € {1.Q}\ {y}}.
locations N2 =

* Sampled negative lo
{(e(x_)’ Ti,yj)|(xv y) € X, y; € {1Q}}’ wher
x~ is a uniformly sampled locations from the surface of
the sphere for each example x.

3.4. Model Inference

At inference time, we combined the predicted logits of fine-
tuned e() and f() to give the final prediction as shown in the
purple box of Figure 2¢. Given a location-image pair (x, I),
we estimate which category y it belongs to by P(y|I,x).
According to Mac Aodha et al. (2019), if we assume I and x
are conditionally independent given y, then based on Bayes’
theorem, we have P(y|I,x) o« P(y|x)P(y|I). Here,
P(y|I) can be estimated by the logits of g(F(I)) at the yth
class. For P(y|x), we have P(y|x) « o(e(x)T.,) where
o(+) is a sigmoid activation function.

4. Experiments

In this work, we study the effectiveness of CSP on two geo-
aware image classification tasks - species fine-grained recog-
nition and satellite image classification. We are particularly
interested in how the dual-encode architecture performs in
various few-shot learning settings after CSP.

For each task, three datasets are used to pre-train, fine-tune,
and evaluate our CSP models: X;,4in is a set of unlabeled
location-image pairs we use for pre-training; Xirain 1S a
set of labeled location-image-class tuples we use for fine-
tuning, where the size of Xy, 4;, is much larger than that
of Xirains i€ [Xerain| > [Xirainl; and X,q is a set of
labeled location-image-class tuples we use for evaluation
that can not be seen during fine-tuning.
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4.1. Models and Baselines

In this work, we consider the following baselines:

* Img. Only supervisedly fine-tune the image network
g(F()) on the fine tuning dataset Xy,.q;,, (See Figure 2b).
We use InceptionV3 (Szegedy et al., 2016) and ResNet50
(Ayush et al., 2021) as the image encoders on iNat2018
and fMoW respectively.

* Sup. Only uses the dual-encoder architecture but is only
supervisedly trained on Xirain (See Figure 2a). We con-
sider use wrap (Mac Aodha et al., 2019) and grid (Mai
et al., 2020b) as the location encoder which yield two
models: Sup. Only (wrap) and Sup. Only (grid).

* MSE follows the same setup as CSP (See Figure 2c)
except that during location encoder pre-training, it directly
feeds the location embedding e(x) into a linear layer to
regress the image feature vector F(I) with a Mean Square
Error (MSE) loss. MSE uses grid as the location encoder.

We compare these baselines with different versions of CSP.
All CSP models have the same training procedure, and use
grid as their location encoders. The only difference is the
contrastive loss function they use:

* CSP-NCE-BLD uses the NCE loss with all three loss
components as shown in Equation 3.

¢ CSP-MC-BLD uses the MC loss with all three loss com-
ponents as shown in Equation 4.

4.2. Fine-Grained Species Recognition

We use the iNat2018 dataset* (Van Horn et al., 2018) as a
representative dataset to study the effectiveness of CSP on
species fine-grained recognition. iNat2018 is a large-scale
species classification dataset with 8142 species categories.
There are 437,513 training images of which 436,063 training
images have geo-locations. On average each class has 53.6
training samples. We use all location-image pairs {(x;,1;)}
in iNat2018 training set as the unlabeled geo-tagged dataset
Xi¢rain for our CSP. To create a few-shot learning task,
we perform a stratified sampling on the training dataset to
select A% of training samples which constitute our few-
shot supervised fine-tuning dataset X¢qin = {(x,1,9)}.
The iNat2018 validation dataset is used for model evalu-
ation to make our results comparable with previous work
(Mac Aodha et al., 2019; Mai et al., 2020b; 2022d). We use
InceptionV3 network pre-trained on ImageNet as the image
feature extractor F*() for iNat2018 dataset.

Table 1 compares the Topl accuracy of different training
strategies on the iNat2018 validation dataset with different

*nttps://github.com/visipedia/inat_comp/
tree/master/2018

A%. From Table 1, we can see that:

* Img. Only (ImageNet) yields the lowest performances in
all \% settings which indicates that considering location
information is beneficial in all settings.

