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ABSTRACT
The growing popularity of Machine Learning (ML) has led to its

deployment in various sensitive domains, which has resulted in

significant research focused on ML security and privacy. However,

in some applications, such as Augmented/Virtual Reality, integrity

verification of the outsourced ML tasks is more critical–a facet

that has not received much attention. Existing solutions, such as

multi-party computation and proof-based systems, impose signifi-

cant computation overhead, which makes them unfit for real-time

applications. We propose Fides, a novel framework for real-time

integrity validation of ML-as-a-Service (MLaaS) inference. Fides

features a novel and efficient distillation technique–Greedy Distil-

lation Transfer Learning–that dynamically distills and fine-tunes

a space and compute-efficient verification model for verifying the

corresponding service model while running inside a trusted exe-

cution environment. Fides features a client-side attack detection

model that uses statistical analysis and divergence measurements

to identify, with a high likelihood, if the service model is under

attack. Fides also offers a re-classification functionality that predicts

the original class whenever an attack is identified. We devised a

generative adversarial network framework for training the attack

detection and re-classification models. The evaluation shows that

Fides achieves an accuracy of up to 98% for attack detection and

94% for re-classification.

CCS CONCEPTS
• Security and privacy→ Domain-specific security and pri-
vacy architectures; • Computing methodologies→ Machine

learning.

KEYWORDS
Verifiable computing, result verification, trusted execution environ-

ment, machine learning as a service, edge computing.
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Figure 1: We consider the integrity verification of Machine Learning-
as-a-Service inference, where clients send their data to the edge
servers forML inference tasks. In our proposed framework, Fides, we
aim to detect any malicious misclassification caused by a malicious
edge server when running the clients’ inference tasks.
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1 INTRODUCTION
The increasing popularity of machine learning (ML) applications

and the plethora of data generated by smart and connected devices,

such as smartphones, Internet of Things devices, and video cameras,

has led to the development of sophisticated and complex ML appli-

cations, such as autonomous driving and cognitive assistance [74].

However, the challenges of processing such a high volume of data

to support real-time applications have led to the development of

several edge-computing solutions for autonomous driving [37],

healthcare [55], and Augmented/Virtual Reality applications [59].

This motivates inference-based ML-as-a-Service (i.e., MLaaS), in

which trusted ML providers deploy their services on third-party

edge servers as query-based APIs. These APIs allow the clients

to share their data with the edge servers, which are running ML

applications, to provide the processed result. However, the edge

computing trust model differs from the Cloud, primarily due to

its distributed and multi-stakeholder nature [64]. Given that any

entity may host a third-party server, outsourcing ML applications

to the edge ecosystem raises potential privacy and security issues

(Figure 1), including model/data inference and Trojan attacks [6,

35, 36, 46, 62, 66, 75]. Two of the most pertinent attacks against

the integrity of MLaaS are Trojan attacks [6, 75] and adversarial

example [51, 63]. In Trojan attacks, the attacker partially modifies

https://doi.org/10.1145/3634737.3657015
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the neural network using a poisoned dataset to include a set of

samples with a pattern trigger, aiming to cause misclassifications

when the model observes the pattern trigger. Backdoor attacks can

be devised either duringmodel training or on a pre-trainedmodel [6,

62, 71, 75]. An adversarial attack (i.e., adversarial example) exploits

the inherent vulnerabilities of neural networks for post-training

misclassifications. These attacks are input-specific in that each input

data should be individually perturbed to cause a misclassification.

The existing techniques for preserving the integrity of outsourced

computation use cryptosystems, such asmulti-party computation [26,

29, 60, 72], proof-based systems [16, 34, 40], and homomorphic en-

cryption [40, 47, 49, 69]. A few initiatives have built frameworks

using a Trusted Execution Environment (TEE) to offload parts of

the ML applications [18, 65]. Despite their merits, these solutions

are often computationally expensive, impose significant latency

overhead, or do not scale with the complexity of the evolving ML

models. Thus, making them impractical for real-time and latency-

sensitive applications. Some solutions utilize multiple models in

the form of redundant computing or majority voting [21, 45]. Re-

dundant computing techniques, however, require higher degrees of

redundancy to achieve stricter integrity guarantees, which leads to

significantly higher computational overhead. Moreover, redundant

computing techniques are built on the presumption that the only

relevant part of a redundant model’s output is the class with the

highest probability (predicted class), which is untrue. The model’s

posterior vector provides information about the learned knowledge rep-

resentation through the probabilities assigned to the incorrect classes.

This insight is used in knowledge distillation for training higher

accuracy and fidelity compressed versions of cumbersome mod-

els [23]. We believe the same insight can be used to study the impact

of an adversary on two models trained on identical distributions.

Figure 2 shows the density distribution of Kullback–Leibler (KL)

divergence between two models (ResNet50 and ResNet152) and the

drastic change in the distribution when an adversary manipulates

the prediction generated by one of the models (ResNet152). We

will analyze the impact of an adversary on the divergence trends

(Section 2) to create a result validation framework.

Our Framework: To cope with the attacks that target MLaaS infer-

ence integrity, we propose Fides. In a nutshell, Fides validates the

integrity of MLaaS inference by securely running a special-purpose

verification model. This model is constructed through knowledge

distillation, guaranteeing that the knowledge representation of

the verification model closely approximates that of the service

model. Fides comprises two primary components. The first one

is a resource-efficient model distillation technique–Greedy Distil-

lation Transfer Learning (GDTL)–which generates a customized

verification model for a given service model. GDTL distills the

knowledge of the service model into the verification model by in-

crementally unfreezing and fine-tuning the last layers of the model.

This leads to only a few layers being distilled at a time, which

makes it suitable for resource-constraint and TEE-based private

training paradigms [21, 43] The second component is a novel gen-

erative framework for training a client-side attack detection model

that uses posterior vectors of the service and verification models,

alongside their divergences, on a given input to detect a potential

attack. Our framework also trains an attack re-classification model,
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Figure 2: The KL divergence density distribution between two mod-
els (ResNet50 and ResNet152) before (green) and after (red) attack
on one of the models (ResNet152). Both models are trained on Ci-
far10 and Cifar100 datasets. The KL divergence between the benign
models’ posterior vectors belongs to a distribution with low mean
and variance (green distribution). Performing a prediction-switching
attack against one of the models (ResNet152) leads to a significant
increase in the distribution’s mean and variance (red distribution).
We use this identifiable behavior in designing Fides. (distributions’
tails are truncated for better visualization).

aiming to predict the correct result of the outsourced inference task

by learning a typical adversary’s goal and behavior in the system

under attack.

We evaluate Fides’ performance using three datasets, including

CIFAR-10, CIFAR-100, and ImageNet, across three neural network

architectures and also assess its computational overhead on multi-

ple constrained devices. We compare Fides with Slalom [65] and

Chiron [27], and show that Fides achieves 4.8×–26.4× and 1.7×–
25.7× speed-up to Slalom and Chiron, respectively.

The novel contributions of Fides are as follows:
(i)We propose Fides–a framework for result validation of MLaaS

inference using an efficient verification model running on a TEE

to corroborate the results of the service model. This makes Fides a

perfect candidate for real-time applications, such as autonomous

driving, and medical imaging.

(ii) In Fides, we propose a greedy distillation transfer learning

(GDTL) technique for training the verification model, aiming to re-

duce the distillation’s overhead by incrementally unfreezing layers

of the verification model for fine-tuning to the desired accuracy.

(iii) We introduce two client-side shallow neural networks for

detecting and resolving adversarial attacks, with negligible compu-

tation overhead. We propose a generative framework for effective

training of these models.

(iv)We systematically assess Fides using major benchmark datasets

of varying complexity and number of detection classes on three

architecturally different deep neural networks: namely ResNet [22],

DenseNet [25], and EfficientNet [61]. Our results show that Fides

outperforms existing solutions in terms of computation complexity

while achieving high attack detection and remediation accuracy.

