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ABSTRACT 1 
Max-pressure (MP) is a decentralized adaptive traffic signal control algorithm that has been shown 2 
to maximize throughput for private vehicles; however, MP algorithms do not consider the 3 
movement of transit vehicles. Transit signal priority (TSP), on the other hand, aims to grant priority 4 
to transit vehicles at traffic signals, improving the reliability and efficiency of transit operations. 5 
To balance the trade-off between performance of private vehicles and transit vehicles, this study 6 
proposes a novel occupancy-based MP (OCC-MP) algorithm that prioritizes the movement of 7 
higher occupancy vehicles (HOV), including buses. OCC-MP specifically considers the average 8 
occupancies of upstream queued vehicles and prioritizes the movements with more queued 9 
passengers. Doing so implicitly provides priority to transit vehicles without imposing rules or 10 
constraints, which makes it applicable to networks with mixed traffic and transit vehicles in shared 11 
lanes. Simulations on a grid network under varying demands and transit configurations 12 
demonstrate the effectiveness of OCC-MP at providing TSP which simultaneously reducing the 13 
negative impact imparted onto lower occupancy vehicles, such as private automobiles. Moreover, 14 
the performance of OCC-MP is robust to errors in passenger occupancy information from transit 15 
vehicles and can be applied when passenger occupancies of private vehicles are not available. In 16 
a fully connected vehicle environment, OCC-MP reduces travel time for higher occupancy 17 
passenger vehicles and also outperformed baseline control methods in a partially connected 18 
environment. Furthermore, OCC-MP demonstrates a larger stable region within feasible set of 19 
demands compared to rule-based TSP strategies integrated into the MP framework.  20 
  21 
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INTRODUCTION 1 
Adaptive Traffic Signal Control (ATSC) is an intelligent transportation system technology that 2 
aims to optimize traffic flow by dynamically adjusting signal timings based on real-time traffic 3 
patterns. Max Pressure (MP) is a decentralized ATSC approach that has gained popularity due to 4 
its effectiveness in improving vehicle throughput at intersections. Initially developed for packet 5 
transmission scheduling in wireless networks (1), the MP concept was later extended to traffic 6 
signal control by (2). MP-based traffic signal control algorithms operate independently at each 7 
intersection and rely on local information from approach links upstream and downstream of the 8 
intersection. Unlike some other ATSC approaches, MP algorithms do not require knowledge of 9 
future traffic demands, making them more practical and applicable in real-world settings. MP 10 
control is based on distributing vehicles from longer queues to shorter queues (3). Specifically, the 11 
control policy assigns the right of way to the phase in a traffic signal that serves movements with 12 
higher upstream metrics such as queue length, travel time or delay toward downstream links that 13 
are uncongested in order to maximize throughput (2, 4–11). While there have been several 14 
variations of the MP algorithm proposed since 2013, most of the research has focused on 15 
maximizing throughput for private vehicles without considering its impact on other vehicle classes, 16 
especially transit vehicles. 17 

Transit signal priority (TSP) is a traffic engineering technique that aims to enhance the 18 
performance of public transportation by granting priority to transit vehicles at traffic signals. Its 19 
primary objective is to alleviate delays caused by traffic signals, thereby improving the reliability, 20 
efficiency, and speed of public transportation services. TSP techniques can generally be classified 21 
into two categories: “active” and “passive.” Passive TSP relies on pre-programmed signal timing 22 
plans to prioritize public transit vehicles at specific times or on designated routes, without direct 23 
communication between the transit vehicle and traffic signals. It is effective for fixed-route bus 24 
lines with predictable schedules (12, 13). In contrast, active TSP involves real-time communication 25 
between transit vehicles and traffic signals, allowing for dynamic adjustments to signal timing 26 
based on the vehicle’s needs. Active TSP requires a two-way communication system, with transit 27 
vehicles sending requests to the traffic signal system, which then responds by adjusting signal 28 
timing through methods like green extension and red truncation (14–19). Most of these studies 29 
have focused on developing TSP strategies based on fixed cycle lengths or are limited to dedicated 30 
bus lanes. As a result, these strategies overlook the potential consequences on private vehicles i.e., 31 
overall traffic flow. In addition, these studies rely on rule-based approaches and optimization under 32 
various constraints to balance travel time of transit and private vehicles (20). 33 

There exists a trade-off between TSP and ATSC in the context of intersection management 34 
(21). TSP focuses on minimizing delays specifically for transit vehicles at intersections, while 35 
ATSC aims to minimize overall vehicle delays without distinguishing between private vehicles 36 
and transit. Adaptive-TSP systems are considered to be the most intelligent and effective strategy 37 
as they dynamically respond to changing traffic conditions and adjust signal timings accordingly. 38 
These systems utilize real-time traffic information to optimize performance measures, such as 39 
minimizing delay for both vehicles and passengers. In many cases, the optimization objectives 40 
consider prioritizing factors like maximizing person capacity or minimizing person delay, schedule 41 
delay, vehicle queues and emissions rather than vehicle-based measures alone (22–34). The 42 
computational complexity of these problems calls for formulation as mixed integer linear problems 43 
that are commonly solved using techniques such as dynamic programming (35, 36), genetic 44 
algorithms (37, 38), reinforced learning (39–42). With the emergence of connected vehicle (CV) 45 
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technology, researchers have leveraged two-way communication, precise vehicle location 1 
tracking, and passenger count information in TSP research (37, 43–46).   2 

