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Abstract

We design an (g, 0)-differentially private algorithm to estimate the mean of a d-variate
distribution, with unknown covariance ¥, that is adaptive to ¥. To within polylogarithmic
factors, the estimator achieves optimal rates of convergence with respect to the induced
Mahalanobis norm ||-||5;, takes time O(nd?) to compute, has near linear sample complexity
for sub-Gaussian distributions, allows ¥ to be degenerate or low rank, and adaptively
extends beyond sub-Gaussianity. Prior to this work, other methods required exponential
computation time or the superlinear scaling n = Q(d3/ 2) to achieve non-trivial error with
respect to the norm ||-[|..

1 Introduction

We cannot consider the theory of differential privacy complete until we have—at least—a
sample and computationally efficient estimator of the mean. To within logarithmic factors in
the dimension d and sample size n, we achieve both.

To make this a bit more precise, let P be a distribution on R? with unknown mean
1 = Ep[X] and unknown covariance ¥ = Ep[(X — u)(X — u)7], and let X; i P, i <n. For an
estimator i, consider the covariance-normalized error errs (1, i) := (i — p)TS 7 (@ — p). We
give an (g, d)-differentially private estimator zi of u such that, assuming the vectors »12x;
are sub-Gaussian and n = Q(d/e?),

~ |d+logt +d210g2%

errs:(fi, p) = (i — ) =77 — p) < O(1) (1)

n n2e?

with probability at least 1 — §, where the 5(1) term hides dependence on the sub-Gaussian
parameter of ¥~Y/2X and logarithmic factors in n. Except for a factor of log % and the hidden
logarithmic factors in n, this is optimal, and the method extends naturally to distributions
with heavier tails for which we can provide similar near-optimal guarantees.

By measuring error with respect to the covariance ¥ of the data itself, we adopt the
familiar efficiency goals of classical theoretical statistics: that an estimator should be adaptive
to structure in covariates and should have (near)-optimal covariance. Mean estimation is, of
course, one of the most basic problems in statistics, and we have known for seventy-odd
years that the sample mean X, := %2?21 X; is efficient [9, 30], achieving the optimal error
E[(X, — ) 'S7Y(X,, — p)] = £, with high-probability guarantees under appropriate moment
assumptions [39]. Perhaps stating the obvious, the sample mean is adaptive to the covariance
of the distribution: no matter 3, the sample mean is efficient.

When we require estimators to be private, however, the story is less clear. While differential
privacy [14, 13] has become the de facto choice for protecting sensitive data in the sixteen or so
years since its release—with substantial theoretical advances and successful applications [17,



3, 1, 28, 18, 12]—we know of no computationally efficient procedures that achieve order-
optimal sample complexity with respect to the natural Mahalanobis norm ||v||y, = V0T X1
the population P induces via its covariance. Brown et al. [7] highlight this, developing
sample efficient procedures that achieve small error in the Mahalanobis metric even when
Y is unknown. When the covariance ¥ is known, estimators that truncate the data relative to
> and add Gaussian noise to such a trimmed mean with covariance proportional to 3 suffice
to privately estimate p (under approximate differential privacy) with the essentially optimal
rate (1), so that n = Q(d) observations suffice to estimate u (see, e.g., [6, 7]). But in the more
realistic setting that ¥ is unknown, to the best of our knowledge all prior work either requires
a sample of size n = Q(dg/ 2): is intractable, taking time exponential in n or d to compute; or
assumes P is isotropic. Many of these further assume P is Gaussian, a stringent assumption
that never obtains in practice. See Section 1.1 for more discussion.

Our contribution is a polynomial-time private estimator (Algorithm 4, PRIVMEAN) whose
error matches the error achievable when the covariance is known (equivalently, the data is
isotropic) to polylogarithmic factors. In essence, our estimator privatizes a stable estimate
of the empirical mean by adding Gaussian noise with covariance proportional to a stable
estimate of the empirical covariance; it takes time O(nd?) to compute, has (nearly) linear
sample complexity for sub-Gaussian distributions, allows ¥ to be degenerate or low-rank, and
naturally extends beyond sub-Gaussianity.

1.1 Related work

There are many connections between differential privacy and robust statistics [11], in that the
major focus of robust statistics is to develop estimators insensitive to outliers and corrupted
data [36, 24, 25, 19], while differential privacy makes the output (distributions) of estimators
similar even when individuals in the underlying data change [14, 13, 11]. While Tukey and
Huber’s initiation of robust statistics is more than sixty years old [36, 24], studying statistical
limits of estimation and inference from corrupted data, computational tractability was elusive:
only in the last decade have researchers developed computationally efficient methods for even
robustly estimating a sample mean [10]. Similarly, only recently has the community elucidated
trade-offs between statistical and computational considerations in robust estimation [10].

It is natural to wonder whether such trade-offs also arise with privacy. For example,
classical procedures in private query evaluation require exponential time in natural problem
parameters [20, 15]. Likewise, in estimation, following the “propose, test, release” framework
of Dwork and Lei [11], a number of sample efficient private estimators [32, 7, 22| require
testing whether a given statistic is robust to the removal of groups of data points, which can be
computationally intractable in high-dimensions. In a number of these settings, computationally
efficient estimators achieving comparable sample efficiency have emerged only within the last
year or so [e.g. 22, 27, 4, 2]. Our mean estimation setting is a striking example of a seemingly
simple problem for which no known sub-exponential time and sample efficient algorithm exists.
In particular, to the best of our knowledge, all previous work has either (i) exponential
runtime [7, 31]; (i) is sample inefficient [26, 31], requiring sample size at least n = Q(d%/?);
or (iii) otherwise essentially assumes the population covariance ¥ is isotropic [26, 6, 23, 31]
(nominally, the paper [23] allows arbitrary covariance, but the squared error of its estimator
scales at least linearly with the condition number of the population covariance X, which is
effectively equivalent to assuming isotropic covariance [6]). Here we have highlighted the most
relevant (recent) examples; see in the paper [7] for coverage of earlier work.

The work most closely related to ours is that of Brown et al. [7], who also consider



covariance-adaptive mean estimation and also achieve (nearly) linear sample complexity. They
give a roadmap to adaptive private mean estimation that circumvents private covariance
estimation, a task whose sample complexity is necessarily ©(d®/?) (see the lower bound by
Dwork et al. [16]), and are the first to achieve sample complexity o(d®/?), let alone linear.
However, their estimators take exponential time to compute; moreover, while their accuracy
analysis is independent of the condition number of ¥, it assumes X is full rank. Finally, they
only consider Gaussian and sub-Gaussian distributions.

In concurrent work, Hopkins et al. [22] give a generic reduction from private estimation to
robust estimation and leverage this reduction to obtain private estimators with (near) optimal
sample complexity. While their reduction is generic, the resulting estimators are efficient only
in certain special cases, e.g., for Gaussian distributions whose algebraic moment relationships
allow efficient formulation, and their results for mean estimation assume bounded covariance.
They extend a line of work [27, 21] on obtaining efficient approximations of inefficient private
mechanisms via sum-of-squares (SoS) relaxations. While technically efficient, SoS estimators
typically incur large polynomial runtime and thus scale poorly to high-dimensional settings
or large amounts of data. Unlike our estimator, however, they are robust to corruption of a
constant fraction the data.

1.2 Organization

We provide a brief outline of the paper to come. Section 2 introduces notation and covers
the preliminary privacy definitions we require for our development. Our main estimator,
PRIVMEAN, consists of two main parts: stably estimating the covariance of the data to reasonable
accuracy and then estimating a truncated mean to which we add noise. We present our
algorithms in Section 3, where Section 3.1 gives the covariance estimator, Section 3.2 the
mean estimator, and Section 3.3 presents the full procedure; we analyze PRIVMEAN’s privacy
in Section 4, deferring some of the requisite proofs to Sections 6 and 7. We provide accuracy
analysis in Section 5, where we also present ADAMEAN (Algorithm 5), which allows PRIVMEAN
to adapt to the scale of the observed data.

2 Preliminary definitions, privacy properties, and mechanisms

To make our coming development smoother and easier, here we introduce notation and
recapitulate the privacy definitions we use throughout. We also review a few standard privacy
mechanisms, providing guarantees on their behavior; for those results that are not completely
standard, we include proofs in the appendices for completeness.

2.1 Notation

Semidefinite matrices and norms For a positive semidefinite (PSD) matrix A € R4*4,
we let Col(A) denote its columnspace and A its pseudoinverse, while the square-root of the
pseudoinverse is AT/2. We let 14 := ATA = A1/241/2 ¢ R?*? denote the orthogonal projector
onto Col(A). Using the nuclear norm ||A4]|, = >, 0;(A) (the sum of A’s singular values), we
define the distance-like quantity for PSD matrices A, B as

max {|[AV2(B — A) A2 [ BIZ(A = B)BY2| ] if Col(4) = Col(B)

00 otherwise,

dpsa(A, B) := {



setting dpsq(A, B) = oo if A or B are not PSD. When A and B are invertible, dpsq(A, B) =
max{||A~/2BA~Y2 — I||,,|B~'Y2AB~/2 — ||}, though we note in passing that it is not a
distance. The extended-value Mahalanobis norm ||-|| , corresponding to A > 0 is

vT Aty v € Col(A)

[o]|% == limoT (A + )~ lv = _
tJ0 +o00 otherwise.

When A is non-singular, this is the standard ||v||, = VvTA~v, and the norm has the
monotonicity property that if A < B, then [jv||, > ||v| 5 for all v € R<.

Sets and Partitions For sets S, S’, define the distance dgym (S, S") := max{|S\ 5’|, 5"\ S|}.
Given integers n and b, where we assume b divides n for simplicity, we let P,, ; be the set of all
partitions of [n] such that each subset constituting the partition has b elements. We represent
a given partition in P, 3 as a tuple of subsets S = (S1,...,5,,), where each S; C [n] has b
elements and are pairwise disjoint.

Distributions We let W ~ Lap(o) denote that W has Laplace distribution with scale o,
with density p(w) = 5= exp(—|w|/c). X ~ N(i, %) indicates that X is normal with mean p
and covariance ¥ = 0, where if ¥ is not full rank we mean that X has support p + Col(X).

2.2 Privacy definition and basic properties

It will be convenient for us to use closeness of distributions in our derivations (cf. [12, Ch. 3.5]),
so we frame differential privacy as a type of closeness in distribution.

Definition 1 ((g,d)-closeness). Probability distributions P and Q are (g, d)-close in distribution,
denoted P 2575 Q, if for all measurable sets A C X,

P(A) <efQ(A)+6 and Q(A) <e"P(A)+ 0.

