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Abstract

Methods based on ordinary differential equations

(ODEs) are widely used to build generative mod-

els of time-series. In addition to high computa-

tional overhead due to explicitly computing hid-

den states recurrence, existing ODE–based mod-

els fall short in learning sequence data with sharp

transitions – common in many real-world systems

– due to numerical challenges during optimiza-

tion. In this work, we propose LS4, a genera-

tive model for sequences with latent variables

evolving according to a state space ODE to in-

crease modeling capacity. Inspired by recent deep

state space models (S4), we achieve speedups

by leveraging a convolutional representation of

LS4 which bypasses the explicit evaluation of

hidden states. We show that LS4 significantly

outperforms previous continuous-time generative

models in terms of marginal distribution, clas-

sification, and prediction scores on real-world

datasets in the Monash Forecasting Repository,

and is capable of modeling highly stochastic data

with sharp temporal transitions. LS4 sets state–

of–the–art for continuous–time latent generative

models, with significant improvement of mean

squared error and tighter variational lower bounds

on irregularly–sampled datasets, while also be-

ing ×100 faster than other baselines on long se-

quences.

1. Introduction

Time series are a ubiquitous data modality, and find ex-

tensive application in weather (Hersbach et al., 2020) en-

gineering disciplines, biology (Peng et al., 1995), and fi-

nance (Poli et al., 2019). The main existing approaches for

deep generative learning of temporal data can be broadly

categorized into autoregressive (Oord et al., 2016), latent
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autoencoder models (Chen et al., 2018; Yildiz et al., 2019;

Rubanova et al., 2019), normalizing flows (de Bézenac et al.,

2020), generative adversarial (Yoon et al., 2019; Yu et al.,

2022; Brooks et al., 2022), and diffusion (Rasul et al., 2021).

Among these, continuous-time methods (often based on un-

derlying ODEs) are the preferred approach for irregularly-

sampled sequences as they can predict at arbitrary time steps

and can handle sequences of varying lengths. Unfortunately,

existing ODE–based methods (Rubanova et al., 2019; Yildiz

et al., 2019) often fall short in learning models for real-world

data (e.g., temperature and rain data that follow very sharp

transition dynamics) due to their limited expressivity and

numerical instabilities during backward gradient computa-

tion (Hochreiter, 1998; Niesen & Hall, 2004; Zhuang et al.,

2020).

A natural way to increase the flexibility of ODE-based mod-

els is to increase the dimensionality of their (deterministic)

hidden states. State–of–the–art methods explicitly compute

hidden states by unrolling the underlying recurrence over

time (each time step parametrized by a neural network),

incurring in polynomial computational costs which prevent

scaling to longer sequences.

An alternative approach to increasing modeling capacity is

to incorporate stochastic latent variables into the model, a

highly successful strategy in generative modeling (Kingma

& Welling, 2013; Chung et al., 2015; Song et al., 2020; Ho

et al., 2020). However, reference models like latent neural

ODE models (Rubanova et al., 2019) inject stochasticity

only at the initial condition of the system. In contrast, we in-

troduce LS4, a latent generative model where the sequence

of latent variables is represented as the solution of linear

state space equations (Chen, 1984). Unrolling the recur-

rence equation shows an autoregressive dependence in the

sequence of latent variables, the joint of which is highly ex-

pressive in representing time series distributions. The high

dimensional structure of the latent space, being equivalent

to that of the input sequence, allows LS4 to learn expressive

latent representations and fit the distribution of sequences

produced by a family of dynamical systems, a common set-

ting resulting from non–stationarity. We further show how

LS4 can learn the dynamics of stiff (Shampine & Thomp-

son, 2007) dynamical systems where previous methods fail

to do so. Inspired by recent works on deep state space mod-

els, or stacks of linear state spaces and non-linearities (Gu
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et al., 2020; 2021), we leverage a convolutional kernel rep-

resentation to solve the recurrence, bypassing any explicit

computations of hidden states via the recurrence equation,

which ensures log–linear scaling in both the hidden state

space dimensionality as well as sequence length.

We validate our method across a variety of time series

datasets, benchmarking LS4 against an extensive set of

baselines. We propose a set of 3 metrics to measure the

quality of generated time series samples and show that LS4

performs significantly better than baselines on datasets with

stiff transitions and obtains on average 30% lower MSE

scores and ELBO. On sequences with ≈ 20K lengths, our

model trains ×100 faster than the baseline methods.

2. Related Work

Rapid progress on deep generative modeling of natural lan-

guage and images has consolidated diffusion (Ho et al.,

2020; Song et al., 2020; Song & Ermon, 2019; Sohl-

Dickstein et al., 2015) and autoregressive techniques (Brown

et al., 2020) as the state–of–the–art. Although various ap-

proaches have been proposed for generative modeling of

time series and dynamical systems, consensus on the advan-

tages and disadvantages of each method has yet to emerge.