A recent study (47) proposed the integration of rule-based TSP into MP control and 3 
demonstrated that the policy can outperform fixed-time-TSP and adaptive-TSP policies in 4 
reducing vehicle travel times while having the ability to serve a larger demand. However, the 5 
proposed policy relies on constraints that reduce the stable region compared to the original max 6 
pressure policy. Moreover, the control uses a set of rules that switch between the original control 7 
policy and TSP depending on the detection of buses. The application was also limited to arterials 8 
with dedicated bus lanes, which limits the applicability of the control policy as most urban 9 
networks have shared lanes for transit vehicles and private automobiles.  10 

This study proposes a novel occupancy-based MP policy (OCC-MP) that combines 11 
passenger occupancies and vehicle queues when determining signal timings. By prioritizing 12 
movements with more queued passengers in the signal timing process, the movement of transit 13 
vehicles is implicitly prioritized over private automobiles since they typically carry more 14 
passengers. It also can provide priority to higher occupancy private automobiles if occupancy 15 
information of these vehicles is available. Unlike previous attempts to integrate TSP with MP, the 16 
proposed strategy can also be applied to networks with shared bus lanes (i.e., transit vehicles and 17 
private automobiles move in the same lanes). OCC-MP can also be applied in a partial CV 18 
environment, both when a subset of vehicles can be detected and when a subset can provide 19 
occupancy information to the signal controller. The performance of OCC-MP is shown to be robust 20 
to errors in passenger occupancy information from transit vehicles. Finally, a stability analysis 21 
demonstrates that the control policy has a larger stable region compared to rule-based MP that 22 
provides TSP.  23 

The remainder of this paper is organized as follows. The next section provides an overview 24 
of the proposed OCC-MP control policy. This is followed by the simulation setup used to evaluate 25 
the performance of OCC-MP against baseline methods. Then, the results of the experiments are 26 
presented, including a comparative analysis between the proposed methods and the baseline 27 
approaches. The last section concludes the paper by highlighting the important findings and 28 
suggesting potential directions for future research. 29 

 30 

METHOD 31 

Max Pressure  32 
Before the MP signal control is described, some notation is provided. Consider a network made 33 
up of links and intersections. Each link represents a directional road segment between two adjacent 34 
intersections. Upstream and downstream links at an intersection facilitate the movement of 35 
incoming and outgoing vehicles. Movement (𝑙𝑙,𝑚𝑚) represents the pair of links that serves vehicles 36 
from an upstream link 𝑙𝑙 to a downstream link 𝑚𝑚. 𝑈𝑈(𝑖𝑖) denotes the set of all upstream links at 37 
intersection 𝑖𝑖, and 𝐷𝐷(𝑙𝑙) denotes the set of links downstream of link 𝑙𝑙. The proportion of traffic that 38 
turns from link 𝑙𝑙 to link 𝑚𝑚 is denoted by denoted by 𝑟𝑟(𝑙𝑙,𝑚𝑚). The rate vehicles are allowed to pass 39 
through an intersection from link 𝑙𝑙 to 𝑚𝑚 per unit time is represented by the saturation flow, 𝑐𝑐(𝑙𝑙,𝑚𝑚). 40 
Each intersection serves a set of signal phases denoted by Φ𝑖𝑖 where each signal phase serves a set 41 
of vehicular movements. 𝐿𝐿𝑖𝑖

𝜙𝜙contains the set of movements served by phase 𝜙𝜙 at intersection 𝑖𝑖.  42 
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The MP algorithm involves three key steps;  1 

1. Obtain the weights (𝑤𝑤) of the movements. Weight is assigned to each movement by 2 
calculating the difference between the metric value of that movement and the average value 3 
of the metric for its downstream movements. This weight serves as an indicator of the level 4 
of congestion of both the upstream and downstream end of a movement.  5 

2. Calculate the pressure (𝑃𝑃) of phases using these weights. Pressure of each phase is 6 
calculated by summing up the weight multiplied by the associated saturation flow over all 7 
movements served by that phase. This is used to determine the relative importance of each 8 
phase served by the signal.  9 

3. Select the phase (𝑆𝑆) with maximum pressure. In acyclic MP algorithms, the phase with the 10 
highest pressure is activated in the next time step without regarding the sequence of phases. 11 
On the other hand, in cyclic MP algorithms, the green time for each phase in the next cycle 12 
is assigned proportionally based on the pressures of the respective phases in the designated 13 
phase sequence. The proposed model follows the former type. 14 

 15 

Proposed OCC-MP policy 16 
The original MP policy proposed in (2), referred to in this paper as the Q-MP, uses the number of 17 
queued vehicles on each link as the metric to determine which phase to activate. Thus, it treats 18 
both buses and private vehicles equally and disregards the fact that a bus can transport significantly 19 
more passengers compared to a single-occupant passenger vehicle. Consequently, in the Q-MP 20 
algorithm, the right of way may be assigned to a movement with five single-occupancy vehicles 21 
rather than a bus carrying fifty passengers. In contrast, traditional rule-based TSP algorithms 22 
(including that integrated with MP in (47)) prioritize bus movements at an intersection regardless 23 
of the level of congestion on adjacent links. This means that a bus with no passengers would be 24 
given the right of way over a conflicting movement with many queued vehicles posing the risk of 25 
a queue spillback. 26 

To address these limitations, this study proposes an Occupancy-Based Max Pressure 27 
algorithm (OCC-MP). The proposed algorithm considers the average occupancy of the upstream 28 
movements in order to prioritize movements involving transit or high occupancy vehicles (HOVs). 29 
Specifically, the weight assigned to each movement is calculated as the product of the difference 30 
between the upstream and downstream queue lengths and the average occupancy upstream: 31 