Similarly, random variables X and Y are (g, 6)-close, X 25,5 Y, if their induced distributions
are: P(X € ) L. s P(Y € )

Differential privacy [14, 13] is then equivalent to this notion of closenss: a randomized function
(or mechanism) M from an input space X™ to ) is then (e, d)-differentially private if and only
if for any vectors z, 2’ € X" differing in only a single element,

d
M(x) =.5 M(z).
The following results on closeness are standard [12, Ch. 3].

Lemma 2.1 (Basic composition). Let X, X', YY"’ be random variables satisfying X ie)h
X, andY L. 5, Y. Then (X,Y) 2. 1o, suts, (X, Y).

Ox

Lemma 2.2 (Group composition). Let Xi,..., Xy be random variables with X; iei,&- Xit1
for each i. Let e<; := Z?;ilﬂ €5, €= Zf;ll €, and § = Zle e>id;. Then X 2575 X5.

Lemma 2.3 (Post-Processing). Let X, Y, W be random variables. Then for any function f,
if X S5 Y, then f(X,W) £5 F(Y, W),



2.3 Mechanisms

We use several known mechanisms, and our procedures rely on their distributional closeness
properties. The first is the TOPk mechanism, which (approximately) returns the largest k
elements of a sample. In our analysis, it will be convenient to call the procedures we develop
with noise as an argument to allow easier tracking of distributional closeness.

Algorithm 1: Top-k DP (TOPk)
Input : data xz € RP, threshold k&
Noise : £1,&% € RP
Output: R C [n] such that |R| =k, 2 € (RU{L})P
(TR S
Yo <~ + &2
R < index set comprising the k largest ¥ ;’s
for j € [p] do
if j € R then
| Zj 2,
else
‘ i’j — 1
return z

© o N o Gk W N =

Lemma 2.4 (TOPk mechanism, [34], Theorem 2.1). Lety,e € Ry. Let x,a’ € RP be such that
lz = 'llo < . Then for &6 ~ Lap(*22)?,
d
TDPk(l’, kv 517 52) =¢,0 TDPk(l’l, kv 517 52)

As our procedures rely on adding Gaussian noise, we require two distributional closeness
results for normal distributions. See Appendices A.1 and A.2 for proofs, which we include for
completeness, as they are both tweaks of existing results [12, 33].

Lemma 2.5 (Gaussians, distinct means). Let u1, o € R? and let - € R¥*? be PSD. Suppose
1 — palls; < p and define

L\/2log & if0<e<l1

o/ (\/2 log % + 2 — \/2 log %) otherwise.

Then N(puy, 72%) ig,& N(pz, 725).

Brown et al. [7, Lemma 4.15] essentially give the next result, but we allow low rank covariance
matrices.

Lemma 2.6 (Gaussians, distinct covariances). Let u € R? and X1, %y € R¥? be PSD and
satisfy dpsa(S1,52) < v < 00. Then N (1, %1) £.5 N (1, B2) for € > 6ylog(2/6).

We conclude with a standard guarantee for Laplacian random vectors [e.g. 12, Thm. 3.6].

Lemma 2.7 (Laplace mechanism). Let o, f > 0 and Z iy Lap(8/«). Then for any A C R™
and n € R™ such that |||, < B,

P(Z € A) <exp(a)P(Z € A+n).



3 Algorithms

As our estimator and its full analysis are fairly involved, we provide a broad overview of our
procedures here. We compute the estimator, whose full treatment we give in Algorithm 4
(PRIVMEAN) in section 3.3, in two phases, consisting of a stable covariance estimate and a
stable mean estimate. Each carefully prunes outliers from the data, using plug-in quantities
from the remaining observations as substitutes for the usual plug-in mean and covariance.
In the first phase (Algorithm 2, COVSAFE), we obtain a robust but non-private estimate 5
of the covariance. Assuming for convenience n is even, we pair observations and initially let

n/2

N 1
S = o 3= T (@ = g
1=1

As z; — T, /94, is symmetric, we can prune pairs of observations for which |lz; — ;24,5 18

large (regardless of the population mean p), recompute S on the remaining observations, and
repeat until convergence. The key is that this pruning, while it provides no formal robustness
guarantees, is stable to changes of a single example x;, ensuring S itself is stable.

In the second phase (Algorithm 3, MEANSAFE), we first obtain a robust estimate i of the
empirical mean by trimming outliers with respect to [|-||. Using ||7;| to determine whether
x; is influential for a mean estimate is unreliable, as the quantity may be arbitrarily large
even for non-outliers if ||u[|g itself is large; unfortunately, paired observations (as in the stable
covariance estimation phase) are similarly unhelpful, as ||z; — z;||g could be small if both
x;, v are “outlying” in the same way. Instead, we randomly partition the n observations into
groups S of size O(log %) and prune all observations in a group S if any two observations
in S are far with respect to [|-[|s, so that there is at least a pair of outlying observations in
the group. Assuming the total number of pruned observations across both phases is not too
large—and much of our analysis shows how to make the pruned observations stable across
different samples x, z’ —we let it be the empirical mean of the un-pruned observations, then
release i ~ N(f1,0%(g,)%), where the privacy budget determines o2 (g, d).

3.1 Stable covariance estimation

The first component of the private mean estimation algorithm is the covariance estimation
procedure COVSAFE in Alg. 2, which removes suitably unusual pairs of data points from the
sample z € (RY)™, then uses the remaining pairs to actually construct the covariance. The
procedure maintains an empirical covariance Y; of the remaining data at each iteration ¢,
so that {¥;} is a non-increasing (in the semidefinite order) sequence of matrices, and stores
removed indices in an iteratively growing collection R; for ¢ = 1,2,...; the procedure thus
necessarily terminates after at most n/2 rounds of index removal. For convenience of our
analysis, COVSAFE also returns a transcript I' of the removed indices and iteratively constructed
covariances, returning L if the data is so unstable that it removes too many indices.

The key is that the covariance estimates are appropriately stable (see Conditions (C.i)
and (C.ii) to come in Section 4), and with high probability on any given input z, the algorithm
guarantees that its output changes little when we remove index ¢ or, if the data has too
much variance relative to itself, that the procedure simply returns ¥ =1. To allow cleaner
description of the precise results we require in our main privacy result in Section 4, for
a putative bound B on ||z; — a;jH%, acceptable number of outliers m, and privacy random



Algorithm 2: Robust Covariance Estimation (COVSAFE)
Input : data z1.,
Params: threshold B, threshold m
Noise : z e R"?tl weR

14 L1n/2 = Tnj24+1mn

2 Ro — @, Eo — %Z?:/i i’li’?

3 converged < false, t < 0

4 while not converged do

5 t+t+1, Ry + R;_1, truncated + 0

6 for i € [n/2]\ Ri—1 do
7 if 2log ||Z:[ly, | + 2i + 2n/j241 > log (B) then
8 Rt — Rt U {Z}
9 truncated < truncated +1
10 if truncated = 0 then
11 ‘ converged < true, T' <+ ¢

12 PR % ZieWm& zal
T T

13 '+ ([Ri]tzo ) [Et]tzo 7T)

14 if |Rp| > m + w then

15 ‘ return L, T

'y

16 return X7, I

variables Z and W to be specified, let
(3,T) := COVSAFEp , (z; Z, W), (2a)

where I' = ([E¢]i<r, [Re]t<,T) is the transcript of intermediate covariances and removed
indices, and for & = 2., /5 — Ty, /241:n, (as in Line 1) define the leave-one-out covariance

i =

(2b)

S - M{ieRr}zal S #L
L otherwise,

which is 3 whenever COVSAFE does not remove index pair (i,n/2 + i) € [n]2.

3.2 Stable mean estimation

The second component of the private mean estimation algorithm is a sample mean estimator,
adding noise commensurate with an estimated (positive semidefinite) noise covariance that we
abstractly call A € R¥4, The procedure MEANSAFE removes elements z; of the data z that are
“too far” from the bulk of the data, measured by |z; — ;|| 4, using randomization to be sure
that the removed indices are appropriately private. The algorithm uses TOPk to select groups
of indices that contain too many outlying datapoints, then removes all data associated with
these groups. By evaluating (random) groups of data, the procedure enforces privacy in that
if the majority of the data are appropriately close to a center point as measured by covariance,
then few groups have large diameter, and adding or removing a single datapoint z; can only
effect the removal of one group and the method may privately return a noisy empirical mean.
When many datapoints are outliers, the method is likely to return L regardless of the behavior
of any individual datapoint.



Algorithm 3: Robust Mean Estimation (MEANSAFE)

Input : data zi.,, PSD matrix A € R4
Params: threshold B, batchsize b, threshold k
Noise : S=(S51,...,8,) € Pnp, 2,2' € R weR, 2N e RY
Output: mean estimate 1
for j € [n/b] do
| Dj < log(diamy(zg,))
D « TOPk(D, k; 2, 2)
R+ 0,t+0 /* initialize removed indices to empty */
for j € [n/b] do
if D; # L and D; > log(vB/4) then

R+ RU Sj

t—t+1
1= n+|R| >igR Ti
10 if t > %4—10 then
11 ‘ w4+ L
12 else
13 | [+ AVZN
14 T+ (D,D,R,t,]i)
15 return p, I’

© o N O Uk W N

For use in Section 4, as with COVSAFE, we assign notation to the outputs of MEANSAFE.
Let 2 € R™ be an arbitrary sample and A an arbitrary positive semidefinite matrix. For
parameters defining the supposed bound B on ||z; — 3:]-||227 group size b, acceptable outlier
count k, and privacy random variables (S, Z, Z', W, ZN), all to be specified later, define

(ji(x, A),T(x, A)) := MEANSAFEp 4 (z, A; S, Z, Z', W, ZN). (3)

3.3 The private mean estimation algorithm

Given COVSAFE and MEANSAFE, Algorithm 4 (PRIVMEAN) combines the two (with appropriate
parameter settings) to perform private mean estimation. First, PRIVMEAN computes a stable
covariance estimate via COVSAFE, and assuming the returned covariance estimate ) # 1, then
computes a trimmed mean to which it adds Gaussian noise with covariance proportional to 5
using MEANSAFE. Theorem 2 in Section 4 shows that the parameter choices guarantee privacy.

We remark briefly on the runtime of PRIVMEAN. Each iteration of the while loop (beginning
in Line 4) of COVSAFE involves a d x d matrix inversion followed by taking (at most) n > d
matrix-vector products, requiring O(nd?). We may modify COVSAFE without changing its
behavior to terminate after m + We,, iterations, as rejecting more than m + Wee, indices
guarantees that COVSAFE (and hence PRIVMEAN) returns L (see Line 14). With high probability,
we have m+Weoy = O(% log %), and giving runtime O(nd? min{n, % log %}) COVSAFE’s runtime
dominates MEANSAFE’s, giving total (high probability) runtime O(nd? min{n, log 1}). As an
aside, we may convert this expected runtime into a worst-case runtime of the same order
without effecting the privacy of PRIVMEAN by truncating W, to scale élog %.