Deep generative modeling of sequences. All the major

paradigms for deep generative modeling have seen appli-

cations to time series and sequences. Prior works for time-

series generation have adopted VAE-, Flow-, and GAN-

based approaches (Chung et al., 2015; Deng et al., 2020;

Yu et al., 2017; Yoon et al., 2019) which utilize recurrent

architectures to keep track of internal states. For continuous–

time data, other works combine Gaussian processes (For-

tuin et al., 2020) or ODEs (Yildiz et al., 2019; Rubanova

et al., 2019) into their probabilistic frameworks and show

promising results for time-series extrapolation and gener-

ation. Other works on time-series have adopted diffusion-

based frameworks (Tashiro et al., 2021), but similar to the

methods requiring recurrent computations, these methods

suffer from prolonged generation time. Among these meth-

ods, most relevant to our work are latent continuous–time

autoencoder models proposed by Chen et al. (2018); Yildiz

et al. (2019); Rubanova et al. (2019), where a neural differen-

tial equation encoder is used to parameterize as distribution

of initial conditions for the decoder. Massaroli et al. (2021)

proposes a variant that parallelizes computation in time by

casting solving the ODE as a root finding problem. Beyond

latent models, other continuous–time approaches are given

in Kidger et al. (2020), which develops a GAN formulation

using SDEs.

State space models. State space models (SSMs) are at

the foundation of dynamical system theory (Chen, 1984)

and signal processing (Oppenheim, 1999), and have also

been adapted to deep generative modeling. Chung et al.

(2015); Bayer & Osendorfer (2014) propose VAE variants

of discrete–time RNNs, generalized later by (Franceschi

et al., 2020), among others. However, these models all

unroll the recurrence equation and are thus challenging to

scale to longer sequences.

Our work is inspired by recent advances in deep architec-

tures built as stacks of linear SSMs, notably S4 (Gu et al.,

2021; 2020). The HiPPO-initialized and deeply stacked lin-

ear SSMs have shown promising results for modeling long

sequences with unprecedented efficiency, and they have

shown remarkable modeling capacity for capturing long-

range dependencies across large time scale. Similar to S4,

our generative model leverages the convolutional representa-

tion of SSMs during training and inference, thus bypassing

the need to materialize the hidden state of each recurrence.

This allows us to speed up training and inference by a large

margin compared to prior generative methods. More impor-

tantly, we augment the deep SSMs to model sequential latent

variables, which increase the capacity to capture more com-

plex temporal dynamics (e.g. stiff transitions) and achieve

better generation results.

3. Preliminaries

We briefly introduce relevant details of continuous-time

SSMs and their different representations. Then we introduce

preliminaries of generative models for sequences.

3.1. State Space Models (SSM)

A single-input single-output (SISO) linear state space model

is defined by the following differential equation

d

dt
ht = Aht +Bxt

yt = Cht +Dxt

(1)

with scalar input xt ∈ R, state ht ∈ R
N and scalar output

yt ∈ R. The system is fully characterized by the matrices

A ∈ R
N×N ,B ∈ R

N×1,C ∈ R
1×N ,D ∈ R

1×1. Let

x, y ∈ C([a, b],R) be absolutely continuous real signals on

time interval [a, b]. Given an initial condition h0 ∈ R
N the

SSM (1) realizes a mapping x 7→ y.

SSMs are a common tool for processing continuous in-

put signals. We consider single input single output (SISO)

SSMs, noting that input sequences with more than a single

channel can be processed by applying multiple SISO SSMs

in parallel, similarly to regular convolutional layers. We use

such SSMs as building blocks to map each input dimension

to each output dimension in our generative model.

Discrete recurrent representation. In practice, continuous

input signals are often sampled at time interval ∆ and the
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sampled sequence is represented by x = (xt0 , xt1 , . . . , xtL)
where tk+1 = tk + ∆. The discretized SSM follows the

recurrence

htk+1
= Āhtk + B̄xtk

ytk = Chtk +Dxtk
(2)

where Ā = eA∆, B̄ = A−1(eA∆ − I)B with the assump-

tion that signals are constant during the sampling interval.

Among many approaches to efficiently computing eA∆, Gu

et al. (2021) use a bilinear transform to estimate eA∆ ≈
(I − 1

2A∆)−1(I + 1
2A∆).

This recurrence equation can be used to iteratively solve

for the next hidden state htk+1
, allowing the states to be

calculated like an RNN or a Neural ODE (Chen et al., 2018;

Massaroli et al., 2020).

Convolutional representation. Recurrent representations

of SSM are not practical in training because explicit calcu-

lation of hidden states for every time step requires O(N2L)
in time and O(NL) in space for a sequence of length L1.