𝑤𝑤(𝑙𝑙,𝑚𝑚) = 𝑜𝑜(𝑙𝑙,𝑚𝑚)[𝑥𝑥(𝑙𝑙,𝑚𝑚) −∑ 𝑥𝑥(𝑚𝑚,𝑛𝑛)𝑟𝑟(𝑚𝑚,𝑛𝑛)𝑛𝑛∈𝐷𝐷(𝑚𝑚) ]+ = 𝑜𝑜(𝑙𝑙,𝑚𝑚)𝑤𝑤𝑞𝑞(𝑙𝑙,𝑚𝑚)+  (1) 32 

where 𝑜𝑜(𝑙𝑙,𝑚𝑚) is the average occupancy over all vehicles in movement (𝑙𝑙,𝑚𝑚); 𝑥𝑥(𝑖𝑖, 𝑗𝑗) is the number 33 
of vehicles queued on movement (𝑖𝑖, 𝑗𝑗),, and the + symbol around the square brackets denotes the 34 
maximum of either 0 or the value inside the square brackets. It is worth noting that the term in the 35 
square brackets is the weight of Q-MP,  𝑤𝑤𝑞𝑞(𝑙𝑙,𝑚𝑚). An additional modification is made so that 36 
movements with negative weights that arise when downstream movements are more congested 37 
than the upstream queue, are forced to be 0. This is represented by the + which has been used in 38 
prior studies and shown to improve network performance (48). Since all vehicles have an 39 
occupancy of at least 1, the average occupancy on a movement is a positive and bounded number. 40 
Therefore, the weight calculation in the OCC-MP algorithm is essentially a scaled-up version of 41 
the weight defined in the Q-MP algorithm. 42 
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At each update interval, the pressure of phase 𝜙𝜙 can be expressed as: 1 

𝑃𝑃𝜙𝜙 = ∑ 𝑤𝑤(𝑙𝑙,𝑚𝑚) × 𝑐𝑐(𝑙𝑙,𝑚𝑚) × 𝑆𝑆(𝑙𝑙,𝑚𝑚),(𝑙𝑙,𝑚𝑚)∈𝐿𝐿𝑖𝑖
𝜙𝜙  ∀𝜙𝜙 ∈ Φ𝑖𝑖      (2) 2 

Finally, the policy selects the phase with the maximum pressure in the set of all phases Φ𝑖𝑖 3 
(3). In this study, the signals are updated in the subsequent time step.   4 

𝑆𝑆∗ = arg max𝜙𝜙∈Φ𝑖𝑖 𝑃𝑃
𝜙𝜙          (3) 5 

The benefit of considering the average occupancy is that it allows the control policy to 6 
distinguish between movements that serve vehicles of higher occupancy and those that do not. In 7 
a simple example, Figure 1 shows a signalized intersection that serves two one-way movements 8 
with only private vehicles queued in the W-E direction while both private vehicles and a bus can 9 
be seen queued in the N-S direction. The N-S movement has 3 vehicles queued upstream and 2 10 
vehicles downstream giving it a weight of  𝑤𝑤𝑞𝑞(𝑁𝑁, 𝑆𝑆) = (3 − 2) = 1 under the Q-MP policy. 11 
However, the W-E movement has 5 queued vehicles on its upstream link and 2 vehicles 12 
downstream meaning its weight is 𝑤𝑤𝑞𝑞(𝑊𝑊,𝐸𝐸) = (5 − 2) = 3. Therefore, Q-MP prioritizes the W-13 
E movement over the N-S movement. However, OCC-MP considers the occupancy of each queued 14 
vehicle on the upstream to calculate the average upstream occupancy giving the N-S movement a 15 
weight of, 𝑤𝑤(𝑁𝑁, 𝑆𝑆) = 1+1+50

3
× (3 − 2) = 17.33. The occupancy of the downstream vehicles is 16 

not considered when calculating the weight of the movement as a vehicle with a higher occupancy 17 
does not necessarily translate to less space available downstream. Interestingly, all vehicles on the 18 
upstream end of the W-E movement have the same occupancy, hence, the weight is similar to that 19 
of Q-MP, 𝑤𝑤(𝑊𝑊,𝐸𝐸) = 𝑤𝑤𝑞𝑞(𝑊𝑊,𝐸𝐸) = 1+1+1+1+1

5
× (5 − 2) = 3. Therefore, OCC-MP prioritizes the 20 

N-S movement.  21 
 22 

 23 
Figure 1. Example of transit signal priority using OCC-MP 24 

Simply replacing the number of queued vehicles with the number of passengers on both 25 
upstream and downstream is not an effective mean of providing priority to high occupancy 26 
vehicles. The presence of downstream vehicles accounts for available storage space downstream. 27 
More waiting passengers downstream, specifically in buses, does not necessarily mean that the 28 
links have little capacity to accommodate vehicles from upstream links. Therefore, only the 29 
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average upstream occupancy is considered. In cases where there are no vehicles downstream or in 1 
isolated intersections with no downstream movements, the weight of the movements in the OCC-2 
MP algorithm is equal to the number of passengers upstream. For example, in Figure 1, if there 3 
were no vehicles downstream on either movement, 𝑤𝑤(𝑁𝑁, 𝑆𝑆) and 𝑤𝑤(𝑊𝑊,𝐸𝐸) would represent the 4 
number of queued passengers on the N-S and the W-E movements respectively.  5 

