
Long Horizon Temperature Scaling

Andy Shih 1 Dorsa Sadigh 1 Stefano Ermon 1

Abstract

Temperature scaling is a popular technique for

tuning the sharpness of a model distribution. It is

used extensively for sampling likely generations

and calibrating model uncertainty, and even fea-

tures as a controllable parameter to many large

language models in deployment. However, au-

toregressive models rely on myopic temperature

scaling that greedily optimizes the next token.

To address this, we propose Long Horizon Tem-

perature Scaling (LHTS), a novel approach for

sampling from temperature-scaled joint distribu-

tions. LHTS is compatible with all likelihood-

based models, and optimizes for the long horizon

likelihood of samples. We derive a temperature-

dependent LHTS objective, and show that finetun-

ing a model on a range of temperatures produces

a single model capable of generation with a con-

trollable long horizon temperature parameter. We

experiment with LHTS on image diffusion mod-

els and character/language autoregressive models,

demonstrating advantages over myopic tempera-

ture scaling in likelihood and sample quality, and

showing improvements in accuracy on a multiple

choice analogy task by 10%. Our code is available

at https://github.com/AndyShih12/

LongHorizonTemperatureScaling.

1. Introduction

Temperature scaling is a simple yet effective technique for

rescaling model outputs: lowering the temperature to in-

crease the probability of high-likelihood outcomes, or vice

versa. In discriminative settings, tuning the temperature has

shown success as a calibration method (Guo et al., 2017;

Nixon et al., 2019; Desai & Durrett, 2020). The model out-

puts a small set of class probabilities, which can be tractably

rescaled to match the desired calibration metric.
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In generative tasks, temperature scaling also serves as a

method for controlling the randomness of model outputs,

and has shown to be useful for many natural language gen-

eration tasks such as summarization and question answer-

ing (Liang et al., 2022). Many current models in deploy-

ment (Brown et al., 2020; Bommasani et al., 2021) even

expose the model temperature as a user-controllable param-

eter in their API. These autoregressive language models

execute temperature scaling one token at a time, rescal-

ing the probability of the next token to be proportional to

log p(xi|x<i)/T . However, this mechanism is myopic, op-

timizing for the next token instead of the full sequence.

We reexamine the current practice of temperature scaling for

generative models. Unlike discriminative tasks, generative

tasks produce high-dimensional outputs. In other words,

rescaling the model outputs should, in principle, rescale

joint probabilities according to log p(x)/T . Lowering the

temperature of a language model should ideally bias the

model towards generation of full text sequences with high

joint likelihood, not just greedy generation of the next likely

tokens. However, due to the intractability of joint tempera-

ture scaling, existing model families rely on various ad-hoc

approximations such as myopic temperature scaling. This

perspective highlights the following concerns.

A) Current temperature scaling for autoregressive models

is a myopic approximation to temperature scaling of

joint probabilities.

Many other model families do not support myopic approxi-

mations, and are left with the intractable problem of joint

temperature scaling. Some sidestep the problem by defining

various notions of pseudo-temperatures (Kingma & Dhari-

wal, 2018; Vahdat & Kautz, 2020).

B) Many non-autoregressive generative models either rely

on pseudo-temperatures or do not use temperature scal-

ing altogether.

To address these concerns, we aim head-on for the goal

of joint temperature scaling. Instead of handling various

model-specific temperature scaling techniques, we set out

to develop a practical and general mechanism for sampling

from temperature-scaled joint distributions. We propose

1





Long Horizon Temperature Scaling

log p(x) =
∑

i log p(xi|x<i). When sampling with a tem-

perature T , they rescale each univariate conditional by T .

log pmyopic
T (xi|x<i) = log

elog p(xi|x<i)/T

∑

k e
log p(xi=k|x<i)/T

(2)

This approach is efficient since it handles one dimension at a

time and only requires rescaling the output logits. However,

since the scaling is myopic, the chain rule factorization does

not preserve the scaled joint distribution in Eq 1.

log pT (x) ̸=
∑

i

log pmyopic
T (xi|x<i) (3)

It is easy to see that in the extreme case, myopic scaling of

an autoregressive model with T → 0 will not necessarily

produce the argmax sample of the joint distribution.

2.2. Pseudo-temperature scaling

Non-autoregressive models are often associated with various

ad-hoc notions of pseudo-temperature scaling. For example,

some latent variable models (Kingma & Dhariwal, 2018;

Vahdat & Kautz, 2020) rescale the variance of the prior

of the latent variable. However, these notions of pseudo-

temperature are often model-specific, and have an unclear

relationship to temperature scaling of the data likelihood.