This materialization of hidden states significantly restricts

RNN-based methods in scaling to long sequences. To effi-

ciently train an SSM, the recurrence equation can be fully

unrolled, assuming zero initial hidden states, as

ht0 = B̄xt0 ht1 = ĀB̄xt1 + B̄xt0

yt0 = CB̄xt0 yt1 = CĀB̄xt1 +CB̄xt0

ht2 = Ā
2
B̄xt2 + ĀB̄xt1 + B̄xt0 . . .

yt2 = CĀ
2
B̄xt2 +CĀB̄xt1 +CB̄xt0 . . .

and more generally as,

ytk = CĀ
k
B̄xtk +CĀ

k−1
B̄xk−1 + · · ·+CB̄xt0

For an input sequence x = (xt0 , xt1 , . . . , xtL), one can

observe that the output sequence y = (yt0 , yt1 , . . . , ytL)
can be computed using a convolution with a skip connection

y = CK ∗ x+Dx, (3)

where K = (B̄, ĀB̄, . . . , ĀL−1
B̄, ĀL

B̄)

This is the well-known connection between SSM and convo-

lution (Oppenheim & Schafer, 1975; Chen, 1984; Chilkuri

& Eliasmith, 2021; Romero et al., 2021; Gu et al., 2020;

2021; 2022)

and it can be computed very efficiently with a Fast Fourier

Transform (FFT), which scales better than explicit matrix

multiplication at each step.

1Further explanations in Appendix A.1

3.2. Variational Autoencoder (VAE)

VAEs (Kingma & Welling, 2013; Burda et al., 2015) are

a highly successful paradigm in learning latent representa-

tions of high dimensional data and is remarkably capable at

modeling complex distributions. A VAE introduces a joint

probability distribution between a latent variable z and an

observed random variable x of the form

pθ(x, z) = pθ(x | z)p(z)

where θ represents learnable parameters.

The prior p(z) over the latent is usually chosen as a stan-

dard Gaussian distribution, and the conditional distribution

pθ(x | z) is defined through a flexible non-linear mapping

(such as a neural network) taking z as input.

Such highly flexible non-linear mappings often lead to an

intractable posterior pθ(z | x). Therefore, an inference

model with parameters φ parametrizing qφ(z | x) is intro-

duced as an approximation which allows learning through a

variational lower bound of the marginal likelihood:

log pθ(x) ≥ −DKL(qφ(z | x)∥p(z)) (4)

+ Eqφ(z|x) [log pθ(x | z)]

whereDKL(·∥·) is the Kullback-Leibler divergence between

two distributions.

VAE for sequences. Sequence data can be modeled in many

different ways since the latent space can be chosen to encode

information at different levels of granularity, i.e. z can be a

single variable encoding entire trajectories or a sequence of

variables of the same length as the trajectories. We focus on

the latter.

Given observed sequence variables x≤T up to time T

discretized into sequence (xt0 , . . . ,xtL−1
) of length L

where tL−1 = T , a sequence VAE model with parame-

ters θ, λ, φ learns a generative and inference distribution

pθ,λ(x≤tL−1
, z≤tL−1

) =

L−1∏

i=0

pθ(xti | x<ti , z≤ti)pλ(zt | z<ti)

qφ(z≤tL−1
| x≤tL−1

) =

L−1∏

i=0

qφ(zti | x≤tti
)

where z≤tL−1
= (zt0 , . . . , ztL−1

) is the corresponding

latent variable sequence. The approximate posterior

qφ is explicitly factorized as a product of marginals

due to efficiency reasons we shall discuss in the next

section. Given this form of factorization, the variational

lowerbound has been considered for discrete sequence

data (Chung et al., 2015) by minimizing the objective

Eqφ(z≤tL−1
|x≤tL−1

)

[ L−1∑

i=0

DKL(qφ(zti | x≤ti)∥pλ(zi | z<ti))

− log pθ(xti | x<tiz≤ti)
]

(5)
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Our model also trains by this objective. After training,

the generative model can then sample zt from the prior pλ
autoregressively and given the sampled zt, each xt can be

sampled autoregressively using pθ(xti | x<tiz≤ti).

4. Method

In this section, we introduce Latent S4 (LS4), a latent

variable generative model parameterized using SSMs. We

show how SSMs can parametrize the generative distribu-

tion pθ(x≤T |z≤T )pλ(z≤T ), the prior distribution pλ(z≤T )
and the inference distribution qφ(z≤T | x≤T ) effectively.

For the purpose of exposition, we can assume zt, xt are

scalars at any time step t. Their generalization to arbitrary

dimensions is discussed in Section 4.4.