Algorithm 4: Covariance Adaptive Private Mean Estimation (PRIVMEAN)
Input : data z1.,
Params: threshold B, privacy budget (g, )
Output: mean estimate [

Robust Covariance Estimation

/4
1 memlog%,mmaxem—i—%log%

07 ¢ LBl g, 10
Zooy ~ Lap(02)"* 1, Weay ~ Lap(0wr,.,)
5, Teov < COVSAFER 1 (5 Zeovs Weov)

if 3 = | then

‘ return L

[=> T B NV R M)

Private Mean Estimation

7 b 1+logy @k Llogd -3

8k B\/ 20bxf 8
8 Ttop = Ri T By ON exp(30top 108 222), OWinean < ©

9 8 ~ Uni(Pus), Ziops Ziop Lap(G10p)"/* W~ Lap(010inens)s 2N ~ N(O, 0 Tixa)
10 ZZ, Tinean < MEANSAFEB@k(aj, 27 S, Zmp, W, zZN )

11 return g

top’

4 Main privacy result

The analysis of PRIVMEAN is fairly involved, though there are four key building blocks. The
first two conditions involve what we term internal and external leave-one-out stability of
the covariance estimates (2a) and (2b) COVSAFE returns. These conditions require that the
covariance estimates (2) are appropriately stable, both in terms of removing a single element
contributing to the covariance estimate S on input z and in terms of stability across two
inputs z,z’ whose transformations in Line 1 of COVSAFE, i.e., T = Tlp/2 — Tnj241:n and
= x/lzn/2 - x;/2+1m, differ only in a single element. Letting 0 < a < oo be a constant to be
determined later and v € (0,1) be a probability, consider the conditions

(C.) Internal leave-one-out stability. Let & and $_; be the outputs (2) of COVSAFE on an
arbitrary input x of size n. Then for any index i € [n/2], with probability at least 1 — -,

dpsd(i, )<= or B=1.

Sle

(C.ii) Ezternal leave-one-out stability. Let 5 and 3 be the outputs of COVSAFE on inputs z, x’
of size n such that & and &’ differ only in index ¢ € [n/2], where ¥_; and X’ ; are defined
as in (2b). Then

DI, =e,0 E_i-

The second two conditions involve the noisy truncated mean estimate (3) MEANSAFE
outputs. The first of these conditions (C.iii) essentially states MEANSAFE is stable over inputs
z and z’ differing in a single element, while the second states that MEANSAFE applied with



identical input samples z, 2’ but different covariance estimates A, A’ is stable so long as A, A’
are close in the same sense as in Condition (C.i).

(C.ili)) Mean sample stability. Let ji(A, x) be the mean MEANSAFE outputs (3) on input covariance
A and data z, and let z, 2’ differ only in one element. Then

(e, A) L. 5 fi(a!, A).

(C.iv) Mean covariance stability. If dpsq(A, A) < &, then fi(x, A) i&g p(z, A,

Conditions (C.i)—(C.iv) form the basic privacy building blocks to show that PRIVMEAN is
differentially private, and the following proposition—a warm-up for the full Theorem 2 to
come—shows how we may relatively easily synthesize the conditions to achieve privacy.

Proposition 1. Let samples z, x' differ in a single element, and let S and w(x, f)) and &' and
p(z', ') be the covariance and mean estimates (2) and (3) for inputs x and z', respectively.
Let Conditions (C.i)—(C.iv) hold. Then

~

(@, 8) Lo (00e ter)or (e 1150y Bl E).

Proof. As x and 2’ are adjacent, there exists ¢ € [n/2] such that Z_; = #’_,. We have a string
of approximate distributional equalities that, together with the transitivity of distributional
closeness implied by group privacy (Lemma 2.2), make the proposition immediate. First, we
show that conditions (C.i) and (C.iv) imply

~ Sy d ~ a ~ S d ~ a

p(z, %) =e,6+7 p(x,X—;) and ,u(a;', E/) =6+ ,u(x', E/—z)
We prove the first equality as the argument for the second is identical. Treating x as fixed,
let £ be the event that dpsq(3,¥ ;) < 2 or ¥ =L1. Then for any measurable set O we have

P(ji(z,3) € 0) —E [P(ﬁ(x, S)eo] i)1{5}] +E [P(ﬁ(x, S)eo] 2)1{50}]

I/\@

[(e (2,5 € 0| S) +5) 1{5}] 1 P(E)
< eP(ji(z,5_;) € 0) + 6+,

where inequality (7) is Condition (C.iv) and the final inequality follows from the ~ probability
bound in Condition (C.i). Second, we have the distributional approximations

~ ~

~ d ~
M($7 2—2) =&, /L(l‘7 E/—z)

by Condition (C.ii), because post-processing preserves distributional closeness (Lemma 2.3).
Finally, we observe from the mean sample stability condition (C.iii) that

~

~ d  ~ &
,u(x, E/) —&,0 ,u(x/, E/)
Combining each distributional equality, we have

~ ~

d ~ d ~ 3 d ~ a
(l‘ E) =e,647 ,u( E—i) =¢,0 ,u(:p’ E/—z) =e,04+7 /‘(33’ E/) =¢,0 N(‘/E/’ E/)-

Apply Lemma 2.2. O

10



Finally, then, we come to our main privacy theorem, which verifies that the procedures
making up PRIVMEAN indeed satisfy Conditions (C.i)—(C.iv) with appropriate constants. We
state the theorem here, giving a proof that consists of lemmas making precise the constants
that appear in the conditions and whose proofs we defer.

Theorem 2. Let B < 00, § € (0,1), and let z, 2’ € (]Rd)” be adjacent samples, and let ¢ < 8.
Define §' = (e%/* + e=/*)5 4 2(e5/2 4+ 1)6 and let m € N be as in line 1 of PRIVMEAN. Assume
that § < % and n s large enough that

128./eB1 n(ltes/*) 1 1 4 es/4 Blog2 1
. 128yeBlog ——; +1+_61 e Loy Bloe’s

€ ) g2

Then PRIVMEANg (. 5)(2) is (¢,0")-differentially private.

As a brief remark, the condition € < 8 is only for convenience; a minor modification of the
proof allows arbitrary € at the expense of a more convoluted theorem statement but in which
n remains of the same order.

Proof. By Proposition 1, it suffices to verify Conditions (C.i)—(C.iv), where we demonstrate
each holding with parameters (¢/4,d). Throughout the proof, the value m € N (line 1 in
PRIVMEAN) and parameter B < oo remain tacit, as the privacy guarantee holds regardless.

First, we consider Conditions (C.i) and (C.ii) on the covariance estimates. We prove the
coming two lemmas in Section 6, which begins with preliminaries that we require for their
proofs before giving the proofs proper. Our first lemma provides sufficient conditions to
verify Condition (C.i), internal stability. Let z € R"/?*! and w € R be variables—these will
be random to allow privacy presently, but we use them for the definition—and let

S(x, 2,w), ([R)g, [Z4]Eg, T) := COVSAFEg (23 2, w), (4a)

where we leave the dependence of the transcript ([R;], [%¢], T') on (, 2, w) implicit, and redefine
Y._; as in the definitions (2):

Yoz, z,w) == X(z, z,w) — %1{2 € Rr} :i"lzi;f (4b)

whenever i(x, z,w) # L, and L otherwise. Then we have

Lemma 4.1 (Internal stability). Let Z; Y Lap(o) and i € [n/2]. Then with probability at
least 1 — exp(—4), either £(z, Z,w) = L or

P & 1 By/e
dpsd (2(, Z,w), X_i(z, Z,w)) < .
psd( (7 ) )7 Z(u ) ))_1—3\/5/71 n
See Section 6.2 for a proof of Lemma 4.1. Turning to the condition (C.ii) on external stability
of COVSAFE, we compare the leave-one-out covariances E_Z(az z,w) and Z_Z(az z,w) with input
samples x and 2/, respectively, with identical (randomization) parameters z,w. Recalling
T =T1p/0 — Tnjaq1m and T’ = x’lm/2 - a;;l/2+1:n, we have the following guarantee:

Lemma 4.2 (External stability). Let v € (0,1), Z; ig Lap(oz), W ~ Lap(ow,,,) and k € N.
L 2veBlmmaxtl) g f=3+5% exp(——) For

TWeov noz

Define mmax = m—+ow,,, log% and o =
alli € [n/2], if T_; = &', then

A~ d ~
E—i($a Z, W) 2a,(14e%)B E—i(x/a Z, W)
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The lemma eﬂ“ectlvely shows that the sets of removed indices R and R’ are stable, and as they
determine ¥_; and E’ , this yields their closeness. See Section 6.3 for a proof of Lemma 4.2.

We turn to the guarantees of MEANSAFE, realizing Conditions (C.iii) and (C.iv). Recall
the definition (3) of fi(x, A) as the output of MEANSAFE on input z € (RY)" with positive
semidefinite A € R4*? with parameters bound B, batchsize b, and threshold k£ € N, and S,
Z, 7', and W as noise. We take Z,Z' € R"* W € R to be Laplacian random variables,
ZN € R? to be Gaussian, and S to be a uniformly random partition of [n] into blocks of size
n/b; we track their scales in giving our distributional approximation guarantees.

To more cleanly state a general sample stability guarantee, which we may use to verify
Condition (C.iii), we define a number of additional parameters whose values we can determine.
Let the batchsize b € N and threshold k& > 0 satisfy b > 4 and 2b(k+1) < n. Let 1,7y € (0, 1),
let « > 0, and let ogop > 0 and ow,,.,, > 0. Define the constants

567/ B

2n

2n
A= exp <3O’t0p log — ) By = —(k/3 1)/0Wmean ~y + n221-b

A/ 5 :
o 210g m if 0 S (% S 1
A .
th .
\/2 log %-}-20:—\/2 log % orherwise

With these, we have a mean-sample stability result from which Condition (C.iii) develops:

and

ON —

Lemma 4.3. Let the conditions above hold and let Z;, Z; S Lap(otop), W ~ Lap(0w,mean ) ZJ'»\I S

N(0,0%) in (3). If z and 2’ are adjacent, then

(:1; A) a+1/0Wmea11 761+62 (Z'/, A)

See Section 7.1 for a proof.

The last building block in the argument is to demonstrate Condition (C.iv), that the
estimates fi(z, A) and pi(z, A’) are close when A, A" are close. For this, we give the following
lemma with general noise parameters.

Lemma 4.4. Let b,k € N, g € (0,1), and a,on, a2 > 0. Define a; = % log 3 and define the
O Then for Zj, Z} ™ Lap(orop), ZN % N(0,03,), if

noise scale oop = nkTQ

dosa (A, A)) < 2 then Ji(z, A) Lo, vay.s filz, A).

