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(c) Contrastive Spatial Pre-Training (CSP). It adds a location encoder pre-training stage (red box). The pre-trained f() is used as an unsupervised feature extractor to generate

image embeddings f(I) which are used for contrastive learning with location embedding e(x). Both f() and e() are fine-tuned in a supervised manner (green and blue box).

Figure 2: Different training strategies for geo-aware image classification. Our proposed method CSP is presented in Figure 2c.

cek et al., 2019; Mai et al., 2020b; 2022d; Yang et al., 2022).

For example, Figure 1a and 1c are images of two different

fox species: Arctic fox and bat-eared fox, with which the

vision-based models, or even humans, can be confused due

to the high visual similarity of the two species and their

surrounding environments. Fortunately, these two species

have distinct geospatial distribution patterns (shown in Fig-

ure 1b, 1d), and it is very easy to tell them apart based

on the geo-locations. Motivated by these observations, we

ask whether we can build a multi-modal self-supervised

learning framework between geo-locations and images

that learns the alignments between geo-location and image

representations using large unlabeled geo-tagged datasets.

In this work, we propose CSP (Contrastive Spatial Pre-

Training), a self-supervised learning framework, which

pre-trains deep spatial representations from unlabeled geo-

tagged images by predicting image features or image iden-

tities based on their geo-locations as shown in Figure 2c.

Given one location-image pair (xi, Ii), a dual-encoder sep-

arately encodes xi and Ii into the embedding space with a

location encoder e() and an image encoder f() and contrast

against related locations and images to form a contrastive

learning objective (the red box in Figure 2c). After the

location encoder and image encoder pre-training stage, both

e() and f() can be fine-tuned on a small amount of labeled

data (the green and blue box in Figure 2c) separately and

do inference jointly, which is compatible with prior works

(Mac Aodha et al., 2019; Mai et al., 2020b).

To perform contrastive learning, we explore a combina-

tion of three different ways to form positive and negative

pairs for the location encoder pre-training stage of CSP as

shown in Figure 3: (a) In-batch negative sampling: given

a mini-batch of unlabeled location-image pairs, create mis-

matching location-image pairs as negative samples; (b) Ran-

dom negative location sampling: uniformly sample neg-

ative locations from the study area (e.g., the whole earth

surface) to form negative pairs; (c) SimCSE-based sam-

pling: create a positive pair by encoding the same location

with two location encoders, which share all the parameters

but use different dropout masks. We also compare several

self-supervised learning objectives including Mean Square

Error loss (MSE), Noise Contrastive Estimation loss

(NCE), and Contrastive Multi-classification loss (MC).

We conduct experiments on geo-aware image classification

tasks including fine-grained species recognition (Chu et al.,

2019; Mac Aodha et al., 2019; Mai et al., 2020b; Yang

et al., 2022), and remote sensing (RS) image classification

(Christie et al., 2018; Ayush et al., 2021; Manas et al., 2021;

Li et al., 2021a). Results show that our CSP can boost the

model performance on both datasets.

In summary, the contributions of our work are:
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• We propose an effective multi-modal self-supervised pre-

training method CSP that leverages abundant unlabeled

geo-tagged images to better learn location representations

that can be transferred to few-shot learning tasks.

• We explore three ways to construct positive and negative

training examples for contrastive learning. We find that

the combination of them achieves the best performance.

• We explore three self-supervised losses including MSE,

NCE, and MC. We find out that using CSP with MC
usually yields the best result.

• We apply CSP to fine-grained species recognition

(iNat2018) and remote sensing image classification task

(fMoW) in few-shot learning and fully supervised settings,

and demonstrate advantages on both datasets. CSP can

significantly boost model performances with 10-34% rel-

ative improvements on the iNat2018 dataset at few-shot

settings by stratified sampling {5%, 10%, 20%} of the

training data. On both datasets, when training models on

the whole training dataset in a fully supervised manner,

we find that adding the CSP pre-training objective can

still improve the model performance.

2. Related Work

Unsupervised/Self-Supervised Learning on Geotagged

Images Multiple unsupervised or self-supervised frame-

works have been proposed to pre-train image encoder by

utilizing geographic knowledge such as Tile2Vec (Jean et al.,

2019), Geo-SSL (Ayush et al., 2021), SeCo (Manas et al.,

2021), and GeoKR (Li et al., 2021a).

Tile2Vec (Jean et al., 2019) is an unsupervised learning

framework to pre-train image encoder based on the spatial

relations among RS images. Given an anchor RS image,

location information is only used to obtain one nearby tile

and a distant tile. An unsupervised triplet loss is formed

to pre-train image encoder to make nearby tiles similar in

the embedding space while distant tiles dissimilar. Geo-

locations are not part of the model input and cannot be used

during the model fine-tuning or inference stage.

Geo-SSL (Ayush et al., 2021) is a self-supervised con-

trastive learning objective to pre-train an RS image encoder

based on the MoCo-V2 (Chen et al., 2020b) framework. In-

stead of using augmented images as positive pairs as MoCo-

V2 does, they used co-located RS images at different times

as positive pairs. This contrastive image loss is combined

with a geo-location classification pre-text loss during pre-

training, which uses the image encoder to predict which

geo-location cluster the image might come from. Here, the

spatiotemporal information is only used in the pre-training

stage. During the fine-tuning and inference stage, the model

prediction relies entirely on the pre-trained image encoder.

SeCo (Manas et al., 2021) is a similar self-supervised con-

trastive learning framework for an RS image encoder f().
It also uses MoCo-V2 as the backbone and uses spatially

aligned RS images at different times as novel temporal aug-

mented samples. The difference is that SeCo uses both the

temporal augmented samples and synthetic samples based

on artificial augmentations as either positive or negative

samples so that the pre-trained f() can be either invariant

or sensitive to the temporal or artificial augmentations.