3. Related Work

Temperature scaling is an effective method for calibration

in discriminative settings (Guo et al., 2017; Nixon et al.,

2019; Desai & Durrett, 2020), where the output predic-

tions of a model can be rescaled post-hoc. In generative

settings, such as natural language generation, myopic tem-

perature scaling serves as an important knob for controlling

the randomness of autoregressive models, often featuring as

a user-controllable parameter in deployment (Brown et al.,

2020; Bommasani et al., 2021). For latent variable models,

such as normalizing flows or VAEs, reducing the variance

of the prior during sampling has been explored as a pseudo-

temperature mechanism (Kingma & Dhariwal, 2018; Vah-

dat & Kautz, 2020). Due to the high-dimensional output

space of generative tasks, however, these above methods are

approximations that do not directly scale the temperature

of the joint distribution, and are typically model-specific.

Compared to these methods, LHTS presents a unified and

tractable mechanism for temperature scaling of the joint

distribution.

Other techniques for post-hoc manipulation of autoregres-

sive model generation include top-k (Fan et al., 2018) or

nucleus sampling (Holtzman et al., 2019). More intensive

search-based alternatives are also popular, such as beam

search (Li et al., 2016; Vijayakumar et al., 2018) for pick

out high-likelihood generations. In terms of computational

cost, LHTS only requires a one-time finetuning of the model,

after which long horizon temperature-scaled outputs can be

generated directly without search.

Biasing the model towards higher-likelihood samples can

also be viewed as controllable generation. Some rele-

vant works include Quark (Lu et al., 2022), which parti-

tions the dataset based on a control signal of interest (e.g.

toxicity), and reinforces the model with its own genera-

tions. Other works on controllable generation include class-

conditional generation, for example with diffusion models

for images (Nichol & Dhariwal, 2021).

Finally, LHTS relates closely to amortized inference (Gersh-

man & Goodman, 2014), since we learn a model to predict

intractable temperature-scaled joint distributions. As the

temperature approaches zero, LHTC approximates MAP

inference (Koller & Friedman, 2009).

4. Long Horizon Temperature Scaling

We propose long horizon temperature scaling (LHTS), a

general method to temperature scale the joint distribution of

likelihood based models. LHTS proceeds by directly learn-

ing a model qT to match the temperature scaled distribution

in Eq. 1. The model qT should have tractable likelihood

and sampling, but typically this is satisfied by choosing the

same model family as p, or even finetuning from p.

min
qT

KL(pT ||qT ) = min
qT

Ex∼pT
[log pT (x)− log qT (x)]

= min
qT

Ex∼pT
[− log qT (x)]

Although we don’t have sample access to pT , we can appeal

to importance sampling from p.

Ex∼pT
[− log qT (x)]

=Ex∼p
e(log p(x)/T )−logZpT

p(x)
[− log qT (x)]

=Ex∼pe
1−T
T

log p(x)−logZpT [− log qT (x)] (4)

Optimizing qT with Eq. 4 will give us the desired tempera-

ture scaled distribution from Eq. 1, although the variance of

the loss can be high due to the importance weights.

We note that the intractable constant logZpT
can be ignored

since it evaluates as a constant multiplicative factor of the en-

tire expression. More importantly, though, the same insight

allows us to subtract an arbitrary data-independent baseline

b for variance reduction. Since the importance weights are

not in log-space, we need to carefully choose a baseline to

keep the weights within a manageable range. We opt for

keeping the weights close to 1 by matching the empirical
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mean of the exponent.

b =
1

|D|
∑

x∈D

1− T

T
log p(x) (5)

Put together, the loss for training qT can be understood

as a reweighing of data by a factor wT (x) based on the

temperature-scaled joint probabilities.

wT (x) = exp(
1− T

T
log p(x)− b) (6)

L(qT ) = −Ex∼p[wT (x) log qT (x)] (7)

Corollary 4.1. eb

ZpT

L(qT ) = KL(pT ||qT ) +H(pT ).

Proof. Evaluating eb

ZpT

L(qT ) gives Eq. 4, which is equal to

KL(pT ||qT ) +H(pT ).

The idea of LHTS is to train a model qT with tractable sam-

pling on the objective in Eq. 7, so that we can sample from

qT ≈ pT efficiently after training. In this sense, LHTS can

be considered an amortized inference method for accessing

otherwise intractable temperature-scaled joint distributions.

