A Generative Framework for Low-Cost Result Validation of
Machine Learning-as-a-Service Inference

Abhinav Kumar
Saint Louis University
St. Louis, U.S.
abhinav.kumar@slu.edu

Miguel A. G. Aguilera
New Mexico State
University
Las Cruces, U.S.
guirao@nmsu.edu

ABSTRACT

The growing popularity of Machine Learning (ML) has led to its
deployment in various sensitive domains, which has resulted in
significant research focused on ML security and privacy. However,
in some applications, such as Augmented/Virtual Reality, integrity
verification of the outsourced ML tasks is more critical-a facet
that has not received much attention. Existing solutions, such as
multi-party computation and proof-based systems, impose signifi-
cant computation overhead, which makes them unfit for real-time
applications. We propose Fides, a novel framework for real-time
integrity validation of ML-as-a-Service (MLaaS) inference. Fides
features a novel and efficient distillation technique-Greedy Distil-
lation Transfer Learning—that dynamically distills and fine-tunes
a space and compute-efficient verification model for verifying the
corresponding service model while running inside a trusted exe-
cution environment. Fides features a client-side attack detection
model that uses statistical analysis and divergence measurements
to identify, with a high likelihood, if the service model is under
attack. Fides also offers a re-classification functionality that predicts
the original class whenever an attack is identified. We devised a
generative adversarial network framework for training the attack
detection and re-classification models. The evaluation shows that
Fides achieves an accuracy of up to 98% for attack detection and
94% for re-classification.

CCS CONCEPTS

« Security and privacy — Domain-specific security and pri-
vacy architectures; « Computing methodologies — Machine
learning.

KEYWORDS

Verifiable computing, result verification, trusted execution environ-
ment, machine learning as a service, edge computing.

ACM Reference Format:
Abhinav Kumar, Miguel A. G. Aguilera, Reza Tourani, and Satyajayant Misra.
2024. A Generative Framework for Low-Cost Result Validation of Machine

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASIA CCS °24, July 1-5, 2024, Singapore, Singapore

© 2024 Association for Computing Machinery.

ACM ISBN 979-8-4007-0482-6/24/07...$15.00
https://doi.org/10.1145/3634737.3657015

Reza Tourani Satyajayant Misra
Saint Louis University New Mexico State
St. Louis, U.S. University
reza.tourani@slu.edu Las Cruces, U.S.

misra@nmsu.edu

Malicious Edge Server Prediction
Switching
Attack
! m *i 0.95 Ostrich
0.05 Panda |
Benign Edge Server
e "
“What is the animal?} ! ‘ ﬂ JK 0.93 Giraffe
0.07 Gibbon—l
“Giraffe”

MLaaS Edge Infrastructure
Figure 1: We consider the integrity verification of Machine Learning-
as-a-Service inference, where clients send their data to the edge
servers for ML inference tasks. In our proposed framework, Fides, we
aim to detect any malicious misclassification caused by a malicious
edge server when running the clients’ inference tasks.

Learning-as-a-Service Inference. In ACM Asia Conference on Computer and
Communications Security (ASIA CCS "24), July 1-5, 2024, Singapore, Singapore.
ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3634737.3657015

1 INTRODUCTION

The increasing popularity of machine learning (ML) applications
and the plethora of data generated by smart and connected devices,
such as smartphones, Internet of Things devices, and video cameras,
has led to the development of sophisticated and complex ML appli-
cations, such as autonomous driving and cognitive assistance [74].
However, the challenges of processing such a high volume of data
to support real-time applications have led to the development of
several edge-computing solutions for autonomous driving [37],
healthcare [55], and Augmented/Virtual Reality applications [59].

This motivates inference-based ML-as-a-Service (i.e., MLaaS), in
which trusted ML providers deploy their services on third-party
edge servers as query-based APIs. These APIs allow the clients
to share their data with the edge servers, which are running ML
applications, to provide the processed result. However, the edge
computing trust model differs from the Cloud, primarily due to
its distributed and multi-stakeholder nature [64]. Given that any
entity may host a third-party server, outsourcing ML applications
to the edge ecosystem raises potential privacy and security issues
(Figure 1), including model/data inference and Trojan attacks [6,
35, 36, 46, 62, 66, 75]. Two of the most pertinent attacks against
the integrity of MLaa$S are Trojan attacks [6, 75] and adversarial
example [51, 63]. In Trojan attacks, the attacker partially modifies

https://doi.org/10.1145/3634737.3657015
https://doi.org/10.1145/3634737.3657015

the neural network using a poisoned dataset to include a set of
samples with a pattern trigger, aiming to cause misclassifications
when the model observes the pattern trigger. Backdoor attacks can
be devised either during model training or on a pre-trained model [6,
62, 71, 75]. An adversarial attack (i.e., adversarial example) exploits
the inherent vulnerabilities of neural networks for post-training
misclassifications. These attacks are input-specific in that each input
data should be individually perturbed to cause a misclassification.

The existing techniques for preserving the integrity of outsourced
computation use cryptosystems, such as multi-party computation [26,
29, 60, 72], proof-based systems [16, 34, 40], and homomorphic en-
cryption [40, 47, 49, 69]. A few initiatives have built frameworks
using a Trusted Execution Environment (TEE) to offload parts of
the ML applications [18, 65]. Despite their merits, these solutions
are often computationally expensive, impose significant latency
overhead, or do not scale with the complexity of the evolving ML
models. Thus, making them impractical for real-time and latency-
sensitive applications. Some solutions utilize multiple models in
the form of redundant computing or majority voting [21, 45]. Re-
dundant computing techniques, however, require higher degrees of
redundancy to achieve stricter integrity guarantees, which leads to
significantly higher computational overhead. Moreover, redundant
computing techniques are built on the presumption that the only
relevant part of a redundant model’s output is the class with the
highest probability (predicted class), which is untrue. The model’s
posterior vector provides information about the learned knowledge rep-
resentation through the probabilities assigned to the incorrect classes.
This insight is used in knowledge distillation for training higher
accuracy and fidelity compressed versions of cumbersome mod-
els [23]. We believe the same insight can be used to study the impact
of an adversary on two models trained on identical distributions.
Figure 2 shows the density distribution of Kullback-Leibler (KL)
divergence between two models (ResNet50 and ResNet152) and the
drastic change in the distribution when an adversary manipulates
the prediction generated by one of the models (ResNet152). We
will analyze the impact of an adversary on the divergence trends
(Section 2) to create a result validation framework.

Our Framework: To cope with the attacks that target MLaa$ infer-
ence integrity, we propose Fides. In a nutshell, Fides validates the
integrity of MLaaS$ inference by securely running a special-purpose
verification model. This model is constructed through knowledge
distillation, guaranteeing that the knowledge representation of
the verification model closely approximates that of the service
model. Fides comprises two primary components. The first one
is a resource-efficient model distillation technique-Greedy Distil-
lation Transfer Learning (GDTL)-which generates a customized
verification model for a given service model. GDTL distills the
knowledge of the service model into the verification model by in-
crementally unfreezing and fine-tuning the last layers of the model.
This leads to only a few layers being distilled at a time, which
makes it suitable for resource-constraint and TEE-based private
training paradigms [21, 43] The second component is a novel gen-
erative framework for training a client-side attack detection model
that uses posterior vectors of the service and verification models,
alongside their divergences, on a given input to detect a potential
attack. Our framework also trains an attack re-classification model,

CIFAR-10 CIFAR-100
0.20 | 4 i
! _ Mean M
- 0.15 i >0.10 ean
= ! 2
wm wv
§ 010 . 5
o i i 0 0.05
0.05 |1 !
: i
0.00 0 20 40 60 0.00 0 20 40 60

KL-Divergence

[() Pre-Attack

KL-Divergence

() Post-Attack

Figure 2: The KL divergence density distribution between two mod-
els (ResNet50 and ResNet152) before (green) and after (red) attack
on one of the models (ResNet152). Both models are trained on Ci-
far10 and Cifar100 datasets. The KL divergence between the benign
models’ posterior vectors belongs to a distribution with low mean
and variance (green distribution). Performing a prediction-switching
attack against one of the models (ResNet152) leads to a significant
increase in the distribution’s mean and variance (red distribution).
We use this identifiable behavior in designing Fides. (distributions’
tails are truncated for better visualization).

aiming to predict the correct result of the outsourced inference task
by learning a typical adversary’s goal and behavior in the system
under attack.

We evaluate Fides’ performance using three datasets, including
CIFAR-10, CIFAR-100, and ImageNet, across three neural network
architectures and also assess its computational overhead on multi-
ple constrained devices. We compare Fides with Slalom [65] and
Chiron [27], and show that Fides achieves 4.8X—-26.4% and 1.7X—
25.7% speed-up to Slalom and Chiron, respectively.

The novel contributions of Fides are as follows:
(i) We propose Fides—a framework for result validation of MLaaS
inference using an efficient verification model running on a TEE
to corroborate the results of the service model. This makes Fides a
perfect candidate for real-time applications, such as autonomous
driving, and medical imaging.
(ii) In Fides, we propose a greedy distillation transfer learning
(GDTL) technique for training the verification model, aiming to re-
duce the distillation’s overhead by incrementally unfreezing layers
of the verification model for fine-tuning to the desired accuracy.
(iii) We introduce two client-side shallow neural networks for
detecting and resolving adversarial attacks, with negligible compu-
tation overhead. We propose a generative framework for effective
training of these models.
(iv) We systematically assess Fides using major benchmark datasets
of varying complexity and number of detection classes on three
architecturally different deep neural networks: namely ResNet [22],
DenseNet [25], and EfficientNet [61]. Our results show that Fides
outperforms existing solutions in terms of computation complexity
while achieving high attack detection and remediation accuracy.

We share the observation that motivated our design in Section 2.
Section 3 presents the background. In Section 4, we elaborate on
system model, threat model and assumptions, and the detail of the
attack modeling. Section 5, we present the detail of our design.

Section 6 presents our experimental insights. Section 7 includes the
related work. Section 8 shares our conclusion.

2 OBSERVATION

In this section, we will discuss our findings regarding the disparities
between two models, which were trained on datasets with simi-
lar distributions, where one is subjected to an attack that causes
unintended mispredictions. The insights drawn from these obser-
vations, coupled with the evident trend we have identified, lay the
foundation for the design of Fides.