GeoKR (Li et al., 2021a) is proposed as an unsupervised

framework for an RS image encoder. GeoKR first obtains

a spatially aligned land cover map M based on an RS im-

age. The image encoder is pre-trained in a teacher-student

network to predict the distribution of land cover types in the

current scene with a KL loss.

Figure 2b illustrates the general idea of those four models

while Figure 6 in Appendix A.1 provides a detailed compar-

ison. None of them directly takes geo-locations as model

input but use locations as auxiliary information to pre-train

the image encoder. Moreover, after pre-training, location

information is completely ignored during fine-tuning and in-

ference stage which leads to significantly suboptimal results.

In contrast, our CSP utilizes the location-image pairs in a

direct and explicit manner by separately encoding them and

contrasting them against each other. The pre-trained loca-

tion encoder can be utilized in the model inference process

jointly with the image encoder so that both the visual and

spatial clue can be used for prediction.

Location Representation Learning Zhai et al. (2018)

learned location representation from image-location pairs

for image localization. So in this context, locations are su-

pervision signals. Instead of using the original geo-locations,

they grouped locations (or times) into different bins and uti-

lized them in the cross entropy loss. This practice cannot

leverage the continuity of the approximated function. Most

existing location encoding approaches (Tang et al., 2015;

Christie et al., 2018; Chu et al., 2019; Mac Aodha et al.,

2019; Mai et al., 2020b; 2022d; Yang et al., 2022) are devel-

oped and trained in a supervised learning framework while

massive unlabeled geographic data cannot be used. Figure

2a illustrates the dual-encoder supervised learning idea both

Mac Aodha et al. (2019) and Mai et al. (2020b) used for geo-

aware image classification. In contrast, this work focuses on

training location encoders in a self-supervised manner based

on unlabeled geotagged images. The pre-trained location

encoder can later be utilized jointly with the image encoder

for model prediction (See Figure 2c).

Spatially Explicit Artificial Intelligence Previous works

showed that naively applying existing state-of-the-art AI

models to geospatial tasks usually yielded suboptimal re-

sults (Mai et al., 2019; Chu et al., 2019; Mac Aodha et al.,
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2019; Ayush et al., 2021; Yan et al., 2018). Spatially Explicit

Artificial Intelligence aims at improving the performances

of AI models on various geospatial tasks by incorporating

spatial thinking, spatial principles and spatial inductive bi-

ases into the AI model design (Janowicz et al., 2020; Liu &

Biljecki, 2022; Zhu et al., 2022; Mai et al., 2022b). Several

important spatial principles have been considered by previ-

ous works including spatial dependency (Mai et al., 2019;

Yan et al., 2018; 2019; Li et al., 2021b; Huang et al., 2022;

2023), spatial heterogeneity (Chu et al., 2019; Mac Aodha

et al., 2019; Mai et al., 2020b; Zhu et al., 2021; Xie et al.,

2021; Goodchild & Li, 2021; Xie et al., 2023), temporal

continuity (Cai et al., 2020; He et al., 2021; Cong et al.,

2022), temporal periodicity (Cai et al., 2020; Rao et al.,

2020), earth spherical geometry nature (Cohen et al., 2018;

Esteves et al., 2018; Jiang et al., 2019; Mai et al., 2022d),

and so on. CSP contributes to the Spatially Explicit Artifi-

cial Intelligence research by learning effective multi-scale

location representations from unlabeled images.

3. Method

3.1. A Dual-Encoder for Geo-Tagged Images

We define an unlabeled geo-tagged image dataset as X =
{(xi, Ii)|i = 1, ...,M}, where Ii is an image, xi represents

the location (longitude and latitude) and optionally the time

the image was taken3. Inspired by recent image-text pre-

training models (Zhang et al., 2020; Radford et al., 2021a;

Jia et al., 2021; Zhai et al., 2021), CSP uses a dual-encoder

architecture – a location encoder e() and an image encoder

f() – to handle location xi and image Ii separately.

The location encoder e() is a function eθ(xi) : S
2 → R

d,

which is parameterized by θ and maps any coordinate xi =
(λi, φi) in a spherical surface S2 to a vector representation of

d dimension. Here longitude λi ∈ [−π, π) and latitude φi ∈
[−π/2, π/2]. e() can be any existing 2D location encoders

(Mai et al., 2022c) such as tile (Tang et al., 2015), wrap
(Mac Aodha et al., 2019), Space2Vec’s grid and theory
(Mai et al., 2020b), or spherical location encoders such as

Sphere2Vec (Mai et al., 2022d). We assume that e() is

inductive and does not depend on the unlabeled dataset X

anymore once it is pre-trained.

The image encoder f() is a function fψ(Ii) : R
H×W×C →

R
d, which is parameterized by ψ and maps any image with

height H , width W , and channel C into an embedding of

d dimension. In this study we define f(Ii) = W(F(Ii))
where F() is an off-the-shelf deep image neural network

such as InceptionV3 (Szegedy et al., 2016) or Geo-SSL

(Ayush et al., 2021) pretrained ResNet50 (He et al., 2015),

which encodes any image into a d(I) dimension image fea-

3In this study we focus on the location information and leave
the time aspect to the future work.

ture vector. W() is a projection layer (similar to that of

SimCLR (Chen et al., 2020a) and MoCo-V2 (Chen et al.,

2020b)), which projects the image feature F(Ii) ∈ R
d(I)

into d dimension such that a contrastive learning objective

can be formed between e(xi) and f(Ii). Please refer to

Appendix A.2.1 for a detailed description of f().