We first define a structured state space model with two input

streams and use this as a building block for our generative

model. It is an SSM of the form

d

dt
ht = Aht +Bxt +Ezt

yt = Cht +Dxt + F zt

where x, y, z ∈ C([0, T ],R) are continuous real signals on

time interval [0, T ]. We denote H(x, z,A,B,E,h0, t) =
Hβ(x, z,h0, t), where β denotes trainable parameters

A,B,E, as the deterministic function mapping from sig-

nals x, z to ht, the state at time t, given initial state h0 at

time 0. The above SSM can be compactly represented by

yt = CHβ(x, z,h0, t) +Dxt + F zt (6)

When the continuous-time input signals are discretized

into discrete-time sequences (xt0 , . . . , xtL−1
) and

(zt0 , . . . , ztL), the corresponding hidden state at time tk has

a convolutional view (assuming D = F = 0 for simplicity)

ytk = CKtk ∗ xtk +CK̂tk ∗ ztk ,

where Ktk = Ā
k
B̄, K̂tk = Ā

k
Ē

which can be evaluated efficiently using FFT. Additionally,

A is HiPPO-initialized (Gu et al., 2021) for all such SSM

blocks.

4.1. Latent Space as Structured State Space

The goal of the prior model is to realize a sequence

of random variables (zt0 , zt1 , . . . , ztL), which the prior

distribution pλ(z≤tL) models autoregressively. Suppose

(zt0 , zt1 , . . . , ztn) is a sequence of latent variables up to

time tn, we define the prior distribution of ztn autoregres-

sively as

pλ(ztn | z<tn) = N (µz,n(z<tn , λ), σ
2
z,n(z<tn , λ)) (7)

where the mean µz,n and standard deviation σz,n are deter-

ministic functions of previously generated z<tn parameter-

ized by λ. To parameterize the above distribution, we first

define an intermediate building block, a stack of which will

produce the wanted distribution.

LS4 prior block. The forward pass through our SSM is a

two–step procedure: first, we consider the latent dynamics

of z on [t0, tn−1] where we simply leverage Equation 6 to

define the hidden states to followHβ1
(0, z, 0, t). Second, on

(tn−1, tn], since no additional z is available in this interval,

we ignore additional input signals in the ODE and only

include the last given latent, i.e. ztn−1
, as an auxiliary signal

for the outputs, which can be compactly denoted, with a

final GELU non-linearity (which is the default in Gu et al.

(2021)), as

yz,n = GELU(Fyz
ztn−1

+Cyz
Hβ1

(0, 0, Hβ2
(0, z[t0,tn−1], htn−1

,0, tn−1)
︸ ︷︷ ︸

htn−1

, tn))

(8)

Output yz,n has the same dimensionality as each zt and is

a function of all z<tn and we will use it to build towards

modeling the distribution of ztn . We call the above equa-

tion LS4 prior layer and we define below our LS4 prior

block, which is built upon a ResNet structure with a skip

connection, denoted as

LS4prior(z[t0,tn−1], ψ) = LN(Gyz
yz,n + byz

) + ztn−1
(9)

where LN denotes LayerNorm and ψ denotes the union of

parameters βi,Cyz
,Fyz

,Gyz
, byz

. The subscripts to these

parameters indicate that they are specific to this prior block

and are not shared across blocks. We define the final param-

eters µz,n and σz,n for the conditional distribution in the

autoregressive model as the result of a stack of LS4 prior

blocks. Specifically, the input zt’s are input into a stack of

B blocks and at the final layer two separate blocks branch

out to separately parameterize µz,n and σz,n. During gen-

eration, as an initial condition, zt0 ∼ N (µz,0, σ
2
z,0) where

µz,0, σz,0 are learnable parameters, and subsequent latent

variables are generated autoregressively. We specify our

architecture in Appendix C and use λ to denote the union of

all trainable parameters.

4.2. Generative Model

Given the latent variables, we now specify a decoder that

represents the distribution pθ(x≤tL |z≤tL). Suppose z≤tL is

a latent path generated via the latent state space model,

the output path x≤tL also follows the state space for-

mulation. Assuming we have generated (xt0 , . . . , xtn−1
)

and (zt0 , . . . , ztn), the conditional distribution of xtn is

parametrized as

pθ(xtn |x<tn , z≤tn) = N (µx,n(x<tn , z≤tn , θ), σ
2
x) (10)
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where σx is a pre-defined observation standard deviation

and µx,n is a deterministic function of z≤tn and x<xn
.