Compared to myopic temperature scaling, LHTS is not a

pure post-hoc transformation since it requires model learn-

ing. Nevertheless, we can avoid learning completely from

scratch, by finetuning qT from p (which can be thought of as

qT=1). In return for the cost of finetuning, LHTS improves

upon myopic temperature scaling in two ways. First, the

temperature operates on the joint (long horizon) distribution,

instead of greedily on one dimension at a time. Second,

LHTS can be readily applied to any likelihood-based gener-

ative model, beyond just autoregressive models.

In the rest of this section, we examine LHTS on hierarchical

latent variable models and autoregressive models.

4.1. LHTS on Hierarchical Latent Variable Models

Applying LHTS on hierarchical latent variable models is

straightforward, by using their variational lower bound esti-

mates of the data likelihood.

log p(x0) ≥ Eh

[

DKL(h(xK |x0)||p(xK))− log p(x0|x1)

+
∑

k>1

DKL(h(xk−1|xk, x0)||p(xk−1|xk))
]

(8)

We can then plug in this likelihood lower bound to LHTS

to compute the importance weights for each data point, and

finetune qT with Eq. 7, where the inner likelihood is again

evaluated with the lower-bound in Eq. 8.

Diffusion Models Although diffusion models can also be

formulated as a hierarchical latent variable model, they are

often trained using a simpler MSE loss on the noise (Ho

et al., 2020). Nevertheless, LHTS is still directly applicable

by scaling the loss for each point by the importance weight.

L(qT ) = (9)

Ek,x0,ϵ

[

wT (x0)||ϵ− ϵqT (
√
ᾱkx0 +

√
1− ᾱkϵ, k)||2

]

We can apply LHTS in exactly the same way for other

likelihood-based models by scaling the log-likelihood loss

of each datapoint by its importance weight. For autore-

gressive models, however, we can take advantage of the

autoregressive factorization to derive a variance-reduced

formulation of LHTS, which we describe next.

4.2. Variance-Reduced LHTS on Autoregressive Models

To apply LHTS to autoregressive models, we first rewrite

the LHTS objective from Eq. 7 into a form that is amenable

to autoregressive architectures by first sampling the index i
uniformly, then the prefix x<i, and then the suffix x≥i.

− Ex∼p[wT (x) log qT (x)]

=− Ex∼p[
∑

i

wT (x) log qT (xi|x<i)]

=− Ei,x<i∼pEx≥i∼p(·|x<i)[wT (x) log qT (xi|x<i)]

The purpose of this roundabout rewriting of the expectation

is to illustrate that the autoregressive objective is composed

of many univariate conditional losses, for each index i and

prefix x<i. This derivation allows us to design the baseline

more carefully, since we can choose a different baseline for

each univariate conditional loss while still trivially preserv-

ing the strict properness of the overall loss function.

Proposition 4.2. Let LAR(qT ) =

−Ei,x<i∼pe
−b(x<i)Ex≥i∼p(·|x<i)[wT (x) log qT (xi|x<i)]

If b(x<i) is finite for all x<i, then LAR
qT is a strictly proper

loss function, i.e. the unique global optimum is qT = pT .

Proof. Each inner expectation takes on an importance-

weighted log loss of the univariate conditional, correspond-

ing to optimizing KL(pT (·|x<i)||qT (·|x<i)). Since an

autoregressive model fits all the univariate conditionals

separately, these are independent optimization problems

each with strictly proper losses. Any positive combination

(b(x<i) is finite) preserves strict properness of the loss.

In particular, we can set b(x<i) =
1−T
T log p(x<i)+b(i)−b

to be the temperature scaled joint distribution of the prefix,
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giving us a variance-reduced importance weight.

− Ei,x<i∼pe
−b(x<i)Ex≥i∼p(·|x<i)[wT (x) log qT (xi|x<i)]

=− Ei,x<i∼pe
1−T
T

log p(x<i)−b(x<i)

Ex≥i∼p(·|x<i)[e
1−T
T

log p(x≥i|x<i)−b log qT (xi|x<i)]

=− Ei,x∼p[e
1−T
T

log p(x≥i|x<i)−b(i) log qT (xi|x<i)] (10)

Compared to Eq. 7, in Eq. 10 we modified the expression

in the exponent of the importance weight from log p(x) to

log p(x≥i|x<i). This makes sense intuitively: once we have

fixed a prefix x<i of the sequence, we only need to learn

how likely a suffix should be relative to other suffixes, so we

can ignore the probability of the prefix p(x<i). Moreover,

appealing to Proposition 4.2, we transformed the term b to

an index-dependent term b(i). In a similar spirit to Eq. 5,

we will set b(i) to keep the weights close to 1 by matching

the empirical mean of the suffix log-likelihoods.

b(i) =
1

|D|
∑

x∈D

1− T

T
log p(x≥i|x<i) (11)

Computing Suffix Likelihoods One important consider-

ation is the efficient implementation of variance-reduced

LHTS on modern causal architectures of autoregressive

models. Conveniently, we can vectorize the computation of

suffix log-likelihoods vi(x) = log p(x≥i|x<i) via a reverse

cumulative sum on the vector of univariate conditionals

ui = log p(xi|x<i).