In our work, d(I) = 2048 and d = 512. This dual-encoder

architecture is shown in Figure 2c as well as Figure 3. We

simply denote the encoded representation of a location xi

as e(xi) and its associated image representation as f(Ii).

3.2. Contrastive Spatial Pre-Training(CSP)

Contrastive Learning Objectives We consider different

contrastive objectives. The first is the noise contrastive esti-

mation (NCE) (Gutmann & Hyvärinen, 2010) loss, which

avoids calculation of the partition function and has been suc-

cessfully used in word embeddings (Mikolov et al., 2013)

and language modeling (Mnih & Teh, 2012):

lNCE(P,N ) =− E(a,b)∼P log σ(s(a,b))

− E(a,b−)∼N log(1− σ(s(a,b−)))
(1)

Here P = {(a,b)} is a set of positive pairs, and N =
{(a,b−)} is a set of negative pairs. s(·, ·) is a similarity

function (such as cosine()), and σ(v) = ev/(1 + ev) is the

sigmoid function.

The second objective function is the multi-class classifica-

tion loss with temperature which takes the same form as

the InfoNCE loss (Van den Oord et al., 2018). It has been

successfully used in unsupervised learning for images (He

et al., 2020) and text (Gao et al., 2021):

lMC(P,N , τ)

= E(a,b)∼P

es(a,b)/τ

es(a,b)/τ +
∑

(a,b−)∈Na

es(a,b−)/τ

(2)

where MC stands for “multi-class”. Na obtains a set of

negative pairs with first entry being a, P and s(·, ·) are

defined as earlier. The temperature scaling parameter τ
determines how soft the softmax is (Hinton et al., 2015).

In practice it helps with the trade off between top ranked

classes (precision) versus reset of the classes (recall).

Third, we also experimented with a regression loss, but it

does not work as well as the NCE and MC losses.

Self-Supervised Training Pair Construction In order

to learn useful representations, we need to choose appro-

priate distributions for positive pairs P and negative pairs

N for contrastive learning. In CSP, we use three sampling

methods to obtain positive and negative pairs: in-batch neg-

ative sampling (indicated as B), random negative location

sampling (indicated as L), and SimCSE-based sampling
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where α1 and α2 are hyper-parameters. Although lBMC(X)
and lLMC(X) use the same positive pairs PX , they are em-

bedded in the Softmax function. So we need to use PX in

both loss components.

A naive contrastive pre-training for this dual-encoder archi-

tecture is to jointly training both encoders from scratch as

CLIP (Radford et al., 2021a) and ALIGN (Jia et al., 2021)

do for the image and text encoder. However, from-scratch

training will be problematics in CSP. Unlike CLIP and

ALIGN’s dual-encoder framework in which the text and

image encoder have relatively the same number of trainable

parameters, the number of trainable parameters of the image

encoder f() is 100 times larger than that of the location

encoder e(). For example, the InceptionV3 image encoder

we used for iNat2018 dataset has 41.8 million trainable pa-

rameters while the Space2Vec location encoder we used

in both iNat2018 and fMoW dataset has only 0.4 million

trainable parameters. Jointly training both encoders from

scratch will yield overfitting issue for location encoder and

underfitting issue for the image encoder.

Moreover, in text-image pre-training literature, LiT (Zhai

et al., 2021) also reported that locking the image encoder

during pre-training leads to a significant performance im-

provement. So we follow the practice of LiT (Zhai et al.,

2021), and utilize a pre-trained image network F
∗() and lock

it during Contrastive Spatial Pre-Training. The pre-trained

image network F
∗() should not see the current image labels

during pre-training stage. In other words, we first do image

encoder pre-training as shown in the orange box of Figure

2c. Then we lock f() and use it to pre-train e() as shown

in the red box of Figure 2c. During CSP, only the image

projection layer W() is trained in the image encoder part.

3.3. Supervised Fine-Turning

After Contrastive Spatial Pre-Training, we follow the prac-

tice of Chu et al. (2019); Mac Aodha et al. (2019); Mai

et al. (2022d) and fine-tune the image encoder f() and lo-

cation encoder e() separately on a small labeled dataset

X = {(x, I, y)} to test its performance in a few-shot learn-

ing setting. The supervised fine-tuning stage corresponds to

the green and blue box in Figure 2c. Their predictions are

combined at the inference stage as Mac Aodha et al. (2019);

Mai et al. (2020b; 2022d) did.

Image Encoder Fine Tuning We drop the projection layer

W() and use a classification head g() to process the im-

age feature vector F(I) into logits over image labels, i.e.,

g(F(I)) ∈ R
Q. We fine-tune g() with cross-entropy loss. Q

is the total number of classes. This process corresponds to

the green box in Figure 2c. Please refer to Appendix A.2.1

for a detailed description of f() fine-tuning.

Location Encoder Fine Tuning As shown in the blue box

of Figure 2c, we use image labels in the training objective for

location encoder fine tuning. Following Mac Aodha et al.

(2019), we used a presence-absence loss function which

converts the multi-class labels into binary multi-labels. A

class embedding matrix T ∈ R
d×Q is used to supervisedly

train the location encoder where T:,y ∈ R
d indicates the

class embedding for the yth class. Given a set of training

samples X = {(x, I, y)} where y indicates the class label,

the loss function lsup(X) is defined as:

lsup(X) = βlNCE(P
y, ∅) + lNCE(∅,N

y ∪NR) (5)

Here β is a hyperparameter for the weight of positive sam-

ples. The following positive and negative samples are used:

• Labeled positives Py = {(e(x),T:,y)|(x, y) ∈ X}.

• Labeled negatives N y = {(e(x),T:,yj )|(x, y) ∈

X, yj ∈ {1..Q} \ {y}}.