Consider two neural networks, F ; and Fg, where they are trained
on the data distribution D. Fé is a larger primary model, and F; is
a significantly smaller model trained on the same primary task. We
speculate that the posterior vector of the smaller model (Fé) can be
used to detect the impact of a malicious actor on the bigger model
(Fé), even if they disagree on the prediction. This is because the
decision boundarys of the Fg significantly overlaps with the deci-

sion boundary of F}. An adversary will either modify the decision
boundary or the sample distance from the decision boundary in
F; to conduct the attack. Hence, the posterior vector of F; can
be used to detect these modifications. To test our speculation we
orchestrate prediction-switching attacks, i.e., adversarial attacks in
which malicious actors modify the posterior vectors of F, é during
inference. We observe the divergence between the posterior vector
of F! and F2 and assess if we can establish some trends that can
be utilized to detect the presence of a malicious actor. As such,
we analyze the divergence density distribution of F} and F2-both
before and after conducting a prediction-switching attack against
Fé In comparing the divergence trends, i.e., D(Fé (x), Fg (x)), we
consider the following cases:

e Natural Agreement (Case A): happens if argmax(F é (x)) =
argmax(Fg (x)) prior to any adversarial modifications to the
prediction.

o Natural Disagreement (Case B) : happens if argmax(F, é (x)) #
argmax(Fg (x)) prior to any adversarial modifications to the
prediction.

Using these two cases, we aim to recognize identifiable patterns be-
tween naturally occurring disagreements and those resulting from
malicious actions. In our analysis, we employ three datasets: CIFAR-
10, CIFAR-100, and ImageNet, and three architectures: ResNet,
DenseNet, and EfficientNet (more details in Section 6). For assessing
divergence, we use Jeffreys’ Divergence and Wasserstein-1 mea-
sures. Figure 3 shows the JD distributions between the output of
the two models across all datasets and architectures. We identified
evident trends between pre-attack and post-attack JD distributions:

Trend 1: Consider Case A, where both models naturally agree on
the predictions before the attack. When the two models agree with
each other, and neither of them is under attack, the distribution
exhibits small standard deviation and mean values, as depicted by
the green curve in Case A. In contrast, when one of the models is
subjected to an attack, the JD distribution undergoes a significant
transformation, with a sharp increase in both the mean and standard
deviation values (red curve in Case A).

CIFAR-10

Case A
Case A
Case A

Case B
Case B
Case B

10 20 30 o 10 20 30
D D D
ResNet DenseNet EfficientNet

CIFAR-100

o 10 20 30

Case A
Case A
Case A

Case B
Case B
Case B

D D
ResNet DenseNet EfficientNet
ImageNet

Case A
Case A
Case A

Case B
Case B
Case B

0 5 10

ResNet DenseNet EfficientNet

(D Pre-Attack @B Post-Attack i Mean

Figure 3: The JD measurements of two models. For Case A, the attack
increases the divergence value, whereas in Case B (disagreement), the
attack decreases the divergence value. Thus validating our reasoning
for divergence’s role in attack detection.

Trend 2:Consider Case B, where the two models predict different
classes before the attack. We notice a contrasting transformation
once one of the models is attacked. Specifically, when the system is
not under attack, the differences between the two models’ outputs
result in a wide JD distribution with a relatively larger standard
deviation and mean values, as shown by the green curves in Case B.
In contrast, the attack leads to a narrow distribution with smaller
standard deviations and mean values (red curves in Case B).

The trends we have identified, which remained consistent across
various architectures and datasets, and the observations from Fig-
ure 3 are the key supporting elements that empirically validate our
intuition behind the impact of an attack on the similarity of two
probability distributions. In particular, the results confirm that if the
two models agree with each other, an attack will lead to an increase
in the mean and standard deviation of the divergence, resulting in a
wide distribution. In contrast, when the two models have natural dis-
agreements, the attack decreases the mean and standard deviation of
the divergence distribution, leading to a narrow distribution. We also
measured the similarity of the two models using the Wasserstein-1
metric to show independence from any particular similarity mea-
sure. Our analysis shows similar trends in different value ranges
(refer to Table 3 and Table 4 in Appendix A). The observations
shown above, however, pose a major challenge. There are over-
laps between the pre-attack and post-attack distributions across

all cases. Moreover, increasing the complexity of the dataset and
the dimensionality of the output vector leads to an increase in the
overlap. This growing overlap and complexity serve as indicators
of a more complex decision boundary for the attack discrimination
task, which can potentially be realized through a neural network.
We will address this challenge in our design (Section 5.2).

3 BACKGROUND

In this section, we introduce the concepts relevant to our work,
including a trusted execution environment, ML compression tech-
niques, and divergence-based similarity measures.

3.1 Trusted Execution Environments

A Trusted Execution Environment (TEE) is an isolated processing
environment in which each application is allocated a region of
memory, called an enclave, which is protected even from processes
running at higher privilege levels [2, 57]. The TEE guarantees the
integrity of the run-time states, the confidentiality of the code
and data stored on persistent memory, and the authenticity of
the executed code and its correct execution via remote attestation
between the data owner and the secure enclave. The two common
TEE implementations are Intel SGX [8] and ARM TrustZone [1].

3.2 Model Compression

Model Quantization [20] is a strategy for model compression and
inference process acceleration. Quantization reduces the precision
of the model’s weight, gradient, or activation values by converting
floating point numbers to lower precision integer numbers [77].
Thus, reducing the storage needed for the model and speeding up
the inference task [78]. The two primary quantization strategies
include post-training quantization, where the weights of a trained
model will be compressed (e.g., 32-bit float to 8-bit integer), and
quantization-aware training, in which the model’s weight and gra-
dients are quantized during the training process [7].

Knowledge distillation (KD) [23] is a machine learning technique
for transferring knowledge from a complex neural network(s) (i.e.,
teacher model(s)) to a single model (i.e., student model), aimed at
model compression, robustness, and performance enhancement [3,
14, 24]. The distillation process entails training the student model
using the output feature maps of the teacher model, i.e., soft la-
bels, and their corresponding true labels. The distilled models are
more robust against adversarial attacks when compared with their
teacher models [41, 50]. Defensive distillation [52] is a technique
that helps in reducing the effectiveness of the adversarial example
attacks against DNNs.

3.3 Similarity Measures

Divergence-based similarity measures are statistical techniques to
assess the similarity of a probability distribution (P) with respect to
the reference probability distribution (Q). We review the Jeffreys’
divergence (JD) and Wasserstein distance.

Jeffreys’ Divergence. The JD is the bounded symmetrization of
the Kullback-Leibler divergence (KLD), which is used to quantify
the similarity between two probability distributions P and Q. Un-
like KLD, the JD distance represents a normalized score that is
symmetric, i.e, Dy(P || Q) = D;(Q || P) and can be calculated as:

Dy(P 1 Q) = 5Dxe (P11 Q) + 5 Dxe (Q 11 P).

where Dgp (P || Q) is the KLD between P and Q. JD provides a
smoothed and normalized score compared to KLD.
Wasserstein-1 Metric. Wasserstein-1 distance is a measure of
the distance between two probability distributions. Informally, the
Wasserstein distance can be interpreted as the minimum energy cost
of moving the mass from x to y to transform probability distribution
P to Q. Wasserstein-1 metric (D‘IA,) between cumulative distribution
functions P and Q is defined as the infimum, taken over the set
of all joint distribution I'(P, Q). Thus, the Wasserstein-1 distance
between P and Q (D‘l/v (P,Q)) is:

DL (P,0)= inf E(y,~ -yl
w (P, Q) yeid o) Bew) yllx=yll]

4 MODELS AND ASSUMPTIONS

In this section, we first describe our system model and then for-
malize our threat model and discuss security assumptions. Our
system comprises edge servers, ML service providers, and clients.
Service providers offer a range of resource-intensive machine learn-
ing services, such as image annotation or video analytics, which
require input data from the clients. Given the complex nature of
the computation load and the need for real-time computation of
these services (e.g., autonomous driving, multi-player gaming, and
traffic monitoring), clients use the services running on the edge
server rather than the distant Cloud. We envision a subset of the
servers to be equipped with low-end trusted hardware like Intel
SGX or AMD TrustZone.

4.1 System Model

Our system comprises a computing ecosystem, service providers,
and clients. We consider the quickly growing pervasive edge com-
puting (PEC) environment [64] as our computing ecosystem. The
PEC ecosystem emphasizes the inclusion of client-owned devices in
the pool of computing resources, allowing them to carry out clients’
requests. Thus, resulting in extensive heterogeneous resource pools
in the proximity of clients. In the PEC ecosystem, a server is either
a pre-deployed infrastructure server or a client’s device, such as
smartphones and laptops, which runs outsourced services, aiming
to generate revenue. In contrast to the infrastructure servers that
are static in nature, the client’s resources can intermittently join
and leave the pool of computing resources. In our system, service
providers offer a range of services to clients. We consider resource-
intensive machine learning services like image annotation or video
analytics, which require input data from the clients. Due to the
need for quick computation, the client utilizes edge servers instead
of using a distant Cloud.

We also consider an access control service such as the recently
proposed APECS [12] for the servers and clients to mutually au-
thenticate each other before outsourcing ML task. This construction
prevents unauthorized users from accessing the services and also
prevents unauthorized servers from accessing the clients’ data. Con-
sidering the heterogeneity of the PEC ecosystem, we envision a
subset of the servers to be equipped with low-end trusted hardware
like Intel SGX or AMD TrustZone.

4.2 Threat Model

Attacks against computation outsourcing may target confidentiality,
integrity, availability, and privacy. Among all, we focus on threats
to integrity. Thus, the primary objective of Fides is to provide
correctness verifiability for the output of the MLaaS inference task.
More specifically, given an ML task and its input data, the goal is
to enable the client to assess the reliability of the result and infer,
with high probability, the trustworthiness of the executed service
by the edge server.

We formalize the threat model by introducing a security game,
in which the adversary A generates malicious predictions and de-
ceives the challenger C into believing that the generated predictions
belong to the universe U of benign input, prediction pairs.