Sle

See Section 7.2 for a proof.

For the final step, we put all the pieces together to prove the theorem. We give each of
the lemmas so the associated condition (of (C.i)—(C.iv)) holds with parameters (¢/4,0), after
which we can then apply Proposition 1 directly. We do this in a somewhat odd order because
of the dependence on the noise scale between the different lemmas, beginning with

Condition (C.ii). For Z g Lap(oz) and W ~ Lap(ow,,, ), we use Lemma 4.2 to guarantee

Condition (C.ii) that Z_Z —5/45 Z . From the lemma statement, we have f‘,_i iza7(1+ea)ﬁ
1 2\/_B(mmax+l
TWeov + noz ’ /8

the m in line 1 of PRIVMEAN (though prlvacy does not depend on its value). We first achieve

2_ where a = PY + % exp(—ﬁ), and Mmax = m+UWCOV log% fOI'

12



2\/EB(mmax+1) < £
noyz — 16°

[\

a < §. Setting oyw,,, = %, it is sufficient that oz is large enough that
ie.,

1+

o 32VeB(mmax +1) _ 32/eB (m .
ne

161log L
. 7> |
ne

€

For the d privacy component, we wish to have (14 e®)8 < 6. As we have guaranteed a < £,
) 1

taking v = TreA and making sure oz is small enough that n exp(—E

L, . . e/4y . . .
For this, it is evidently sufficient that % > 4log %, i.e., (substituting for o)

_ 6
) <~vy= TFee/ suffices.

198/ B log M04e’t) 1 14 ec/4
n > veBlog i m+1+?6log+7e

€ 1)

A~ d A~
guarantees X _; =, /45 X' ;.

Condition (C.i). In Lemma 4.1, if the scale of the noise oz on Z; i Lap(oz) satisfies
exp(—ﬁ) <, Condition (C.i) holds. The choice of oz to satisfy Condition (C.ii) above and
the lower bound on n are evidently sufficient.

Condition (C.iii). Lemma 4.3 guarantees that if Z} nd N(0,03), W ~ Lap(ow,nean ), and

S ~ Uni(P, ), the call to MEANSAFE in line 10 of PRIVMEAN gives fi(z, A) ia+1/gwrxlean Bi+8s

p(x’, A), with A, By and oy as defined in the lemma. To achieve o + owl = %, take

OWinean = % and choose a = . To achieve 81 + B2 < 4, choose 31 = % and then recognize
_ 2 k/3+1

that By < g as long as v < %, n?21-t < % (or b > logy ¥~ +1) and %exp(—aw//ﬁ) < % (or

k> 2log 2 — 3). Thus, we arrive at

_8a ) 5 20VBb o qog 127
INT N85 T e TP\ 8 s

for (any) b > 2log 67” +1solongas £ < 1. (Otherwise we may use the alternative value for o
preceding Lemma 4.3, which the (g, §)-differential privacy guarantee of Lemma 2.5 justifies.)

Condition (C.iv). The last condition to verify is that p(z, A) 25/4,5 p(z, A’) for close
enough A, A’. For this, we use Lemma 4.4, which guarantees that p(z, A) iaﬁam p(x, A"

_ ba 2 _ By/e . .
for ay = 7% log 5, where we take a = B/ Via Lemma 4.1, and arbitrary as > 0. Set
az = g and obtain oyp = %—f. When n > 4i—“log%, we have a; < g, and so the desired

privacy holds.
Making appropriate substitutions gives that each of conditions (C.i)—(C.iv) holds with
parameters (¢/4,d). Proposition 1 gives the theorem. O

5 Accuracy analysis

The second important component of our analysis of PRIVMEAN is its accuracy. We provide
two accuracy results: the first (Theorem 3) covers the case in which the data is sub-Gaussian,

13



where we assume the method has some knowledge of the sub-Gaussian parameter of the
sampling distribution. Of course, it is unreasonable to assume that a given distribution is
sub-Gaussian or that we know its sub-Gaussian norms, and thus we extend PRIVMEAN via a
procedure that adapts to the actual scale of the data in Section 5.2.

Throughout thls section, we let P be a distribution on R? with mean y and covariance ¥,
and we assume X; ~ P i =1,...,n. The classical (non-private) sample mean and covariance
are X, = + LS X and B, = 1 Z"/2(X — X 24i)(Xi — Xn/2+,-)T. We assume throughout
that P enjoys certain concentratlon properties, though we emphasize that our methods will
be adaptive to the parameters we specify here.

Assumption A1l (Sample concentration). Let ¢; > 64e and 8 € (0,1). For X; X P with
E[X] = p and Cov(X) = X, there exists M < oo such that the event

Emp = { max|1X; — R < M%er and ¥ 3T, < 35}
€N
occurs with probability at least 1 — .

It is useful to give some context for the values of M we expect under various distributional
assumptions. Because E[||X; — ,u||22] = d, the constant M? typically scales at least as d. We
now give more detailed examples. In each, we let Z; = X ~/2(X; — u) be the whitened

data, defining the sample covariance YLy = Z"/2(ZZ- — Znjoi)(Zi — Zn/2+2-)T. Because
1X; — plls = 1 Zi]|, and &, = S1/25 ;512 we have the equivalence
1
gsamp = {HelaXHZ ||2 < M2/Cl and HEZ - IHop — 2}
Example 1 (Sub-Gaussian random vectors):  If for all v satisfying |[v||, < 1 the scalar

random variable (Z, v) is 72-sub-Gaussian,
2 2 n

Indeed, a standard covering argument (see, e.g., [39, Ch. 5] or [38, Ch. 4]) gives that for all

t>0, IP’(HZH2 > t) < 4%exp(—ct?/72), where ¢ > 0 is a numerical constant. Replacing #? with

O( )(dT + 72t2?) gives that P(||Z]l, > CTVd+ %) < exp(—t?), and for any v > 0, setting
=log2 > yields that with probability at least 1 — =,

max 1Z]|5 < O(1)7? [d + 72 log %] .

To control the covariance, we use Vershynin [37, Theorem 5.39], which gives that with
probability at least 1 — 2e~<t", 1%z - IHop < O(1)7? max{+/d/n+t/\/n,d/n+t?/n}, so that
(igoring the sub-Gaussian constant) for n > d, setting t? = O(1) log% gives Hiz — IHOP <!
with probability at least 1 —~. Set v = /2. O
Example 2 (General moment bounds):  Suppose for some p > 4 we have E[||X; — p|/%] =
E[||Zi|l5] < 7PdP/?, where necessarily 7 > 1. Then we can give two results: the first being that

asymptotically M = o(nl/p) and the second more quantitative. For the first, we claim that
max;<y || Zi|, /n'/P “3 0. To see this, note that for any ¢ > 0,

0o 00
00> LE[| 1) = / (1218 > ety dt > S P(IZiIE > i),
0 i=1
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By the Borel-Cantelli lemma, the event ||Z,||, > en'/P occurs only finitely often, and so the
claim follows. Meanwhile, the strong law of large numbers guarantees that S, %3 I.
For more quantitative parameters, we first get by Markov’s inequality that

nE[| Z:|) _ nrrde
1P - w7

P(mﬁHZin >1) <
en

so setting M < 7v/dn'/P /8P| we have max; ||Z;||l, < M/c; with probability at least 1 — 3.
To show concentration of the covariance matrix, we apply Chen et al. [8, Theorem A.1 Part
2], treating p as a constant, obtaining

E[[|Sz - 1|}, 1" $ Vnlogd\/EIZ|3] + (n*/” log d)E| 24 [5]*'7
§max{\/nlogd,n2/plogd}E[HZ1H’2’]2/p,

and so by Markov’s inequality

7P (dlog d)P/?

HEZ _ [H < max{n p/4 logp/4d Tll —p/2 10gp/2 d}E[Hzl”p] np/2—1 ’

which has bound 8 when n > (72dlog d)P/(?=2) g=2/(r=2) )

5.1 Accuracy of PRIVMEAN

We give our promised accuracy guarantee whenever Assumption Al holds. Though not strictly
necessary, we state the theorem assuming that § is not too small to allow for a cleaner result.
Throughout, ¢ denotes a numerical constant whose value can change from line to line.

Theorem 3. Lete >0 and e ¢ < § < % be privacy parameters and let Assumption A1 hold.
Let B > M? and suppose n > =B log? %. Let i = PRIVMEANR . 5(X1.). Then with probability
at least 1 — (B +59), p# L and

¢V B log(%)

[~ oy < P

Proof. We first show under the event Eamp that with probability at least 1 — 49 over the
randomness in PRIVMEAN, both COVSAFE and MEANSAFE prune no observations, meaning the
sets of removed indices R = ) in both procedures (so that Line 7 in COVSAFE and Line 6

in MEANSAFE never fail), and thus i = X,, + 21/ 27N As 3, = %E on Esamp, We have that

HEl/zZNHQE < 3||ZN||3. The result then follows follows once we show that || ZN||s < %
with probability at least 1 — ¢ and take a union bound over these events and Eamp-

Rearranging the condition in Line 7 of COVSAFE, the element X; — X, 51, is pruned in the
first iteration only if

2
(Zcov)i =+ (Zcov)n/2+1 > IOg(B) - lOg(HXZ - Xn/2+iH§n)
*)
> log(c1B/8M?) > log(c1/8),
where (x) holds for all i € [n/2] on event Emp because

| X — X jogi % < 2[|X; - Xn/2+z'H22 <4 X; — pllE + 4| Xnors — MH; <8M?/c1.  (5)
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As ¢; > 64e by Assumption Al, if ||Zeov| ., < 1/2 then COVSAFE in line 7 prunes no entries,
instead Simply passing Y, to MEANSAFE so long as W, +m > 0 (see line 14). Recall that

(Zeov)j id Lap(oz) for j=1,...,n/2+ 1 and 0z = 32\[B(mma"+1) < Blogg

> =
union bound over the entries, we have with probability at least 1 — 0 that

Blog % log <n/2—|—1> 1

C
1 Zeonlloo < = ~

, so by taking a

=~ 57
. R . cB logz(%) 1
where the last inequality is by the assumptions that n > ——=—% and ¢ < ;. Also recall
that We., ~ La p(%) and m = % log %, s0 Weoy +m > 0 with probability at least 1 — %.
Continuing to the next phase of PRIVMEAN, MEANSAFE with input A = X,, prunes the
indices S only if
Dj = Dj + (Ziyy); > log(VB/4).