LS4 generative block. Different from the prior block, both

observation and latent sequences are input into our model,

and we define intermediate outputs gx,n and gz,n as

htn =Hβ3
(0, ztn−1

, Hβ4
(x[t0,tn−1], z[t0,tn−1],0, tn−1), tn)

gx,n = GELU(Cgxhtn +Dgxxtn−1
+ Fgxztn)

gz,n = GELU(Cgzhtn +Dgzxtn−1
+ Fgzztn)

(11)

which are used to build a LS4 generative block defined as

ĝx,n = LN(Ggxgx,n + bgx) + xtn−1

ĝz,n = LN(Ggzgz,n + bgz ) + ztn

LS4gen(x[t0,tn−1], z[t0,tn], ψ) = (ĝx,n, ĝz,n)

(12)

where ψ denotes all parameters inside the block. Note that

the generative block gives two streams of outputs each hav-

ing the same ResNet-like structure as in the prior model, and

the output of our generative block can be used as inputs for

the next stack. We then define the final mean value µx,n as

the result of a stack of LS4 generative blocks. The initial con-

dition for generation is given as xt0 ∼ N (µx,0(z0, θ), σx)
where µx,0 exactly follows our formulation while taking

only zt0 as input. The subsequent xtn’s are generated au-

toregressively. We specify our architecture in Appendix C

and use θ to denote the union of all trainable parameters.

4.3. Inference model

The latent variable model up to time tn has intractable pos-

terior pθ(z≤tn | x≤tn). Therefore, we approximate this

distribution with qφ(z≤tn | x≤tn) using variational infer-

ence.

We parameterize the inference distribution at time tn to

depend only on the observed path x≤tn :

qφ(zt | x≤tn) = N (µ̂z,tn(x≤tn , φ), σ̂
2
z,tn

(x≤tn , φ)) (13)

This choice of dependency is as noted in our objective (Equa-

tion 5). By having each zt explicitly depending on x≤tn

only, we obviate the need for explicit recurrence to obtain

ztn . We can then leverage the fast convolution operation

to obtain all zt in parallel, thus achieving fast inference

time, in contrast to the autoregressive nature of the prior and

generative model.

LS4 inference block. The inference block is defined as

ŷz,n = GELU(Cŷz
Hβ5

(x[t0,tn], 0,0, tn−1) +Dŷz
xtn)

LS4inf(x[t0,tn], ψ) = LN(Gŷz
ŷz,n + bŷz

) + xtn
(14)

Notice that input x is fully present in [t0, tn] unlike in the

generative model. Similar to the prior counterparts, µ̂z,t and

σ̂z,t are obtained by first feeding xt’s into a stack of infer-

ence blocks where the final block branches out to separately

model the mean and variance. Due to the convolutional

nature of our inference model, the training and inference

can be done very efficiently, as will be demonstrated in the

next and the experiment section.

4.4. LS4: Properties and Practice

We highlight some properties of LS4. In particular, we com-

pare in the following proposition the expressive power of

our generative model against structured state space models.

Proposition 4.1. (LS4 subsumes S4.) Given any autore-

gressive model r(x) with conditionals r(xn|x<n) parame-

terized via deep S4 models, there exists a choice of θ, λ, φ

such that pθ,λ(x) = r(x) and pθ,λ(z|x) = qφ(z|x), i.e. the

variational lower bound (ELBO) is tight.

A proof sketch is provided in Appendix B. This result shows

that LS4 subsumes autoregressive generative models based

on vanilla S4 (Gu et al., 2021), given that the architecture

between SSM layers is the same. Crucially, with the as-

sumption that we are able to globally optimize the ELBO

training objective, LS4 will fit the data at least as well as

vanilla S4.

Scaling to arbitrary feature dimensions. So far we have

assumed the input and latent signals are real numbers. The

approach can be scaled to arbitrary dimensions of inputs and

latents by constructing LS4 layers for each dimension which

are input into a mixing linear layer. We call such parallelized

SSMs heads and provide a pseudo-code in Appendix C.

Proposition 4.2. (Efficiency.) For a SSM with H heads, an

observation sequence of length L and hidden dimension N

can be calculated in O(H(L+N) log(L+N)) time and

O(H(L+N)) space.

We provide proof in Appendix B. Note that our model is

much more efficient in both time and space than RNN/ODE-

based methods (which requires O(N2L) in time and

O(NL) in space as discussed in Section 3.1). To demon-

strate the computation efficiency, we additionally provide

below pseudo-code for a single LS4 prior layer 8. The other

blocks can be similarly constructed.

def LS4 prior layer(z, A, B, C, F, h_0):

# z: (B, L, 1)

K = C @ materialize_kernel(z, A, B,

h_0) # O((L+N)log(L+N)) time

CH = fft_conv(K, z)

# O(LlogL) time and O(L) space

y = gelu(CH + F * z)

return y

Note that in practice, A is HiPPO initialized (Gu et al.,

2020) and the materialized kernel includes C so that the
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ficiency, and we believe that it has a further role to play in

modeling general time-series sequences.
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Deep Latent State Space Models for Time-Series
Generation

A. Derivations

A.1. Computational Complexity of Vanilla Recurrent Representation

Assuming recurrence of the simplest form in Equation 2, fulling computing matrix multiplication Āh̄tk requires O(N2).
Fully computing all hidden states sequentially requires O(N2L). In space, saving each hidden state requires O(N) and in

total requires O(NL).