Suffix Horizon Length Even with the above baseline, the

variance of joint likelihoods can still grow quickly when

the sequence length is long, e.g. 1024. A practical ap-

proach to reducing the variance even more is by limiting

the horizon to some length h. This means replacing all

the suffix log-likelihoods log p(x≥i|x<i) with a horizon-

bounded suffix log-likelihood log p(xi:k|x<i) where k =
min(i+ h, context length).

5. Implementation

In this section, we describe a list of practical considerations

for implementing LHTS, and include concrete pseudocode

for our implementation.

Clipping Even with a baseline to keep the exponents

small, the importance weights still involve exponentiation.

Therefore, the weights can become unstable when the log

probabilities are much higher than the baseline or when the

long horizon temperature is small. Therefore, we clip the

log of the importance weights, introducing bias but reducing

variance to help stabilize training.

Data Sampling The LHTS objective is written as an ex-

pectation over samples from p. We can indeed sample from

p in the training loop, although this empirically slowed down

training by around a factor of 3 for autoregressive language

models. In practice, we can assume that p is close to the data

distribution pdata, and evaluate the LHTS objective using the

training set D. The weights of samples from D are then

computed using p, which is faster than sampling from p.

Multi-Temperature Finetuning In some of the experi-

ments, we finetune a single weight-tied model on a set of

discrete temperatures T1 . . . Tk. Due to the differences in

importance weights, more extreme temperatures incurred

higher loss and hindered the training of other temperatures.

Hence, we normalize the loss of each temperature to help

with balanced training across the different temperatures.

KL Loss Following design choices of Quark (Lu et al.,

2022), we include a KL loss to avoid diverging from the

base model p too much. However, empirically we did not

observe differences from the inclusion of this auxiliary loss.

Streaming Statistics As written in Eq. 5 and Eq. 11, we

choose the baseline to be the empirical mean of the data

(suffix) log-likelihood. In practice, since the dataset could be

very large (e.g. OpenWebText), we instead use the running

mean of the data statistics as the baseline.

5.1. Pseudocode

Putting all the implementation details together, we present

the pseudocode for LHTS finetuning in Alg. 1. We only

present the variance-reduced LHTS for autoregressive mod-

els, since LHTS for diffusion models takes on a simpler

form. The horizon likelihood is computed in lines 4&5,

where RevCumSum computes reverse cumulative sum, and

pad(sh:,0:h) appends a vector of h zeros to the end of

sh:. Importantly, the weight in line 8 is tailored to each

index of the context window, using the formulation derived

from Section 4.2. On line 10, StopGradient prevents

the loss normalization calculations from affecting the gra-

dient computation. The algorithm outputs parameters for a

weight-tied model for sampling from multiple long horizon

temperatures. In practice, designing the temperature embed-

dings to be linearly constrained (Section 6.2) even allows

extrapolation to temperatures unseen during training.

6. Experiments

We examine LHTS on three types of models: a diffusion-

based image model (DDPM), an autoregressive character

model, and an autoregressive language model (GPT-2 (Rad-

ford et al., 2019)). For diffusion models, we compare against

a pseudo-temperature baseline that reduces the variance of
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ments over pseudo and myopic temperature scaling in the

trade-off between likelihood and sample diversity, and in

the accuracy of a multiple-choice analogy task.

Limitations and Future Work Temperature scaling the

joint distribution is inherently intractable (scaling the tem-

perature to 0 gives the argmax of the joint distribution),

and LHTS only aims to learn an approximation to the so-

lution. In addition, LHTS involves finetuning the model,

as opposed to pure post-hoc alternatives such as myopic

or pseudo temperature scaling. Future work can look into

exploring multi-temperature finetuning further, or other di-

vergences besides forward-KL for the LHTS objective.
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A. Experimental Settings

Diffusion Model

• Architecture: DDPM

• Learning Rate: 2e-4

• Batch Size: 128

• EMA decay: 0.9999

• Grad Clip: 1

• Steps: 50000

• Warmup Steps: 5000

• LHTS Clip: 0.5

Character Model

• Architecture: 12-layer Transformer, embedding 768, hidden size 3072, num heads 12, num layers 12