* Sup. Only (grid) outperforms Sup. Only (wrap) across all
settings indicating that multi-scale location encoders (e.g.,
grid) are effective for spatial distribution modeling. This
confirms the results of Mai et al. (2020b).

* Comparing the last three models, we can see the general
patterns in all A% settings: CSP-MC-BLD> CSP-NCE-
BLD> MSE. Since these three models only differ in terms
of the location encoder pre-training strategies (the red box
in Figure 2c¢), this indicates that CSP-MC-BLD is the best
location encoder pre-training objective.

* When A% = 5%, 10%,20%, compared with the Sup.
Only, CSP-MC-BLD have relative performance improve-
ments of 10.4%, 34.3%, and 16.6% which indicates the
effectiveness of Contrastive Spatial Pre-Training.

e When A% = 100%, CSP-MC-BLD still yields better
results than Sup. Only (grid). This indicates that our
CSP is beneficial even in a fully supervised setting.

To understand the effectiveness of each loss component in
CSP (see Figure 3 and Equation 4), we conduct an ablation
study on the iNat2018 dataset with different A and report
the results in Table 2. We can see that each component
contributes to the final model performance. Deleting any of
them will lead to performance drops.

To understand the effect of location embedding dimension
d on the model performance, we conduct an additional abla-
tion study of d on the iNat2018 dataset with different A and
report the results in Table 3. We can see that at the few-shot
setting A% = 5%, 10%, 20%, models with d = 256 achieve
the best performance. In the fully supervised setting, the
model with d = 1024 leads to the best performance.

Last but not least, we also explore whether our CSP is
effective on different image encoders. We conduct an ab-
lation study of different F() on the iNat2018 dataset with
A% = 5%. Table 4 summarizes the results. We can see
that no matter which F() we use, Inception V3 or ViT, our
CSP-MC-BLD consistently yields the best results, and ViT
improves the model performance a lot.

To investigate how well CSP learns location representation,
we sample a set of regular grid points all over the world
and compute their embeddings with the location encoder
e(). The resulting location embeddings are hierarchically
clustered. The results are shown in Figure 4. Figure 4a and
4c show the clustering results after CSP-MC-BLD or CSP-
NCE-BLD pre-training, while Figure 4b and 4d show the
clustering results after supervised fine-tuning on respective
models. Some interesting clustering patterns merge in Fig-
ure 4a and 4c. For example, the clustering patterns in Figure
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Table 1: The Topl accuracy of different models and training
strategies on the iNat2018 validation dataset for the species fine-
grain recognition task with different training data ratios, where
A% = 100% indicates the fully supervised setting. We run each
model 5 times and report the standard deviation in “()”.

Table 5: The Top1 accuracy of different models and training strate-
gies on the fMoW val dataset for the satellite image classification
task with different training data ratios, where A% = 100% indi-
cates fully supervised setting. We report the standard errors (SE)
over 5 different runs.

Ratio A% 5% 10% 20% 100%

Ratio A% 5% 10% 20% 100%

Img. Only (ImageNet)
(Szegedy et al., 2016) 528 (-) 12.44 () 25.33(-) 60.2 (-)

Sup. Only (wrap)
(Mac Aodha et al., 2019)

Sup. Only (grid)
(Mai et al.. 2020b) 8.16 (0.01) | 14.65 (0.03) | 25.40 (0.05) | 72.98 (0.04)

7.12(0.02) | 12.50 (0.02) | 25.36 (0.03) | 72.41 (-)

MSE 8.15(0.02) | 17.80 (0.05) | 27.56 (0.02) | 73.27 (0.02)

CSP-NCE-BLD 8.65 (0.02) | 18.75(0.12) | 28.15 (0.07) | 73.33 (0.01)
CSP-MC-BLD 9.01 (0.02) | 19.68 (0.05) | 29.61 (0.03) | 73.79 (0.02)

Table 2: Ablation studies on different CSP-MC-* pretraining objec-
tives on the iNat2018 validation dataset with different A%. Here,
CSP-MC-BLD indicates the CSP training on the MC loss with
all three components. CSP-MC-BL deletes the SimCSE I{} (X)
component in Equation 4. The rest models follow similar logic.