• Sampled negative locations NR =
{(e(x−),T:,yj )|(x, y) ∈ X, yj ∈ {1..Q}}, where

x
− is a uniformly sampled locations from the surface of

the sphere for each example x.

3.4. Model Inference

At inference time, we combined the predicted logits of fine-

tuned e() and f() to give the final prediction as shown in the

purple box of Figure 2c. Given a location-image pair (x, I),
we estimate which category y it belongs to by P (y|I,x).
According to Mac Aodha et al. (2019), if we assume I and x

are conditionally independent given y, then based on Bayes’

theorem, we have P (y|I,x) ∝ P (y|x)P (y|I). Here,

P (y|I) can be estimated by the logits of g(F(I)) at the yth

class. For P (y|x), we have P (y|x) ∝ σ(e(x)T:,y) where

σ(·) is a sigmoid activation function.

4. Experiments

In this work, we study the effectiveness of CSP on two geo-

aware image classification tasks - species fine-grained recog-

nition and satellite image classification. We are particularly

interested in how the dual-encode architecture performs in

various few-shot learning settings after CSP.

For each task, three datasets are used to pre-train, fine-tune,

and evaluate our CSP models: Xtrain is a set of unlabeled

location-image pairs we use for pre-training; Xtrain is a

set of labeled location-image-class tuples we use for fine-

tuning, where the size of Xtrain is much larger than that

of Xtrain, i.e., |Xtrain| ≫ |Xtrain|; and Xval is a set of

labeled location-image-class tuples we use for evaluation

that can not be seen during fine-tuning.
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4.1. Models and Baselines

In this work, we consider the following baselines:

• Img. Only supervisedly fine-tune the image network

g(F()) on the fine tuning dataset Xtrain (See Figure 2b).

We use InceptionV3 (Szegedy et al., 2016) and ResNet50

(Ayush et al., 2021) as the image encoders on iNat2018

and fMoW respectively.

• Sup. Only uses the dual-encoder architecture but is only

supervisedly trained on Xtrain (See Figure 2a). We con-

sider use wrap (Mac Aodha et al., 2019) and grid (Mai

et al., 2020b) as the location encoder which yield two

models: Sup. Only (wrap) and Sup. Only (grid).

• MSE follows the same setup as CSP (See Figure 2c)

except that during location encoder pre-training, it directly

feeds the location embedding e(x) into a linear layer to

regress the image feature vector F(I) with a Mean Square

Error (MSE) loss. MSE uses grid as the location encoder.

We compare these baselines with different versions of CSP.

All CSP models have the same training procedure, and use

grid as their location encoders. The only difference is the

contrastive loss function they use:

• CSP-NCE-BLD uses the NCE loss with all three loss

components as shown in Equation 3.

• CSP-MC-BLD uses the MC loss with all three loss com-

ponents as shown in Equation 4.

4.2. Fine-Grained Species Recognition

We use the iNat2018 dataset4 (Van Horn et al., 2018) as a

representative dataset to study the effectiveness of CSP on

species fine-grained recognition. iNat2018 is a large-scale

species classification dataset with 8142 species categories.

There are 437,513 training images of which 436,063 training

images have geo-locations. On average each class has 53.6

training samples. We use all location-image pairs {(xi, Ii)}
in iNat2018 training set as the unlabeled geo-tagged dataset

Xtrain for our CSP. To create a few-shot learning task,

we perform a stratified sampling on the training dataset to

select λ% of training samples which constitute our few-

shot supervised fine-tuning dataset Xtrain = {(x, I, y)}.

The iNat2018 validation dataset is used for model evalu-

ation to make our results comparable with previous work

(Mac Aodha et al., 2019; Mai et al., 2020b; 2022d). We use

InceptionV3 network pre-trained on ImageNet as the image

feature extractor F∗() for iNat2018 dataset.

Table 1 compares the Top1 accuracy of different training

strategies on the iNat2018 validation dataset with different

4https://github.com/visipedia/inat_comp/

tree/master/2018

λ%. From Table 1, we can see that:

• Img. Only (ImageNet) yields the lowest performances in

all λ% settings which indicates that considering location

information is beneficial in all settings.

• Sup. Only (grid) outperforms Sup. Only (wrap) across all

settings indicating that multi-scale location encoders (e.g.,

grid) are effective for spatial distribution modeling. This

confirms the results of Mai et al. (2020b).

• Comparing the last three models, we can see the general

patterns in all λ% settings: CSP-MC-BLD> CSP-NCE-

BLD> MSE. Since these three models only differ in terms

of the location encoder pre-training strategies (the red box

in Figure 2c), this indicates that CSP-MC-BLD is the best

location encoder pre-training objective.

• When λ% = 5%, 10%, 20%, compared with the Sup.

Only, CSP-MC-BLD have relative performance improve-

ments of 10.4%, 34.3%, and 16.6% which indicates the

effectiveness of Contrastive Spatial Pre-Training.

• When λ% = 100%, CSP-MC-BLD still yields better

results than Sup. Only (grid). This indicates that our

CSP is beneficial even in a fully supervised setting.

To understand the effectiveness of each loss component in

CSP (see Figure 3 and Equation 4), we conduct an ablation

study on the iNat2018 dataset with different λ and report

the results in Table 2. We can see that each component

contributes to the final model performance. Deleting any of

them will lead to performance drops.

To understand the effect of location embedding dimension

d on the model performance, we conduct an additional abla-

tion study of d on the iNat2018 dataset with different λ and

report the results in Table 3. We can see that at the few-shot

setting λ% = 5%, 10%, 20%, models with d = 256 achieve

the best performance. In the fully supervised setting, the

model with d = 1024 leads to the best performance.