Since OCC-MP requires information on vehicle occupancy, it is assumed that the 6 
information is available to the controller. In scenarios where private vehicle occupancies are not 7 
readily available, an average occupancy value is assumed. However, in a fully connected vehicle 8 
environment, it is assumed that the occupancy information is readily accessible. On the contrary, 9 
many buses are equipped with Automatic Passenger Counting (APC) systems that allow real-time 10 
information of the number of passengers onboard a transit vehicle. Therefore, the exact bus 11 
occupancies are assumed to be available for calculation of weights. 12 

Intersections where conflicting bus routes are served by different phases often receive 13 
simultaneous priority requests. Most prior studies have used either a first-come-first-serve or 14 
model-based methods (e.g., person-delay optimization, schedule-deviation minimization) to 15 
decide the sequence of phases at conflict intersections (26, 49–51). These methods are subject to 16 
strict constraints that reduce the efficacy and increase the complexity of TSP control policies. The 17 
proposed OCC-MP handles conflict intersections much more efficiently without any additional 18 
constraints or assumptions. Specifically, if multiple buses are competing for right of way, OCC-19 
MP selects the phase with the highest pressure considering the size of the queue on the link and 20 
the average occupancy of both buses and private vehicles. This way, OCC-MP is able to resolve 21 
conflicting bus movements at intersections without compromising the flow of private vehicles. 22 

 23 

SIMULATION SETUP 24 
To evaluate the effectiveness of the OCC-MP control strategy, simulation tests in the AIMSUN 25 
micro-simulation platform were performed. AIMSUN was chosen for its ability to realistically 26 
model traffic dynamics, such as congestion propagation, queue spillbacks, vehicle routing, and 27 
driving behavior(52). 28 

Network setup 29 
Simulation tests were carried out on an 8x8 grid network shown in Figure 2. While real-world 30 
street networks may not perfectly align with a square grid pattern, many urban networks exhibit 31 
grid-like characteristics. Previous studies that have simulated grid traffic networks reported results 32 
that can be generalized to more realistic networks (53–57). Road segments were categorized as 33 
arterials with mixed use that accommodate both private vehicles and buses. All road segments 34 
were assumed to have bi-directional traffic flow, with three travel lanes in each direction serving 35 
dedicated right, through and left movements at an approach (Figure 3). Each segment was 200 36 
meters long with a capacity of 1800 vehicles per hour and a posted speed limit of 50 km/h. Within 37 
the network, all 64 intersections were signalized and consist of four phases, where through and 38 
right movements are served by one phase while left turning movements have a separate phase 39 
(Figure 3).  40 

To simulate travel patterns and evaluate the effects of the proposed strategies, private 41 
vehicle origins and destinations were strategically positioned at the 32 entry and exit centroids 42 
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located along the network’s perimeter. A symmetric demand pattern was adopted, where the 1 
demand at North-South origin centroids was assumed to be twice the demand at East-West origin 2 
centroids. A two-hour peak period was simulated, consisting of gradually increasing private 3 
vehicle demand in 3-30 minute intervals, followed by a decrease in the last 30 minutes. This was 4 
then followed by a one-hour cooldown period. Two demand scenarios were tested: a high demand 5 
scenario with an average of 32,256 vehicles entering the network and a low demand scenario with 6 
an average of 23,040 entering vehicles (Figure 4). To model the private vehicle routing behavior, 7 
the study utilized the stochastic c-logit route choice model integrated within AIMSUN. This 8 
routing model aimed to replicate a stochastic user-equilibrium routing solution, where vehicles 9 
select routes at the beginning of a trip to minimize travel times.  10 

 11 
Figure 2. Network configuration 12 

 13 

 14 
Figure 3. Lane configuration and phases 15 

  
Figure 4. Time varied demand 16 
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The simulated network consists of ten bus routes, which include a combination of bi-1 
directional and unidirectional routes; see Figure 2. Six of the routes operate between three pairs of 2 
O-D centroids, namely, (SB-W, NB-W), (SB-C, NB-C), and (EB-N, WB-N). These routes do not 3 
have conflicting movements and can be served by the same traffic signal phase. The remaining 4 
four routes, EB-CN, WB-CS, EB-SN, and WB-SS, are unidirectional, meaning that buses travel 5 
in only one direction. Within the network, there are seven high-occupancy routes indicated by 6 
green labels and three low-occupancy routes (marked with red labels) in Figure 2. The study 7 
simulates two different levels of passenger demand. In the high passenger demand scenario, the 8 
high occupancy routes are assigned an average occupancy of 50 passengers per bus, while the low 9 
occupancy routes have an average occupancy of 25 passengers per bus representing a situation 10 
where there is a substantial demand for public transportation. In contrast, the low passenger 11 
demand scenario assumes the high occupancy routes have an average occupancy of 12 passengers 12 
per bus, while the low occupancy routes have an average occupancy of 3 passengers per bus. This 13 
scenario represents a situation where there is less demand for public transportation, resulting in 14 
fewer passengers on the buses. Two levels of bus frequencies were also simulated where the 15 
headway between buses in the high frequency case was 2 minutes on average, while the low 16 
frequency case was simulated with a headway of 5 minutes between consecutive bus arrivals on 17 
each route.  18 

The network includes six conflict intersections denoted by red circles in Figure 2 where 19 
buses may compete for right of way at the same time. As conflicting movements are served by 20 
different phases, the phase with a higher pressure will be allowed to move using the OCC-MP. To 21 
evaluate the control strategy under different bus demands, two different scenarios are considered: 22 
a high-demand case with an average headway of 2 minutes along all routes and a low demand case 23 
with an average headway of 5 minutes along all routes.  24 