By the same argument we used to obtain inequality (5), on Esamp we have for all j € [n/b]

that
D; = log(diams; (Xs,)) < log(v/8M?2/cy),
<1/2 then

Dj < log(y/8M?/cy) + % < log(VB/4),

where the last inequality follows from ¢; > 64e and B > M?. Thus, MEANSAFE prunes
no entrles and 1 = X, + 21/ ZN so long as Wiean + % > 0 (see Line 10). Recall that

and so if HZtIOpHOO

1
(Ztop)j < Lap(otop) for j = 1,...,n/b and oyop = %1_?\2/” < CB:)E%(‘S) Another union
bound gives that with probability at least 1 — 6,
cBlog(%) n 1
1Zeovlloo = — 5" log 35 < 5,

21
where the last inequality follows from the assumption n > cBlog 5 and § < . Also, Winean ~

Lap(g) and % 16 log 5 — 2, 50 Wiean — k > %log% -2>0 Wlth probablhty at least 1 — 4.
Therefore, PRIVMEAN returns X,, + ZiﬂZ N with probability at least 1 — 46 on the event

Esamp- Recall that ZN ~ N(O,Jﬁ]) with oy = 2Ob*ﬁ exp(3cop log 12 Z5), and because oyop <

1 201
CBlogQ(“), 6 < l, and n > &%(5), we have that oy < M. Classical tail bounds on
ne n € ne

the x2-distribution [29, Lemma 1] give with probability at least 1 — § that

21
7N||? 2 1 1 cBdlog” 5
H H2 S oN [d+2 dlog 5 |-2logg] < —

where the last inequality follows from the bound on oy and assumption that e=¢ < 6. O

5.2 Adapting to heavy-tailed data

In practice, we may not have a priori knowledge of the concentration properties of the data.
Given the necessarily slowed rates of convergence for private estimators of means of random
variables with only p moments [5], it is essential to be adaptive to the actual scale (and number
of moments) of the problem. We therefore develop ADAMEAN, which automatically tunes the
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threshold parameter B by repeatedly calling PRIVMEAN and doubling B until i # L. The
key is that upon termination of ADAMEAN, the effective B is at most twice the realized scale
O(1) max;<, | Zi||* of the random variables. To ensure privacy irrespective of the number of
calls to PRIVMEAN, with each successive call ADAMEAN progressively decreases the privacy budget
allocated to PRIVMEAN; in particular, as Y i, 1/t* = 72 /6, via basic composition we can bound
the total privacy loss of ADAMEAN by a factor %2 over the privacy loss of PRIVMEAN. Aside from
an extra factor polylogarithmic in B/d, ADAMEAN matches the accuracy of PRIVMEAN, as we
show presently.

Algorithm 5: Fully Adaptive Private Mean Estimation (ADAMEAN)
Input : data zq.,
Params: privacy budget (g, 0)
Output: mean estimate z

1 fort=1,2,... do

1t PRIVMEANd2t71’(e/t275/t2)(x)

if 1y #1 then

‘ return i

B W N

Theorem 4 (Accuracy of ADAMEAN). Let e > 0 and e=% < § < % be privacy parameters and
21 .2
let event Eamp hold. Let s = max{1,log, %} and assume n > %bgz %. Let

[i = ADAMEAN, 5(X1.,). Then with probability at least 1 — (5 + 72 /3)6,

2 2

cs?log (%) max{M+/d, M log(%), d}
ne '

(6)

Proof. Let t* be the smallest positive integer such that M? < d2" =1 and let tstop De the
iteration when ADAMEAN terminates (which may be infinite). Note that ¢* < s. The proof
comes in two parts: on the event Esamp, we first show that either tgop, > t* or 1 satisfies the
claim (6) with probability at least 1 — 72§/6; secondly, we show ADAMEAN terminates with
tstop < t* with probability at least 1 — 54. The result then follows via a union bound.

We carry out the first part with the help of the following lemma.

7 = Xl <

Lemma 5.1. Lete > 0 and e % < § < % be privacy parameters and let B > 0. Suppose the
event Esamp holds and let i = PRIVMEANp (. 5) (X1.n). Then with probability at least 1—26 over
the randomness of PRIVMEAN, i = L or

clog + max{M log %,V Bd}
ne '

I = Xl =

Proof. Suppose i # | as otherwise the claim is trivial. Let 5 denote the covariance estimate
of COVSAFE (that is, X7 at the final iteration of COVSAFE), and let 1t denote the empirical mean
of the observations not pruned by MEANSAFE so that i = [i + %/2ZN. Then by the condition
for returning L in Line 11 of MEANSAFE, MEANSAFE prunes at most b(% + Winean) points and
SO

(% + Winean) max; || X; — Ay
n
< (2 + Winean) (max; | X; — plls + o — Alls)

7= Xl <

n
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<%%+W@wmwm&—ng%%+W@wM

= n = \/an )
with (%) following directly from Egump. Recalling that k& = 25_4 log% —3and W ~ Lap(%),
it follows that % + W < 25_4 log% with probability at least 1 — %. Recalling also that b =

1+ logy %, it follows that on Esamp,

2(1 + log, %)(2—64 log 3)M < cMlog®
vemn - ne

17— Xully <

with probability at least 1 — %.

Meanwhile, observe Egamp implies ¥ < 3, =< 2% as pruning entries (line 7) in COVSAFE
only shrinks its covariance estimate. Thus, ||S/2ZN|x < \/§|]Z‘,1/2ZNHE = V2| ZN||2. From
the same argument as in Theorem 3,

N C\/Bdlog(%)
125, < ———*
ne

with probability at least 1 — 4.
The preceding two displays together imply Lemma 5.1 after taking a union bound. O

Applying Lemma 5.1 with the mapping B = d2'!, ¢ + ¢/t? and § +— §/t2, we have for
any 1 <t < t* that under the event Esamp, with probability at least 1 — 26/ t2, either fi; = L
or

U ct? log(t? /8) max{M log(t?/§), d2(t=1)/2}
[~ Tl < . ,

where the latter case fi; satisfies Eq. (6) as t < t* < s. Then via a union bound this same
event holds simultaneously for all 1 < ¢t < ¢* with probability at least 1 — w28 /3, and thus
either tsop > t* or ADAMEAN terminates and g satisfies the claim (6).

Proceeding to the second part of the proof, recall that d2t"~' > M? and so by applying
Theorem 3 with B = d2¢" 1, it follows under Esamp that 1+ # 1, and thus ADAMEAN terminates
after tyop < t* iterations, with probability at least 1 — 53/(t*)? > 1 — 55. The claim (6)
follows. ]

S

Example 3 (Example 1 continued): In this case, ¥~1/2X; is 7'2—Sub—Gaussiz£1, so M?
2(d + log%) in Assumption Al. Thus, the sample mean concentrates as HXn — /‘Hz <
74/ (d +1log(1/8))/n with probability at least 1 — &, and assuming § > e~¢ Theorem 4
then implies with probability at least 1 — O(d) over ;1 = ADAMEAN, ;5(X1.,) that (ignoring
polylogarithmic factors in n)

~ dlog 1
17~ plls =0 <ﬁ+ °g6>.
n ne

This rate is, up to a factor of log% and polylogarithmic factors in n, minimax-optimal for
the sub-Gaussian setting (see [35] or [26, Lemma 6.7] for a lower bound on Gaussian mean
estimation with known covariance matrix). ¢

Example 4 (Example 2, continued):  Recall here that E[||X; — u||%] < 72dP/2 for p > 4 and
7 > 1. By Theorem 4, with probability at least 1 — 55 over fi = ADAMEAN, 5(X1.,), we have

~ (maxi 1 X; — pl|s Vdlog %)

17— plly < || Xn—p|ly+0 —
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so long as the empirical covariance satisfies %Z <%, < %Z. As this occurs with constant
probability and || X, — pl|s < v/d/n with constant probability, we substitute the bounds on
max; || X; — pt]|s; from Example 2 to obtain that with (any) constant probability,

~ dlog L
||zz—u||z=0< §+&>-

n  nl=lre

By combining minimax lower bounds of Barber and Duchi [5, Proposition 4] and Steinke and
Ullman [35], the best known minimax lower bound is that with constant probability,

~ >\/E dQZ—;llong;l%
i —plls 2 ;+Tw-

The adaptive method thus achieves optimal scaling in n, but it may be loose in € and off by
a factor of d1/? in dimension dependence. ¢

6 Proofs for stable covariance estimation

In this section, we provide the proofs of Lemmas 4.1 and 4.2, though we begin with a collection
of preliminary results that allow us to actually prove the main two lemmas. In the proofs,
we refer to each execution of the while loop beginning in Line 4 of COVSAFE as an iteration
of COVSAFE and use the transcript I' as a convenient means for tracking the full execution of
COVSAFE through all iterations.

6.1 Properties of COVSAFE

We first formalize deterministic properties about the execution of COVSAFE, giving conditions
under which outputs of COVSAFE are quite stable. In the sequel, we use these to give sets
to which the noise variables Z and W belong with high probability, guaranteeing stability.
Recall the notation (4) that i(:n, z,w) is the output of COVSAFE on input sample x and noise
z € RY2+1 o e R, with transcript ' = ([Re]t<T, [Et)e<T, T) depending implicitly on (z, z, w),
and i_i(az, z,w) is the corresponding leave-one-out covariance. We shorthand 5= i(m, Z, W)
and _; = i_i(x, z,w) and take ¥ = 1.,/ — T,/241: as in Line 1 of COVSAFE.

Lemma 6.1 gives necessary and sufficient conditions for pruning #; in iteration ¢ + 1 of
COVSAFE, i.e., i € Ry, and Lemma 6.2 gives similar conditions for ever pruning Z; (that is,
whether i € Rr).

Lemma 6.1. Index i € Ry if and only if log (H@H%t) + 2i + 25241 > log(B).
Proof. The “if” direction is immediate from the condition for adding an element to R;y; (see

line 7 of COVSAFE). For the other direction, if i € R;;1 then (again from the same condition)
we must have for some s < ¢ that

tog (11213, ) + 2 + 2n/241 > log(B).

Because s < t, we have R; C R; and therefore X5 > ¥, this in turn implies log (H@H%t) +
2i + 2y 241 > log(B). O
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Lemma 6.2. Index i ¢ Ry if and only if log(Hi’iH%T) + 2i + 2 /941 < log(B).

Proof. Observe that ¥p_; = X7 because the inner while loop of COVSAFE terminates only if
the algorithm prunes no observations in the previous iteration (see line 10 of COVSAFE). Then
the claim follows by applying Lemma 6.1 with t =T — 1. U

Finally, we may completely characterize f‘,_i via the removed indices Ry _; and the
threshold m + w, as prescribed by the lemma below.
Lemma 6.3. 5_; = 1 E]éRT oy 5% T if and only if |Rp| < m + w.