We share the observation that motivated our design in Section 2.

Section 3 presents the background. In Section 4, we elaborate on

system model, threat model and assumptions, and the detail of the

attack modeling. Section 5, we present the detail of our design.



Section 6 presents our experimental insights. Section 7 includes the

related work. Section 8 shares our conclusion.

2 OBSERVATION
In this section, we will discuss our findings regarding the disparities

between two models, which were trained on datasets with simi-

lar distributions, where one is subjected to an attack that causes

unintended mispredictions. The insights drawn from these obser-

vations, coupled with the evident trend we have identified, lay the

foundation for the design of Fides.

Consider two neural networks, 𝐹 1
𝜃
and 𝐹 2

𝜃
, where they are trained

on the data distribution D. 𝐹 1
𝜃
is a larger primary model, and 𝐹 2

𝜃
is

a significantly smaller model trained on the same primary task.We

speculate that the posterior vector of the smaller model (𝐹 2
𝜃
) can be

used to detect the impact of a malicious actor on the bigger model

(𝐹 1
𝜃
), even if they disagree on the prediction. This is because the

decision boundarys of the 𝐹 2
𝜃
significantly overlaps with the deci-

sion boundary of 𝐹 1
𝜃
. An adversary will either modify the decision

boundary or the sample distance from the decision boundary in

𝐹 1
𝜃
to conduct the attack. Hence, the posterior vector of 𝐹 2

𝜃
can

be used to detect these modifications. To test our speculation we

orchestrate prediction-switching attacks, i.e., adversarial attacks in

which malicious actors modify the posterior vectors of 𝐹 1
𝜃
during

inference. We observe the divergence between the posterior vector

of 𝐹 1
𝜃
and 𝐹 2

𝜃
and assess if we can establish some trends that can

be utilized to detect the presence of a malicious actor. As such,

we analyze the divergence density distribution of 𝐹 1
𝜃
and 𝐹 2

𝜃
–both

before and after conducting a prediction-switching attack against

𝐹 1
𝜃
. In comparing the divergence trends, i.e., 𝐷 (𝐹 1

𝜃
(𝑥), 𝐹 2

𝜃
(𝑥)), we

consider the following cases:

• Natural Agreement (Case A): happens if 𝑎𝑟𝑔𝑚𝑎𝑥 (𝐹 1
𝜃
(𝑥)) =

𝑎𝑟𝑔𝑚𝑎𝑥 (𝐹 2
𝜃
(𝑥)) prior to any adversarial modifications to the

prediction.

• Natural Disagreement (Case B) : happens if𝑎𝑟𝑔𝑚𝑎𝑥 (𝐹 1
𝜃
(𝑥)) ≠

𝑎𝑟𝑔𝑚𝑎𝑥 (𝐹 2
𝜃
(𝑥)) prior to any adversarial modifications to the

prediction.

Using these two cases, we aim to recognize identifiable patterns be-

tween naturally occurring disagreements and those resulting from

malicious actions. In our analysis, we employ three datasets: CIFAR-

10, CIFAR-100, and ImageNet, and three architectures: ResNet,

DenseNet, and EfficientNet (more details in Section 6). For assessing

divergence, we use Jeffreys’ Divergence and Wasserstein-1 mea-

sures. Figure 3 shows the JD distributions between the output of

the two models across all datasets and architectures. We identified

evident trends between pre-attack and post-attack JD distributions:

Trend 1: Consider Case A, where both models naturally agree on

the predictions before the attack. When the two models agree with

each other, and neither of them is under attack, the distribution

exhibits small standard deviation and mean values, as depicted by

the green curve in Case A. In contrast, when one of the models is

subjected to an attack, the JD distribution undergoes a significant

transformation, with a sharp increase in both themean and standard

deviation values (red curve in Case A).

ResNet DenseNet EfficientNet

CIFAR-100

CIFAR-10

ResNet DenseNet EfficientNet

ImageNet

ResNet DenseNet EfficientNet

Post-AttackPre-Attack ┇ Mean

Figure 3: The JDmeasurements of twomodels. For Case A, the attack
increases the divergence value, whereas in Case B (disagreement), the
attack decreases the divergence value. Thus validating our reasoning
for divergence’s role in attack detection.

Trend 2:Consider Case B, where the two models predict different

classes before the attack. We notice a contrasting transformation

once one of the models is attacked. Specifically, when the system is

not under attack, the differences between the two models’ outputs

result in a wide JD distribution with a relatively larger standard

deviation and mean values, as shown by the green curves in Case B.

In contrast, the attack leads to a narrow distribution with smaller

standard deviations and mean values (red curves in Case B).

The trends we have identified, which remained consistent across

various architectures and datasets, and the observations from Fig-

ure 3 are the key supporting elements that empirically validate our

intuition behind the impact of an attack on the similarity of two

probability distributions. In particular, the results confirm that if the

two models agree with each other, an attack will lead to an increase

in the mean and standard deviation of the divergence, resulting in a

wide distribution. In contrast, when the two models have natural dis-

agreements, the attack decreases the mean and standard deviation of

the divergence distribution, leading to a narrow distribution. We also

measured the similarity of the two models using the Wasserstein-1

metric to show independence from any particular similarity mea-

sure. Our analysis shows similar trends in different value ranges

(refer to Table 3 and Table 4 in Appendix A). The observations

shown above, however, pose a major challenge. There are over-

laps between the pre-attack and post-attack distributions across



all cases. Moreover, increasing the complexity of the dataset and

the dimensionality of the output vector leads to an increase in the

overlap. This growing overlap and complexity serve as indicators

of a more complex decision boundary for the attack discrimination

task, which can potentially be realized through a neural network.

We will address this challenge in our design (Section 5.2).

3 BACKGROUND
In this section, we introduce the concepts relevant to our work,

including a trusted execution environment, ML compression tech-

niques, and divergence-based similarity measures.

3.1 Trusted Execution Environments
A Trusted Execution Environment (TEE) is an isolated processing

environment in which each application is allocated a region of

memory, called an enclave, which is protected even from processes

running at higher privilege levels [2, 57]. The TEE guarantees the

integrity of the run-time states, the confidentiality of the code

and data stored on persistent memory, and the authenticity of

the executed code and its correct execution via remote attestation

between the data owner and the secure enclave. The two common

TEE implementations are Intel SGX [8] and ARM TrustZone [1].

3.2 Model Compression
Model Quantization [20] is a strategy for model compression and

inference process acceleration. Quantization reduces the precision

of the model’s weight, gradient, or activation values by converting

floating point numbers to lower precision integer numbers [77].

Thus, reducing the storage needed for the model and speeding up

the inference task [78]. The two primary quantization strategies

include post-training quantization, where the weights of a trained

model will be compressed (e.g., 32-bit float to 8-bit integer), and

quantization-aware training, in which the model’s weight and gra-

dients are quantized during the training process [7].

Knowledge distillation (KD) [23] is a machine learning technique

for transferring knowledge from a complex neural network(s) (i.e.,

teacher model(s)) to a single model (i.e., student model), aimed at

model compression, robustness, and performance enhancement [3,

14, 24]. The distillation process entails training the student model

using the output feature maps of the teacher model, i.e., soft la-

bels, and their corresponding true labels. The distilled models are

more robust against adversarial attacks when compared with their

teacher models [41, 50]. Defensive distillation [52] is a technique

that helps in reducing the effectiveness of the adversarial example

attacks against DNNs.

3.3 Similarity Measures
Divergence-based similarity measures are statistical techniques to

assess the similarity of a probability distribution (𝑃 ) with respect to

the reference probability distribution (𝑄). We review the Jeffreys’

divergence (JD) and Wasserstein distance.