Detection Game: The game utilizes a data universe U =
{(x, Fg(x,-))}{il, where Fp : x; — [0, 1]". The function Fy is real-
ized through a machine learning model and trained using algorithm
7r. While both the challenger C and Adversary A have complete
knowledge of input distribution D, trained model Fy, training algo-
rithm 7F, and attack detection algorithm T{:) , the challenger has no

knowledge of the attack algorithm T? used by adversary.

(1) The challenger samples the dataset D C D and trains model
Fy « tp(D), where Fp : ng\:jl — ygl and (x;, yi)é\; eU.
(2) The challenger gives adversary a white-box access to Fy.
(3) The adversary runs T? : (x,y) — 7, such that (x,) NU = ¢,
and returns {(x, y), (x, §)}.
(4) The challenger generates a guess z €{y, §} by running:
R ({4, §}: x, Fp).
(5) The adversary wins if (x,z) ¢ U.

The adversary can implement r? in several different ways, in-
cluding orchestrating Trojan attacks on image or text classification
data [6, 75], performing attacks on the input image in the form of
adversarial perturbation [51, 63], or leveraging their access to the
model and directly modifying the model weights or the prediction
vector.

We do not restrict the adversary’s access to the service model,
which is running in the insecure region of the general purpose pro-
cessor. The adversary has complete knowledge of the architecture
and parameters of the service model. We assume the adversary
knows the deployed defense mechanism or its components within
a trusted enclave but does not have access to any computations
taking place inside the enclave. So, they can use the knowledge of
the defense algorithm 1'1? to orchestrate targeted attacks.

4.3 Attack Modeling

The primary outcome of the attack we consider in this work is
the integrity violation of the MLaa$ inference task. To achieve this
goal, the adversary can use different techniques. In what follows,
we discuss three prominent attack orchestration techniques and
implement them in our evaluation. All the attacks take place at the
edge server, with the attacker deciding which of the different attacks
to execute. The attacker’s goal is to have the service model classify
an input with a wrong label. We note that while the adversary
can completely control the execution of the service model, the
adversary cannot interrupt the verification model as it runs in the

secure enclave upon the client’s request. We implemented all these
attacks and tested Fides against them (refer to Section 6).
Prediction Switching Attacks. In the following attack methodol-
ogy, the adversary only targets the posterior vector of the deployed
machine learning model and modifies it directly, aiming to cause an
incorrect prediction. We call this attack naive prediction switching
attack if the attacker modifies or generates the predictions arbitrar-
ily, without any attempt to avoid the detection mechanism. With
the knowledge of a detection mechanism, the adversary may deploy
different strategies, such as averaging the two highest probability
values p; and py (u = £ 1-'2-P 2) to switch the prediction by assigning
1 + € to the second class (i.e., wrong prediction) and y — € to the
first class (i.e., true prediction), using a small € value, e.g., 0.01%
of u. Alternatively, the adversary trains its own verification model
and uses it to minimize the distance between the forged incorrect
prediction and the actual prediction of the service model. We call
these advanced prediction switching attacks.

Well-known Attacks. The adversary can use popular backdoor
or adversarial sampling techniques to modify the predictions. For
our evaluation, we consider the following attacks:

Fast Gradient Sign Method (FGSM) [17] perturbations are crafted
by calculating the loss between the prediction and the true label.
Using the calculated loss, FGSM creates a max-norm constrained
(e) perturbation. Given image x, the adversarial image xadv
calculated as x%% = x + € x SIGN (Vi J (0, X, Ytrue))-

Projected Gradient Descent (PGD) [32] acts as iterative extension
of FGSM. The adversarial image is crafted by repeatedly adding
perturbation, guided using the loss between the prediction and
the target class. Each step of adversarial image generation can
be formulated as xj‘z]‘iz’l = Clipx,e(x?\,d” +s1GN(V, J (6, x, ymrget))),
where xgd” =x.

Trojan Attacks: This attack is conducted using the service model
in a white-box setting. In the context of our work, the adversary can
train the service model with a poisoned dataset containing trigger
embedded images [5] [19]. Alternatively, the adversary adds more
layers to the service model as a Trojan module and trains it using
the poisoned data [62], which gets triggered when the input image
contains the embedded trigger.

can be

5 DESIGN OF FIDES

In a nutshell (refer to Figure 4), the process of Fides starts with a
service provider preparing the service package (§ 5.1), including
the ML application, i.e., service model, and its verification compo-
nent, i.e., verification model, for deployment on the edge servers
(the server-side component). The service provider also builds an
attack detection and re-classification pipeline, that includes two
neural networks (§ 5.2), one for attack detection and a second for re-
classification. In training the attack detection and re-classification
models, the provider uses a generative adversarial network ap-
proach. The service deployment process involves loading the ser-
vice and verification models to a server with which a trust rela-
tionship has already been established (§ 5.3). After deployment, the
server accepts requests for verification from a client. On receiving
a client’s request, the server runs the verification model inside the
secure enclave and the service model in the unprotected region of
the processor and returns both outputs to the client (§ 5.4). Finally,

Service Deployment (§ 5.3)

Service Request & Execution (§ 5.4)

Attack Detection
& Re-classification (§ 5.2)

Service Package
Building (§ 5.1)

Generative Detection

Greedy Distillation

Attack

-
I f W Detection Re-classification
Model Model

Attack Attack
Detection Re-classification
Model Model

Attack Verification Model (TEE)

Verification Model (TEE)

Transfer Learning

Model Training

2

o =
-
| f W]

‘ Response

Service Model

e P
Yes
» [»

B

Service Model

‘No

Service Provider Edge Server

Client

Edge Server Client

Figure 4: In Fides, the provider builds the service package (§ 5.1) and the attack detection and re-classification pipeline (§ 5.2) for deployment
on the server (§ 5.3) and the client, respectively. The client then sends the service request to the edge server and verifies the result using the

attack detection pipeline (§ 5.4).

the client runs Fides’ detection and re-classification functionalities
(the client-side component) to identify a potential attack and rectify
the outcome of the MLaaS inference as needed. Without loss of
generality, we use Intel SGX as the TEE in our implementation
reference and explain details using SGX terminology.

5.1 Service Package Building

A service package includes two components—the application (i.e.,
service model) and a verification tool (i.e., verification model), which
is a small ML model for the verification of its corresponding service
model. As shown in Figure 5, service package development is a
two-step process in which the provider first trains its service model,
e.g., image classification, and then dynamically re-train layers of
the verification model using the fully trained service model.

As per Algorithm 1, the service building process takes an un-
trained service model (Fs), an independently pre-trained verifica-
tion model (Fy), the privately owned training set (D?’ 0) and a
set of hyper-parameters (A and «). Upon completion, it returns
the fully trained service (Fs) and verification (Fy) models. Train-
ing the service model follows the standard training process using
DT with the defined loss function for as many epochs as re-
quired (Lines 1-3). The verification model is a distilled and smaller
version of the service model, so it renders minimal computation
overhead when deployed into the edge server’s enclave. To reduce
the cost of knowledge distillation, we propose Greedy Distillation
Transfer Learning (GDTL), a distillation technique that results in a
time-efficient procedure for training the small verification model.

The GDTL process takes a pre-trained model that is significantly
smaller as compared to the service model and adaptively unfreezes
the layers that require re-training and fine-tuning. More specifically,
GDTL first splits the verification model starting from its last layer
(Line 8). Given the model split, GDTL runs Fs and Fy on DITJ””
to obtain the soft labels of the service model and the partially
trained verification model (Lines 8-10). In Line 10, GDTL calculates
the knowledge distillation loss (i.e., KDL) of these values and the
one-hot encoding (7) of the labels (Line 6). Note that the weight
of the average (a) changes over time. GDTL starts with a larger «
value, giving more weight to the teacher model, and then adaptively
decreases it over time, giving higher weight to service true label. The
rationale for adaptively changing « is to initially guide the model
towards the service model and then decrease it for it to improve
over samples the teacher model is providing incorrect prediction.
GDTL then uses the loss value and the stochastic gradient descent
method to update the trainable layers (Line 11) using]DITJ””.

Service Model Training

—

Private Training P Dpalin _U LF

Dataset — S \
Dynamic
Greedy Distillation Transfer Learning Unfreezing
Fs

—

Private Training
KDLz,

28 Frozen Layers ... Trainable Layers
Figure 5: In service package building, the provider trains the service
model and uses it to run the greedy distillation transfer learning
process, which builds the customized compressed verification model.

Each training iteration, GDTL compares the accuracy and preci-
sion of the partially fine-tuned verification model with the service
model. If the verification model’s accuracy is higher than the 4
factor of the service model’s accuracy, the GDTL process stops
training Fy (Lines 7). Otherwise, GDTL dynamically unfreezes an-
other layer of the verification model for fine-tuning (Line 12). In
essence, the GDTL process gradually splits the model from the last
layer towards the first and continuously re-trains and fine-tunes
the trainable layers. We note that A is a hyper-parameter that the
provider adjusts based on various factors like its available com-
puting resources and the desired verification accuracy. A A value
closer to 1 results in a high-accuracy verification model but requires
more fine-tuning steps. Our initial assessment (Figure 6) shows that
GDTL outperforms standard distillation and fine-tuning in terms
of accuracy and is comparable to fine-tuning in terms of per-epoch
execution time. GDTL also reduces the difficulty of finding suit-
able regularization, which is the primary reason behind the lower
accuracy of classical knowledge distillation [70].

For further compression, GDTL applies model quantization as a
common technique for approximating a neural network that uses
floating-point numbers using a neural network of lower bit-width
numbers. Among all, in Fides, we used dynamic range quantization
(Line 13), which is a post-training approach that does not need
additional model re-training and fine-tuning. Dynamic range quan-
tization converts 32-bit floating point numbers into 8-bit integers,
with the resultant model running using floating point operations. At
the end of this process, the service package is completed. It should
be pointed out that the design of the distillation algorithm relies
on an underlying assumption that pre-trained weights utilized are
trusted. Violation of this assumption can lead to vulnerabilities [71],
which are out of the scope of this work.

Algorithm 1: Service Package Development

Input: Fg (untrained), Fy (public pre-trained),
DEre 2 e [0,1], a € [0,1].