B. Proof

To prove this result in Proposition 4.1, we first prove the following proposition.

Proposition B.1. (Expressivity.) Given any deep autoregressive S4 model r : (x<tn , tn) 7→ ytn evaluated at time tn given

input sequence x<tn , there exists a choice of θ such that µx,n(x<tn , 0, θ) = r(x<tn , tn).

Proof sketch. Consider SSM of the form in Equation 6 as a building block to our generative model with parameter θ. We can

choose E = F = 0 for all layers, which exactly reduces it to the SSM of an S4 model. Keeping all other hyperparameters

(e.g. non-linearities, number of stacking layers) the same, the final model is exactly the same as a deep autoregressive S4

model.

Now we give a proof sketch to Proposition 4.1,

Proposition 4.1. (LS4 subsumes S4.) Given any autoregressive model r(x) with conditionals r(xn|x<n) parameterized

via deep S4 models, there exists a choice of θ, λ, φ such that pθ,λ(x) = r(x) and pθ,λ(z|x) = qφ(z|x), i.e. the variational

lower bound (ELBO) is tight.

Proof sketch. From Proposition B.1 we know that we can choose θ so that pθ(x|z) = pθ(x) = r(x) for all z, i.e., choose a

decoder that ignores the latent variables z and uses the same autoregressive structure over the observed variables as r(x).
This implies the posterior pθ,λ(z|x) is equal to the prior pλ(z). We can then choose λ and φ so that pλ(z) = N (0, I) and

qφ(z|x) = N (0, I) for all x.

Proposition 4.2. (Efficiency.) For a SSM with H heads, an observation sequence of length L and hidden dimension N can

be calculated in O(H(L+N) log(L+N)) time and O(H(L+N)) space.

Proof. Recall SISO SSM of the form

d

dt
ht = Aht +Bxt

yt = Cht +Dxt

(15)

The calculation of (yt0 , . . . , ytL) involves materializing the convolution filter, which can be calculated in O((L +
N) log(L+N)) time and O(L + N) space for diagonal-plus-low-rank matrices (Gu et al., 2021). Since the convo-

lution is constant time in frequency domain, another computation cost comes from Fast Fourier Transform (FFT) and its

inverse, which is O(L logL) in time. The computation scales linearly with heads, Thus, a multi-input-multi-output (MIMO)

SSM with H heads can be processed in O(H(L+N) log(L+N)) time and O(H(L+N)) space.

C. Architecture

We parametrize our models using a similar architecture as in Goel et al. (2022), but there is no pooling operation because for

general time-series the time length is hardly divisible by a reasonable factor. Before we present the full structure, we present

how a multi-channel inputs are parametrized (in the case of LS4 prior layer (8):

12



Deep Latent State Space Models for Time-Series Generation

def LS4 prior layer multi(z, psi):

# z: (B, L, C)

for c in range(C):

z[:,:,c] = LS4_prior_layer(z[:,:,c], *psi.LS4_params)

z = linear(z) # (B, L, C) channel-wise mixing

return z

The for loop is presented for demonstration purposes. In practice, the channels can be processed in parallel.

C.1. Prior Model

We specify the parametrization of µz,n and σz,n in pseudo-code as the outputs of the following functions

def prior model(z, lambda):

# z: (B, L, z_dim) this is for time [t_0, t_{n-1}]

z = linear(z) # (B,L,H) encoding to H

outputs = []

outputs.append(z)

for i in range(lambda.num_layers1):

z = linear(z) # (B, L, H) -> (B, L, 2H)

outputs.append(z)

for i in range(lambda.num_layers2):

z = LS4_prior_block_multi(z, *lambda.LS4_params)

# (B, L, H) -> (B, L, H) multi-channel SSMs

z = ResBlock(z) # this is a general 1 layer residual block

z = z + outputs.pop()

for i in range(lambda.num_layers1):

z = z + outputs.pop()

outputs.append(z)

z = linear(z) # (B, L, 2H) -> (B, L, H)

for i in range(lambda.num_layers2):

z = LS4_prior_block_multi(z, *lambda.LS4_params)

# (B, L, H) -> (B, L, H) multi-channel SSMs

z = ResBlock(z) # this is a general 1 layer residual block

z = z + outputs.pop()

z = layernorm(z)

z = linear(z) # (B,L,z_dim)

mu_z = LS4_prior_block_multi(z, *lambda.LS4_params) # (B,L,z_dim)

sigma_z = LS4_prior_block_multi(z, *lambda.LS4_params)