Jeffreys’ Divergence. The JD is the bounded symmetrization of

the Kullback–Leibler divergence (KLD), which is used to quantify

the similarity between two probability distributions 𝑃 and 𝑄 . Un-

like KLD, the JD distance represents a normalized score that is

symmetric, i.e., 𝐷 𝐽 (𝑃 ∥ 𝑄) = 𝐷 𝐽 (𝑄 ∥ 𝑃) and can be calculated as:

𝐷 𝐽 (𝑃 ∥ 𝑄) =
1

2

𝐷𝐾𝐿

(
𝑃 ∥ 𝑄

)
+ 1

2

𝐷𝐾𝐿

(
𝑄 ∥ 𝑃

)
,

where 𝐷𝐾𝐿 (𝑃 ∥ 𝑄) is the KLD between 𝑃 and 𝑄 . JD provides a

smoothed and normalized score compared to KLD.

Wasserstein-1 Metric. Wasserstein-1 distance is a measure of

the distance between two probability distributions. Informally, the

Wasserstein distance can be interpreted as theminimum energy cost

of moving the mass from x to y to transform probability distribution

𝑃 to𝑄 . Wasserstein-1 metric (𝐷1

𝑊
) between cumulative distribution

functions 𝑃 and 𝑄 is defined as the infimum, taken over the set

of all joint distribution Γ(𝑃,𝑄). Thus, the Wasserstein-1 distance

between 𝑃 and 𝑄 (𝐷1

𝑊
(𝑃,𝑄)) is:

𝐷1

𝑊 (𝑃,𝑄) = inf

𝛾 ∈Γ (𝑃,𝑄 )
E(𝑥,𝑦)∼𝛾 [| |𝑥 − 𝑦 | |] .

4 MODELS AND ASSUMPTIONS
In this section, we first describe our system model and then for-

malize our threat model and discuss security assumptions. Our

system comprises edge servers, ML service providers, and clients.

Service providers offer a range of resource-intensive machine learn-

ing services, such as image annotation or video analytics, which

require input data from the clients. Given the complex nature of

the computation load and the need for real-time computation of

these services (e.g., autonomous driving, multi-player gaming, and

traffic monitoring), clients use the services running on the edge

server rather than the distant Cloud. We envision a subset of the

servers to be equipped with low-end trusted hardware like Intel

SGX or AMD TrustZone.

4.1 System Model
Our system comprises a computing ecosystem, service providers,

and clients. We consider the quickly growing pervasive edge com-

puting (PEC) environment [64] as our computing ecosystem. The

PEC ecosystem emphasizes the inclusion of client-owned devices in

the pool of computing resources, allowing them to carry out clients’

requests. Thus, resulting in extensive heterogeneous resource pools

in the proximity of clients. In the PEC ecosystem, a server is either

a pre-deployed infrastructure server or a client’s device, such as

smartphones and laptops, which runs outsourced services, aiming

to generate revenue. In contrast to the infrastructure servers that

are static in nature, the client’s resources can intermittently join

and leave the pool of computing resources. In our system, service

providers offer a range of services to clients. We consider resource-

intensive machine learning services like image annotation or video

analytics, which require input data from the clients. Due to the

need for quick computation, the client utilizes edge servers instead

of using a distant Cloud.

We also consider an access control service such as the recently

proposed APECS [12] for the servers and clients to mutually au-

thenticate each other before outsourcingML task. This construction

prevents unauthorized users from accessing the services and also

prevents unauthorized servers from accessing the clients’ data. Con-

sidering the heterogeneity of the PEC ecosystem, we envision a

subset of the servers to be equipped with low-end trusted hardware

like Intel SGX or AMD TrustZone.



4.2 Threat Model
Attacks against computation outsourcingmay target confidentiality,

integrity, availability, and privacy. Among all, we focus on threats

to integrity. Thus, the primary objective of Fides is to provide

correctness verifiability for the output of the MLaaS inference task.

More specifically, given an ML task and its input data, the goal is

to enable the client to assess the reliability of the result and infer,

with high probability, the trustworthiness of the executed service

by the edge server.

We formalize the threat model by introducing a security game,

in which the adversary A generates malicious predictions and de-

ceives the challenger C into believing that the generated predictions

belong to the universeU of benign input, prediction pairs.

Detection Game: The game utilizes a data universe U B

{
(
𝑥𝑖 , 𝐹𝜃 (𝑥𝑖 )

)
}𝑁
𝑖=1

, where 𝐹𝜃 : 𝑥𝑖 → [0, 1]𝑛 . The function 𝐹𝜃 is real-

ized through a machine learning model and trained using algorithm

𝜏𝐹 . While both the challenger C and Adversary A have complete

knowledge of input distribution D, trained model 𝐹𝜃 , training algo-

rithm 𝜏𝐹 , and attack detection algorithm 𝜏𝐷
𝐹
, the challenger has no

knowledge of the attack algorithm 𝜏𝐴
𝐹
used by adversary.

(1) The challenger samples the dataset D ⊆ D and trains model

𝐹𝜃 ← 𝜏𝐹 (𝐷), where 𝐹𝜃 : 𝑥𝑁
𝑖=1
→ 𝑦𝑁

𝑖=1
𝑎𝑛𝑑 (𝑥𝑖 , 𝑦𝑖 )𝑁𝑖=1 ∈ U.

(2) The challenger gives adversary a white-box access to 𝐹𝜃 .

(3) The adversary runs 𝜏𝐴
𝐹
: (𝑥,𝑦) → 𝑦, such that (𝑥,𝑦)∩U = 𝜙 ,

and returns {(𝑥,𝑦), (𝑥,𝑦)}.
(4) The challenger generates a guess 𝑧 ∈{𝑦,𝑦} by running:

𝜏𝐷
𝐹
({𝑦,𝑦};𝑥, 𝐹𝜃 ).

(5) The adversary wins if (𝑥, 𝑧) ∉ U.

The adversary can implement 𝜏𝐴
𝐹
in several different ways, in-

cluding orchestrating Trojan attacks on image or text classification

data [6, 75], performing attacks on the input image in the form of

adversarial perturbation [51, 63], or leveraging their access to the

model and directly modifying the model weights or the prediction

vector.

We do not restrict the adversary’s access to the service model,

which is running in the insecure region of the general purpose pro-

cessor. The adversary has complete knowledge of the architecture

and parameters of the service model. We assume the adversary

knows the deployed defense mechanism or its components within

a trusted enclave but does not have access to any computations

taking place inside the enclave. So, they can use the knowledge of

the defense algorithm 𝜏𝐷
𝐹

to orchestrate targeted attacks.

4.3 Attack Modeling
The primary outcome of the attack we consider in this work is

the integrity violation of the MLaaS inference task. To achieve this

goal, the adversary can use different techniques. In what follows,

we discuss three prominent attack orchestration techniques and

implement them in our evaluation. All the attacks take place at the

edge server, with the attacker decidingwhich of the different attacks

to execute. The attacker’s goal is to have the service model classify

an input with a wrong label. We note that while the adversary

can completely control the execution of the service model, the

adversary cannot interrupt the verification model as it runs in the

secure enclave upon the client’s request. We implemented all these

attacks and tested Fides against them (refer to Section 6).

Prediction Switching Attacks. In the following attack methodol-

ogy, the adversary only targets the posterior vector of the deployed

machine learning model and modifies it directly, aiming to cause an

incorrect prediction. We call this attack naive prediction switching

attack if the attacker modifies or generates the predictions arbitrar-

ily, without any attempt to avoid the detection mechanism. With

the knowledge of a detection mechanism, the adversary may deploy

different strategies, such as averaging the two highest probability

values 𝑝1 and 𝑝2 (𝜇 =
𝑝1+𝑝2

2
) to switch the prediction by assigning

𝜇 + 𝜖 to the second class (i.e., wrong prediction) and 𝜇 − 𝜖 to the

first class (i.e., true prediction), using a small 𝜖 value, e.g., 0.01%

of 𝜇. Alternatively, the adversary trains its own verification model

and uses it to minimize the distance between the forged incorrect

prediction and the actual prediction of the service model. We call

these advanced prediction switching attacks.