Proof. The claim follows immediately from the return condltlon in Line 14 of COVSAFE, as
S # 1 implies _; = E——l{z ¢ Ry} 227, where & = ¥p = 1 zﬁR x]az by definition. [

6.2 Proof of Lemma 4.1

We shorthand 3 = S(z, Z,w) and £_; = S_;(, Z, w) throughout the proof. Assume that

5. # 1, as otherwise the result is trivial, and recall Zj Y Lap(o). Observe if i € Ry we have
S = E_Z by definition; thus, we need only consider i ¢ Rr. Proceeding, Lemma 6.2 gives

log (Hih”i) + Z; + Zn/2+1 < log(B)

for all i ¢ Ry, from which it follows that H]H% < By/e whenever Z; + Z,, 511 > —1/2. We
now use that H:%ZH% < B.y/e implies that dpsd(i S2_;) is small, which follows from the following
linear algebraic lemma.
Lemma 6.4. Let A € R¥™? be positive semi-definite and a € R? satisfy HaHi < 1. Then

1

dpsd (A, A — aa”) < W lall% -

Proof. Define C = A — aa” for shorthand. We first establish that Col(C) = Col(A). Because
l|a||% is finite, it follows that a € Col(4) and so Col(C) C Col(A). On the other hand, by
expanding C we have

C =AY — APaaT AT2)AY2 = (1 — |la]%) A, (7)

thus implying that Col(C) = CoI(A)

We also have from (7) that CT < WA and so

2
e - e)ct?]|, = [[C2aat €12, = fall < 5 Ay ”“||’|A” .
B A

A parallel calculation yields ||AT/2(C — A)A1/2||, = ||a||%, proving the claim. O

Lemma 6.4 immediately shows that il_i =5 l:ii:irl{i € Ry} satisfies

Bye
—1- B\/_/n n
whenever Z; + Z,, /011 > —%. To show that this occurs with high probability, we use the
following result, which follows from the observation that if ¢ > 0, then for any independent
variables X,Y we have P(X +Y > ¢) <P(X > ¢/2) + P(Y > ¢/2) by a union bound:
Observation 6.1. Let X,Y by Lap(c) and ¢ > 0. Then P(X +Y > c) < exp(—355).
We see that P(Z; + Z, /241 < —%) < exp(—%) as claimed.

dpsd(i i )
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6.3 Proof of Lemma 4.2

The proof of Lemma 4.2 comes in four steps. The crux of the proof is a coupling argument
where, via the running assumption Z_; = #’_;, we equate the execution of COVSAFE on z to
that on 2’ by perturbing Z in a careful way that changes the distribution of Z little. Step
one in this approach, which we provide in Lemma 6.5, is a deterministic lemma relating the
collections R and R’ of indices COVSAFE removes on adjacent inputs z and 2’ via the noise input
values z. In the second and third steps, which consist of Lemmas 6.6 and 6.7 respectively,
we construct a map 7 : R?/?+1 — R™/2*1 guch that Z and 7(Z) have similar distributions
and for which S_;(z,z, W) and S_;(2/,7(z),W) (recall the definition (4b)) likewise have
similar distributions for all z, where we use the randomness in W for the latter distributional
approximation. Lemma 6.6 relates the distributions of the removed indices Rz _;, while
Lemma 6.7 relates the probabilities that COVSAFE aborts and returns 1. In Sec. 6.3.1, we
finally synthesize the intermediate lemmas to give the proof of Lemma 4.2.
Our first step is the deterministic lemma relating the collections of removed indices.

Lemma 6.5. Let 2,2’ € R"/?t! and w € R, and let

5, ([Rt]fzo, (5420, T) := COVSAFEp ,(7; 2, w),
5, <[R;]tT:'0, DAY T’) := COVSAFEgR,, (2; 2/, w).
Assume &, = 0. The following hold.
(a) If z;- + Z;@/2+1 > zj + znja41 for all j € Ry, then Ry _; C R},’_i.
(b) If 2% + Z;@/2+1 > zj+ zpjoq1 for all j & Ry, then Ry C Ry ;.
Additionally assume that n > 2B\/e and z; + 2,241 > —1/2. Then the following hold.
(c) If z; + Z;z/2+1 < zj+ znj211 — 2BVe/n for all j € Ry, then Ry, C Ry ;.
(d) If 2 + Z;@/2+1 < 2+ Zn241 — 2BVe/n for all j & Rr—i, then Ry, C Ry ;.

Proof. We prove each claim by induction over t € N.

Proceeding with the first claim (a), observe trivially that Ry _; =0 C R/ _,. Now suppose
for the sake of induction that R, _; C R/, _,. If t = T then there is nothin’g to show, so we
take t < T. Our assumption that 7_; :’i’_i and 7, = 0 implies ¥; = X/,. Thus, for all
Jj € Ry _; C Ry _; we have

() B (i1) B
tog(B) < log (113113, ) + 2 + 241 = log (12513, ) + 2 + Znj211
(ii1)

O
< log (H!EszfT,) + 25+ Znjai1s

where inequality (i) follows from Lemma 6.1 (applied with noise z), inequality (ii) because
¥, = Xl and inequality (i) is by assumption in case (a). Lemma 6.2 (with data 2’ and
noise 2') then gives that j € Ry, _; if and only if log B < log(H:%jH%éﬂ) + 25+ 29,5 and as
J € Ry _; was arbitrary we have R;11_; C R, _;- This completes the inductive step and so
Ry _i C R}, _, for all t <T and the first claim holds.

The proof of claim (b) relies on a similar inductive argument as that for the first claim (a).
Equivalent to the inclusion Ry _; C R},’ is that if j & R’T,7 then j ¢ Ry _,;. Consider

- —i
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_;3 it suffices to show

J & R, _,, and begin with the inductive assumption that Ry _; C R/,
that j & Ryy1,—;. Because ¥; = E’T, by construction of ¥;, we obtain

log <H:%]H2Et> + 25 + 2p /241 < log (H@H%;/) + 2j + 2Zn 211

(i) 5
< log <||x]||2E,T/) + z;- + z;/%l < log(B),
where step (i) is by the assumption that 2; + z,/211 < 2 + z;l/2+1 in part (b) and the final

inequality is Lemma 6.2. Applying Lemma 6.1 with the inequality log (H:i] H22t> +2j+2n /241 <
log B then guarantees that j ¢ Ry1,—; as desired, completing the proof of claim (b).

For the proof of claim (c¢), we induct on RL_Z. for t < T and must account for the possibility
that X7 £ 3 even if Rg,_i C Rp_;, because Y7 may include the term #;3! (i.e., i ¢ Rr).
The base case for t = 0 is trivial, so assume that R;_i C Rr—;. If i ¢ Ry, then Lemma 6.2
and the standing assumption that z; + 2, /241 > —% guarantee that

1

~ 112

log (1213, ) < log B — 2 — 2001 < log B + 5 = log(BVE),

ie., ||j]||2ET < By/e. We require the following technical observation about positive definite
matrices, whose proof we temporarily defer.

Observation 6.2. Let ¥ € R be positive semi-definite, « > 0, and v € R%.  Define
Y =% —auu. If |ul|x < o, then ¥/ = % and for any v € Col(X),

207
2 2 2
og (Ile113) —tog (1101 ) | < 20 ully..
As H@H%T < By/e, Observation 6.2 applies with u = #; and a = 1 when n > 2B/, and thus

NG

n

tog (10113, 1 yigrpyzar ) < log (l0ll3, ) + (8)

for all v, and in particular, for v = Z; for each j € [n/2]. On the other hand, regardless of
whether i € Ry, the inductive assumption that R; ; C R —; guarantees that

1
S = Sr — —1{i ¢ Ry} ] . (9)
n
Considering j € R;,, _;, then, Lemma 6.1 implies

log B < log([[#;%,) + 2} + 20511

(i)
< log (Hjj”;q«—%l{igRT}iﬁc?) + 2+ 2o
(%3
e log (H:szQET) + %\/E + 25+ Zn 011
(iii)
< log (111%,,) + 2 + Znp241.
Here inequality (i) follows from the ordering relation (9); inequality (i7) holds because if
1 € Ry, then Yp = Xp — %1{2 ¢ Rr} :i"ligp and if ¢ ¢ Rp then inequality (8) holds; the
final inequality (ii7) follows by assumption under claim (c). This gives the induction that
Ri,, _; C Rr i, as Lemma 6.1 shows that j € Rr,;.

Claim (d) follows from an essentially identical induction argument, mutatis mutandis, as
that for claim (c).
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Proof of Observation 6.2. We finally return to prove the claimed observation. That
%' = 33 follows by observing that u € Col(X) and hence

Y —auu” =XV (I — a2 2u S/ 212 = Z3.

=(1/2)1

1
2

This also implies that Col(X') = Col(X).
To prove the remainder of the lemma, it suffices to show for v € Col(X) that log(||v[/%) <
log(|[v]|%) 4 2a ||lu||%, since the other direction is immediate from ¥ > Y. Observe that

(Z — auu)t = 121 — ax1/24 212~ 151/2,
By the inequality I — a2/ 2uu”S1/2 = (1 - a ||u\|22)1 we have
(1 — S PuaS2) 70 < (1= a|lul|$) 71T = (14 2a|[u]$)1,

where the final inequality follows from the assumption that |ul3 < 5. Combining this with
the preceding display implies that

S < (14 2 |ful2) 2t
and so
tog ([[vl13, ) < Tog (1420 lull3) 0l3) < 10g (Il0]3) +2aljul,
as desired. O

We move to the second step we outline at the beginning of this section, which relates the
distributions of removed indices Ry in the execution of COVSAFE on adjacent inputs x and z’.
The key idea is to construct a deterministic map 7 so that the execution of COVSAFE on input
x with noise z and that on 2’ with noise 7(z) is similar—leveraging Lemma 6.5—and to show
that the distributions of 7(Z) and Z are similar. Lemma 6.3 shows that the set of outlier
indices R7 _; completely determines S, except in the case that S = L, which occurs with
high probability if |Ry ;| is large, so the next lemma controls the distribution of the sets
of removed indices. To state the lemma, we require a few events whose probabilities we can

control. Recalling that Z; i a p(oz), define
Eprune = {2 ER™? | 2 4 2,011 > —1/2 for all j € [n/2]}. (10)
To set notation for the remainder of the proof, we shorthand the definition (4a) as
i ([Re){Zo, [£4){Z0, T) := COVSAFEp ym (w; Z, W) )
>, (R, [Z1Eo, T') := COVSAFER . (a'; Z, W),

and the definition (4b) as

~ ~ 1 S =
Si=S- 1igRr)aal and SL,=F - i ¢ Ry} ajel
n

’l’l’

where 1 + v = L for any vector v.
We have the following distributional guarantee on the removed indices regardless of W.
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Lemma 6.6. Let S C [n/2]\ {i} and define o = 2veBUSIHD gy Z, =0, then

noz

(a) P(RT,—Z' =5,7 € gpruno) < exp (Oé) P(R&"’,—i = S)
(b) P(Ry _; = S,Z € Eprunc) < exp (@) P(Rr—; = S).