Output: (Fg, Fy).

Service Model Training:
1 for number of the training epochs do
2 L Use stochastic gradient descent to update Fs on:

L (Fs(xi), yi), Y(xi,y;) € DEr®

3 Store Fs » Fg is the fully-trained Service model.

4 ';llev —Fyy ®* Fyy ® - ® Fyp
Distillation-based Fine-tuning;:

5 1« n » Set the cut-layer to the last layer of Fy.

6 T < ONE HoT ENCODING of data label (y;).

7 while (I > 1 && ACC(FV) < AxAcc(Fs)) do

s | {12 Fyn ® Fun} «— ML-Seurt(Fy, 1)

9 for (V(xi,y;) € Diri”) do

0 KDL(FS(x), Fy(x). 7, T) —aBp (x) [log (Fv (x))]
~(1- @), | log (Fy ()

1 Use stochastic gradient descent to update ® ;-l: %
on: KDL (FS (x), Fy (x), T), where
gradients = gradients X T?

12 Unfreeze (®

L l«I-1.

QuanTizE(Fy)

4+ Return (Fs, Fy) > Fully-trained Service model and
fine-tuned distilled verification model.

;l:l Fy) by adjusting the cut layer in Fy :

—-
w

> Dynamic-range quantization.

-

5.2 Generative Attack Detection and
Re-classification Training

Based on the observations made in section 2 it is evident that the
divergence between the service and verification models’ probability
distributions reveals statistical information, which is essential for
attack detection. Thus, we utilize the differences in the relative
divergence as features to assist attack detection.

For attack detection, a naive approach would be using the resul-
tant divergence of the two probability distributions to set a fixed
attack detection threshold. However, manually setting a threshold
is not effective since (i) the threshold is model and data-specific,
and (ii) the attack detection decision boundary is non-linear, for
which a linear threshold will be ineffective. Supervised learning al-
gorithms can effectively learn such non-linear decision boundaries
and improve the detection accuracy. However, these algorithms will
utilize known attack signatures and, hence, can become ineffective
in detecting variations of known attacks or attacks outside the train-
ing dataset. As such, we used a GAN framework for training Fides’
attack detection and re-classification models where no predefined
attack signatures are used during the training phase, allowing the
trained model to be more robust against unseen attack signatures.

100 100
X 80 X 80
>
3 60 5‘ 60
© @©
5 40 5 40
o GDTL O GDTL
O () ®mm Fine-tuning O D0 ®m Fine-tuning
< - Distlation < - Distllation

0 ResNet DenseNet EfficientNet 0 ResNet DenseNet EfficientNet

(a) Accuracy on CIFAR-10. (b) Accuracy on CIFAR-100.

10 GDTL 10 GDTL
’&; W Fine-tuning ’3 = Fine-tuning
c 8 Distillation c 8 Distillation
€ 6 €6
(] (]
4 4
£ =
0 L 0 .
ResNet DenseNet EfficientNet ResNet DenseNet EfficientNet

(c) Time on CIFAR-10. (d) Time on CIFAR-100.
Figure 6: The performance comparison between GDTL, distilling
from scratch (Distillation), and fine-tuning (Transfer Learning)
across multiple datasets and architectures. The results show the
accuracy and per epoch time for all approaches showcasing how
GDTL outperforms other approaches while being resource-efficient.

The correlation of the outputs of the service and verification
models will result in five possible cases. Case CI is when both mod-
els agree with the ground truth. Case C2is when only the service
model agrees with the ground truth while Case C3 represents those
instances where only the verification model agrees with the ground
truth. For Case C4 both models make two different incorrect predic-
tions. In Case C5, both models make the same incorrect prediction,
i.e., disagree with the ground truth but happen to agree with each
other. These cases are accounted for in our GAN framework to train
the attack re-classification model. Note that the re-classification
model is a five-class classifier, which returns one of these cases
regardless of the number of classes in the service model.
GAN-based Attack Detection and Re-classification. We for-
malize the training of Fides’ attack detection model (D) and the
attack generator model (G) as a min-max game. The generator is
an attack crafting neural network, which takes samples from the
private dataset (D?r“’) and it returns outputs that are different from
the service model. The goal of the detection model, i.e., the discrim-
inator, is to differentiate between the output of the service model
and the generator model’s crafted outputs. The generative training
process simultaneously trains a re-classification model (R), which
aims at correcting the attack’s outcome by reclassifying the output
of the service model when under attack.

In training the generator and detection models, we define the
objective function of the min-max game as:

mgin mzz;x V(G, D) = Exeppa(x) [log (D (Fs(x), Fy (x)))]

+ Exmpauss (x) [log (1 -D(G(x), FV(X)))]

= B paa () [log (1- Q(x))]-

The first and second terms are the cross-entropy between the out-
put of the attack detection model and its true label Yq) (€ {0, 1}),
where 1 signifies no attack while 0 signifies attack. The third term
is the cross-entropy between the generator model’s output and
the private data’s true label. Our proposed objective function is

{ (G, Fy (1))
or
(LG), Fy (%))
[(Fs(x), Fy ()
or
(L(F5(x), Fy (x)))

Figure 7: We formalized the attack detection and subsequent re-
classification models as a GAN, in which the attack generator (G)
crafts various attacks to train the attack detection (9) model in
a two-player min-max game. In the process of training G and D,
the framework simultaneously trains a re-classification model (R),
aiming to correct the outcome of the attack.

different from the conventional generative adversarial networks
in two aspects. First, the addition of the third term penalizes the
generator model every time its prediction is the same as the true
label. Thus, preventing the generator model from converging with
the service model. Second, the generator model does not sample
any input noise. Instead, it uses samples from the private dataset
as input and crafts a malicious output with a wrong label, while
mimicking the decision boundary of the service model.

Recall that the generator model takes the samples from the pri-
vate dataset as input and generates malicious outputs. We define a
malicious output to be a prediction that is different from the true
label but has a probability distribution similar to a naturally oc-
curring misclassification. To achieve this behavior, we define the
generator model’s loss function as:

Lg=-log (D(g(x),FV(x))) —log (1 - G(x)).

The first term in Lg rewards the generator model every time the
detector model classifies the output of the generator model as a
valid output. The second term rewards the generator model for
making predictions that are different from the true labels.

The input of the detection model comprises two tuples (Figure 7).
The first tuple consists of the outputs of the generator model G(x)
and verification model (Fy (x)) alongside their cross-entropy loss

(L (G(x), Fy (x))) The second tuple consists of the outputs of the

service model (Fs(x)) and verification model (Fy (x)) alongside
their cross-entropy loss (L(Fs(x), Fy (x))). We define the loss func-
tion of the detection model as the binary cross-entropy between
the model’s output and its true label:

Ly = log (D(Fs(x), Fy ()
—(1-Yp) *log (1 - D(G(x), Fv(x))).

The primary challenge in training the detection model is differen-
tiating the naturally occurring prediction disagreement between
the service and verification models and the disagreement caused
by the attack. As mentioned earlier the trend we observed in our
analysis regarding the difference in the divergence ranges between
a natural misclassification and an attack allows the detection model
to differentiate between the two (refer to Figure 3 in Section 2).

Per Figure 7, during the training process, the re-classification
model receives the output of the generator model (G(x)) and verifi-
cation model (Fy (x)) with their cross-entropy loss (L(G(x), Fy (x))).

Service Provider | Server
Software Package
1. Enc. Verification model. Registration Request
2. Service Application. [EPC size, Memory, ...]

Service Metadata Software Package &
<manifest, token, signature> Service Metadata

Create enclave
Load Service |¥| for Verification
Model Model

N4 v
Service Verification
Model Model

model decryption key

© 1

2 RATLS [Verification
& —— —L Model

5 Provisioning of verification b | Decryption
(%]

-

[

Verification |/ .'
Model
v

Figure 8: During the service deployment process, the service provider
securely deploys the verification model on a secure enclave on the

remote edge server and provisions the decryption key after remote at-
testation. Thus, guaranteeing the integrity of the verification model.

It also takes the compatibility label between the service and verifica-
tion models, i.e., Y, which signifies the correctness of the outputs
of these models and their similarity. Using these inputs, we defined
the re-classification model’s loss as the cross entropy between the
output of the re-classification model and Y, as:

5
Ly ==) Ve +1og (R(G(x). Fy () .
c=1

where Y, € {C1,C2,C3,(C4,C5}.

After training the attack detection and re-classification models
using the proposed GAN, the service provider shares them with
the clients. Thus, allowing the clients to independently validate the
results of the MLaaS inference task, executed by the edge server.

5.3 Service Deployment

Without loss of generality, we consider two possibilities for service
deployment. In the first approach, the server initiates the deploy-
ment process by sending a request to the provider with requisite
information about its resources, e.g., EPC size, memory, bandwidth,
and the service(s) it is willing to offer. The choice of the service
depends on criteria like service demand or resource availability.
Alternatively, the service provider initiates the deployment request
to a potential server based on service demands in the server’s locale.
Per Figure 8, we adopt the first approach.

After the final agreement, the provider sends a complete appli-
cation package to the server. The application package includes the
service model, the encrypted verification model, and the service
metadata. The service metadata contains application-specific con-
figuration information, which is necessary for the integrity verifica-
tion of the ML application. In particular, for Intel SGX, the metadata
contains a .manifest.sgx file for configuring the secure applica-
tion environment by the SGX SDK along with a . tokenand a .sig
file, which SGX uses to verify the integrity of the enclave-loaded
application and files. The server then initiates a secure enclave for
loading the encrypted verification model. It then establishes an
RA-TLS channel [28] with the service provider for provisioning the
application decryption key into the secure enclave. Thus, allowing
the enclave to decrypt the verification model.

The service provider shares requisite enclave information, such
as (MR_ENCLAVE, MR_SIGNER, ISV_PROD, ISV_SVN) with the

Client Server
Secure Enclave
Service Verification
Model Model

ﬁ Service Request

RA-TLS e
RA-TLS
Verification || | Share data over || o

RA-TLS Data Decryption

2 e & Sharing with

5 [~ - Service Model
= Service

9 Model Verification
] Exec. Model

= (_j Return output over RA-TLS P\—ﬁ’—“ Exec.