Well-known Attacks. The adversary can use popular backdoor

or adversarial sampling techniques to modify the predictions. For

our evaluation, we consider the following attacks:

Fast Gradient Sign Method (FGSM) [17] perturbations are crafted

by calculating the loss between the prediction and the true label.

Using the calculated loss, FGSM creates a max-norm constrained

(𝜖) perturbation. Given image 𝑥 , the adversarial image 𝑥𝑎𝑑𝑣 can be

calculated as 𝑥𝑎𝑑𝑣 = 𝑥 + 𝜖 × sign
(
∇𝑥 𝐽 (𝜃, 𝑥,𝑦𝑡𝑟𝑢𝑒 )

)
.

Projected Gradient Descent (PGD) [32] acts as iterative extension

of FGSM. The adversarial image is crafted by repeatedly adding

perturbation, guided using the loss between the prediction and

the target class. Each step of adversarial image generation can

be formulated as 𝑥𝑎𝑑𝑣
𝑁+1 = 𝐶𝑙𝑖𝑝𝑋,𝜖

(
𝑥𝑎𝑑𝑣
𝑁
+ sign(∇𝑥 𝐽 (𝜃, 𝑥,𝑦𝑡𝑎𝑟𝑔𝑒𝑡 ))

)
,

where 𝑥𝑎𝑑𝑣
0

= 𝑥 .

Trojan Attacks: This attack is conducted using the service model

in a white-box setting. In the context of our work, the adversary can

train the service model with a poisoned dataset containing trigger

embedded images [5] [19]. Alternatively, the adversary adds more

layers to the service model as a Trojan module and trains it using

the poisoned data [62], which gets triggered when the input image

contains the embedded trigger.

5 DESIGN OF FIDES
In a nutshell (refer to Figure 4), the process of Fides starts with a

service provider preparing the service package (§ 5.1), including

the ML application, i.e., service model, and its verification compo-

nent, i.e., verification model, for deployment on the edge servers

(the server-side component). The service provider also builds an

attack detection and re-classification pipeline, that includes two

neural networks (§ 5.2), one for attack detection and a second for re-

classification. In training the attack detection and re-classification

models, the provider uses a generative adversarial network ap-

proach. The service deployment process involves loading the ser-

vice and verification models to a server with which a trust rela-

tionship has already been established (§ 5.3). After deployment, the

server accepts requests for verification from a client. On receiving

a client’s request, the server runs the verification model inside the

secure enclave and the service model in the unprotected region of

the processor and returns both outputs to the client (§ 5.4). Finally,
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Figure 4: In Fides, the provider builds the service package (§ 5.1) and the attack detection and re-classification pipeline (§ 5.2) for deployment
on the server (§ 5.3) and the client, respectively. The client then sends the service request to the edge server and verifies the result using the
attack detection pipeline (§ 5.4).

the client runs Fides’ detection and re-classification functionalities

(the client-side component) to identify a potential attack and rectify

the outcome of the MLaaS inference as needed. Without loss of

generality, we use Intel SGX as the TEE in our implementation

reference and explain details using SGX terminology.

5.1 Service Package Building
A service package includes two components–the application (i.e.,

servicemodel) and a verification tool (i.e., verificationmodel), which

is a small ML model for the verification of its corresponding service

model. As shown in Figure 5, service package development is a

two-step process in which the provider first trains its service model,

e.g., image classification, and then dynamically re-train layers of

the verification model using the fully trained service model.

As per Algorithm 1, the service building process takes an un-

trained service model (𝐹𝑆 ), an independently pre-trained verifica-

tion model (𝐹𝑉 ), the privately owned training set (D𝑃𝑟𝑖𝑣
𝑇

), and a

set of hyper-parameters (𝜆 and 𝛼). Upon completion, it returns

the fully trained service (𝐹𝑆 ) and verification (𝐹𝑉 ) models. Train-

ing the service model follows the standard training process using

D𝑃𝑟𝑖𝑣
𝑇

with the defined loss function for as many epochs as re-

quired (Lines 1-3). The verification model is a distilled and smaller

version of the service model, so it renders minimal computation

overhead when deployed into the edge server’s enclave. To reduce

the cost of knowledge distillation, we propose Greedy Distillation

Transfer Learning (GDTL), a distillation technique that results in a

time-efficient procedure for training the small verification model.

The GDTL process takes a pre-trained model that is significantly

smaller as compared to the service model and adaptively unfreezes

the layers that require re-training and fine-tuning. More specifically,

GDTL first splits the verification model starting from its last layer

(Line 8). Given the model split, GDTL runs 𝐹𝑆 and 𝐹𝑉 on D𝑃𝑟𝑖𝑣
𝑇

to obtain the soft labels of the service model and the partially

trained verification model (Lines 8-10). In Line 10, GDTL calculates

the knowledge distillation loss (i.e., KDL) of these values and the

one-hot encoding (𝜏) of the labels (Line 6). Note that the weight

of the average (𝛼) changes over time. GDTL starts with a larger 𝛼

value, giving more weight to the teacher model, and then adaptively

decreases it over time, giving higherweight to service true label. The

rationale for adaptively changing 𝛼 is to initially guide the model

towards the service model and then decrease it for it to improve

over samples the teacher model is providing incorrect prediction.

GDTL then uses the loss value and the stochastic gradient descent

method to update the trainable layers (Line 11) using D𝑃𝑟𝑖𝑣
𝑇

.
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Figure 5: In service package building, the provider trains the service
model and uses it to run the greedy distillation transfer learning
process, which builds the customized compressed verificationmodel.

Each training iteration, GDTL compares the accuracy and preci-

sion of the partially fine-tuned verification model with the service

model. If the verification model’s accuracy is higher than the 𝜆

factor of the service model’s accuracy, the GDTL process stops

training 𝐹𝑉 (Lines 7). Otherwise, GDTL dynamically unfreezes an-

other layer of the verification model for fine-tuning (Line 12). In

essence, the GDTL process gradually splits the model from the last

layer towards the first and continuously re-trains and fine-tunes

the trainable layers. We note that 𝜆 is a hyper-parameter that the

provider adjusts based on various factors like its available com-

puting resources and the desired verification accuracy. A 𝜆 value

closer to 1 results in a high-accuracy verification model but requires

more fine-tuning steps. Our initial assessment (Figure 6) shows that

GDTL outperforms standard distillation and fine-tuning in terms

of accuracy and is comparable to fine-tuning in terms of per-epoch

execution time. GDTL also reduces the difficulty of finding suit-

able regularization, which is the primary reason behind the lower

accuracy of classical knowledge distillation [70].

For further compression, GDTL applies model quantization as a

common technique for approximating a neural network that uses

floating-point numbers using a neural network of lower bit-width

numbers. Among all, in Fides, we used dynamic range quantization

(Line 13), which is a post-training approach that does not need

additional model re-training and fine-tuning. Dynamic range quan-

tization converts 32-bit floating point numbers into 8-bit integers,

with the resultant model running using floating point operations. At

the end of this process, the service package is completed. It should

be pointed out that the design of the distillation algorithm relies

on an underlying assumption that pre-trained weights utilized are

trusted. Violation of this assumption can lead to vulnerabilities [71],

which are out of the scope of this work.



Algorithm 1: Service Package Development

Input: 𝐹𝑆 (untrained), 𝐹𝑉 (public pre-trained),

D𝑃𝑟𝑖𝑣
𝑇

, 𝜆 ∈ [0, 1], 𝛼 ∈ [0, 1] .
Output: ⟨𝐹𝑆 , 𝐹𝑉 ⟩.