# (B,L,z_dim)

return mu_z, sigma_z

C.2. Generative Model

def prior model(x, z, theta):

# z: (B, L, z_dim) this is for time [t_0, t_{n-1}]

z = linear(z) # (B,L,H) encoding to H

x = linear(x) # (B,L,H) encoding to H

outputs_x, outputs_z = [], []

outputs_z.append(z)

outputs_x.append(x)

for i in range(lambda.num_layers1):

z = linear(z) # (B, L, H) -> (B, L, 2H)

x = linear(x) # (B, L, H) -> (B, L, 2H)

outputs_z.append(z)

outputs_x.append(x)

for i in range(lambda.num_layers2):

z, x = LS4_gen_block_multi(z, *lambda.LS4_params)
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# (B, L, H) -> (B, L, H) multi-channel SSMs

zx = ResBlock(concat(z, x))

# this is a general 1 layer residual block

z, x = split(z, x)

z = z + outputs_z.pop()

x = x + outputs_x.pop()

for i in range(lambda.num_layers1):

z = z + outputs_z.pop()

x = x + outputs_x.pop()

outputs_z.append(z)

outputs_x.append(z)

z = linear(z) # (B, L, 2H) -> (B, L, H)

x = linear(x) # (B, L, 2H) -> (B, L, H)

for i in range(lambda.num_layers2):

x, z = LS4_gen_block_multi(x, z, *lambda.LS4_params)

# (B, L, H) -> (B, L, H) multi-channel SSMs

zx = ResBlock(concat(z, x))

# this is a general 1 layer residual block

z, x = split(z, x)

z = z + outputs_z.pop()

x = x + outputs_x.pop()

x = layernorm(x)

z = layernorm(z)

x = linear(concat(x, z)) # (B,L,2H) -> (B,L,x_dim)

return mu_x

In practice, we find that only using z input for the entire generative model produces better generation better than including x.

We hypothesize that x presents too strong of a signal for the model to reconstruct, and so the model learns to ignore signals

from z in that case.

C.3. Inference Model

def inference model(x, phi):

# x: (B, L, x_dim) this is for time [t_0, t_{n-1}]

x = linear(x) # (B,L,H) encoding to H

outputs = []

outputs.append(x)

for i in range(phi.num_layers1):

x = linear(x) # (B, L, H) -> (B, L, 2H)

outputs.append(x)

for i in range(phi.num_layers2):

x = LS4_inf_block_multi(x, *phi.LS4_params)

# (B, L, H) -> (B, L, H) multi-channel SSMs

z = ResBlock(z) # this is a general 1 layer residual block

x = x + outputs.pop()

for i in range(phi.num_layers1):

x = x + outputs.pop()

outputs.append(x)

x = linear(x) # (B, L, 2H) -> (B, L, H)

for i in range(phi.num_layers2):

x = LS4_inf_block_multi(x, *phi.LS4_params)

# (B, L, H) -> (B, L, H) multi-channel SSMs

z = ResBlock(z) # this is a general 1 layer residual block

x = x + outputs.pop()

x = layernorm(x)

x = linear(x) # (B,L,x_dim)

mu_z = LS4_inf_block_multi(x, *phi.LS4_params) # (B,L,x_dim)

sigma_z = LS4_inf_block_multi(x, *phi.LS4_params)
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# (B,L,x_dim)

return mu_z, sigma_z

D. Experiments

For all experiments we use AdamW optimizer with learning rate 0.001. We use batch size 64 and train for 7000 epochs for

FRED-MD, NN5 Daily, and Solar Weekly, 1000 epochs for Temperature Rain, and 500 epochs for Physionet and USHCN.

The datasets are split into 80% training data and 20% testing data.

D.1. MONASH Forecasting Repository

Data. For all selected MONASH data, FRED-MD, NN5 Daily, and Solar Weekly are normalized per sequence such that

each trajectory is centered at its own mean and normally distributed. We make this choice from the observation that for

some datasets such as NN5 Daily the min and max can vary significantly across different data points such that normalizing

sequences with dataset-wise statistics makes it difficult to learn the temporal dynamics, which would be on a widely different

range. For Temperature Rain we squash each sequence into [0, 1]. This is due to the fact that the dataset is always positive

and lands mostly around x-axis with sharp spikes in between. For the former 3 datasets, we do not use output activation

while for the last, we use sigmoid as our activation.

Hyperparameters. For all MONASH experiments, we use AdamW optimizer with learning rate 0.001 and no weight decay.