• Learning Rate: 5e-4

• Batch Size: 512

• Weight Decay: 0.001

• Grad Clip: 0.25

• Epochs: 200

• LHTS Clip: 3

• LHTS Suffix Horizon: 25

Language Model

• Architecture: GPT-2 (small, medium, large), context 1024

• Learning Rate: 1e-4

• Batch Size: 512

• Weight Decay: 0.01

• Grad Clip: 0.25

• Steps: 1000

• LHTS KL beta: 0.05

• LHTS Clip: 3

• LHTS Suffix Horizon: 8
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B. Example Sample from GPT-2 Large with LHTS

It is always great when you get a chance to get the inside scoop as to why a franchise is so popular, and today I have

learned that one of the reasons is the players they play them against. When I joined the St Louis Cardinals, one of my first

observations of Albert Pujols was that he was a little tough to hit. Now, having played him a ton of baseball, there’s no

doubt in my mind that he’s just as tough, if not tougher, than anybody else on the field. Pujols, like most power hitters before

him, is known best for running his bat out all over the field. The one thing he has in his favor, though, is that when he does

come back to the field, he always finds his way to hitting lefties.

C. Additional Experiments

We evaluate the diffusion models and language models on additional metrics such as SSIM, MAUVE score, and HELM

benchmarks.

C.1. Diffusion Model

We use the same DDPM diffusion model from Figure 2, finetuned with LHTS, and report the Structural Similarity Index

(SSIM). Unlike FID, SSIM does not consider diversity, but rather closeness to a ground-truth image. Therefore, we see that

the SSIM scores in Table 2 align roughly with the log-likelihood scores of Figure 2.

Table 2. SSIM of diffusion model with pseudo-temperature scaling and long horizon temperature scaling on CIFAR-10.

PseudoTemp LHTS

Temperature 0.98 0.985 0.99 0.99 0.995 0.999

SSIM 0.915 0.913 0.913 0.913 0.913 0.911

C.2. Language Model

We examine the same GPT-2 language model from Figure 5a and Table 1, using the gpt2-large size. We compare the use

of standard myopic temperature scaling versus LHTS finetuning on MAUVE score (Pillutla et al., 2021) and a number of

metrics from HELM (Liang et al., 2022).

MAUVE score We evaluate MAUVE score on OpenWebText (Gokaslan & Cohen, 2019) using the setup in the MAUVE

paper (Pillutla et al., 2021), with 1000 generations and a prompt length of 30 tokens. We find that LHTS does not improve

MAUVE score, and that both forms of temperature scaling (myopic and LHTS) in general decrease MAUVE score.

Table 3. MAUVE score of GPT-2 (gpt2-large) with myopic temperature scaling and long horizon temperature scaling on OpenWebText.

No Scaling Myopic Only LHTS

Myopic Temperature 1.0 0.8 0.0 1.0 0.0

Long Horizon Temperature 1.0 1.0 1.0 0.9 0.9

MAUVE 0.76 0.57 0.00 0.41 0.00
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HELM We evaluate on some metrics from the HELM benchmark such as XSUM (Narayan et al., 2018), BoolQ (Clark

et al., 2019), and NaturalQA open book (Kwiatkowski et al., 2019), which respectively test for summarization, classification,

and reading comprehension with multiple choice.

Table 4. Evaluation of GPT-2 (gpt2-large) on various metrics from HELM.

Myopic Only LHTS

Myopic Temperature 0.8 0.0 1.0 0.0

Long Horizon Temperature 1.0 1.0 0.9 0.9

xsum test rouge2 0.016 0.019 0.013 0.02

xsum test perp (lower) 6.72 2.305 5.137 1.725

boolq exact match 0.383 0.583 0.417 0.603

boolq exact match fairness 0.167 0.483 0.173 0.507

boolq exact match robustness 0.087 0.35 0.113 0.43

boolq ece 10 bin (lower) 0.112 0.164 0.124 0.174

naturalqa open f1 score 0.157 0.257 0.146 0.248

naturalqa open f1 score fairness 0.058 0.153 0.041 0.164

naturalqa open f1 score robustness 0.026 0.074 0.031 0.055

naturalqa open ece 10 bin (lower) 0.109 0.134 0.086 0.14

In Table 4, we can see that LHTS shows some improvements in perplexity and accuracy, and less so for calibration and

F1-score. LHTS can also help with fairness or robustness perturbations on both accuracy and F1-score. However, we note

that these scores are generally low due to the relatively small size of GPT-2, so evaluations on larger models are needed for

more conclusive results.
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