Service Model Training:
1 for number of the training epochs do
2 Use stochastic gradient descent to update 𝐹𝑆 on:

L𝐹𝑆
(
𝐹𝑆 (𝑥𝑖 ), 𝑦𝑖

)
,∀(𝑥𝑖 , 𝑦𝑖 ) ∈ D𝑃𝑟𝑖𝑣𝑇

3 Store 𝐹𝑆 ⊲ 𝐹𝑆 is the fully-trained Service model.

4 ·𝑛𝑗=1 𝐹𝑉 ← 𝐹𝑉 1· 𝐹𝑉 2· · · · · 𝐹𝑉𝑛
Distillation-based Fine-tuning:

5 𝑙 ← 𝑛 ⊲ Set the cut-layer to the last layer of 𝐹𝑉 .

6 𝜏 ← One Hot Encoding of data label (𝑦𝑖 ) .
7 while

(
𝑙 ≥ 1 && Acc(𝐹𝑉 ) ≤ 𝜆∗Acc(𝐹𝑆 )

)
do

8 {·𝑙−1𝑗=1 𝐹𝑉𝑛,·𝑛𝑗=𝑙 𝐹𝑉𝑛} ←−ML-Split(𝐹𝑉 , 𝑙)
9 for

(
∀(𝑥𝑖 , 𝑦𝑖 ) ∈ D𝑃𝑟𝑖𝑣𝑇

)
do

10 𝐾𝐷𝐿

(
𝐹𝑆 (𝑥), 𝐹𝑉 (𝑥), 𝜏,𝑇

)
= −𝛼E𝐹𝑆 (𝑥 )

[
log

(
𝐹𝑉 (𝑥 )
𝑇

)]
−(1 − 𝛼)E𝜏

[
log

(
𝐹𝑉 (𝑥)

)]
11 Use stochastic gradient descent to update ·𝑛𝑗=𝑙 𝐹𝑉

on: 𝐾𝐷𝐿

(
𝐹𝑆 (𝑥), 𝐹𝑉 (𝑥), 𝜏

)
, where

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠 = 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠 ×𝑇 2

12 Unfreeze (·𝑛𝑗=𝑙 𝐹𝑉 ) by adjusting the cut layer in 𝐹𝑉 :

𝑙 ← 𝑙 − 1.
13 Quantize(𝐹𝑉 ) ⊲ Dynamic-range quantization.

14 Return ⟨𝐹𝑆 , 𝐹𝑉 ⟩ ⊲ Fully-trained Service model and

fine-tuned distilled verification model.

5.2 Generative Attack Detection and
Re-classification Training

Based on the observations made in section 2 it is evident that the

divergence between the service and verification models’ probability

distributions reveals statistical information, which is essential for

attack detection. Thus, we utilize the differences in the relative

divergence as features to assist attack detection.

For attack detection, a naive approach would be using the resul-

tant divergence of the two probability distributions to set a fixed

attack detection threshold. However, manually setting a threshold

is not effective since (i) the threshold is model and data-specific,

and (ii) the attack detection decision boundary is non-linear, for

which a linear threshold will be ineffective. Supervised learning al-

gorithms can effectively learn such non-linear decision boundaries

and improve the detection accuracy. However, these algorithms will

utilize known attack signatures and, hence, can become ineffective

in detecting variations of known attacks or attacks outside the train-

ing dataset. As such, we used a GAN framework for training Fides’

attack detection and re-classification models where no predefined

attack signatures are used during the training phase, allowing the

trained model to be more robust against unseen attack signatures.

(a) Accuracy on CIFAR-10. (b) Accuracy on CIFAR-100.

(c) Time on CIFAR-10. (d) Time on CIFAR-100.

Figure 6: The performance comparison between GDTL, distilling
from scratch (Distillation), and fine-tuning (Transfer Learning)
across multiple datasets and architectures. The results show the
accuracy and per epoch time for all approaches showcasing how
GDTL outperforms other approaches while being resource-efficient.

The correlation of the outputs of the service and verification

models will result in five possible cases. Case C1 is when both mod-

els agree with the ground truth. Case C2 is when only the service

model agrees with the ground truth while Case C3 represents those

instances where only the verification model agrees with the ground

truth. For Case C4 both models make two different incorrect predic-

tions. In Case C5, both models make the same incorrect prediction,

i.e., disagree with the ground truth but happen to agree with each

other. These cases are accounted for in our GAN framework to train

the attack re-classification model. Note that the re-classification

model is a five-class classifier, which returns one of these cases

regardless of the number of classes in the service model.

GAN-based Attack Detection and Re-classification. We for-

malize the training of Fides’ attack detection model (D) and the

attack generator model (G) as a min-max game. The generator is

an attack crafting neural network, which takes samples from the

private dataset (D𝑃𝑟𝑖𝑣
𝑇

) and it returns outputs that are different from

the service model. The goal of the detection model, i.e., the discrim-

inator, is to differentiate between the output of the service model

and the generator model’s crafted outputs. The generative training

process simultaneously trains a re-classification model (R), which
aims at correcting the attack’s outcome by reclassifying the output

of the service model when under attack.

In training the generator and detection models, we define the

objective function of the min-max game as:

min

G
max

D
𝑉 (G,D) = E𝑥∼𝑝data (𝑥 )

[
log

(
D

(
𝐹𝑆 (𝑥), 𝐹𝑉 (𝑥)

) )]
+ E𝑥∼𝑝data (𝑥 )

[
log

(
1 − D

(
G(𝑥), 𝐹𝑉 (𝑥)

) )]
− E𝑥∼𝑝data (𝑥 )

[
log

(
1 − G(𝑥)

) ]
.

The first and second terms are the cross-entropy between the out-

put of the attack detection model and its true label YD (∈ {0, 1}),
where 1 signifies no attack while 0 signifies attack. The third term

is the cross-entropy between the generator model’s output and

the private data’s true label. Our proposed objective function is
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Figure 7: We formalized the attack detection and subsequent re-
classification models as a GAN, in which the attack generator (G)
crafts various attacks to train the attack detection (D) model in
a two-player min-max game. In the process of training G and D,
the framework simultaneously trains a re-classification model (R),
aiming to correct the outcome of the attack.

different from the conventional generative adversarial networks

in two aspects. First, the addition of the third term penalizes the

generator model every time its prediction is the same as the true

label. Thus, preventing the generator model from converging with

the service model. Second, the generator model does not sample

any input noise. Instead, it uses samples from the private dataset

as input and crafts a malicious output with a wrong label, while

mimicking the decision boundary of the service model.

Recall that the generator model takes the samples from the pri-

vate dataset as input and generates malicious outputs. We define a

malicious output to be a prediction that is different from the true

label but has a probability distribution similar to a naturally oc-

curring misclassification. To achieve this behavior, we define the

generator model’s loss function as:

LG = − log
(
D

(
G(𝑥), 𝐹𝑉 (𝑥)

) )
− log

(
1 − G(𝑥)

)
.

The first term in LG rewards the generator model every time the

detector model classifies the output of the generator model as a

valid output. The second term rewards the generator model for

making predictions that are different from the true labels.

The input of the detection model comprises two tuples (Figure 7).

The first tuple consists of the outputs of the generator model G(𝑥)
and verification model

(
𝐹𝑉 (𝑥)

)
alongside their cross-entropy loss(

L
(
G(𝑥), 𝐹𝑉 (𝑥)

) )
. The second tuple consists of the outputs of the

service model

(
𝐹𝑆 (𝑥)

)
and verification model

(
𝐹𝑉 (𝑥)

)
alongside

their cross-entropy loss

(
L(𝐹𝑆 (𝑥), 𝐹𝑉 (𝑥))

)
. We define the loss func-

tion of the detection model as the binary cross-entropy between

the model’s output and its true label:

LD = − log
(
D

(
𝐹𝑆 (𝑥), 𝐹𝑉 (𝑥)

) )
− (1 − YD ) ∗ log

(
1 − D

(
G(𝑥), 𝐹𝑉 (𝑥)

) )
.

The primary challenge in training the detection model is differen-

tiating the naturally occurring prediction disagreement between

the service and verification models and the disagreement caused

by the attack. As mentioned earlier the trend we observed in our

analysis regarding the difference in the divergence ranges between

a natural misclassification and an attack allows the detection model

to differentiate between the two (refer to Figure 3 in Section 2).