Last but not least, we also explore whether our CSP is

effective on different image encoders. We conduct an ab-

lation study of different F() on the iNat2018 dataset with

λ% = 5%. Table 4 summarizes the results. We can see

that no matter which F() we use, Inception V3 or ViT, our

CSP-MC-BLD consistently yields the best results, and ViT

improves the model performance a lot.

To investigate how well CSP learns location representation,

we sample a set of regular grid points all over the world

and compute their embeddings with the location encoder

e(). The resulting location embeddings are hierarchically

clustered. The results are shown in Figure 4. Figure 4a and

4c show the clustering results after CSP-MC-BLD or CSP-

NCE-BLD pre-training, while Figure 4b and 4d show the

clustering results after supervised fine-tuning on respective

models. Some interesting clustering patterns merge in Fig-

ure 4a and 4c. For example, the clustering patterns in Figure
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Table 1: The Top1 accuracy of different models and training
strategies on the iNat2018 validation dataset for the species fine-
grain recognition task with different training data ratios, where
λ% = 100% indicates the fully supervised setting. We run each
model 5 times and report the standard deviation in “()”.

Ratio λ% 5% 10% 20% 100%

Img. Only (ImageNet)

(Szegedy et al., 2016)
5.28 (-) 12.44 (-) 25.33 (-) 60.2 (-)

Sup. Only (wrap)

(Mac Aodha et al., 2019)
7.12 (0.02) 12.50 (0.02) 25.36 (0.03) 72.41 (-)

Sup. Only (grid)

(Mai et al., 2020b)
8.16 (0.01) 14.65 (0.03) 25.40 (0.05) 72.98 (0.04)

MSE 8.15 (0.02) 17.80 (0.05) 27.56 (0.02) 73.27 (0.02)

CSP-NCE-BLD 8.65 (0.02) 18.75 (0.12) 28.15 (0.07) 73.33 (0.01)

CSP-MC-BLD 9.01 (0.02) 19.68 (0.05) 29.61 (0.03) 73.79 (0.02)

Table 2: Ablation studies on different CSP-MC-* pretraining objec-
tives on the iNat2018 validation dataset with different λ%. Here,
CSP-MC-BLD indicates the CSP training on the MC loss with
all three components. CSP-MC-BL deletes the SimCSE lDMC(X)
component in Equation 4. The rest models follow similar logic.

Ratio λ% 5% 10% 20% 100%

CSP-MC-BLD 9.01 19.68 29.61 73.79

CSP-MC-BD 8.63 19.60 29.52 73.15
CSP-MC-BL 8.40 17.17 26.63 73.36
CSP-MC-B 8.16 16.58 25.89 73.10

Table 3: Ablation studies on different location embedding dimen-
sions d on the iNat2018 validation dataset with different λ%.

d 5% 10% 20% 100%

CSP-MC-BLD 64 7.64 16.57 25.31 71.76
CSP-MC-BLD 128 8.5 19.35 29.11 72.89
CSP-MC-BLD 256 9.01 19.68 29.61 73.62
CSP-MC-BLD 512 8.97 18.8 27.96 73.67
CSP-MC-BLD 1024 8.78 17.94 26.65 73.79

Table 4: Ablation studies on different image neural network F()
(InceptionV3 (Szegedy et al., 2016) and ViT (Dosovitskiy et al.,
2021)) on the iNat2018 validation dataset with λ% = 5%.

F() Inception V3 ViT

Img. Only (ImageNet)
(Szegedy et al., 2016)

5.28 12.46

Sup. Only (wrap)
(Mac Aodha et al., 2019)

7.12 18.66

Sup. Only (grid)
(Mai et al., 2020b)

8.16 18.68

MSE 8.15 20.02

CSP-NCE-BLD 8.65 20.16
CSP-MC-BLD 9.01 20.78

4a show some regional effects that are somewhat similar to

the Köppen climate classification5. This makes sense since

the pre-training with location-image pairs is learning the

spatial distribution of species and their environment, which

is highly related to climate zones. The clusters in the US are

smaller since the iNat2018 training dataset has much more

data in the US (See Figure 8a in Appendix A.7).

5https://en.wikipedia.org/wiki/K%C3%

B6ppen_climate_classification

Table 5: The Top1 accuracy of different models and training strate-
gies on the fMoW val dataset for the satellite image classification
task with different training data ratios, where λ% = 100% indi-
cates fully supervised setting. We report the standard errors (SE)
over 5 different runs.

Ratio λ% 5% 10% 20% 100%

Img. Only (Tile2Vec)

(Jean et al., 2019)
59.41 (0.23) 61.91 (0.31) 62.96 (0.51) 64.45 (0.37)

Img. Only (Geo-SSL)

(Ayush et al., 2021)
65.22 (-) 66.46 (-) 67.66 (-) 69.83 (-)

Sup. Only (wrap)

(Mac Aodha et al., 2019)
66.67 (0.03) 68.22 (0.01) 69.45 (0.01) 70.30 (0.02)

Sup. Only (grid)

(Mai et al., 2020b)
67.01 (0.02) 68.91 (0.04) 70.20 (0.03) 70.77 (0.03)

MSE 67.06 (0.04) 68.90 (0.05) 70.16 (0.02) 70.45 (0.01)

CSP-NCE-BLD 67.29 (0.03) 69.20 (0.03) 70.65 (0.02) 70.89 (0.04)

CSP-MC-BLD 67.47 (0.02) 69.23 (0.03) 70.66 (0.03) 71.00 (0.02)

4.3. Satellite Image Classification

A similar procedure is carried out on fMoW6 dataset

(Christie et al., 2018), which has 62 different geospatial

object classes, and 363,570 location-image pairs. We use

all location-image pairs as Xtrain, and stratified sample λ%
labeled location-image pairs from the training dataset as

Xtrain. We use similar training, and evaluation protocol

as Section 4.2. The ResNet50 checkpoint after Geo-SSL’s

MoCo-V2+TP self-supervised pre-training on unlabeled

fMoW dataset (Ayush et al., 2021) is used as the pre-trained

image feature extractor F∗() for all models.