Attack Detection Return output N

and Correction

Model Exec. |} 1 1

Figure 9: During service request, the client securely shares the data
with the secure enclave running the verification model, which in turn
shares it with the service model. Thus, ensuring that the verification
model has access to trustworthy data.

clients, enabling them to verify the chain of trust during the re-
mote attestation process (i.e.,, RA-TLS) at the service outsourcing
step. The provider generates these values while creating the SGX-
supported application and shares them with the client when the
application is downloaded. The RA-TLS protocol helps the client
trust the output of the verification model running in the enclave.

5.4 Service Request and Execution

For service request, the client starts by discovering the servers
that offer the service and have sufficient resources. If the service
discovery fails, the client can either request the service from the
provider or request a server to deploy the service. We do not discuss
service discovery and assume the client finds a nearby server. Once
the client has identified the server, it sends a service request to the
server (Figure 9). Considering our threat model, a malicious server
can change the data received from the client before sending it to the
verification model for verification. Hence, the client first establishes
an RA-TLS channel with the enclave to perform remote attestation.
The remote attestation process on the client uses (MR_ENCLAVE,
MR_SIGNER, ISV_PROD, ISV_SVN) information obtained from the
provider to verify the integrity of the respective enclave in terms
of its software and configuration. On successful remote attestation,
i.e., verifying the chain of trust and ensuring that the client is
directly communicating with the secure enclave, the client securely
shares the input data with the enclave. The application inside the
enclave decrypts the client’s data, shares it with the service model,
and executes the verification model. Alternatively, the client can
establish a TLS channel with the service model and an RA-TLS
channel with the verification model to directly share the data with
both. We use the first approach in our experiments.

After completing the ML inference task, the service and veri-
fication models return their outputs to the client. Note that the
communication between the client and the secure enclave is pro-
tected through the established RA-TLS channel. The service model
can either set up a secure connection to the client and securely
share the result or use an insecure channel. The client then uses
Fides’ detection and re-classification pipeline on the outputs of the

Table 1: Accuracy of service and verification models.

ResNet DenseNet EfficientNet

Service 93.77% 94.93% 96.74%

CIFARD e ation 93.38% 95.30% 96.91%
Service 76.99% 78.69% 83.79%

CIFAR00. — e ton 7731% 76.13% 83.41%
ImaceNet Service 73.01% 73.32% 79.73%
& Verification 70.65% _ 69.74% 72.16%

service and verification models to verify the correctness of executed
ML inference task and detect potential attacks.

6 EXPERIMENTS

In this Section, we review our benchmark datasets and models and
elaborate on our system and experiment setup. We first analyze the
similarity of the service and verification models pre- and post-attack
and share our observations, which confirms the rationale behind
our design. Finally, we assess the efficacy of Fides in detecting and
re-classifying attacks, followed by system performance analysis.

6.1 Data and Models
We evaluated Fides! using datasets of various complexities:

e CIFAR-10 consists of 60K color images (32 X 32 pixels) with
10 classes and 6K images per class. There are 50000 training
and 10000 test images [30].

o CIFAR-100 features 100 classes with 600 images per class
with pixels resolution of 32 X 32. There are 50000 training
and 10000 test images [30].

o ImageNet-1K contains about 1.3M annotated images (about
1.28M training, 50K validation, and 100K test images), grouped
into 1000 classes [10]. The resolution of images is 469 X 387
pixels; we cropped these images to 224 X 224 pixels.

We used three DNN architectures, namely ResNet, DenseNet, and
EfficientNet for the image classification application. More specifi-
cally, we used ResNet-152 (60.4M parameters), DenseNet-201 (20.2M
parameters), and EfficientNet-B7 (66.7M parameters) as the set of
service models and ResNet-50 (25.6M parameters), DenseNet-121
(8.1M parameters), and EfficientNet-B0 (5.3M parameters) as their
corresponding verification models, respectively. The accuracy of
the corresponding service and verification models on the given
datasets are tabulated in Table 1. Note that the accuracy of the
models we used may not reach the reported accuracy in their re-
spective papers. However, our goal is to use them in developing a
result validation mechanism for MLaaS inference. While we used a
similar architecture for each service and verification model pair, it
is possible to use different architectures.

For our GAN framework, we adopted the fully trained service
model (architecture and parameter weights) as the generator model
and further extended it by adding four extra fully connected layers.
The additional layers take the learned decision boundary of the
service model at the beginning of the training process and fine-
tune the generator model, aiming to craft stronger attack outputs.
For the attack detection and re-classification models, we used two

!Fides Code is available on https://github.com/akumar2709/Fides_AsiaCCS

https://github.com/akumar2709/Fides_AsiaCCS

100 100

N N

80 80

ES X
o 60 \ o 60

.0 0
5 40 \ & 8 40

= N0 N =
20 \ - Accuracy 20
NN &.—_H'sﬁﬁ 0

ResNet DenseNet EfficientNet ResNet
(a) Detection accuracy on CIFAR-10.
100 100
N

80 \ § 80

BN X
8 60 \ \ 3 60
£ 40 \ \ £ 40

= ~ AN =
20 mmw Accuracy 20

\- F1-Score

ResNet DenseNet EfficientNet
(d) Re-classification accuracy on CIFAR-10.

ResNet
(e) Re-classification accuracy on CIFAR-100.

DenseNet EfficientNet
(b) Detection accuracy on CIFAR-100.

DenseNet EfficientNet

100

g
v
Metrics %

mmm Accuracy
B F1-Score

DenseNet EfficientNet

ResNet

(c) Detection accuracy on ImageNet.

100
o 80
=
\\ NN g 40
- Accuracy 20 - Accuracy
W Fl1-Score - F1-Score
AR 0 = AN

ResNet DenseNet EfficientNet

(f) Re-classification accuracy on ImageNet.

Figure 10: Fides’ attack detection and re-classification models’ performance across all datasets and architecture combinations. The results
suggest a direct correlation between the accuracy of the service model and the accuracy of the detection and re-classification models.

lightweight fully connected neural networks, each containing three
hidden layers containing 128, 256, and 128 neurons per hidden layer.

6.2 System and Experiments Setup

We evaluated our framework on a server with an Intel Xeon Plat-
inum 8352Y processor with a base clock speed of 2.20 GHz and
256 GB RAM. The server’s processor is a 3rd generation Xeon pro-
cessor (i.e., Ice Lake series) with 64 GB EPC. The SGX drivers are
in-kernel drivers and were implemented using Gramine OS v1.2.
We used three classes of consumer processors, namely a mobile
class device with a Snapdragon 765G processor, an [oT class device
with an ARM Cortex-A72 processor, and an X86 consumer class
device with an AMD Ryzen 5 processor.

6.3 Verification Efficacy Analysis

We evaluated the attack detection and re-classification model’s
performance in terms of accuracy and F1-score. In doing so, we built
a test dataset by randomly selecting an average of 9000 samples from
each dataset and applying the attacks we described in Section 4.3.
We applied the attacks either on the service models’ outputs of
the 9000 samples (for naive and advanced attacks), input samples
(for adversarial example attack), or the service model itself (for
Trojan attack). We also included the output of the legitimate service
models on the 9000 samples to the test dataset to represent the no-
attack scenario. In our experiments, the accuracies we reported for
the re-classification models are of the detected samples. Note that
running the standalone re-classification models on all the generated
attack samples (including the undetected ones) results in higher
accuracies than those we discuss below.

For the attack detection and re-classification models, we devised
two variants—one that uses the soft labels of the service and verifi-
cation models as the input features and another one that uses the

Table 2: Attack detection accuracy per attack type.

ResNet DenseNet EfficientNet

Naive 95.07% 96.24% 97.36%

Accuracy Advanced 95.27% 96.36% 97.59%

s FGSM/PGD 89.25% 95.11% 95.89%

o Backdoor 95.23% 96.34% 97.57%

£ Naive 9484% 96.11% 97.30%

) Advanced 95.03% 96.22% 97.53%
F1-Score

FGSM/PGD 89.39% 94.99% 95.86%

Backdoor 94.99% 96.20% 97.53%

Naive 9157% 89.87% 92.68%

Accuracy Advanced 86.62% 82.24% 90.18%

S FGSM/PGD 94.42% 95.63% 93.22%

0 Backdoor 96.86% 97.14% 96.64%

E Naive 91.76% 90.32% 92.73%

O Advanced 87.52% 84.19% 90.48%
F1-Score

FGSM/PGD 94.39% 95.58% 93.23%

Backdoor 96.76% 97.07% 96.52%

Naive 84.36% 82.37% 83.56%

Accuracy Advanced 78.87% 76.08% 76.39%

= FGSM/PGD 87.94% 86.95% 85.31%

Z Backdoor ~ 89.42% 88.18% 88.22%

& Naive 83.60% 81.40% 82.50%

B Fl-Score Advanced 79.05% 76.34% 76.64%

FGSM/PGD 7553% 85.53% 84.06%

Backdoor 88.29% 86.71% 81.25%

cross-entropy loss measurement as the input feature. Using the loss
measurement enables the detection and re-classification models to
utilize the divergence trends we discussed earlier while using soft
labels allows the models to learn additional patterns, beyond the
divergence trends.

Figure 10 represents the accuracy and F1-Score of the loss-based
attack detection and re-classification models across all architectures
and datasets. We measured the attack detection accuracy across all

600

Service Model

o;o;o ¢ Service Model 10 ! (GPU) 6:< 10 e Fid(?s . Sié
~ 500 0_393_0 == Verification Model o mmm Service Model (CPU) °z‘ Freivalds' Algorithm (50%) ’3‘
s °393° 0% 5 9 ’G 8 »¥a% Service Model (Enclave) °t< ’l‘n‘ 8 &N Freivalds' Algorithm (100%) K %C
<400 gtgtg tgt : ~ B Verification Model (Enclave) gt: ~ pzxz Chiron gtg
> % VeVs
2300 o 0 L 6 oK L 6 o
2 9030 059 S o € &
5200 BER om0 Ea e FY M i
= 5 5] o] bes .- o

oo B B - "R
RIRSA < RO Y SR A%, 0 = 3K A3 1]
ResNet DenseNet EfficientNet ResNet DenseNet EfficientNet ResNet DenseNet EfficientNet

(a) Memory usage of service/verification models.