Per Figure 7, during the training process, the re-classification

model receives the output of the generator model

(
G(𝑥)

)
and verifi-

cationmodel

(
𝐹𝑉 (𝑥)

)
with their cross-entropy loss

(
L(G(𝑥), 𝐹𝑉 (𝑥))

)
.
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Figure 8: During the service deployment process, the service provider
securely deploys the verification model on a secure enclave on the
remote edge server and provisions the decryption key after remote at-
testation. Thus, guaranteeing the integrity of the verification model.

It also takes the compatibility label between the service and verifica-

tion models, i.e., Y𝑐 , which signifies the correctness of the outputs

of these models and their similarity. Using these inputs, we defined

the re-classification model’s loss as the cross entropy between the

output of the re-classification model and Y𝑐 as:

LR = −
5∑︁
𝑐=1

Y𝑐 ∗ log
(
R
(
G(𝑥), 𝐹𝑉 (𝑥)

) )
,

where Y𝑐 ∈ {𝐶1,𝐶2,𝐶3,𝐶4,𝐶5}.
After training the attack detection and re-classification models

using the proposed GAN, the service provider shares them with

the clients. Thus, allowing the clients to independently validate the

results of the MLaaS inference task, executed by the edge server.

5.3 Service Deployment
Without loss of generality, we consider two possibilities for service

deployment. In the first approach, the server initiates the deploy-

ment process by sending a request to the provider with requisite

information about its resources, e.g., EPC size, memory, bandwidth,

and the service(s) it is willing to offer. The choice of the service

depends on criteria like service demand or resource availability.

Alternatively, the service provider initiates the deployment request

to a potential server based on service demands in the server’s locale.

Per Figure 8, we adopt the first approach.

After the final agreement, the provider sends a complete appli-

cation package to the server. The application package includes the

service model, the encrypted verification model, and the service

metadata. The service metadata contains application-specific con-

figuration information, which is necessary for the integrity verifica-

tion of the ML application. In particular, for Intel SGX, the metadata

contains a .manifest.sgx file for configuring the secure applica-
tion environment by the SGX SDK along with a .token and a .sig
file, which SGX uses to verify the integrity of the enclave-loaded

application and files. The server then initiates a secure enclave for

loading the encrypted verification model. It then establishes an

RA-TLS channel [28] with the service provider for provisioning the

application decryption key into the secure enclave. Thus, allowing

the enclave to decrypt the verification model.

The service provider shares requisite enclave information, such

as ⟨MR_ENCLAVE, MR_SIGNER, ISV_PROD, ISV_SVN⟩ with the
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Figure 9: During service request, the client securely shares the data
with the secure enclave running the verificationmodel, which in turn
shares it with the service model. Thus, ensuring that the verification
model has access to trustworthy data.

clients, enabling them to verify the chain of trust during the re-

mote attestation process (i.e., RA-TLS) at the service outsourcing

step. The provider generates these values while creating the SGX-

supported application and shares them with the client when the

application is downloaded. The RA-TLS protocol helps the client

trust the output of the verification model running in the enclave.

5.4 Service Request and Execution
For service request, the client starts by discovering the servers

that offer the service and have sufficient resources. If the service

discovery fails, the client can either request the service from the

provider or request a server to deploy the service. We do not discuss

service discovery and assume the client finds a nearby server. Once

the client has identified the server, it sends a service request to the

server (Figure 9). Considering our threat model, a malicious server

can change the data received from the client before sending it to the

verification model for verification. Hence, the client first establishes

an RA-TLS channel with the enclave to perform remote attestation.

The remote attestation process on the client uses ⟨MR_ENCLAVE,
MR_SIGNER, ISV_PROD, ISV_SVN⟩ information obtained from the

provider to verify the integrity of the respective enclave in terms

of its software and configuration. On successful remote attestation,

i.e., verifying the chain of trust and ensuring that the client is

directly communicating with the secure enclave, the client securely

shares the input data with the enclave. The application inside the

enclave decrypts the client’s data, shares it with the service model,

and executes the verification model. Alternatively, the client can

establish a TLS channel with the service model and an RA-TLS

channel with the verification model to directly share the data with

both. We use the first approach in our experiments.

After completing the ML inference task, the service and veri-

fication models return their outputs to the client. Note that the

communication between the client and the secure enclave is pro-

tected through the established RA-TLS channel. The service model

can either set up a secure connection to the client and securely

share the result or use an insecure channel. The client then uses

Fides’ detection and re-classification pipeline on the outputs of the

Table 1: Accuracy of service and verification models.

ResNet DenseNet EfficientNet

CIFAR-10

Service 93.77% 94.93% 96.74%

Verification 93.38% 95.30% 96.91%

CIFAR-100

Service 76.99% 78.69% 83.79%

Verification 77.31% 76.13% 83.41%

ImageNet

Service 73.01% 73.32% 79.73%

Verification 70.65% 69.74% 72.16%

service and verification models to verify the correctness of executed

ML inference task and detect potential attacks.

6 EXPERIMENTS
In this Section, we review our benchmark datasets and models and

elaborate on our system and experiment setup. We first analyze the

similarity of the service and verificationmodels pre- and post-attack

and share our observations, which confirms the rationale behind

our design. Finally, we assess the efficacy of Fides in detecting and

re-classifying attacks, followed by system performance analysis.

6.1 Data and Models
We evaluated Fides

1
using datasets of various complexities:

• CIFAR-10 consists of 60K color images (32 × 32 pixels) with
10 classes and 6K images per class. There are 50000 training

and 10000 test images [30].

• CIFAR-100 features 100 classes with 600 images per class

with pixels resolution of 32 × 32. There are 50000 training
and 10000 test images [30].

• ImageNet-1K contains about 1.3M annotated images (about

1.28M training, 50K validation, and 100K test images), grouped

into 1000 classes [10]. The resolution of images is 469 × 387
pixels; we cropped these images to 224 × 224 pixels.

We used three DNN architectures, namely ResNet, DenseNet, and

EfficientNet for the image classification application. More specifi-

cally, we used ResNet-152 (60.4M parameters), DenseNet-201 (20.2M

parameters), and EfficientNet-B7 (66.7M parameters) as the set of

service models and ResNet-50 (25.6M parameters), DenseNet-121

(8.1M parameters), and EfficientNet-B0 (5.3M parameters) as their

corresponding verification models, respectively. The accuracy of

the corresponding service and verification models on the given

datasets are tabulated in Table 1. Note that the accuracy of the

models we used may not reach the reported accuracy in their re-

spective papers. However, our goal is to use them in developing a

result validation mechanism for MLaaS inference. While we used a

similar architecture for each service and verification model pair, it

is possible to use different architectures.

For our GAN framework, we adopted the fully trained service

model (architecture and parameter weights) as the generator model

and further extended it by adding four extra fully connected layers.

The additional layers take the learned decision boundary of the

service model at the beginning of the training process and fine-

tune the generator model, aiming to craft stronger attack outputs.

For the attack detection and re-classification models, we used two

1
Fides Code is available on https://github.com/akumar2709/Fides_AsiaCCS

https://github.com/akumar2709/Fides_AsiaCCS


(a) Detection accuracy on CIFAR-10. (b) Detection accuracy on CIFAR-100. (c) Detection accuracy on ImageNet.

(d) Re-classification accuracy on CIFAR-10. (e) Re-classification accuracy on CIFAR-100. (f) Re-classification accuracy on ImageNet.

Figure 10: Fides’ attack detection and re-classification models’ performance across all datasets and architecture combinations. The results
suggest a direct correlation between the accuracy of the service model and the accuracy of the detection and re-classification models.

lightweight fully connected neural networks, each containing three

hidden layers containing 128, 256, and 128 neurons per hidden layer.