Ratio A% 5% 10% 20% | 100%
CSP-MC-BLD | 9.01 | 19.68 | 29.61 | 73.79
CSP-MC-BD 8.63 | 19.60 | 29.52 | 73.15
CSP-MC-BL 8.40 | 17.17 | 26.63 | 73.36
CSP-MC-B 8.16 | 16.58 | 25.89 | 73.10

Table 3: Ablation studies on different location embedding dimen-
sions d on the iNat2018 validation dataset with different A%.

| d | 5% | 10% | 20% | 100%
CSP-MC-BLD | 64 | 7.64 | 1657 | 2531 | 71.76
CSP-MC-BLD | 128 | 85 | 19.35 | 29.11 | 72.89
CSP-MC-BLD | 256 | 9.01 | 19.68 | 29.61 | 73.62
CSP-MC-BLD | 512 | 897 | 188 | 27.96 | 73.67
CSP-MC-BLD | 1024 | 8.78 | 17.94 | 26.65 | 73.79

Table 4: Ablation studies on different image neural network F()
(InceptionV3 (Szegedy et al., 2016) and ViT (Dosovitskiy et al.,
2021)) on the iNat2018 validation dataset with A% = 5%.

F() Inception V3 | ViT
Img. Only (ImageNet)

(Szegedy et al., 2016) 328 12.46

Sup. Only (wrap)
(Mac Aodha et al., 2019) 7.12 18.66

Sup. Only (grid)
(Mai et al., 2020b) 8.16 18.68
MSE 8.15 20.02
CSP-NCE-BLD 8.65 20.16
CSP-MC-BLD 9.01 20.78

4a show some regional effects that are somewhat similar to
the Koppen climate classification®. This makes sense since
the pre-training with location-image pairs is learning the
spatial distribution of species and their environment, which
is highly related to climate zones. The clusters in the US are
smaller since the iNat2018 training dataset has much more
data in the US (See Figure 8a in Appendix A.7).

Shttps://en.wikipedia.org/wiki/K$C3%
B6ppen_climate_classification

Img. Only (Tile2Vec)
(Jean et al., 2019) 59.41(0.23)|61.91 (0.31) | 62.96 (0.51) | 64.45 (0.37)

Img. Only (Geo-SSL)
(Ayush et al., 2021)
Sup. Only (wrap)
(Mac Aodha et al., 2019)
Sup. Only (grid) 1 67 1 (0.02) | 68.91 (0.04) | 70.20 (0.03) [ 70.77 (0.03)

(Mai et al., 2020b) OLE. ALO: =0 (O O
MSE 67.06 (0.04) | 68.90 (0.05) | 70.16 (0.02) | 70.45 (0.01)
CSP-NCE-BLD __|67.29 (0.03) | 69.20 (0.03) | 70.65 (0.02) | 70.89 (0.04)
CSP-MC-BLD 67.47 (0.02) | 69.23 (0.03) | 70.66 (0.03) | 71.00 (0.02)

6522() | 6646() | 67.66() | 69.83()

66.67 (0.03) | 68.22 (0.01) [ 69.45 (0.01) | 70.30 (0.02)

4.3. Satellite Image Classification

A similar procedure is carried out on fMoW® dataset
(Christie et al., 2018), which has 62 different geospatial
object classes, and 363,570 location-image pairs. We use
all location-image pairs as X;,.qin, and stratified sample A%
labeled location-image pairs from the training dataset as
Xerain. We use similar training, and evaluation protocol
as Section 4.2. The ResNet50 checkpoint after Geo-SSL’s
MoCo-V2+TP self-supervised pre-training on unlabeled
fMoW dataset (Ayush et al., 2021) is used as the pre-trained
image feature extractor F*() for all models.