 The performance of OCC-MP is compared with two other baseline policies. The first is 25 
the original Q-MP policy. The second baseline policy is an MP-based strategy that incorporates a 26 
rule-based transit signal priority, referred to as RB-MP. The RB-MP seeks to mimic the strategy 27 
proposed in (47). Specifically, it follows the MP framework to assign right of way based on vehicle 28 
queues; however, when a bus is detected, RB-MP overrides the original MP and assigns the right 29 
of way to serve bus movements in the next timestep. In the case of multiple buses approaching a 30 
conflict intersection, the right of way is assigned on a first-come-first-serve basis. To ensure 31 
consistency in the evaluation, all three MP control policies adopt a signal update interval of 10 32 
seconds.  33 

Scenario Setup 34 
Different scenarios were simulated to understand the benefits and potential application of the 35 
proposed control policy.  36 

Scenario 1 considers a situation where the system has no knowledge of private vehicle 37 
passenger occupancy. In this case, an average of 1.5 persons per private vehicle, as reported in 38 
(58), is assumed. However, the exact bus occupancies are assumed to be available from APC data. 39 
This scenario is further extended to test the resilience of the policy due to variations in the reported 40 
bus occupancies from APC. To test this, a random error term was added to the occupancies of 41 
buses reported to the controller after crossing every intersection. The error term was assumed to 42 
have a mean of 0, standard deviation of 𝜎𝜎 % of the mean occupancy at each intersection and 43 



Ahmed, Liu, Gayah  10 

additive over every intersection. Varying values of 𝜎𝜎 from 0 to 40 were tested to understand the 1 
impact of variations in APC data, and how it impacts the network performance.  2 

Scenario 2 considers the case where individual vehicle occupancies are available to the 3 
signal controller, as would be possible in a connected vehicle (CV) environment. This means that 4 
the system has complete knowledge of both private vehicle and bus occupancies which is 5 
leveraged by the OCC-MP policy to calculate weights of movements based on their occupancy 6 
levels, dynamically. For the simulation, each private vehicle entering the network was randomly 7 
assigned an occupancy based on a probability distribution (shown in Table 1) such that the average 8 
private vehicle occupancy was approximately 1.5. In a fully connected environment, it is assumed 9 
that all vehicles are equipped with CV technology that is leveraged by the MP policies to accurately 10 
measure the queue lengths and (or) occupancies. However, in a real-world scenario, a network 11 
may have mixed flow comprising of both connected and non-connected vehicles. Therefore, a 12 
partially connected environment was also considered in which the CV penetration rate was varied 13 
from 20% to 100% to understand how the policies perform when limited information is available.  14 

 15 
Table 1. Probability distribution of private vehicle occupancy 16 

Occupancy Probability 
1 0.7 
2 0.125 
3 0.1 
4 0.05 
5 0.025 

 17 
Within both scenarios, a total of 8 sub-scenarios were simulated, each representing a 18 

different combination of private vehicle demand, bus occupancy, and bus frequency.  The private 19 
vehicle demand represents the overall traffic flow in the network, while the bus occupancy and 20 
frequency directly affect the bus operations and interactions with other vehicles. By considering 21 
both high and low occupancy levels and varying bus headways, the impact of different bus 22 
configurations on the performance of the policies can be analyzed. Table 2 contains the 23 
configuration of each sub-scenario. Each sub-scenario was simulated with 10 different random 24 
seeds to account for stochasticity and ensure robust analysis.  25 

 26 
 27 
 28 



Ahmed, Liu, Gayah  11 

Table 2. Summary of sub-scenarios 1 

Sub-Scenario Private vehicle 
demand 

Bus passenger 
demand 

 

Bus Frequency 
 

1 Low High High 
2 Low High Low 
3 Low Low High 
4 Low Low Low 
5 High High High 
6 High High Low 
7 High Low High 
8 High Low Low 

A final scenario was simulated to compare the stability of the control policies. Specifically, 2 
a certain private vehicle demand was simulated to see whether the number of vehicles in the 3 
network are bounded or keep growing. For this scenario, private vehicle demands were uniform 4 
throughout the 3 hours of the simulation, while buses arrived on each route with a constant 5 
headway of 2 minutes.  6 

 7 

RESULTS 8 

Scenario 1: Non-connected vehicle environment  9 
To understand the level of congestion in the network, average network speeds under the Q-MP 10 
policy across the eight sub-scenarios are provided in Figure 5. The lines represent the mean value 11 
across all ten simulation iterations, while the shaded areas represent the confidence interval with 12 
+/- one standard error of observed values.  Sub-scenarios with similar private vehicle and bus 13 
demands but different occupancies were grouped together as the Q-MP does not consider vehicle 14 
occupancies. As expected, the average network speeds drop drastically from about 25 km/h to just 15 
under 20km/h for the increase in private vehicle demand. A change in bus headway from 5 minutes 16 
to 2 minutes results in a slight decrease in network speeds, as expected.  17 
 18 
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 1 
Figure 5. Average vehicle speeds under Q-MP across sub-scenarios 2 

Vehicle travel time comparison 3 

First, tests were conducted for 𝜎𝜎 = 0, which indicate that APC data from buses is perfectly 4 
accurate. Figure 6  presents the percentage change in vehicle travel time (VTT) of private vehicles 5 
under OCC-MP and RB-MP strategies, relative to the Q-MP. Standard errors across the ten 6 
simulation iterations are shown using whiskers. It is evident that integrating TSP using either the 7 
RB-MP or OCC-MP policies results in an increase in VTT of private vehicles over Q-MP. 8 
However, OCC-MP has a lower negative impact on private vehicles compared to RB-MP across 9 
all sub-scenarios.  10 