Table 5 compares the evaluation results (Top1 accuracy)

among different models and training strategies on the fMoW

val dataset after fine-tuning on λ% fMoW training samples

where λ% ∈ {5%, 10%, 20%, 100%}. We can see that

Table 5 shows similar patterns as those of Table 1:

• Img. Only (Geo-SSL) yields better results than Img. Only

(Tile2Vec) across different λ%. But both Img. Only mod-

els still give the lowest performance than all other settings

with all λ%. This confirms the importance of jointly learn-

ing location representations. However, Img. Only (Geo-

SSL) gives a relatively good performance (65.22%) even

when λ% = 5%. That is because we use the Geo-SSL’s

MoCo-V2+TP checkpoint which is directly pre-trained on

the unlabeled fMoW training dataset. In contrast, in Table

1, Img. Only used an InceptionV3 model pre-trained on

ImageNet, not on the iNat2018 training dataset.

• Similar to the results in Table 1, Sup. Only (grid) outper-

forms Sup. Only (wrap) in all settings which shows the

effectiveness of grid over wrap.

• CSP-MC-BLD outperforms all models and yields super

or comparable results of CSP-NCE-BLD. However, the

margins are relatively small compared with those of Table

1. The performance improvements mainly come from the

location encoder’s ability to do spatial distribution model-

ing. Compared with species distribution, the geographic

6https://github.com/fMoW/dataset
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A. Appendix

A.1. A Detailed Version of Figure 2b
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Figure 6: A detailed version of Figure 2b to show four different ways to pretrain image encoder f() (orange box): (1) ImageNet
Pretraining (Deng et al., 2009): pre-training f() on ImageNet dataset; (2) Tile2Vec (Jean et al., 2019): pretraining f() with an
unsupervised triplet loss such that the embeddings of spatially nearby image tiles are more similar than those of distant tiles. (3) Geo-SSL
(Ayush et al., 2021) and SeCo(Manas et al., 2021): pretraining f() with a Momentum Contrast (MoCo-v2) (Chen et al., 2020c) style
constrastive loss in which they used locations as auxiliary information to generate spatially aligned (remote sensing) images at different
timestamps as positive samples; (4) GeoKR (Li et al., 2021a): pretraining f() in a teacher-student network by minimizing the KL
(Kullback–Leibler) loss between the image representations and a spatially aligned auxiliary data such as land cover maps M. The
pre-trained weights of f() are fine-tuned in a supervised manner (green box) for image classification. Here, location is only used as
auxiliary information for image encoder pre-training while being ignored during supervised learning stage.

A.2. Model Architecture Training Detail

A.2.1. TRAINING DETAILS OF IMAGE ENCODER f()
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Layer W()

Classification
Head g()

Model
Fine-Tuning

Model
Pre-Training

Figure 7: A detailed illustration of the image encoder f() we use in Figure 2 for model pre-training and fine-tuning.

Figure 7 is a detailed illustration of how we use the image encoder f() for model pre-training and fine-tuning. On both

iNat2018 and fMoW dataset, we use off-the-shelf image neural network F() to first encode the given image I into a

d(I) dimension image feature vector F(I) ∈ R
d(I) . On the iNatlist dataset, two pre-trained image models are used – 1)
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ImageNet pre-trained InceptionV3 (Szegedy et al., 2016) from PyTorchVision library7 and 2) ImageNet pre-trained Vision

Transformer8 (ViT) (Dosovitskiy et al., 2021) from Huggingface timm library. See Table 4 for the performance comparison

of these two models. On the fMoW dataset, we use Geo-SSL (Ayush et al., 2021) pretrained ResNet50 (He et al., 2015) as

F().

During the CSP pre-training stage, we feed F(I) into a projection layer W() which projects the image feature F(Ii) ∈ R
d(I)

into d dimension such that a contrastive learning objective can be formed between e(xi) and f(Ii). This illustrates as red

arrows in Figure 7.

During the image encoder fine-tuning stage, we drop the projection layer W() and append a classification head g() to the

end of F() which maps the image feature vector F(I) into logits over each image label, i.e., g(F(I)) ∈ R
Q. Q is the total

number of classes. This illustrates as blue arrows in Figure 7. Here, both W() and g() are implemented as multi-layer

perceptrons. In practice, on the iNat2018 dataset, we fine-tune the whole image encoder g(F(I)) instead of only linear

probing the g() because 1) both used Inception V3 and ViT image neural network are previously pre-trained on ImageNet

dataset whose images are different from the images in iNat2018; 2) Empirical experiments show that fine-tuning the whole

architecture yields better performances; 3) The same practice was adopted by Mac Aodha et al. (2019); Mai et al. (2020b).

On the fMoW dataset, we use Geo-SSL (Ayush et al., 2021) pretrained ResNet50 (He et al., 2015) and only linear probe on

the g(). That is because the used F() is self-supervised pre-trained on the same dataset.

A.2.2. TRAINING DETAILS OF LOCATION ENCODER e()

In terms of the location encoder, we use the Space2Vec grid (Mai et al., 2020b) as the location encoder for both datasets

except for Img. Only and Sup. Only (wrap) model. Img. Only does not use location encoders and Sup. Only (wrap) uses

wrap location encoder.