Table 5 compares the evaluation results (Topl accuracy)
among different models and training strategies on the fMoW
val dataset after fine-tuning on A% fMoW training samples
where A% € {5%,10%,20%,100%}. We can see that
Table 5 shows similar patterns as those of Table 1:

* Img. Only (Geo-SSL) yields better results than Img. Only
(Tile2Vec) across different A%. But both Img. Only mod-
els still give the lowest performance than all other settings
with all A%. This confirms the importance of jointly learn-
ing location representations. However, Img. Only (Geo-
SSL) gives a relatively good performance (65.22%) even
when A% = 5%. That is because we use the Geo-SSL’s
MoCo-V2+TP checkpoint which is directly pre-trained on
the unlabeled fMoW training dataset. In contrast, in Table
1, Img. Only used an InceptionV3 model pre-trained on
ImageNet, not on the iNat2018 training dataset.

* Similar to the results in Table 1, Sup. Only (grid) outper-
forms Sup. Only (wrap) in all settings which shows the
effectiveness of grid over wrap.

* CSP-MC-BLD outperforms all models and yields super
or comparable results of CSP-NCE-BLD. However, the
margins are relatively small compared with those of Table
1. The performance improvements mainly come from the
location encoder’s ability to do spatial distribution model-
ing. Compared with species distribution, the geographic

*https://github.com/fMoW/dataset
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Figure 4: Location embedding before and after supervised fine-tuning for iNat2018.

(a) MC Unsupervised (b) MC Supervised

distributions of land use types are very complex and hard
to differentiate from each other. For example, factories
and multi-unit residential buildings are both man-made
geographic entities. Both their distributions are correlated
with population distributions and are hard to differentiate.
Moreover, sometimes they also show similar appearance
in remote sensing images. So it is rather hard to use a lo-
cation encoder to differentiate one land use type from the
other based on their geographic distribution. We think a
more powerful location encoding is needed to differentiate
them. But this is beyond the scope of this paper.

Similar to the iNat2018 dataset, in the fMoW dataset, the
embedding clustering results of the pre-trained and fine-
tuned location encoders are visualized in Figure 5. We can
see that more fine-grained clusters are generated in the US
after CSP-MC-BLD/CSP-NCE-BLD pre-training, while the
representation is updated to be more detailed after location
encoder fine-tuning. Compared with Figure 4, the regional
effect is less clear which also shows the difficulty to model
the spatial distributions of land use types.

5. Conclusion and Discussion

In this work, we proposed Contrastive Spatial Pre-
Training (CSP), a self-supervised framework to learn the
alignment between locations and images based on large
unlabeled geo-tagged images. Similar to recent popular
image-text pre-training models such as CLIP and ALIGN,
CSP utilizes a dual-encoder architecture to separately en-
code the location and image. The resulting location and im-
age representation are contrasted against each other to form
a contrastive pre-training objective. To validate the effec-
tiveness of CSP, we conduct experiments on two geo-aware
image classification tasks: species fine-grained recognition
on iNat2018 dataset and satellite image classification on
the fMoW dataset. Experiments results show that CSP can
improve model performance on both datasets under differ-
ent labeled training data sampling ratios. On the iNat2018
dataset CSP can significantly boost the model performance
with 10-34% relative improvement in several few-shot set-

(d) NCE Supervised

(c) NCE Unsupervised
Figure 5: Location embedding before and after supervised fine tuning for IMOW.

tings (A% = {5%, 10%, 20%}) and still be able to improve
model performance when A = 100%.