 11 

 12 
Figure 6. Percentage change in private vehicle travel time over Q-MP 13 

It is expected that OCC-MP will behave similar to Q-MP when few buses are present; Sub-14 
scenarios 3, 4, 6 and 8 confirm this as the confidence intervals designated by the standard errors 15 
contain 0, which suggests no statistically significant difference between the performance of OCC-16 
MP and Q-MP. Sub-scenario 8, in which the demand for private vehicles was high and buses had 17 
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a higher frequency and lower passenger occupancies, resulted in only 0.36% increase in private 1 
vehicle travel time. This can be attributed to the fact that there were fewer buses with lower 2 
occupancies in the network, leading OCC-MP to select similar phases to Q-MP. The maximum 3 
percentage change in VTT is 2.64% and observed for Sub-scenario 5, which has high bus 4 
frequency and passenger occupancy. In this sub-scenario, OCC-MP frequently selected phases to 5 
prioritize the movement of buses carrying more passengers. Note that RB-MP is not impacted by 6 
bus occupancies; thus, the same average VTTs were observed across pairs of sub-scenarios with 7 
the same vehicular demand. Overall, RB-MP resulted in statistically significant increases in VTT, 8 
ranging from 3.50% to 25.75%. Interestingly, the best performance of RB-MP is still worse than 9 
the worst performance of OCC-MP. This can be attributed to the fact that OCC-MP may select 10 
phases in which private vehicle queues are large, even when buses are present. These results 11 
highlight the effectiveness of the OCC-MP strategy in mitigating the negative impact on private 12 
vehicle travel times when compared to RB-MP. 13 

To further demonstrate the difference in impacts to private vehicles across the three control 14 
strategies, Figure 7 plots the private VTT per minute. Notice that the private VTT continues to 15 
grow under the RB-MP policy despite the reduction in vehicle demand at the 90 minute mark. By 16 
contrast, the Q-MP and OCC-MP policies show travel time trends that reflect the level of vehicle 17 
demand. This finding is indicative of queue spillback phenomenon due to growing vehicle queues 18 
in the RB-MP policy.   19 

 20 

 
Figure 7. Total travel time of private vehicles (Sub-scenario 7) 21 

Figure 8 illustrates the percent change in bus VTT under both OCC-MP and RB-MP 22 
compared to Q-MP. The results show that both strategies lead to a reduction in bus travel times 23 
compared to the baseline Q-MP strategy across all sub-scenarios, and all improvements are 24 
statistically significant. However, the magnitude of the improvement varies between the two 25 
strategies. As expected, RB-MP consistently outperforms OCC-MP and provides larger reductions 26 
in bus VTT since it provides full priority to buses. Specifically, OCC-MP achieves an average 27 
reduction in bus VTT of 14.5% when buses have higher occupancies (Sub-Scenarios 1, 2, 5 and 28 
6) and 7.5% when buses are less crowded (Sub-Scenarios 3, 4, 7 and 8). This is expected as weights 29 
of bus movements are lower when there are fewer passengers onboard. Conversely, RB-MP shows 30 
little variation between the different sub-scenarios and achieves a nearly consistent average 31 
reduction of approximately 30% across all sub-scenarios.  32 

 33 
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 1 
Figure 8. Percentage change in bus travel time over Q-MP 2 

Passenger travel time comparison 3 
Figure 9 compares the passenger travel times (PTT) of both OCC-MP and RB-MP strategies 4 
against Q-MP for all sub-scenarios. The results reveal that OCC-MP yields lower total PTT 5 
compared to Q-MP in 6 out of 8 sub-scenarios, indicating a positive impact on overall passenger 6 
mobility. The improvements range from approximately 0.1% to 3.6% on average, mostly in 7 
scenarios with higher bus occupancies. Maximum benefits were observed in Sub-scenario 1, 8 
suggesting OCC-MP best reduces overall passenger travel times when there are relatively fewer 9 
private vehicles and more buses carrying more passengers. Sub-scenarios 7 and 8 saw a nominal 10 
increase in passenger travel times by 0.9% and 0.1% respectively over Q-MP; however, the 11 
confidence intervals denoted by the standard errors reveal these increases are note statistically 12 
significant. Conversely, RB-MP shows mixed results with some sub-scenarios exhibiting 13 
improvements and others significant negative effects on PTT over Q-MP. Sub-scenarios 1 and 2 14 
show improvements of 3.5% and 2.3% respectively, which were similar to OCC-MP in terms of 15 
PTT improvements. However, in the other sub-scenarios, RB-MP results in an increase in PTT 16 
ranging from approximately 1.9% up to 21.2% in Sub-Scenario 7. Previously it was found that 17 
Sub-Scenario 7 also corresponds to the highest increase in VTT of private vehicles and lowest bus 18 
VTT improvement compared to Q-MP. The finding highlights the superior performance of OCC-19 
MP in balancing VTT of private vehicles and buses, ultimately resulting in lower passenger travel 20 
times. 21 

 22 
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 1 
Figure 9. Percent change in passenger travel time over Q-MP 2 