6.2 System and Experiments Setup
We evaluated our framework on a server with an Intel Xeon Plat-

inum 8352Y processor with a base clock speed of 2.20 GHz and

256 GB RAM. The server’s processor is a 3rd generation Xeon pro-

cessor (i.e., Ice Lake series) with 64 GB EPC. The SGX drivers are

in-kernel drivers and were implemented using Gramine OS v1.2.

We used three classes of consumer processors, namely a mobile

class device with a Snapdragon 765G processor, an IoT class device

with an ARM Cortex-A72 processor, and an X86 consumer class

device with an AMD Ryzen 5 processor.

6.3 Verification Efficacy Analysis
We evaluated the attack detection and re-classification model’s

performance in terms of accuracy and F1-score. In doing so, we built

a test dataset by randomly selecting an average of 9000 samples from

each dataset and applying the attacks we described in Section 4.3.

We applied the attacks either on the service models’ outputs of

the 9000 samples (for naive and advanced attacks), input samples

(for adversarial example attack), or the service model itself (for

Trojan attack). We also included the output of the legitimate service

models on the 9000 samples to the test dataset to represent the no-

attack scenario. In our experiments, the accuracies we reported for

the re-classification models are of the detected samples. Note that

running the standalone re-classification models on all the generated

attack samples (including the undetected ones) results in higher

accuracies than those we discuss below.

For the attack detection and re-classification models, we devised

two variants–one that uses the soft labels of the service and verifi-

cation models as the input features and another one that uses the

Table 2: Attack detection accuracy per attack type.

ResNet DenseNet EfficientNet

C
I
F
A
R
-
1
0

Accuracy

Naive 95.07% 96.24% 97.36%

Advanced 95.27% 96.36% 97.59%

FGSM / PGD 89.25% 95.11% 95.89%

Backdoor 95.23% 96.34% 97.57%

F1-Score

Naive 94.84% 96.11% 97.30%

Advanced 95.03% 96.22% 97.53%

FGSM / PGD 89.39% 94.99% 95.86%

Backdoor 94.99% 96.20% 97.53%

C
I
F
A
R
-
1
0
0

Accuracy

Naive 91.57% 89.87% 92.68%

Advanced 86.62% 82.24% 90.18%

FGSM / PGD 94.42% 95.63% 93.22%

Backdoor 96.86% 97.14% 96.64%

F1-Score

Naive 91.76% 90.32% 92.73%

Advanced 87.52% 84.19% 90.48%

FGSM / PGD 94.39% 95.58% 93.23%

Backdoor 96.76% 97.07% 96.52%

I
m
a
g
e
N
e
t

Accuracy

Naive 84.36% 82.37% 83.56%

Advanced 78.87% 76.08% 76.39%

FGSM / PGD 87.94% 86.95% 85.31%

Backdoor 89.42% 88.18% 88.22%

F1-Score

Naive 83.60% 81.40% 82.50%

Advanced 79.05% 76.34% 76.64%

FGSM / PGD 75.53% 85.53% 84.06%

Backdoor 88.29% 86.71% 81.25%

cross-entropy loss measurement as the input feature. Using the loss

measurement enables the detection and re-classification models to

utilize the divergence trends we discussed earlier while using soft

labels allows the models to learn additional patterns, beyond the

divergence trends.

Figure 10 represents the accuracy and F1-Score of the loss-based

attack detection and re-classification models across all architectures

and datasets. We measured the attack detection accuracy across all



(a) Memory usage of service/verification models. (b) Execution time of service/verification models. (c) Execution time of verification techniques.

Figure 11: Evaluation of Fides’ server-side performance in terms of memory and execution time on the server.

(a) Inference time of attack detection models. (b) Inference time of attack re-classification models. (c) Memory footprint of attack detection and re-

classification models.

Figure 12: The number of input features for various datasets impacts the attack detection and re-classification model’s performance. Using loss
(cross-entropy) for attack detection and re-classification outperforms others due to the smaller feature size.

attack scenarios, i.e., from the naive to advanced and well-known

attacks. Table 2 tabulates the attack detection accuracy and F1-score

for each attack type. These results show that the attack detection

models on average achieve an accuracy of 91.15% across all archi-

tectures and datasets and the re-classification models achieve an

average accuracy of 80%. More specifically, using EfficientNet for

CIFAR-10 results in the best attack detection and re-classification

performance (Figures 10(a) and 10(d)). However, increasing the

dataset complexity, from CIFAR-10 to ImageNet, slightly reduced

the attack detection accuracy with a more moderate impact on the

re-classification accuracy (Figures 10(c) and 10(f)). Such behavior

is expected as the accuracy of the service and verification models

for ImageNet are lower than CIFAR-10 and CIFAR-100 accuracies

across all architectures (Table 1).

For cases like ImageNet where the accuracy of the service and

verification models are (on average) 75.24% and 70.85%, the attack

detection accuracy is still higher than 87%, showing that the de-

tection models were successfully identifying attacks where the

service model and verification model disagree (the non-trivial sce-

narios). One can also observe that the performance of the detection

and re-classification models are correlated to the service model’s

accuracy–the more accurate the service model, the more accurate

the attack detection and re-classification models. Finally, we ob-

served that both loss-based and soft labels-based variants of the

attack detection and re-classification models achieve similar per-

formance in terms of accuracy and F1-Score.

6.4 System Performance Analysis
We also ran a set of experiments to assess Fides’s system perfor-

mance in terms of execution time and memory (Figures 11 and 12).

We used the ImageNet dataset in all architectures for assessing

the memory consumption of the server-side components as Im-

ageNet has the most number of classes–the worst-case scenario.

Figure 11(a) shows that the GDTL process resulted in a smaller veri-

ficationmodel with a significantly smaller memory footprint. This is

crucial for deploying real applications on resource-constrained edge

servers. We note that the compression ratio may vary across dif-

ferent models depending on the architecture. Figure 6 (Section 5.1)

shows the accuracy and the time taken by GDTL when compared to

fine tuning (transfer learning) and distillation from scratch. GDTL

performed the best accounting for both parameters.

We compared the secure execution of the service and verifica-

tion models with the insecure service model on CPU and GPU.

Figure 11(b) demonstrates that the secure execution of the verifica-

tion model for ResNet and EficientNet architectures takes far less

than the secure and insecure execution of their service models. For

DenseNet, the verification model only takes 0.178 seconds more

than the insecure service model but it is still faster than the secure

execution of the service model, which we attribute to the DenseNet

smaller compression rate. The secure execution of the verifica-

tion models is marginally slower than GPU executions (worst case

130 milliseconds for Densenet), which is expected.

We also compared the system performance of Fides with two

other techniques–Slalom [65] and Chiron [27]. We selected Slalom

as it outperforms other solutions in terms of validation of out-

sourced ML inference task and selected Chiron due to its similarity

with Fides in running the entire model in a TEE. For Slalom, we

only implemented its verification process, which uses Freivalds’

algorithm to verify the matrix multiplication operations of each

linear layer. Considering the probabilistic nature of the verification

process in Slalom, we benchmark the verification of 50% and 100%

of the service model’s matrix multiplications per architecture. We



did not include the time of ECALL and OCALL operations (enter-

ing and exiting the enclave), which will result in a large latency

overhead considering the frequency of these operations in Slalom.

Per Figure 11(c), Fides outperforms other techniques in terms of

validation time. It achieves a 1.73× to 25.7× speed-up compared

to Chiron and a 4.8× to 26.4× speed-up compared to verification

based on Freivalds’ algorithm for 100% of the matrices. This is in

part due to the sequential execution of the Freivalds’ algorithm

in our experiment. Note that the speed-up in both cases increases

with the increase in the size of the verification model.