To the best of our knowledge, our work is the first one to
show the great potential of learning the geospatial-visual
alignment for model pre-training. Although we only inves-
tigate the effectiveness of our CSP framework on location-
image pre-training in this work, CSP can be easily extended
to learn the alignment between location (or time) and data in
other modalities such as text for different downstream tasks
such as geo-aware text classification. We put this as one of
our future works. Moreover, in this work, we only use the
existing geo-tagged datasets (e.g., iNat2018 and fMoW) as
a proxy for unlabeled location-image pairs. In the future, we
would like to construct larger-scale unlabeled geo-tagged
image datasets based on publicly available satellite images
with which we expect to see a larger performance improve-
ment. In this work, we only use single geo-coordinates for
geospatial-visual contrastive representation learning. In the
future, we can explore more complex geometries such as
polylines (Xu et al., 2018) and polygons (Mai et al., 2023b).
The proposed CSP framework can be seen as a step towards
the multimodal foundation models for geospatial artificial
intelligence (Mai et al., 2022a; 2023a).
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A. Appendix
A.1. A Detailed Version of Figure 2b
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Figure 6: A detailed version of Figure 2b to show four different ways to pretrain image encoder f() (orange box): (1) ImageNet
Pretraining (Deng et al., 2009): pre-training f() on ImageNet dataset; (2) Tile2Vec (Jean et al., 2019): pretraining f() with an
unsupervised triplet loss such that the embeddings of spatially nearby image tiles are more similar than those of distant tiles. (3) Geo-SSL
(Ayush et al., 2021) and SeCo(Manas et al., 2021): pretraining f() with a Momentum Contrast (MoCo-v2) (Chen et al., 2020c) style
constrastive loss in which they used locations as auxiliary information to generate spatially aligned (remote sensing) images at different
timestamps as positive samples; (4) GeoKR (Li et al., 2021a): pretraining f() in a teacher-student network by minimizing the KL
(Kullback-Leibler) loss between the image representations and a spatially aligned auxiliary data such as land cover maps M. The
pre-trained weights of f() are fine-tuned in a supervised manner (green box) for image classification. Here, location is only used as
auxiliary information for image encoder pre-training while being ignored during supervised learning stage.

A.2. Model Architecture Training Detail

A.2.1. TRAINING DETAILS OF IMAGE ENCODER f()
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Figure 7: A detailed illustration of the image encoder f() we use in Figure 2 for model pre-training and fine-tuning.

Figure 7 is a detailed illustration of how we use the image encoder f() for model pre-training and fine-tuning. On both
iNat2018 and fMoW dataset, we use off-the-shelf image neural network FF() to first encode the given image I into a

d") dimension image feature vector F(I) € R4, On the iNatlist dataset, two pre-trained image models are used — 1)
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ImageNet pre-trained InceptionV3 (Szegedy et al., 2016) from PyTorchVision library’ and 2) ImageNet pre-trained Vision
Transformer® (ViT) (Dosovitskiy et al., 2021) from Huggingface timm library. See Table 4 for the performance comparison
of these two models. On the fMoW dataset, we use Geo-SSL (Ayush et al., 2021) pretrained ResNet50 (He et al., 2015) as

F().

During the CSP pre-training stage, we feed F(I) into a projection layer W () which projects the image feature F(I;) € R
into d dimension such that a contrastive learning objective can be formed between e(x;) and f(I;). This illustrates as red
arrows in Figure 7.

4

During the image encoder fine-tuning stage, we drop the projection layer W () and append a classification head g() to the
end of F() which maps the image feature vector F(I) into logits over each image label, i.e., g(F(I)) € R%. @ is the total
number of classes. This illustrates as blue arrows in Figure 7. Here, both W () and ¢() are implemented as multi-layer
perceptrons. In practice, on the iNat2018 dataset, we fine-tune the whole image encoder g(F(I)) instead of only linear
probing the g() because 1) both used Inception V3 and ViT image neural network are previously pre-trained on ImageNet
dataset whose images are different from the images in iNat2018; 2) Empirical experiments show that fine-tuning the whole
architecture yields better performances; 3) The same practice was adopted by Mac Aodha et al. (2019); Mai et al. (2020b).
On the fMoW dataset, we use Geo-SSL (Ayush et al., 2021) pretrained ResNet50 (He et al., 2015) and only linear probe on
the g(). That is because the used F() is self-supervised pre-trained on the same dataset.

A.2.2. TRAINING DETAILS OF LOCATION ENCODER ¢()

In terms of the location encoder, we use the Space2Vec grid (Mai et al., 2020b) as the location encoder for both datasets
except for Img. Only and Sup. Only (wrap) model. Img. Only does not use location encoders and Sup. Only (wrap) uses
wrap location encoder.