Sensitivity to variance of passenger occupancy 3 
The proposed OCC-MP policy relies on accurate bus passenger occupancy for signal updates. To 4 
assess the policy’s robustness against variation or inaccuracies in APC data, additional simulations 5 
were conducted for Sub-scenarios 1 and 3 in which the passenger occupancies provided to the 6 
control algorithm contained errors. Table 3a-b shows the VTT of private vehicles and buses and 7 
PTT as 𝜎𝜎 was increased from 0 to 40 at each intersection. The results indicate that there is relatively 8 
little variation observed across the network performance metrics. From  Table 3a, it can be seen 9 
that the travel times of private vehicles, buses, and passengers in Sub-scenario 1 do not change 10 
significantly with 𝜎𝜎. This suggests that OCC-MP performs reasonably well even when there is 11 
significant misreporting of bus occupancies, particularly for buses with high passenger demand. 12 
Sub-scenario 3 corresponds to a case with similar private vehicle and bus demand as Sub-scenario 13 
1 but with fewer bus passengers. Therefore, it is expected that further underreporting of its 14 
occupancy may give it little to no priority over private vehicles resulting in higher travel times.  15 
Table 3b shows that variation of 𝜎𝜎 leads to slightly higher travel times than when 𝜎𝜎 = 0. However, 16 
all values except bus travel time at 𝜎𝜎 = 40 remain within one standard error of 𝜎𝜎 = 0, suggesting 17 
differences are not statistically significant. The consistency of the results indicates that the OCC-18 
MP policy can effectively adapt to and optimize travel times under potential discrepancies in the 19 
APC data. 20 

 21 
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 Table 3. Summary of network performance against variance in APC data  1 

(a) Sub-scenario 1 
 Private vehicle Bus All Passengers 

Percent 
variance, 𝝈𝝈 

Travel time 
(veh-hr) 

Standard 
error 

Travel time 
(veh-hr) 

Standard 
error 

Travel time 
(pax-hr) 

Standard 
error 

0% 2298.66 12.33 37.39 0.14 5035.75 24.06 
10% 2294.46 10.74 37.21 0.13 5021.77 19.81 
20% 2295.34 11.42 37.14 0.11 5020.11 20.42 
30% 2299.86 11.13 37.09 0.08 5023.77 18.53 
40% 2299.46 12.22 37.32 0.14 5034.65 23.16 

 

(b) Sub-scenario 3 
 Private vehicle Bus All Passengers 

Percent 
variance, 𝝈𝝈 

Travel time 
(veh-hr) 

Standard 
error 

Travel time 
(veh-hr) 

Standard 
error 

Travel time 
(pax-hr) 

Standard 
error 

0% 2260.89 10.06 39.79 0.10 3754.45 15.72 
10% 2265.10 9.93 39.88 0.10 3761.63 15.56 
20% 2263.54 10.54 39.81 0.09 3758.36 16.36 
30% 2262.01 9.98 39.81 0.12 3756.06 16.04 
40% 2269.44 10.80 39.93 0.10 3768.99 16.57 

 2 

Scenario 2: Connected vehicle environment  3 

Fully connected environment 4 
The OCC-MP strategy was evaluated by simulating private vehicles with known occupancies and 5 
variable bus occupancies to understand how the control policy impacts travel time of non-transit 6 
HOVs. Since RB-MP does not differentiate vehicles by occupancy, it was not included in the 7 
analysis. Figure 10 presents a comparison of the percent change in PTT for OCC-MP over Q-MP 8 
for vehicles with different vehicle occupancies; values of 1 to 5 indicate private vehicles, while 6+ 9 
refers to buses. The results reveal that single occupant vehicles experience an increase in their 10 
travel times over the Q-MP. However, OCC-MP effectively prioritizes movements with higher 11 
occupancy vehicles, resulting in reduced travel times for those vehicles. Specifically, vehicles with 12 
an occupancy of 3 or more experience improvement in travel time in 5 out of 6 sub-scenarios. 13 
Interestingly, sub-scenarios with low private vehicle and bus demand (2 and 4), exhibit lower 14 
travel time for vehicles with occupancy of 2 and more, highlighting the positive impact of OCC-15 
MP. By prioritizing HOV and buses even in mixed flow conditions without dedicated bus or HOV 16 
lanes, OCC-MP can serve as a strategic approach to discourage single-occupancy vehicles on the 17 
roads, promoting more efficient and sustainable transportation options. 18 

 19 
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 1 
Figure 10. Percent change in passenger travel time over Q-MP by occupancy under OCC-MP 2 

 3 

Partially connected environment 4 
Although CV technology provides the potential to acquire detailed information from individual 5 
vehicles directly, implementation of a fully CV environment is farfetched. Therefore, the 6 
performances of the proposed OCC-MP policy and baseline methods were investigated under 7 
varying rates of CV penetration. In these tests, all control policies rely only on the information 8 
obtained from these CVs for measurement and updating the signal times.  9 

Figure 11 shows the evolution of vehicle accumulation in the network for various CV 10 
penetration rates. The accumulation is highest for all three control policies when information from 11 
only 20% of the private vehicles is available. With increasing CV penetration rate, the number of 12 
queued vehicles in the network drops for all three policies resulting in lower congestion. Notice, 13 
however, the returns are diminishing with respect to CV penetration rate; i.e., the highest 14 
improvements are gained from increasing the penetration rate when the penetration rate is low. 15 
Note also that both Q-MP and OCC-MP have similar performance in terms of network congestion 16 
and show consistent reduction in vehicle accumulation with increasing CV penetration rate, while 17 
the RB-MP strategy consistently performs the worst. 18 
 19 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 11. Accumulation of vehicles in the network for different CV penetration rates: (a) 20%; (b) 40%; (c) 1 
60%; (d) 80%; (e) 100% 2 