Proof. The input noise Z completely determines Ry and R/, in COVSAFE (see the while loop
constructing R in lines 4-12). Consequently, we may define sets of input noise Z yielding a
given set of removed indices, letting

Z(S) := {z e RV/*1 | Ry _i =S for Z =z}
Z'(8) := {z e RV?H1 | Ry ;=8 for Z =z},

so Z € Z(S) is equivalent to Ry _; = S. It suffices to show that
P(Z € Z(S) N &prune) < P (Z € Z'(5)) and
P(Z € Z'(S) N Eprunc) < P (Z € Z(9)),

as claim (a) follows via the first bound and claim (b) the second.
Proceeding with the first bound, define n € R"/2*! and 7 : R%/2+1 — R/2+1 by

2B\/e/n j€S
nj =1 —2Bye/n j=n/2+1 7(z):=z+n.
0 otherwise,

The deterministic removals Lemma 6.5 shows that on Z € Eppupe, if we let z = Z and 2’ = 7(z)

so that zj + 2, /941 > 23— + Z;L/zﬂ for j € S, then parts (a) and (d) of Lemma 6.5 give

7(Z(8) N Eprune) C Z'(S).

The first bound in (12) then follows by the standard Laplacian ratio bounds in Lemma 2.7.

iid o e
Indeed, we have Z; ~ Lap(oz) = Lap(HnHlm) and |[n|l, = 72\/_]3;‘5““),

B =|nll, yields 8/oz < @, so we can apply Lemma 2.7 to obtain the claimed bound (12) via

Then setting

P(Z € Z(S) N Eprune) < € P(Z € T(Z(S) N Eprune)) < e P(Z € Z'(9)).

The proof of the second bound (12) is essentially the same, only this time we let

2B\/e/n j€S
nj = . (z) = z+ .
0 otherwise,

Then the event Z € Eprune implies 7(Z) € Eprune, as T(Z); + 7(Z )y /241 = Zj + Zy j241 for all

J € [n/2]. We may thus appeal to cases (b) and (c) of Lemma 6.5 with the settings z = 7(2),
2 =Z and R, _, =S and proceed with the same argument as above. O

The third step we outline at the beginning of the proof of Lemma 4.2 is to relate the
probabilities that COVSAFE aborts on neighboring inputs z and z’. Recall ¥ and Y’ are the
covariances COVSAFE outputs on inputs x and 2/, respectively, as in definition (11).

Lemma 6.7. Let oz,ow > 0, Z; Y Lap(oz), and W ~ Lap(ow) in definition (11). If

T_;=72", and ¥, =0, then
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(a) P(E = 1) < exp(z5-)P(E = 1).

1
ow

(b) P(il =1,Z¢ 5prune) < exp(%)P(i = J_)

Proof. Let f denote the density of W, so that f(w) = 2UV1V exp(—|w|/ow.,.), and thus
| log f{u(}zﬁ)l)| < owl for all w, and recall the threshold m € Nin line 14 of COVSAFE. Proceeding

with the first claim of the lemma, we have the following sequence of inequalities:

P (f} = J_) %)/]P’(]RT\ >m+w) f(w)dw < /P(\RT,—i\ >m+w—1) f(w)dw
(? /P(‘R},7_i| >m+w— 1) fw)dw

<exp(l/ow..) /]P’ (|Rép/7_i‘ >m+w—1) flw—1)dw

(i)

D exp(1/ow,, )PE = L).

Here, step (i) follows from Lemma 6.3 that &' = L if and only if |R;| > m~+w. Step (i7) follows
from the coupling argument in Lemma 6.5 part (a) : because the noise Z is identical in both
executions of COVSAFE(z; Z, W) and COVSAFE(z; Z, W), we have Ry _; C Ry, ;. Step (iii)
applies because of Lemma 6.3 again, as the assumption 2 = 0 guarantees R, _, = R/ (recall
the rejection threshold in Line 7). Claim (a) follows. 7

For the claim (b), again applying Lemma 6.3 we have

P (S = L, Z € Eprune) = /]P’ (|Ry _i| > m+w,Z € Eprune) f(w)dw
and
/]P’(|RT,_Z-| >m+w) f(w)dw <P <§3 = J_> .
Combining these displays, it thus suffices to show for all w that

B (R | > m+w,2Z € Epmune) < exp <2nf3
Z

>]P’(’RT,_," >m+w). (13)

To this end, we adopt a similar tack as in the proof of Lemma 6.6, defining
Z(w) = {z e RY** | |Rp | > m 4w for Z = 2z}
Z'(w) == {z e RV/?*1 | |Rpr ;| >m+w for Z = 2}
and the single coordinate perturbation 7(z) := z + 7 for € R"/?*! the vector with all zeros

2,/eB

n

. Similar to our proof of Lemma 6.6, the mapping m guarantees
2By/e

n

except that 7,911 =

that 2 = m(z) satisfies 2} + 2/, i1 < %t Znjay1 — for all j, which is precisely the
condition for case (c¢) of Lemma 6.5, and so R’T,7_Z- C Ry _; irrespective of R},’_i and Ry ;.
It thus holds simultaneously for all w € R that

T (Z/(w) N 5prunc) C Z(w).

Noting that ||n||, = 2\{53, Lemma 2.7 on likelihood ratios for Laplace random variables then
guarantees

2./eB

noy

2./eB

noy

P(Z € Z'(w)NEprune) < €xp ( ) P(Z € m(Z'(w)NEprune)) < exp < ) P(Z € Z(w)),

which is equivalent to inequality (13). O
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6.3.1 Finalizing proof of Lemma 4.2

By combining Lemmas 6.6 and 6.7, we can prove the stability of COVSAFE. Recall the set
Eprune 10 (10) and that W ~ Lap(ow.,, ), and additionally define

1
Einr = (—oo,awcov log —] .
Y

The key part of our argument is to show that when x and 2’ are adjacent but z, = 0, if the
noise variables Z, W Satlsfy Z e €pmno and W € &y,,, then for $ and 3 as in the call (11) the

leave-one-out covariances $_; and &’ ' ; are similar. We then bound the probabilities of the

individual events and use a group composition argument to give the lemma for arbltrary .
With this in mind, let A € R¥? and note that for any fixed sample z, S and Z_Z can
take only finitely many values. For
1 I 2\/EB(mmax + 1)

o = s
OWeov noz

we show for any A € R4 U {1} that

P (i_l =A,7Z € Epune, W € &hr) < exp(a)P <§J/_Z = ) and (14)

P (i’_ i = A7 € Eprune, W € gthr) < exp(a)P (i_,- - A) . (15)

Lemma 6.7 already implies both inequalities (14) and (15) hold for A = L, so all that remains
is to show the same for A € R4*4,
Proceeding first with inequality (14), let f(w) = 5—— exp(—|w|/ow..,) be the density of

2UW

W and S(A) :={S C [n/2]\{i} | A= %ngsu{z} T;T; 1. Marginalizing over W gives

P (i_i = A, Z € Eprune, W € Sthr)
0

P (RT,_,' S S(A), ‘RT’ <m+w,Z € Eprune) f(w)dw

gthr

P(Rr—i € S(A),|Rr,—i| <min{m + w, Mmax}, Z € Eprune) f(w)dw,

where step (i) follows from the condition that |Ry| < m + w if and only if £_; # L from
Lemma 6.3, and the final inequality follows because &y = {w | w < Mmpax}. Continuing,
note for each S € S(A), we can have S = Ry _; with |Ry ;| < min{m + w, mmax} only if
|S] < min{m + w, Mmax } < Mmax, so that by case (a) of Lemma 6.6

P(Rr—i € S(A), |Rr,—i| <min{m + w, Mmax}, Z € Eprune)
<oxp (WP DN p (e (),

noy

; ,_Z-! <m-+w).

Returning to the integral above, we obtain inequality (14) by integrating and applying
Lemma 6.3:

/ P(Rpi_; € S(A), [Rpr | <m+w) f(w)dw = P, = A)
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as R, _, = R/}, because Z = 0 by assumption.

The proof of inequality (15) is essentially the same, only now we must take additional
care to account for the possibility that ¢ € Rp. As in the preceding integral inequalities,
Lemma 6.3 gives

P (i/—z = A, S gprunoa W e 5thr>
< / P (Ry ;€ S(A),| R ;| < min{m + w, i}, Z € Eprune) f (w)duw.
gthr

In this case, with reasoning identical to that above, we apply case (b) of Lemma 6.6 to achieve

P (R/T’,—i € S(A)7 ‘R&"’,—i| < min{m + w, mmax}y YAS 5prune)

2\/eB(mpyax +1
< oxp (P D) )€ S(A). [Rpa] < mtw),

SO

P <§’_i = A, Z € Eprne, W € Sthr)

< exp (2*/53 (:;n; il 1)> / P (Rr_s € S(A), |Rr i < m +w) f(w)duw.

We upper bound the final integral by noting that

P <§—2 = A) = /P(RT,—i € S(A),|Rr| < m+w) f(w)dw

> /]P’ (Rr—i € S(A), |Ry—i] < m +w — 1) f(w)dw,

for all w to see that

f(w) |§ 1

where (%) follows from Lemma 6.3, and then using | log FwiD| < o

/IP’(RT,—i € S(A),|Rr—i| <m+w) f(w)dw < exp < ! > P <§]_Z = A) ,
UWCOV

which gives inequality (15) once we substitute v = —1— + 2‘/53512‘;‘“+1).

We combine inequalities (14) and (15) to get Lemma 4.2. For any set C' C R4 U {1},

P(E_;€C)<P(E_ €C,Z € Epumes W € Er) + P(Z & Eprunc) +P(W & Euy)
< eP(S; € C)+P(Z & Eprune) + P(W & Eunr)

by inequality (14). We then have the immediate bounds P(W ¢ &) = P(W > ow,,, log %) =

1
4oy

%exp(—log %) = 2. Similarly, P(Z & Eprune) < 5 exp(—45—) by Observation 6.1. The upper

bound on P(3/_ ; € C) is similar but uses inequality (15).