During model pre-training, after pre-training the image encoder f(), we lock f() and use it to pre-train e() as shown in the
red box of Figure 2c. Location encoder fine-tuning details have been described in Section 3.3

A.2.3. MODEL IMPLEMENTATION DETAILS

All models are implemented in PyTorch and trained on a Linux machine with 252GB memory and two GeoForce CUDA
cores. The code, data, and pre-trained models of this work are all available at https://gengchenmai.github.io/
csp-website/.

A.3. Implementation Details of SImCSE

The implementation of SimCSE shown in Figure 3c is inspired by Gao et al. (2021). Basically, we have initialized two
location encoder towers with identical structures. They share the parameters but they use independently sampled dropout
masks. The two dropout masks are sampled independently for every training examples during CSP pretraining. The masks
are automatically generated by the dropout layers.

In the implementation, we simply feed the same location x; to the same location encoder twice and get two location
embeddings ¢(x;) and ¢'(x;). Since they are based on two separate forward passes, they are based on different
dropout masks. When we obtain €’(x;), we not only get the location embedding for x; but also get embeddings for all
locations in the same mini-batch. Among all these locations in the mini-batch, we select the embedding of location x; —
e/(x;) where j # 4. Since €/(x;) and €’(x;) are generated based on the same forward pass, they share the same dropout
mask. So the pair (e(x;), €/(x;)) is the dropout positive sample (the only difference is the dropout mask) and (e(x;), €’ (x;))
is the negative pair who use different dropout masks and encode different input locations. In short, SImCSE simply uses
dropout as a data augmentation tool to generate positive samples.

"https://pytorch.org/vision/main/models/generated/torchvision.models.inception_v3.html#
torchvision.models.inception_v3

8More specifically, we use the vit_tiny_patchl6_224 implementation from Huggingface timm at https://github.comn/
huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py by following Cong
et al. (2022).
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A.4. Model Hyperparameter Tuning

Since the self-supervised learning takes very long time to tune and hard to evaluate, we first perform a grid search to tune
the hyperparameters related to supervised fine tuning stage for the location encoder without self-supervised pre-training. In
other words, we tune those hyperparameters on the Sup. Only model. The best hyerparameter combination for Sup. Only
is used for all CSP models and MSE. The major hyperparameters we tune include the fine-tuning learning rate 7)sype,r =
[0.01,0.005,0.002,0.001, 0.0005, 0.00005], the grid’s minimum scaling factor r,,;, = [0.1,0.01,0.001, 0.0005, 0.0001],
as well as the hyperparameters of location encoder’s multi-layer perceptron NN ¢ £, () such as its activation function o, =
[ReLU, LeakyRe LU, GELU], the number of hidden layers h = [1, 2, 3], the number of neurons k£ = [256, 512, 1024], and
the dropout rate in NN, (-) D = [0.1,0.2,0.3,0.4,0.5,0.6,0.7]. The hyperparameters are tuned one-by-one sequentially
by following the order: Nsyper, Tmin, Oe, h, k, and D. Based on the experiment, the best hyperparameter combination
for the few-shot learning on iNat2018 dataset iS Nsyper = 0.0005, 7y, = 0.01, 0o = LeakyReLU, h = 1, k = 512,
dropout = 0.5. As for the few-shot learning on fMoW dataset, the best hyperparameter combination is Ngyper = 0.001,
Tmin = 0.01, 0. = GELU, h = 1, k = 512, dropout = 0.5. Based on hyperparameter tuning results, we find out that a
deeper NN ¢, (+), a larger h, for the location encoder does not necessarily increase the model performance.

After we get the best hyperparameter for the location encoder, we fix them and do a grid search to find the best hyperparame-
ters for self-supervised pre-training. The main hyperparameter which we tune is the self-supervised training learning rate
Nunsuper = [0.01,0.001, 0.0005,0.0002, 0.0001, 0.00001, 0.000002]. For CSP-MC-*, we tune the negative location loss
weight a7, SImCSE loss weight a4, the number of sampled negative locations C', three temperatures 7y, 71, and 72. For
CSP-NCE-*, we also fine tune (31 and 5.