The performance of the control policies in terms of private VTT, bus VTT and total PTT is shown 3 
in Figure 12 for Sub-Scenario 1, which; was chosen because OCC-MP demonstrated the largest 4 
improvement in PTT. Overall, it is overserved that the increase in penetration rate of CVs improves 5 
the travel time of private vehicles and reduces the standard error across all policies, as more 6 
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information becomes available on the actual queue lengths vehicle occupancy. The most 1 
significant improvements are observed for an increase in the penetration rate from 20% to 40%. 2 
This slowly diminishes as the penetration rate is further increased. RB-MP consistently 3 
demonstrates inferior performance compared to both Q-MP and OCC-MP. At 20% penetration 4 
rate, travel times of private vehicles under Q-MP and OCC-MP are statistically similar, but Q-MP 5 
further reduces travel times with the increase in CV penetration.  6 

 7 

 

(a) (b) 

 

(c) 

Figure 12. Effect of CV penetration rate on: (a) private vehicle travel time; (b) bus travel time; (c) passenger 8 
travel time 9 

From Figure 12b, it is evident that bus VTT also improves as the percentage of connected 10 
vehicles in the network increases. Although there is a tradeoff between private vehicle and bus 11 
travel times, increasing CV penetration translates to lower congestion in the network (Figure 11), 12 
which in turn improves the overall bus operations. Note that these improvements are nominal for 13 
both Q-MP and OCC-MP, whereas larger improvements are observed for RB-MP with lower 14 
standard errors across the random seeds. Despite resulting in higher private vehicle and bus VTT 15 
compared to Q-MP and RB-MP policies, respectively, OCC-MP consistently resulted in the lowest 16 
PTT for all CV penetration rates (Figure 12c). Both the Q-MP and RB-MP have very similar 17 
performances in terms of PTT, with reductions that are smaller than that achieved by the OCC-18 
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MP. The findings highlight the reliability of the proposed OCC-MP policy even when only a subset 1 
of the vehicles is connected.  2 

Scenario 3: Stable region / Stable demand 3 
Scenario 3 was used to evaluate the stability of the three control algorithms used in this study. 4 
Figure 13a shows the average accumulation (i.e., number of vehicles in the network) over time for 5 
a total entering demand of 40,500, vehicles (13,500 vehicles/hour). It is evident that the RB-MP 6 
policy leads to a larger number of vehicles in the network compared to both Q-MP and OCC-MP 7 
which have similar average accumulation throughout the simulation. Both Q-MP and OCC-MP 8 
policies also demonstrate a certain degree of stability as the average number of vehicles does not 9 
significantly grow over time. Figure 13b shows the difference in average accumulation in the 10 
network for OCC-MP and RB-MP compared to Q-MP. OCC-MP exhibits similar performance to 11 
Q-MP whereas, the rate of increase of vehicles in the network is much higher for RB-MP. This 12 
suggests that the RB-MP has a smaller stable region, while OCC-MP exhibits a similar stable 13 
region as Q-MP for private vehicles even while prioritizing buses.  14 

 15 

 

(a) 

 

(b) 

Figure 13. (a) Evolution of average accumulation in the network under different control policies (b) 16 
Difference in network accumulation over Q-MP 17 

CONCLUSION 18 
Conventional MP algorithms in existing literature rely on the measurement of vehicular metrics to 19 
update signal timings. These algorithms primarily prioritize maximizing throughput for private 20 
vehicles overlooking the impact on transit vehicles. However, this study introduces a novel 21 
approach by proposing an occupancy-based Max Pressure (OCC-MP) algorithm that considers the 22 
both the number of queued passengers and vehicles. By utilizing the average occupancy of vehicles 23 
queued upstream of an intersection, the control policy is able to improve passenger travel times 24 
and balance the performance of private vehicles and buses without constraints.  25 

The performance of OCC-MP was tested against the original max pressure (Q-MP) and a 26 
rule-based MP algorithm that provides TSP (RB-MP). Micro-simulation tests on a grid network 27 
demonstrate that OCC-MP outperforms RB-MP in terms of reducing negative impacts on private 28 
vehicles while reducing bus VTT compared to Q-MP. Overall, OCC-MP results in lower PTT 29 
under various demand and occupancy levels. This is because OCC-MP not only prioritizes transit 30 
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vehicles and those with higher occupancies, but also serves the movements with large private 1 
vehicle queues. The best performance was observed for lower private vehicle demand but more 2 
buses with higher occupancies. The control policy also demonstrates nominal variation in 3 
passenger travel time from errors in APC data highlighting the robustness of the algorithm. Further 4 
tests in a CV environment show that an increase in the penetration rate of CVs improve the overall 5 
performance of OCC-MP in reducing PTT. In a fully CV environment, OCC-MP consistently 6 
outperforms baseline methods in reducing the VTT of HOVs and buses making it a sustainable 7 
strategy to discourage single occupant vehicles in a transportation network without the need to 8 
implement expensive dedicated lane facilities. Finally, a stability analysis showed that OCC-MP 9 
has a stable region that is larger than the RB-MP policy. The average accumulation in the network 10 
was highest for RB-MP and kept growing over time. However, OCC-MP shows a stable region 11 
similar to that of Q-MP, suggesting the policy is able to handle larger private vehicle demand than 12 
RB-MP while providing priority to buses.  13 

Although the simulations were conducted on a grid network, further research can explore 14 
the performance of OCC-MP in more complex urban networks. Since the applicability of the 15 
proposed OCC-MP encompasses mixed traffic, it may be interesting to explore its performance in 16 
networks with dedicated bus lanes or HOV lanes. Moreover, given the increasing emphasis on 17 
creating "complete streets" that accommodate various modes of transportation, future studies may 18 
consider developing MP control algorithms that consider the complexities of multimodal transport. 19 
It is worth noting that (9) demonstrated that different MP algorithms may have different optimal 20 
update intervals that maximize their performance. Therefore, the impact of optimal time-step for 21 
signal update interval can be explored for OCC-MP.  22 
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