During model pre-training, after pre-training the image encoder f(), we lock f() and use it to pre-train e() as shown in the

red box of Figure 2c. Location encoder fine-tuning details have been described in Section 3.3

A.2.3. MODEL IMPLEMENTATION DETAILS

All models are implemented in PyTorch and trained on a Linux machine with 252GB memory and two GeoForce CUDA

cores. The code, data, and pre-trained models of this work are all available at https://gengchenmai.github.io/

csp-website/.

A.3. Implementation Details of SimCSE

The implementation of SimCSE shown in Figure 3c is inspired by Gao et al. (2021). Basically, we have initialized two

location encoder towers with identical structures. They share the parameters but they use independently sampled dropout

masks. The two dropout masks are sampled independently for every training examples during CSP pretraining. The masks

are automatically generated by the dropout layers.

In the implementation, we simply feed the same location xi to the same location encoder twice and get two location

embeddings e(xi) and e′(xi). Since they are based on two separate forward passes, they are based on different

dropout masks. When we obtain e′(xi), we not only get the location embedding for xi but also get embeddings for all

locations in the same mini-batch. Among all these locations in the mini-batch, we select the embedding of location xj –

e′(xj) where j ̸= i. Since e′(xj) and e′(xi) are generated based on the same forward pass, they share the same dropout

mask. So the pair (e(xi), e
′(xi)) is the dropout positive sample (the only difference is the dropout mask) and (e(xi), e

′(xj))
is the negative pair who use different dropout masks and encode different input locations. In short, SimCSE simply uses

dropout as a data augmentation tool to generate positive samples.

7https://pytorch.org/vision/main/models/generated/torchvision.models.inception_v3.html#

torchvision.models.inception_v3
8More specifically, we use the vit_tiny_patch16_224 implementation from Huggingface timm at https://github.com/

huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py by following Cong
et al. (2022).
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A.4. Model Hyperparameter Tuning

Since the self-supervised learning takes very long time to tune and hard to evaluate, we first perform a grid search to tune

the hyperparameters related to supervised fine tuning stage for the location encoder without self-supervised pre-training. In

other words, we tune those hyperparameters on the Sup. Only model. The best hyerparameter combination for Sup. Only

is used for all CSP models and MSE. The major hyperparameters we tune include the fine-tuning learning rate ηsuper =
[0.01, 0.005, 0.002, 0.001, 0.0005, 0.00005], the grid’s minimum scaling factor rmin = [0.1, 0.01, 0.001, 0.0005, 0.0001],
as well as the hyperparameters of location encoder’s multi-layer perceptron NNffn(·) such as its activation function σe =
[ReLU,LeakyReLU,GELU ], the number of hidden layers h = [1, 2, 3], the number of neurons k = [256, 512, 1024], and

the dropout rate in NNffn(·)D = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]. The hyperparameters are tuned one-by-one sequentially

by following the order: ηsuper, rmin, σe, h, k, and D. Based on the experiment, the best hyperparameter combination

for the few-shot learning on iNat2018 dataset is ηsuper = 0.0005, rmin = 0.01, σe = LeakyReLU , h = 1, k = 512,

dropout = 0.5. As for the few-shot learning on fMoW dataset, the best hyperparameter combination is ηsuper = 0.001,

rmin = 0.01, σe = GELU , h = 1, k = 512, dropout = 0.5. Based on hyperparameter tuning results, we find out that a

deeper NNffn(·), a larger h, for the location encoder does not necessarily increase the model performance.

After we get the best hyperparameter for the location encoder, we fix them and do a grid search to find the best hyperparame-

ters for self-supervised pre-training. The main hyperparameter which we tune is the self-supervised training learning rate

ηunsuper = [0.01, 0.001, 0.0005, 0.0002, 0.0001, 0.00001, 0.000002]. For CSP-MC-*, we tune the negative location loss

weight α1, SimCSE loss weight α2, the number of sampled negative locations C, three temperatures τ0, τ1, and τ2. For

CSP-NCE-*, we also fine tune β1 and β2.

On the iNat2018 dataset, the best hyperparameter for MSE is ηunsuper = 0.000002. For CSP-MC-*, the best hyperparameter

combination is ηunsuper = 0.0002, α1 = 1, α2 = 1, C = 1, τ0 = 1, τ1 = 1, and τ2 = 1. For CSP-NCE-*, the best

combination is ηunsuper = 0.0002, β1 = 1 and β2 = 1.

On the fMoW dataset, the best hyperparameter combination for each model is similar to those on the iNat2018 dataset. The

difference is ηunsuper, and its best value is 0.001 for all models.

We further try to tune the location encoder hyperparameters for pretrained encoders, but found that the result parameters do

not differ from those we got from previous hyperparameter tuning for Sup. Only model.

A.5. The Baseline Selection Criteria

In the following, we will discuss the selection criteria we use to select baseline models, especially those Img. Only models

shown in Figure 6.

For the iNat2018 dataset, we only use Img. Only (ImageNet) and did not include some baselines such as Img. Only

(Tile2Vec), Img. Only (Geo-SSL), and Img. Only (GeoKR) in Table 1, because they are not applicable:

• Img. Only (Tile2Vec) assumes geospatially nearby remote sensing (RS) images are similar in the image embedding space.

This assumption does not work for species images. Two bird from different species can locate nearby each other.

• Img. Only (Geo-SSL) needs to use RS images taken at the same location at different times as positive samples for

self-supervised training. This idea does not work for species images either.

• Img. Only (GeoKR) requires geographically co-located land use maps which adds additional information, which makes it

an unfair comparison.

For the fMoW dataset, we select Img. Only (Tile2Vec) and Img. Only (Geo-SSL) as two Img. Only baselines because:

• Img. Only (ImageNet) shows significantly lower performance than Img. Only (Geo-SSL) on fMoW according to Ayush

et al. (2021). So we did not compare with it but used Img. Only (Geo-SSL) as the strong baseline.