On the iNat2018 dataset, the best hyperparameter for MSE is 1y, super = 0.000002. For CSP-MC-*, the best hyperparameter
combination is Nynsuper = 0.0002, 1 =1, 0 =1,C =1,79 =1, 71 = 1, and » = 1. For CSP-NCE-*, the best
combination is Nynsuper = 0.0002, B1 = 1 and By = 1.

On the fMoW dataset, the best hyperparameter combination for each model is similar to those on the iNat2018 dataset. The
difference is 7ynsuper, and its best value is 0.001 for all models.

We further try to tune the location encoder hyperparameters for pretrained encoders, but found that the result parameters do
not differ from those we got from previous hyperparameter tuning for Sup. Only model.

A.5. The Baseline Selection Criteria

In the following, we will discuss the selection criteria we use to select baseline models, especially those Img. Only models
shown in Figure 6.

For the iNat2018 dataset, we only use Img. Only (ImageNet) and did not include some baselines such as Img. Only
(Tile2Vec), Img. Only (Geo-SSL), and Img. Only (GeoKR) in Table 1, because they are not applicable:

* Img. Only (Tile2Vec) assumes geospatially nearby remote sensing (RS) images are similar in the image embedding space.
This assumption does not work for species images. Two bird from different species can locate nearby each other.

* Img. Only (Geo-SSL) needs to use RS images taken at the same location at different times as positive samples for
self-supervised training. This idea does not work for species images either.

* Img. Only (GeoKR) requires geographically co-located land use maps which adds additional information, which makes it
an unfair comparison.

For the fMoW dataset, we select Img. Only (Tile2Vec) and Img. Only (Geo-SSL) as two Img. Only baselines because:

* Img. Only (ImageNet) shows significantly lower performance than Img. Only (Geo-SSL) on fMoW according to Ayush
et al. (2021). So we did not compare with it but used Img. Only (Geo-SSL) as the strong baseline.

* Img. Only (GeoKR) requires additional global land use maps which leads to unfair comparison.

* For Img. Only (Tile2Vec), its assumption is very weak in the fMoW dataset. In the original Tile2Vec paper (Jean et al.,
2019), they took a large RS image and extracted nearby RS tiles from it. Some of the nearby RS tiles are usually very
close or even share some regions. In the fMoW dataset, the RS images are samples from different locations and the nearby
RS images are rather far away. We assume the performance of Img. Only (Tile2Vec) should be poor on fMoW. The
experiment results in Table 5 confirm our assumption.
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A.6. Additional Related Work

Unsupervised Representation Learning Unsupervised text encoding models such as transformer (Vaswani et al., 2017;
Devlin et al., 2019) has been effectively utilized in many Natural Language Processing (NLP) tasks. At its core, a trained
model encodes words into vector space representations based on their positions and context in the text. Following the
success in NLP, there has been significant recent progress in unsupervised image pretraining (He et al., 2020; Caron et al.,
2020; Ayush et al., 2021). Interestingly almost all of them are based on certain form of contrastive learning (Hadsell et al.,
2006), which helps to construct unsupervised classification objectives from continuous inputs such as images. He et al.
(2020) proposes Momentum Contrast (MoCo) for unsupervised visual representation learning. To increase the number of
negative examples in contrastive training, they uses a queue of multiple mini-batches. Similar strategy has been adopted in
NLP (Gao et al., 2021). To improve the encoding consistency between mini batches, they make the target image encoder
parameterizes a moving average of the query image encoder. In this work we are focusing on the pretraining of location
encoder with a frozen image encoder. Our approach is very memory efficient (easily scaling up to 8192 batch size) and
therefore avoid the need of multi-batch training.