Given the constrained nature of clients’ devices, we evaluated the

performance of the attack detection and re-classification models on

several consumer-grade device classes. Figures 12(a) and 12(b) show

the elapsed time of running these models on an Internet of Things

device (ARM Cortex-A72), a smartphone (Snapdragon 765G), and a

personal desktop (AMD Ryzen 5). One can observe the negligible

overhead of these models on clients; less than 260 microseconds in

the worst case. Our analyses show that the performance of these

models is highly correlated to the size of their input features when

using soft labels as the input. For instance, detecting an attack

on ImageNet with 1000 classes takes (on average) 13.47× longer

than detecting the same attack on CIFAR-10 with 10 classes. The

same behavior can be observed from attack re-classification mod-

els. However, the loss-based detection and re-classification models

show significant improvement in the execution time–only 0.076%

of the original latency in the case of ImageNet soft labels. This is

primarily due to the independence of the model’s input size to the

number of the service model’s classes when using cross-entropy

loss value as the input feature. It is worth mentioning that the added

overhead of loss calculation for the two input vectors is negligi-

ble. Figure 12(c) shows the memory footprint of different detection

and re-classification models. The memory footprint falls within a

similar range for CIFAR-10, CIFAR-100, and the loss-based solu-

tions but increases significantly for ImageNet. It is primarily due to

the smaller input layers for CIFAR-10, CIFAR-100, and loss-based

solution, when compared with ImageNet’s larger input layer.

7 RELATEDWORK
The defenses against integrity violations in machine learning mod-

els during inference can be classified into three categories.

Cryptographic defences include solutions like multi-party

computation [26, 29, 60, 72], proof-based systems [16, 34, 40], var-

ious constructions of homomorphic encryption [40, 47, 49, 69].

While the primary goal of multi-party computation is protecting

data privacy, this technique offers a degree of verifiability. Similarly,

solutions based on homomorphic encryption provide verifiability

by virtue of protecting the data. For instance, one secure inference

operation of the ResNet50 model using homomorphic encryption

on customized hardware takes about 970 seconds compared to only

100 milliseconds for the same operation on non-encrypted data [56].

In contrast to these schemes, proof-based systems, e.g., inter-

active and zero-knowledge succinct non-interactive argument of

knowledge (zk-SNARK), have been extensively used for verifiable

ML [9, 16, 34, 38, 58, 68, 73]. The proof-based solutions, although

theoretically more representative of verification, require significant

computation by the prover [34] and do not scale for large ML mod-

els with many convolution layers [76]. For instance, generating

proof for the VGG16 model with 16 layers and a decision tree with

23 levels take 88.3 seconds and 250 seconds, respectively [38, 73].

Moreover, the authors in [65] have shown that the best proof-based

verifiable ML scheme is roughly 200 times slower when compared

with running the entire model in a TEE.

TEE-based defenses has been used extensively in ML security

and privacy, where confidentiality, privacy, and verifiability are

paramount [11, 15, 21, 65]. In this domain, the main body of the

literature aims at the efficient and secure execution of advanced

models and large datasets in TEEs with small enclave page cache

(EPC) [31, 43, 44]. These frameworks suggest partial outsourcing, in

which a subset of the layers will be outsourced for secure execution.

The authors in [31, 44] suggested running the last few layers in

one or multiple parallel enclaves and the rest of the layers by the

client. Alternative approaches proposed running the linear layers

in a secure enclave and the remaining layers outside in insecure

memory and verifying them using Freivalds’ algorithm [65]

Attack Specific Defences could be designed to defend against

backdoor attacks in the training phase [4, 48, 53, 67] by identifying

and eliminating the updates or samples that are out-of-distribution.

Since adversarial sample attacks take place in inference phase, the

defenses against adversarial samples can take several different ap-

proaches, such as training discriminators to capture the difference

between the training data and adversarial samples [13, 33, 79] or

relying on invariance in the feature map and activation caused due

to adversarial behavior [39, 42, 54].

Fides overcomes the shortcomings of these solutions by deploy-

ing a validation system, which relies on a significantly smaller veri-

fication model’s posterior information to validate the prediction of

service model. Fides aims to be highly parallelizable in deployment

while being adaptable to already deployed MLaaS models. Fides

also aims to make the defense attack methodology agnostic.

8 CONCLUSION
We introduced Fides–a framework for output verification of MLaaS

inference. Fides features a Greedy model distillation technique.

GDTL process gradually unfreezes the layers of an off-the-shelf

model for distillation-based fine-tuning. Along with deploying the

service model, the provider also securely deploys the verification

model in a TEE on the server. The client then offloads the ML

workload to the server by sharing its data with the service and

verification models. Fides also features client-side neural networks

for attack detection and re-classification, which are trained via our

proposed GAN framework. Our rigorous evaluation using multiple

datasets and neural network architectures shows Fides’s superi-

ority to the existing solutions in system performance–a 1.73× to

26.4× speed-up and achieves up to 98% attack detection and re-

classification accuracy.
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A COMPLEMENTARY RESULTS

Table 3: Entropy Analysis of Jeffreys Divergence (JD) and Wasser-
stein Metric (WM) for cases that service and verification models
predictions are identical (Case A) post-attack.

Case A

ResNet DenseNet EfficientNet

C
I
F
A
R
-
1
0

WM

Pre-

attack

0.0038 ±
0.0037

0.0019 ±
0.0018

0.000013 ±
0.000012

Post-

attack

2.73 ± 0.76 2.99 ± 1.00 2.98 ± 0.99

JD

Pre-

attack

0.009 ± 0.009 0.004 ± 0.0001 0.000015 ±
0.000014

Post-

attack

13.09 ± 5.3 13.09 ± 4.37 14.08 ± 4.17

C
I
F
A
R
-
1
0
0

WM

Pre-

attack

0.160 ± 0.157 0.153 ± 0.148 0.048 ± 0.047

Post-

attack

26.344 ±
13.344

25.99 ± 12.012 24.11 ± 12.12

JD

Pre-

attack

0.03 ± 0.0293 0.037 ± 0.035 0.0085 ± 0.008

Post-

attack

9.53 ± 3.98 10.25 ± 4.12 9.74 ± 4.07

I
m
a
g
e
N
e
t

WM

Pre-

attack

1.25 ± 1.17 2.96 ± 2.64 38.79 ± 14.20

Post-

attack

51.96 ± 46.79 49.41 ± 43.26 85.13 ± 35.97

JD

Pre-

attack

0.035 ± 0.032 0.065 ± 0.06 0.216 ± 0.092

Post-

attack

3.96 ± 2.16 3.31 ± 1.82 2.70 ± 1.37

Table 4: Entropy Analysis of Jeffreys Divergence (JD) and Wasser-
stein Metric (WM) for cases that service and verification models
predictions are different (Case B) post-attack.

Case B

ResNet DenseNet EfficientNet

C
I
F
A
R
-
1
0 WM

Pre-attack 1.87 ± 0.63 2.039 ± 0.67 1.83 ± 0.62
Post-attack 0.95 ± 0.57 0.99 ± 0.58 0.68 ± 0.47

JD

Pre-attack 4.76 ± 1.99 4.83 ± 2.09 4.04 ± 1.55
Post-attack 1.75 ± 1.36 1.64 ± 1.21 0.873 ± 0.66

C
I
F
A
R
-
1
0
0 WM

Pre-attack 23.89 ± 9.648 24.019 ± 9.49 22.53 ± 9.59
Post-attack 17.11 ± 9.52 17.87 ± 9.62 16.54 ± 9.25

JD

Pre-attack 4.77 ± 1.69 5.67 ± 0.035 4.87 ± 1.90
Post-attack 3.67 ± 2.523 4.50 ± 2.99 4.12 ± 3.047

I
m
a
g
e
N
e
t

WM

Pre-attack 69.13 ± 34.87 66.13 ± 34.82 66.96 ± 26.09
Post-attack 58.79 ± 33.12 55.05 ± 29.94 59.9 ± 22.93

JD

Pre-attack 1.30 ± 0.56 1.20 ± 0.50 0.94 ± 0.35
Post-attack 1.07 ± 0.58 1.03 ± 0.54 0.79 ± 0.34
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