(b) Execution time of service/verification models.

(c) Execution time of verification techniques.

Figure 11: Evaluation of Fides’ server-side performance in terms of memory and execution time on the server.

250 mmm CIFAR-10 250
. __ = CIFAR-100 N
g 200 | v ImageNet g 200
= . BX® loss =
o 150 o 150
£100 £100
— -
50 50

(a) Inference time of attack detection models.

S. 765G Cortex-A72 Ryzen 5

(b) Inference time of attack re-classification models. () Memory footprint of attack detection and re-

mmm CIFAR-10 _4.0] mmm CIFAR-10 XTI
== CIFAR-100 m 35 § W= CIFAR-100 (58
S5 s ImageNet = 3.0 9 'v"v' ImageNet q
XX »:® Loss ;25 @M Loss |
G20 ;
£15 §- J
V1. 000 d X)

- o I%

Detection Re-classification

classification models.

Figure 12: The number of input features for various datasets impacts the attack detection and re-classification model’s performance. Using loss
(cross-entropy) for attack detection and re-classification outperforms others due to the smaller feature size.

attack scenarios, i.e., from the naive to advanced and well-known
attacks. Table 2 tabulates the attack detection accuracy and F1-score
for each attack type. These results show that the attack detection
models on average achieve an accuracy of 91.15% across all archi-
tectures and datasets and the re-classification models achieve an
average accuracy of 80%. More specifically, using EfficientNet for
CIFAR-10 results in the best attack detection and re-classification
performance (Figures 10(a) and 10(d)). However, increasing the
dataset complexity, from CIFAR-10 to ImageNet, slightly reduced
the attack detection accuracy with a more moderate impact on the
re-classification accuracy (Figures 10(c) and 10(f)). Such behavior
is expected as the accuracy of the service and verification models
for ImageNet are lower than CIFAR-10 and CIFAR-100 accuracies
across all architectures (Table 1).

For cases like ImageNet where the accuracy of the service and
verification models are (on average) 75.24% and 70.85%, the attack
detection accuracy is still higher than 87%, showing that the de-
tection models were successfully identifying attacks where the
service model and verification model disagree (the non-trivial sce-
narios). One can also observe that the performance of the detection
and re-classification models are correlated to the service model’s
accuracy—-the more accurate the service model, the more accurate
the attack detection and re-classification models. Finally, we ob-
served that both loss-based and soft labels-based variants of the
attack detection and re-classification models achieve similar per-
formance in terms of accuracy and F1-Score.

6.4 System Performance Analysis

We also ran a set of experiments to assess Fides’s system perfor-
mance in terms of execution time and memory (Figures 11 and 12).
We used the ImageNet dataset in all architectures for assessing

the memory consumption of the server-side components as Im-
ageNet has the most number of classes—the worst-case scenario.
Figure 11(a) shows that the GDTL process resulted in a smaller veri-
fication model with a significantly smaller memory footprint. This is
crucial for deploying real applications on resource-constrained edge
servers. We note that the compression ratio may vary across dif-
ferent models depending on the architecture. Figure 6 (Section 5.1)
shows the accuracy and the time taken by GDTL when compared to
fine tuning (transfer learning) and distillation from scratch. GDTL
performed the best accounting for both parameters.

We compared the secure execution of the service and verifica-
tion models with the insecure service model on CPU and GPU.
Figure 11(b) demonstrates that the secure execution of the verifica-
tion model for ResNet and EficientNet architectures takes far less
than the secure and insecure execution of their service models. For
DenseNet, the verification model only takes 0.178 seconds more
than the insecure service model but it is still faster than the secure
execution of the service model, which we attribute to the DenseNet
smaller compression rate. The secure execution of the verifica-
tion models is marginally slower than GPU executions (worst case
130 milliseconds for Densenet), which is expected.

We also compared the system performance of Fides with two
other techniques—Slalom [65] and Chiron [27]. We selected Slalom
as it outperforms other solutions in terms of validation of out-
sourced ML inference task and selected Chiron due to its similarity
with Fides in running the entire model in a TEE. For Slalom, we
only implemented its verification process, which uses Freivalds’
algorithm to verify the matrix multiplication operations of each
linear layer. Considering the probabilistic nature of the verification
process in Slalom, we benchmark the verification of 50% and 100%
of the service model’s matrix multiplications per architecture. We

did not include the time of ECALL and OCALL operations (enter-
ing and exiting the enclave), which will result in a large latency
overhead considering the frequency of these operations in Slalom.
Per Figure 11(c), Fides outperforms other techniques in terms of
validation time. It achieves a 1.73X to 25.7X speed-up compared
to Chiron and a 4.8X to 26.4x speed-up compared to verification
based on Freivalds’ algorithm for 100% of the matrices. This is in
part due to the sequential execution of the Freivalds’ algorithm
in our experiment. Note that the speed-up in both cases increases
with the increase in the size of the verification model.

Given the constrained nature of clients’ devices, we evaluated the
performance of the attack detection and re-classification models on
several consumer-grade device classes. Figures 12(a) and 12(b) show
the elapsed time of running these models on an Internet of Things
device (ARM Cortex-A72), a smartphone (Snapdragon 765G), and a
personal desktop (AMD Ryzen 5). One can observe the negligible
overhead of these models on clients; less than 260 microseconds in
the worst case. Our analyses show that the performance of these
models is highly correlated to the size of their input features when
using soft labels as the input. For instance, detecting an attack
on ImageNet with 1000 classes takes (on average) 13.47X longer
than detecting the same attack on CIFAR-10 with 10 classes. The
same behavior can be observed from attack re-classification mod-
els. However, the loss-based detection and re-classification models
show significant improvement in the execution time-only 0.076%
of the original latency in the case of ImageNet soft labels. This is
primarily due to the independence of the model’s input size to the
number of the service model’s classes when using cross-entropy
loss value as the input feature. It is worth mentioning that the added
overhead of loss calculation for the two input vectors is negligi-
ble. Figure 12(c) shows the memory footprint of different detection
and re-classification models. The memory footprint falls within a
similar range for CIFAR-10, CIFAR-100, and the loss-based solu-
tions but increases significantly for ImageNet. It is primarily due to
the smaller input layers for CIFAR-10, CIFAR-100, and loss-based
solution, when compared with ImageNet’s larger input layer.

7 RELATED WORK

The defenses against integrity violations in machine learning mod-
els during inference can be classified into three categories.
Cryptographic defences include solutions like multi-party
computation [26, 29, 60, 72], proof-based systems [16, 34, 40], var-
ious constructions of homomorphic encryption [40, 47, 49, 69].
While the primary goal of multi-party computation is protecting
data privacy, this technique offers a degree of verifiability. Similarly,
solutions based on homomorphic encryption provide verifiability
by virtue of protecting the data. For instance, one secure inference
operation of the ResNet50 model using homomorphic encryption
on customized hardware takes about 970 seconds compared to only
100 milliseconds for the same operation on non-encrypted data [56].
In contrast to these schemes, proof-based systems, e.g., inter-
active and zero-knowledge succinct non-interactive argument of
knowledge (zk-SNARK), have been extensively used for verifiable
ML [9, 16, 34, 38, 58, 68, 73]. The proof-based solutions, although
theoretically more representative of verification, require significant
computation by the prover [34] and do not scale for large ML mod-
els with many convolution layers [76]. For instance, generating

proof for the VGG16 model with 16 layers and a decision tree with
23 levels take 88.3 seconds and 250 seconds, respectively [38, 73].
Moreover, the authors in [65] have shown that the best proof-based
verifiable ML scheme is roughly 200 times slower when compared
with running the entire model in a TEE.

TEE-based defenses has been used extensively in ML security
and privacy, where confidentiality, privacy, and verifiability are
paramount [11, 15, 21, 65]. In this domain, the main body of the
literature aims at the efficient and secure execution of advanced
models and large datasets in TEEs with small enclave page cache
(EPC) [31, 43, 44]. These frameworks suggest partial outsourcing, in
which a subset of the layers will be outsourced for secure execution.
The authors in [31, 44] suggested running the last few layers in
one or multiple parallel enclaves and the rest of the layers by the
client. Alternative approaches proposed running the linear layers
in a secure enclave and the remaining layers outside in insecure
memory and verifying them using Freivalds’ algorithm [65]

Attack Specific Defences could be designed to defend against
backdoor attacks in the training phase [4, 48, 53, 67] by identifying
and eliminating the updates or samples that are out-of-distribution.
Since adversarial sample attacks take place in inference phase, the
defenses against adversarial samples can take several different ap-
proaches, such as training discriminators to capture the difference
between the training data and adversarial samples [13, 33, 79] or
relying on invariance in the feature map and activation caused due
to adversarial behavior [39, 42, 54].

Fides overcomes the shortcomings of these solutions by deploy-
ing a validation system, which relies on a significantly smaller veri-
fication model’s posterior information to validate the prediction of
service model. Fides aims to be highly parallelizable in deployment
while being adaptable to already deployed MLaaS models. Fides
also aims to make the defense attack methodology agnostic.

8 CONCLUSION

We introduced Fides—a framework for output verification of MLaaS
inference. Fides features a Greedy model distillation technique.
GDTL process gradually unfreezes the layers of an off-the-shelf
model for distillation-based fine-tuning. Along with deploying the
service model, the provider also securely deploys the verification
model in a TEE on the server. The client then offloads the ML
workload to the server by sharing its data with the service and
verification models. Fides also features client-side neural networks
for attack detection and re-classification, which are trained via our
proposed GAN framework. Our rigorous evaluation using multiple
datasets and neural network architectures shows Fides’s superi-
ority to the existing solutions in system performance-a 1.73X to
26.4Xx speed-up and achieves up to 98% attack detection and re-
classification accuracy.

ACKNOWLEDGEMENTS

This research was partially funded by the US National Science Foun-
dation under grants #1914635, #2148358, and #2133407, and the US
Department of Energy grant #DE-SC0023392. Any opinions, find-
ings, conclusions, or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of
the US federal agencies.