For each of prior/generative/inference model, we use 4 stacks for each for loop in the pseudocode. For each LS4 block,

we use 64 as the dimension of ht and 64 SSM channels in parallel, same as used in S4 and SaShiMi. Each residual block

consists of 2 linear layers with skip connection at the output level where the first linear layer has 2 times output size as the

input size and the second layer squeezes it back to the input size of the residual block. We generally find 5-dimensional

latent space gives better performance than 1, and so uses this setting throughout. We also employ EMA for model weights

and use 0.999 as the lambda value, but we do not find this choice crucial. We also use 0.1 as the standard deviation for the

observation as this gives better ELBO than other choices we experimented with such as 1, 0.5, 0.01. For baselines, we reuse

the code from official repo and follow their suggestions for training. To keep representation power similar, we use the same

size for the latent space (for latent variable models) and the same output standard deviation for ELBO evaluation.

Evaluation. For generation evaluation. The classification model and the prediction model uses a linear encoder and linear

decoder with a single S4 layer in between. The S4 layer uses 16 hidden state dimensions. For classification model, encoder

maps data dimension to 16 hidden state dimension, and averages over the sequence output from S4 layer before feeding

into decoder that outputs logit for binary classification. We use cross entropy loss. For prediction model, we use the same

linear encoder and a decoder that maps 16 hidden dimension to data dimension. We predict k = 10 steps into the future.

The evaluation models are trained using AdamW with 0.01 learning rate for 100 epochs with batch size 128. We generate

samples equal to the number of testing data, which together are used to train the two models.

Additional discussion. We also briefly discuss the surprising result that SaShiMi does not perform as well on general

time-series generation. We speculate that not using a quantization scheme to define discrete output conditionals, as standard

in autoregressive models for e.g., audio and images, is the cause behind this drop in performance. LS4 does not requires

quantization and sets best performance with a simple Gaussian conditional on the data space.

Additional comparisons. We additionally compare with two more relevant baselines (Fabius & Van Amersfoort, 2014)

and (Li et al., 2020) present result in Table 3. We note that Latent SDE has an abnormally high classification score for

Temperature Rain data, and demonstrate that this is when the classification score is not reliable. Upon visually examining

generated results for Latent SDE (Figure 4) compared to ground-truths (Figure 7), one can observe that the variation is

extremely noisy around the x-axis and that the selected classifier is not powerful enough to capture the distinction from real

data due to the considerable noise that exists in both generated and real data, resulting in high classification score. Marginal

and predictive scores are much worse in comparison and are more indicative of generation quality.

D.2. Physionet & USHCN

We follow the code provided by Rubanova et al. (2019) to process Physionet and follow the code provided by De Brouwer

et al. (2019) for USHCN. For Physionet we do not use any activation to constrain the output space, and for USHCN, we use

sigmoid activation for output.
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Data Metric VRNN Latent SDE LS4 (Ours)

FRED-MD Marginal ↓ 0.165 0.122 0.0221
Class. ↑ 0.000970 0.687 0.544
Prediction ↓ 0.371 1.62 0.0373

NN5 Daily Marginal ↓ 0.151 0.125 0.00671
Class. ↑ 0.00176 0.601 0.636
Prediction ↓ 1.22 0.957 0.241

Temp Rain Marginal ↓ 1.20 0.999 0.0834
Class. ↑ 0.479 14.534 0.976
Prediction ↓ 0.864 1.798 0.521

Solar Weekly Marginal ↓ 0.297 0.234 0.0459
Class. ↑ 0.00164 0.764 0.683
Prediction ↓ 0.964 1.01 0.141

Table 3: Additional generation results on FRED-MD, NN5 Daily, Temperature Rain, and Solar Weekly.

Task Data RNN-VAE Latent ODE LS4 (Ours) LS4IWAE (Ours)

Interp.
Physionet -412.8 -410.3 -669.0 -684.3

USHCN -244.9 -251.0 -312.2 -315.6

Extrap.
Physionet -220.2 -168.5 -250.2 -288.7

USHCN -113.3 -110.3 -194.4 -211.8

Table 4: ELBO comparisons with VAE-based models.

We present the variational lowerbound results in Table 4.

Hyperparameters. In general we keep the hyperparameter choices the same as in MONASH, and we describe a few

differences for these 2 datasets. For USHCN, we use 10 as the dimension for latent space, same as in Rubanova et al. (2019)

and we use Sigmoid as the output activation with output standard deviation 0.01. For Physionet, we use no output activation

and 0.05 standard deviation, and use 20-dimensional latent space, same as in baselines.

D.3. Runtime

We test all models on a single RTX A5000 GPU. To set up the dataset, we need to fully populate the GPU for each dataset

during training for our benchmarking. For sequence lengths {80, 320, 1280, 5120, 20480}, we build dataset of length

{102400, 25600, 6400, 1600, 400} each with batch size {1024, 256, 64, 16, 4} so that for each dataset the models are trained

with 100 iterations.

E. Generation Results

We present ground-truths and generations on the two hardest selected datasets, NN5 Daily and Temperature Rain because

these are the hardest to model.
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