Contrastive Learning A contrastive training loss takes a pair of inputs (x;,x;) and minimizes the embedding distance
when they are similar according to certain signal (e.g., from the same class, or generated from the same original examples)
but maximizes the distance otherwise. Common effective ways to construct contrastive loss include 1) data augmentation
techniques, which create noise/augmented versions of original examples as positive sample pairs (Gutmann & Hyvérinen,
2010; He et al., 2020; Chen et al., 2020a; Zbontar et al., 2021; Gao et al., 2021); 2) construct in-batch negative pairs using
a large batch size (Chen et al., 2020a; Zhang et al., 2020; Radford et al., 2021a); 3) hard negative mining for supervised
learning tasks (Karpukhin et al., 2020; Gao et al., 2021). These techniques has been successfully applied to a variety of
image tasks (Chen et al., 2020a; He et al., 2020; Zbontar et al., 2021), text tasks (Mnih & Teh, 2012; Mikolov et al., 2013;
Karpukhin et al., 2020; Gao et al., 2021), and multi-model tasks (Zhang et al., 2020; Jia et al., 2021; Radford et al., 2021a;
Zhai et al., 2021). However, contrastive learning has never been used to learn image-location alignment in a pre-training
set-up. CSP adapts contrastive strategies that work well on text and image and apply to geo-location data in order to
construct positive and negative sample pairs.

Contrastive Learning on Multimodal Data Recently, contrastive learning has been utilized on multimodal data (e.g.
text-image pairs) by systems such as ConVIRT (Zhang et al., 2020), CLIP (Radford et al., 2021a), and ALIGN (Jia et al.,
2021). Given a set of text-image pairs, the text and image data can be encoded separately by a text encoder and an image
encoder. The resulting text and image representations are contrasted against each other such that the correct language-vision
aligment is learned (Zhai et al., 2021). After this self-supervised pretraining, these models can be directly used for zero-shot
transfer tasks such as image classificaion, image-text retrieval, and etc. While both CLIP (Radford et al., 2021a) and ALIGN
(Jia et al., 2021) proposed to train the image encoder and text encoder jointly from scratch during contrastive pre-training,
LiT (Zhai et al., 2021) has shown that locking the image encoder that is initialized by a pre-trained model, while training
text encoder from scratch during image-text contrastive pre-training can significantly improve the model performance on
multiple downstream tasks.

Machine Learning on Spatial Data Recently, numerous studies have shown that appropriately incorporating (geo)spatial
information into the learning framework can significantly improve the model performance on variety of geospatial tasks.
Just to name a few, these tasks include species fine-grained recognition (Chu et al., 2019; Mac Aodha et al., 2019; Mai
et al., 2022d), ground-level image classification (Tang et al., 2015), Point of Interest (POI) facade image classification
(Yan et al., 2018), POI type classification (Mai et al., 2020b), remote sensing (RS) image classification? (Christie et al.,
2018; Ayush et al., 2021; Manas et al., 2021), poverty prediction (Jean et al., 2016; 2019), land use classification (Jean
et al., 2019; Ayush et al., 2021), satellite image super-resolution (He et al., 2021), and geographic question answering (Mai
et al., 2020a; Scheider et al., 2021). Despite all these success stories, these works either directly utilize spatial data in a
supervised learning framework (Tang et al., 2015; Christie et al., 2018; Chu et al., 2019; Mac Aodha et al., 2019; Mai et al.,
2020a;b; 2022d), or incorporate spatial data in an implicit manner in the unsupervised/self-supervised pre-training stage
(Jean et al., 2019; Ayush et al., 2021; He et al., 2021; Manas et al., 2021; Li et al., 2021a). The former cannot utilize massive
unlabeled (geo)spatial datasets and performs poorly in a few-shot learning setting. The latter only utilizes spatial data in the

? Although remote sensing images can be largely regarded as geospatial data, here, we refer to the work which considers the geo-

locations or timestamps of those RS images for ML model design instead of treating RS image classification as a pure computer vision
task.
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pre-training stage but ignores them at the model inference time so that the model performance at the inference time can be
suboptimal.

A.7. The Spatial Distribution of iNat2018 and fMoW dataset
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Figure 8: The spatial distribution of training, few-shot fine-tuning, and validation datasets for iNat2018 and fMoW.
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