• Img. Only (GeoKR) requires additional global land use maps which leads to unfair comparison.

• For Img. Only (Tile2Vec), its assumption is very weak in the fMoW dataset. In the original Tile2Vec paper (Jean et al.,

2019), they took a large RS image and extracted nearby RS tiles from it. Some of the nearby RS tiles are usually very

close or even share some regions. In the fMoW dataset, the RS images are samples from different locations and the nearby

RS images are rather far away. We assume the performance of Img. Only (Tile2Vec) should be poor on fMoW. The

experiment results in Table 5 confirm our assumption.
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A.6. Additional Related Work

Unsupervised Representation Learning Unsupervised text encoding models such as transformer (Vaswani et al., 2017;

Devlin et al., 2019) has been effectively utilized in many Natural Language Processing (NLP) tasks. At its core, a trained

model encodes words into vector space representations based on their positions and context in the text. Following the

success in NLP, there has been significant recent progress in unsupervised image pretraining (He et al., 2020; Caron et al.,

2020; Ayush et al., 2021). Interestingly almost all of them are based on certain form of contrastive learning (Hadsell et al.,

2006), which helps to construct unsupervised classification objectives from continuous inputs such as images. He et al.

(2020) proposes Momentum Contrast (MoCo) for unsupervised visual representation learning. To increase the number of

negative examples in contrastive training, they uses a queue of multiple mini-batches. Similar strategy has been adopted in

NLP (Gao et al., 2021). To improve the encoding consistency between mini batches, they make the target image encoder

parameterizes a moving average of the query image encoder. In this work we are focusing on the pretraining of location

encoder with a frozen image encoder. Our approach is very memory efficient (easily scaling up to 8192 batch size) and

therefore avoid the need of multi-batch training.

Contrastive Learning A contrastive training loss takes a pair of inputs (xi,xj) and minimizes the embedding distance

when they are similar according to certain signal (e.g., from the same class, or generated from the same original examples)

but maximizes the distance otherwise. Common effective ways to construct contrastive loss include 1) data augmentation

techniques, which create noise/augmented versions of original examples as positive sample pairs (Gutmann & Hyvärinen,

2010; He et al., 2020; Chen et al., 2020a; Zbontar et al., 2021; Gao et al., 2021); 2) construct in-batch negative pairs using

a large batch size (Chen et al., 2020a; Zhang et al., 2020; Radford et al., 2021a); 3) hard negative mining for supervised

learning tasks (Karpukhin et al., 2020; Gao et al., 2021). These techniques has been successfully applied to a variety of

image tasks (Chen et al., 2020a; He et al., 2020; Zbontar et al., 2021), text tasks (Mnih & Teh, 2012; Mikolov et al., 2013;

Karpukhin et al., 2020; Gao et al., 2021), and multi-model tasks (Zhang et al., 2020; Jia et al., 2021; Radford et al., 2021a;

Zhai et al., 2021). However, contrastive learning has never been used to learn image-location alignment in a pre-training

set-up. CSP adapts contrastive strategies that work well on text and image and apply to geo-location data in order to

construct positive and negative sample pairs.

Contrastive Learning on Multimodal Data Recently, contrastive learning has been utilized on multimodal data (e.g.

text-image pairs) by systems such as ConVIRT (Zhang et al., 2020), CLIP (Radford et al., 2021a), and ALIGN (Jia et al.,

2021). Given a set of text-image pairs, the text and image data can be encoded separately by a text encoder and an image

encoder. The resulting text and image representations are contrasted against each other such that the correct language-vision

aligment is learned (Zhai et al., 2021). After this self-supervised pretraining, these models can be directly used for zero-shot

transfer tasks such as image classificaion, image-text retrieval, and etc. While both CLIP (Radford et al., 2021a) and ALIGN

(Jia et al., 2021) proposed to train the image encoder and text encoder jointly from scratch during contrastive pre-training,

LiT (Zhai et al., 2021) has shown that locking the image encoder that is initialized by a pre-trained model, while training

text encoder from scratch during image-text contrastive pre-training can significantly improve the model performance on

multiple downstream tasks.

Machine Learning on Spatial Data Recently, numerous studies have shown that appropriately incorporating (geo)spatial

information into the learning framework can significantly improve the model performance on variety of geospatial tasks.

Just to name a few, these tasks include species fine-grained recognition (Chu et al., 2019; Mac Aodha et al., 2019; Mai

et al., 2022d), ground-level image classification (Tang et al., 2015), Point of Interest (POI) facade image classification

(Yan et al., 2018), POI type classification (Mai et al., 2020b), remote sensing (RS) image classification9 (Christie et al.,

2018; Ayush et al., 2021; Manas et al., 2021), poverty prediction (Jean et al., 2016; 2019), land use classification (Jean

et al., 2019; Ayush et al., 2021), satellite image super-resolution (He et al., 2021), and geographic question answering (Mai

et al., 2020a; Scheider et al., 2021). Despite all these success stories, these works either directly utilize spatial data in a

supervised learning framework (Tang et al., 2015; Christie et al., 2018; Chu et al., 2019; Mac Aodha et al., 2019; Mai et al.,

2020a;b; 2022d), or incorporate spatial data in an implicit manner in the unsupervised/self-supervised pre-training stage

(Jean et al., 2019; Ayush et al., 2021; He et al., 2021; Manas et al., 2021; Li et al., 2021a). The former cannot utilize massive

unlabeled (geo)spatial datasets and performs poorly in a few-shot learning setting. The latter only utilizes spatial data in the

9Although remote sensing images can be largely regarded as geospatial data, here, we refer to the work which considers the geo-
locations or timestamps of those RS images for ML model design instead of treating RS image classification as a pure computer vision
task.
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