REFERENCES

(1]

[2

—

[3

T
)

=
=2

—
—

[12]

[13]

[14

[15]

[16

[17]

(18]

[19

[20]

[21

[22

[23]

[24

[25]

[26

Tiago Alves. 2004. Trustzone: Integrated hardware and software security. White
paper (2004).

N Asokan, Jan-Erik Ekberg, Kari Kostiainen, Anand Rajan, Carlos Rozas, Ahmad-
Reza Sadeghi, Steffen Schulz, and Christian Wachsmann. 2014. Mobile trusted
computing. Proc. IEEE 102, 8 (2014), 1189-1206.

Hessam Bagherinezhad, Maxwell Horton, Mohammad Rastegari, and Ali Farhadi.
2018. Label refinery: Improving imagenet classification through label progression.
arXiv preprint arXiv:1805.02641 (2018).

Moses Charikar, Jacob Steinhardt, and Gregory Valiant. 2017. Learning from
untrusted data. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing. 47-60.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Tar-
geted Backdoor Attacks on Deep Learning Systems Using Data Poisoning.
arXiv:1712.05526 [cs.CR]

Siyuan Cheng, Yingqi Liu, Shiqing Ma, and Xiangyu Zhang. 2021. Deep feature
space trojan attack of neural networks by controlled detoxification. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 35. 1148-1156.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 2017. A survey of model
compression and acceleration for deep neural networks. arXiv preprint
arXiv:1710.09282 (2017).

Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. Cryptology ePrint
Archive (2016).

Denise Demirel, Lucas Schabhiiser, and Johannes Buchmann. 2017. Proof and
Argument Based Verifiable Computing. In Privately and Publicly Verifiable Com-
puting Techniques. Springer, 13-22.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In Conference on computer vision and
pattern recognition. IEEE, 248-255.

Caiqin Dong, Jian Weng, Yao Tong, Jia-Nan Liu, Anjia Yang, Yudan Cheng, and
Shun Hu. 2022. Fusion: Efficient and Secure Inference Resilient to Malicious
Server and Curious Clients. arXiv preprint arXiv:2205.03040 (2022).

Sean Dougherty, Reza Tourani, Gaurav Panwar, Roopa Vishwanathan, Satya-
jayant Misra, and Srikathyayani Srikanteswara. 2021. APECS: A Distributed
Access Control Framework for Pervasive Edge Computing Services. In ACM
SIGSAC Conference on Computer and Communications Security. 1405-1420.
Hasan Ferit Eniser, Maria Christakis, and Valentin Wiistholz. 2020. Raid:
Randomized adversarial-input detection for neural networks. arXiv preprint
arXiv:2002.02776 (2020).

Tommaso Furlanello, Zachary Lipton, Michael Tschannen, Laurent Itti, and Anima
Anandkumar. 2018. Born again neural networks. In International Conference on
Machine Learning. PMLR, 1607-1616.

Akshay Gangal, Mengmei Ye, and Sheng Wei. 2020. Hybridtee: Secure mobile dnn
execution using hybrid trusted execution environment. In 2020 Asian Hardware
Oriented Security and Trust Symposium (AsianHOST). IEEE, 1-6.

Zahra Ghodsi, Tianyu Gu, and Siddharth Garg. 2017. Safetynets: Verifiable
execution of deep neural networks on an untrusted cloud. Advances in Neural
Information Processing Systems 30 (2017).

Tan J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

Karan Grover, Shruti Tople, Shweta Shinde, Ranjita Bhagwan, and Ramachandran
Ramjee. 2018. Privado: Practical and secure DNN inference with enclaves. arXiv
preprint arXiv:1810.00602 (2018).

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. Badnets: Identifying
vulnerabilities in the machine learning model supply chain. arXiv preprint
arXiv:1708.06733 (2017).

Song Han, Huizi Mao, and William] Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149 (2015).

Hanieh Hashemi, Yongqin Wang, and Murali Annavaram. 2021. DarKnight: An
accelerated framework for privacy and integrity preserving deep learning using
trusted hardware. In MICRO-54: 54th Annual IEEE/ACM International Symposium
on Microarchitecture. 212-224.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. 2015. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531 2, 7 (2015).

Sebastian Hofstatter, Sophia Althammer, Michael Schroder, Mete Sertkan, and
Allan Hanbury. 2020. Improving efficient neural ranking models with cross-
architecture knowledge distillation. arXiv preprint arXiv:2010.02666 (2020).

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
2017. Densely connected convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 4700-4708.

Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jiansheng Ding. 2022. Cheetah:
Lean and Fast Secure Two-Party Deep Neural Network Inference. IACR Cryptol.
ePrint Arch. 2022 (2022), 207.

[27]

(28]

[29]

[32

(33]

[34

[36

[37

[38

[39

=
=

[41

[42

[43]

[44

[45

[46]

[47

[48

[49

[50

Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and Emmett
Witchel. 2018. Chiron: Privacy-preserving machine learning as a service. arXiv
preprint arXiv:1803.05961 (2018).

Thomas Knauth, Michael Steiner, Somnath Chakrabarti, Li Lei, Cedric Xing, and
Mona Vij. 2018. Integrating remote attestation with transport layer security.
arXiv preprint arXiv:1801.05863 (2018).

Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark
Ibrahim, and Laurens van der Maaten. 2021. Crypten: Secure multi-party com-
putation meets machine learning. Advances in Neural Information Processing
Systems 34 (2021), 4961-4973.

Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

Abhinav Kumar, Reza Tourani, Mona Vij, and Srikathyayani Srikanteswara. 2022.
SCLERA: A Framework for Privacy-Preserving MLaasS at the Pervasive Edge. In
International Conference on Pervasive Computing and Communications Workshops
and other Affiliated Events. IEEE, 175-180.

Alexey Kurakin, Ian Goodfellow, Samy Bengio, et al. 2016. Adversarial examples
in the physical world.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. 2018. A simple unified
framework for detecting out-of-distribution samples and adversarial attacks.
Advances in neural information processing systems 31 (2018).

Seunghwa Lee, Hankyung Ko, Jihye Kim, and Hyunok Oh. 2020. vCNN: Verifiable
convolutional neural network based on zk-SNARKs. Cryptology ePrint Archive
(2020).

Bo Liu, Ming Ding, Sina Shaham, Wenny Rahayu, Farhad Farokhi, and Zihuai
Lin. 2021. When machine learning meets privacy: A survey and outlook. ACM
Computing Surveys (CSUR) 54, 2 (2021), 1-36.

Qiang Liu, Pan Li, Wentao Zhao, Wei Cai, Shui Yu, and Victor CM Leung. 2018.
A survey on security threats and defensive techniques of machine learning: A
data driven view. IEEE access 6 (2018), 12103-12117.

Shaoshan Liu, Liangkai Liu, Jie Tang, Bo Yu, Yifan Wang, and Weisong Shi. 2019.
Edge computing for autonomous driving: Opportunities and challenges. Proc.
IEEE 107, 8 (2019), 1697-1716.

Tianyi Liu, Xiang Xie, and Yupeng Zhang. 2021. ZkCNN: Zero knowledge proofs
for convolutional neural network predictions and accuracy. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications Security.
2968-2985.

Jiajun Lu, Theerasit Issaranon, and David Forsyth. 2017. Safetynet: Detecting and
rejecting adversarial examples robustly. In Proceedings of the IEEE international
conference on computer vision. 446—454.

Abbass Madi, Renaud Sirdey, and Oana Stan. 2020. Computing neural networks
with homomorphic encryption and verifiable computing. In International Confer-
ence on Applied Cryptography and Network Security. Springer, 295-317.

Javier Maroto, Guillermo Ortiz-Jiménez, and Pascal Frossard. 2022. On the
benefits of knowledge distillation for adversarial robustness. arXiv preprint
arXiv:2203.07159 (2022).

Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. 2017.
On detecting adversarial perturbations. arXiv preprint arXiv:1702.04267 (2017).
Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and
Nicolas Kourtellis. 2021. PPFL: privacy-preserving federated learning with trusted
execution environments. In Proceedings of the 19th Annual International Confer-
ence on Mobile Systems, Applications, and Services. 94-108.

Fan Mo, Ali Shahin Shamsabadi, Kleomenis Katevas, Soteris Demetriou, Ilias
Leontiadis, Andrea Cavallaro, and Hamed Haddadi. 2020. Darknetz: towards
model privacy at the edge using trusted execution environments. In Proceedings
of the International Conference on Mobile Systems, Applications, and Services. 161
174.

Abdallah Moubayed, MohammadNoor Injadat, Abdallah Shami, and Hanan Lut-
fiyya. 2018. DNS Typo-Squatting Domain Detection: A Data Analytics and
Machine Learning Based Approach. In 2018 IEEE Global Communications Confer-
ence (GLOBECOM). 1-7. https://doi.org/10.1109/GLOCOM.2018.8647679

Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive privacy
analysis of deep learning: Passive and active white-box inference attacks against
centralized and federated learning. In 2019 IEEE symposium on security and privacy
(SP). IEEE, 739-753.

Deepika Natarajan, Wei Dai, and Ronald Dreslinski. 2021. CHEX-MIX: Combining
Homomorphic Encryption with Trusted Execution Environments for Two-party
Oblivious Inference in the Cloud. Cryptology ePrint Archive (2021).

Thien Duc Nguyen, Phillip Rieger, Roberta De Viti, Huili Chen, Bjérn B Bran-
denburg, Hossein Yalame, Helen Mollering, Hossein Fereidooni, Samuel Marchal,
Markus Miettinen, et al. 2022. {FLAME}: Taming backdoors in federated learning.
In 31st USENIX Security Symposium (USENIX Security 22). 1415-1432.

Chaoyue Niu, Fan Wu, Shaojie Tang, Shuai Ma, and Guihai Chen. 2020. Toward
verifiable and privacy preserving machine learning prediction. IEEE Transactions
on Dependable and Secure Computing (2020).

Guillermo Ortiz-Jiménez, Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli,
and Pascal Frossard. 2021. Optimism in the face of adversity: Understanding and
improving deep learning through adversarial robustness. Proc. IEEE 109, 5 (2021),

https://arxiv.org/abs/1712.05526
https://doi.org/10.1109/GLOCOM.2018.8647679

[51]

[52

[53

[54]

[55

[56]

[57]

[58

[59]

[60]

[61

[62

[63]

[64]

[65

[66]

[67]

[68

[69]

[70

[71]

[72]

[73]

[74

635-659.

Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. 2016. Transferability
in machine learning: from phenomena to black-box attacks using adversarial
samples. arXiv preprint arXiv:1605.07277 (2016).

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.
2016. Distillation as a defense to adversarial perturbations against deep neural
networks. In 2016 IEEE symposium on security and privacy (SP). IEEE, 582-597.
Neehar Peri, Neal Gupta, W Ronny Huang, Liam Fowl, Chen Zhu, Soheil Feizi,
Tom Goldstein, and John P Dickerson. 2020. Deep k-nn defense against clean-
label data poisoning attacks. In Computer Vision—ECCV 2020 Workshops: Glasgow,
UK, August 23-28, 2020, Proceedings, Part I 16. Springer, 55-70.

Stefanos Pertigkiozoglou and Petros Maragos. 2018. Detecting adversarial exam-
ples in convolutional neural networks. arXiv preprint arXiv:1812.03303 (2018).
Partha Pratim Ray, Dinesh Dash, and Debashis De. 2019. Edge computing for
Internet of Things: A survey, e-healthcare case study and future direction. Journal
of Network and Computer Applications 140 (2019), 1-22.

Brandon Reagen, Woo-Seok Choi, Yeongil Ko, Vincent T Lee, Hsien-Hsin S Lee,
Gu-Yeon Wei, and David Brooks. 2021. Cheetah: Optimizing and accelerating
homomorphic encryption for private inference. In 2021 IEEE International Sym-
posium on High-Performance Computer Architecture. IEEE, 26-39.

Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. 2015.
Trusted Execution Environment: What It is, and What It is Not. In 2015 IEEE Trust-
com/BigDataSE/ISPA, Vol. 1. 57-64. https://doi.org/10.1109/Trustcom.2015.357
Nitin Singh, Pankaj Dayama, and Vinayaka Pandit. 2021. Zero Knowledge Proofs
towards Verifiable Decentralized Al Pipelines. Cryptology ePrint Archive (2021).
Yushan Siriwardhana, Pawani Porambage, Madhusanka Liyanage, and Mika
Ylianttila. 2021. A survey on mobile augmented reality with 5G mobile edge com-
puting: Architectures, applications, and technical aspects. IEEE Communications
Surveys & Tutorials 23, 2 (2021), 1160-1192.

Ekanut Sotthiwat, Liangli Zhen, Zengxiang Li, and Chi Zhang. 2021. Partially
encrypted multi-party computation for federated learning. In 2021 IEEE/ACM
21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid).
IEEE, 828-835.

Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model scaling for
convolutional neural networks. In International conference on machine learning.
PMLR, 6105-6114.

Ruixiang Tang, Mengnan Du, Ninghao Liu, Fan Yang, and Xia Hu. 2020. An
embarrassingly simple approach for trojan attack in deep neural networks. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 218-228.

Guanhong Tao, Shiging Ma, Yingqi Liu, and Xiangyu Zhang. 2018. Attacks meet
interpretability: Attribute-steered detection of adversarial samples. Advances in
Neural Information Processing Systems 31 (2018).

Reza Tourani, Srikathyayani Srikanteswara, Satyajayant Misra, Richard Chow,
Lily Yang, Xiruo Liu, and Yi Zhang. 2020. Democratizing the Edge: A Pervasive
Edge Computing Framework. arXiv preprint arXiv:2007.00641 (2020).

Florian Tramer and Dan Boneh. 2018. Slalom: Fast, verifiable and private exe-
cution of neural networks in trusted hardware. arXiv preprint arXiv:1806.03287
(2018).

Florian Tramer, Reza Shokri, Ayrton San Joaquin, Hoang Le, Matthew Jagielski,
Sanghyun Hong, and Nicholas Carlini. 2022. Truth serum: Poisoning machine
learning models to reveal their secrets. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security. 2779-2792.

Brandon Tran, Jerry Li, and Aleksander Madry. 2018. Spectral signatures in
backdoor attacks. Advances in neural information processing systems 31 (2018).
Jiasi Weng, Jian Weng, Gui Tang, Anjia Yang, Ming Li, and Jia-Nan Liu. 2022.
pvCNN: Privacy-Preserving and Verifiable Convolutional Neural Network Test-
ing. arXiv preprint arXiv:2201.09186 (2022).

Guowen Xu, Hongwei Li, Hao Ren, Jianfei Sun, Shengmin Xu, Jianting Ning,
Haomiao Yang, Kan Yang, and Robert H Deng. 2020. Secure and verifiable
inference in deep neural networks. In Annual Computer Security Applications
Conference. 784-797.

Li Yang and Abdallah Shami. 2020. On hyperparameter optimization of machine
learning algorithms: Theory and practice. Neurocomputing 415 (2020), 295-316.
Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y Zhao. 2019. Latent back-
door attacks on deep neural networks. In Proceedings of the 2019 ACM SIGSAC
conference on computer and communications security. 2041-2055.

Sen Yuan, Milan Shen, Ilya Mironov, and Anderson CA Nascimento. 2021. Practi-
cal, label private deep learning training based on secure multiparty computation
and differential privacy. Cryptology ePrint Archive (2021).

Jiaheng Zhang, Zhiyong Fang, Yupeng Zhang, and Dawn Song. 2020. Zero
knowledge proofs for decision tree predictions and accuracy. In Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications Security.
2039-2053.

Qingyang Zhang, Quan Zhang, Weisong Shi, and Hong Zhong. 2018. Distributed
collaborative execution on the edges and its application to amber alerts. IEEE
Internet of Things Journal 5, 5 (2018), 3580-3593.

[75

[76

Xinyang Zhang, Zheng Zhang, Shouling Ji, and Ting Wang. 2021. Trojaning
language models for fun and profit. In 2021 IEEE European Symposium on Security
and Privacy (EuroS&P). IEEE, 179-197.

Lingchen Zhao, Qian Wang, Cong Wang, Qi Li, Chao Shen, and Bo Feng. 2021.
Veriml: Enabling integrity assurances and fair payments for machine learning
as a service. IEEE Transactions on Parallel and Distributed Systems 32, 10 (2021),
2524-2540.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou.
2016. Dorefa-net: Training low bitwidth convolutional neural networks with low
bitwidth gradients. arXiv preprint arXiv:1606.06160 (2016).

Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. 2016. Trained ternary
quantization. arXiv preprint arXiv:1612.01064 (2016).

Fei Zuo and Qiang Zeng. 2021. Exploiting the sensitivity of L2 adversarial
examples to erase-and-restore. In Proceedings of the 2021 ACM Asia Conference
on Computer and Communications Security. 40-51.

https://doi.org/10.1109/Trustcom.2015.357

A COMPLEMENTARY RESULTS

Table 3: Entropy Analysis of Jeffreys Divergence (JD) and Wasser-
stein Metric (WM) for cases that service and verification models

Table 4: Entropy Analysis of Jeffreys Divergence (JD) and Wasser-
stein Metric (WM) for cases that service and verification models
predictions are different (Case B) post-attack.

L . . Case B
predictions are identical (Case A) post-attack. ResNet DenseNet EffcieniNet
Case A < WM Pre-attack 1.87 £ 0.63 2.039 + 0.67 1.83 +0.62
ResNet DenseNet EfficientNet = Post-attack 0.95 + 0.57 0.99 +0.58 0.68 + 0.47
Pre- 0.0038 = 0.0019 = 0.000013 + % D Pre-attack 4.76 = 1.99 4.83 +2.09 4.04 £ 1.55
WM attack 0.0037 0.0018 0.000012 Post-attack 1.75+ 1.36 1.64 +1.21 0.873 £ 0.66
o Post- 2.73+£0.76 2.99 £ 1.00 2.98 +£0.99 - WM Pre-attack 23.89 +£9.648 24.019+9.49 22.53 +9.59
o attack < Post-attack ~ 17.11£9.52 17.87 £9.62 16.54 £ 9.25
é Pre- 0.009 £ 0.009 0.004 + 0.0001 0.000015 + E Pre-attack 4.77 £ 1.69 5.67 £ 0.035 4.87 £ 1.90
© D attack 0.000014 “ b Post-attack 3.67 + 2.523 450 +2.99 4.12 + 3.047
Post- 13.09 £ 5.3 13.09 + 4.37 14.08 + 4.17 - Pre-attack 69.13 £34.87 66.13 +£34.82 66.96 + 26.09
attack % WM Post-attack 58.79 +33.12 55.05+29.94 59.9 + 22.93
Pre- 0.160 + 0.157 0.153 £0.148 0.048 + 0.047 bgb D Pre-attack 1.30 + 0.56 1.20 £ 0.50 0.94 £ 0.35
WM attack A J Post-attack 1.07 £ 0.58 1.03 £ 0.54 0.79 + 0.34
S Post- 26.344 + 25.99+12.012 24.11 £ 12.12
;u' attack 13.344
§ Pre- 0.03 £ 0.0293 0.037 £ 0.035 0.0085 + 0.008
o D attack
Post- 9.53 +£3.98 10.25 £ 4.12 9.74 £ 4.07
attack
Pre- 1.25+1.17 2.96 + 2.64 38.79 + 14.20
WM attack
= Post- 51.96 +46.79 49.41 £43.26 85.13 + 35.97
Z attack
é“ Pre- 0.035 £ 0.032 0.065 + 0.06 0.216 + 0.092
= D attack
Post- 3.96 + 2.16 3.31 +£1.82 2.70 £1.37

attack

	Abstract
	1 Introduction
	2 Observation
	3 Background
	3.1 Trusted Execution Environments
	3.2 Model Compression
	3.3 Similarity Measures

	4 Models and Assumptions
	4.1 System Model
	4.2 Threat Model
	4.3 Attack Modeling

	5 Design of Fides
	5.1 Service Package Building
	5.2 Generative Attack Detection and Re-classification Training
	5.3 Service Deployment
	5.4 Service Request and Execution

	6 Experiments
	6.1 Data and Models
	6.2 System and Experiments Setup
	6.3 Verification Efficacy Analysis
	6.4 System Performance Analysis

	7 Related Work
	8 Conclusion
	References
	A Complementary Results