To this point, we have shown that if x and z” are adjacent samples differing only in that

i G e ) _ IR /AN W _ .
the difference &; = z; — x,,/24; may be non-zero while ;' = z; Ty joti = 0, then returning

to the notation (4) and identifying S, = i_i(x, Z, W) and i’_i =X_i(2", Z,W),

~

S_i(2, Z,W) L0 5 S_i(2", Z,W)
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for a = 1 + 2\/EB(mmax+1)
UWCOV noy
sample satisfying =’ , = x_;,

and 8 = % + %exp(—ﬁ). Thus we obtain that if 2/ is any

i—i($7 Z7 W) ia,ﬁ i\:—i(gjﬂv Z7 W) ga,ﬁ i\:—i(x,) 27 W)
Using group composition (Lemma 2.2), we obtain
A~ d ~
E—i($a Z7 W) —2a,B+e>3 E—i(x/y Zv W)a

which is the desired Lemma 4.2.

7 Proofs for mean estimation

In this section, we provide the proofs of Lemmas 4.3 and 4.4. Throughout, we differentiate
outputs of MEANSAFE on inputs x versus 2’ (or A versus A’) via tick marks, so that (for example)
it corresponds to the mean in Line 9 of MEANSAFE on input sample x, or D;- corresponds to
the log-diameter in Line 2 of MEANSAFE on input sample /. We will make this precise using
the function I'(x, A) from (3), which is the transcript MEANSAFE outputs on input z, A.

7.1 Proof of Lemma 4.3

We shorthand i(z, A) and (2, A) as g and g’ respectively, and unpack the corresponding
execution transcripts:

(D,D,R,t,) :=D(z,A) and (D',D',R ¢ ,fi'):=T(a',A).

Throughout our arguments, 7 € [n| denotes the index at which the samples z, 2’ differ, that
is, x_; = «’_; while we may have z; # z/.

The main idea in the proof of Lemma 4.3 is to first bound the sensitivity of the mean,
showing that (with high probability) ||z — i’|| 4 is small, unless there are too many outlying
entries ;. We do this in Lemma 7.3 by showing that for appropriate subgroup sizes b (recall
the random partition S of [n] into blocks of size n/b in MEANSAFE), the MEANSAFE algorithm
correctly identifies all outliers without pruning many inlying datapoints. In the second step,
we finalize the proof (section 7.1.1) by combining the sensitivity bound with more or less
standard distributional stability guarantees for Gaussian distributions, which we list in the
preliminary section 2.

We begin by formalizing two properties that will be helpful to proving the sensitivity
bound in Lemma 7.3. We recall the notation ¢ (respectively ¢') for denoting the number of
pruned groups in Lines 5-8 of MEANSAFE on inputs z and z’, while R and R’ denote the sets
of all pruned indices. Of the next two lemmas, Lemma 7.1 bounds differences between R and
R and t and t/, while Lemma 7.2 is a generic lemma that bounds the difference of empirical
means with nested index sets. These two lemmas are combined in Lemma 7.3 to bound the
difference between the estimated mean 1 = n+|R| > jgr®j and I’

Before stating Lemma 7.1, recall for sets S, 5" that dsym (S, S") = max{|S\ 5’|, 5"\ S|}

Lemma 7.1 (Stability of rejected indices). Let t,t' and R, R' be as above. Then |t —t'| <1
and dgym (R, R") < b.

28



Proof. Let the set J := {j | l~)j # J_,l~?j > log(v/B/4)} index the subgroups pruned by the
execution of MEANSAFE on the sample 2/, and similarly define J’ relative to D’ for the sample 2.
Then t = |J| and R = Uje,S;, and also t' = |J'| and R’ = Uje S} We show dgym (J, J') < 1,
from which the claim [t — /| < 1 follows immediately and the claim dgym (R, R') < b follows
from the fact that |S;| = b for all j € [n/b].

Recalling z and ' differ only at index i, suppose that i € Sy for £ € [n/b]. Then Ts; = :L"Sj
for all j # ¢; in particular, diama(zs,) = diaumA(a:i9 ) and so D; = D} for j # (. Thus, the
indices of the k largest elements of D+ 27 and D'+ Z, i.e. , those subgroups identified by TOPk as
having the largest diameters, which we denote by K = { 7l D # 1} and K' = {j | D’ # 1}
respectively, differ by at most one index: doym(K,K’) <1 Wlth equality obtaining only if
¢ is in exactly one of K or K'. If ¢ is in neither K nor K’, then J = J' and the claim
dsym(J,J') < 1 follows. Otherwise, supposing ¢ € K, the bound dsym (I, K') < 1 implies
K\ {¢{} ¢ K’ and thus DK\{E} = DK\{Z}, or vice versa if £ € K'; dgym(J, J') <1 then follows
from J C K and J' C K'. O

Lemma 7.2. Let {yi1,...,yn} be an arbitrary collection of vectors and S C S’ C [n]. Define
s = ‘—é‘ Yicg Vi and pgr = ﬁ Y ics Yi- Then

157\ S| diamy. (ys')
HMS_IU'S’H < ‘S,‘ .

Proof. Observe

S 1
ps — pusr = fis — “S,“u s+ g7 dowi| = Z 1s = i),
eSS esn

where from the assumption that S C S” we have

< — sl < di 1(S).
e 1y —psll < max lly; —y;l| < diamy (57)

. . S\S|d ’
The claim then follows as ||us — ps/|| < ﬁ Yicsn s diamy (ysr) = % 0

We now turn to the first step we outline, providing an explicit bound on ||g — i'|| 4 except

on the event that max{t,t'} = k. Recall the definition A = % exp(3oop log %—:) in the
statement of Lemma 4.3.

Lemma 7.3. With probability at least 1 —y — n?2'70, max{t,#'} = k or || — ' 4 < A.
Proof. We first show that with probability at least 1 — n?27% over the random partition
S~ Uni(ﬂ’n,b), S= (Sl, ey Sn/b),
1
diam g (zge) < §exp(2 1Z)l +1|2']| ) (16)

with the same bound holding for 2’ by symmetry. To this end, observe that for the index set
J:={j € [n/b] | D; # L,D; > log(VB/4)},

MEANSAFE constructs the removed indices R in Lines 5-8 via the union R = U;c;S;. The
first step in the bound (16) is to bound the diameter of the set zre by the diameters of the
constituent sets within R, which the following generic lemma allows (see Section 7.1.2 for a
proof).
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Claim 7.4. Let {y1,...,yn} be an arbitrary collection of vectors and S ~ Uni(P, ). With
probability at least 1 — n?27°, for all index sets J C [n/b], the set Sj := UjesS; satisfies
diam”,”(yg(]) < 2maxj6] diam”_”(ygj).

In light of Claim 7.4, inequality (16) follows by showing
diama(zs,) < exp(2| 2|« + ||Z']| ) VB/4 (17)

for all j & J on the event ¢ < k. When ¢ < k, there exists an index £ € [n/b] such that Dy# L
and Dy < log(\/§/4)~, i.e., £ indexes one of the k largest elements of D + Z but ¢ ¢ J. Thus,

for j ¢ J such that D; = 1, i.e., log(diam(xs;)) + Z; is not among the k largest elements of
D + Z (by the construction in TOPk), we have

log(diam(zs;)) < log(diama(zs,)) + 2| Z]| -

Meanwhile, for all j ¢ J such that l~?j # 1, including j = ¢, from the definition of J we
immediately have

log(diam (zs;)) + Z; < log(VB/4).

The claim (17), and hence claim (16), thus follows from the preceding two displays. Moreover,
via a union bound over the two executions of MEANSAFE, Claim 7.4 gives

B
max{diam 4 (xge), diama(zzc)} < exp(2||Z] ., + HZ’HOO)g or max{t,t'} =k  (18)

with probability at least 1 — n221=?.

We can now bound ||g — || 4 for i = n+|R|Z]¢R‘Tj and [ = ﬁngR’ a’; via the
following claim (essentially, a number of applications of the triangle inequality), whose proof
we also defer (see Section 7.1.3).

Claim 7.5. || — /][4 < b+ max{diam(zge), diam4 (2/zc )}

n

Using Claim 7.5, the main Lemma 7.3 follows relatively quickly. By combining the
display (18) with the fact that, by elementary calculation,

P(max{]| Z|, . |

2|} > o10p log(2n/b7)) <,
we obtain that with probability at least 1 —~ — n?2'=% max{t,t'} =k or

M exp (2 | Z] . + HZ/HOO) < Wexp <3at0p log 2—”) .

I~ )0 < .

Recalling the assumption that the batchsize b > 4 (so 2(b+1) < 5b), we obtain the lemma. [

7.1.1 Finalizing proof of Lemma 4.3

We prove for any (measurable) event O C R4 U {1} that

P(ji € O) < 2o Waean P( € O) + 1 + fo, (19)
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where a > 0 and $; € (0,1) determine the Gaussian noise scale for ZN ~ N(0, 03 1) via

2\/1.25log - ita<l
) " ) an = %e—(k/i}—l)/awmcan + 0l + 7'L221_b.

oN = . d
N - 2 — otherwise, B2
\/2 log E+2a—\/2 log B

The other direction follows by symmetry. We treat O € R? and O =1 separately, merging the
two cases at the end to show the claim (19). Supposing first O C R?, the following observation
delineates necessary and sufficient conditions for iz € O.

Observation 7.1. Let O C R, Then i € O if and only ift < 2k/3+W and a+AY2zZN € 0.

Proof. From the condition for returning | in Line 11 of MEANSAFE, we immediately have
= 1 ¢ R4 if and only if + > 2k/3 + W; thus, the condition ¢t < 2k/3 + W is necessary
and sufficient for i € R?. As either i = L or i = i + A/2ZN by definition, it then follows
trivially that ¢t < 2k/3+ W and 1 + A27ZN € O together suffice to obtain i € O. O

Marginalizing over the number of sets of rejected indices ¢ and o we have the following
sequence of inequalities:

P(n € 0)
—E [P(m AV2ZN € O | B)P(t < 2k/3 + W | t)}

(@)
<E[P(a+AY2ZN € O | pP(t < 2k/3+ W | D1 |7 — 7], < A}]
+E[P(t < 2k/3 + W | t)1{max{t, t'} = k}] + v+ n?2'7"

(id)
<E [P(g+,41/2z” €O | WPt < 2k/3+W | 1|7 - 7|, < A}}
+P(W > k/3 —1) 4~ +n?2!70

—E []P’(ﬁJrAl/QZN €O | MP(t <2k/3+W | L{||7 — 7, < A}} +B8 (20)
Here, step (i ) follows because ||’ — /||, < A or max{t,t'} = k occurs with probability
at least 1 —~ — n?2'=% by Lemma 7.3; step (ii) because |t —t'| < 1 by Lemma 7.1 and so
max{t,t'} = k: implies t > k—1; the final equality follows from the identity P (W > k/3 — 1) =
%e_(k/ 3=1)/0Wmean and definition of Ss.

Continuing, we can bound the last expectation in the preceding display by
E PG+ AY2ZN € O | i)P(t < 2k/3+ W | D1{ ||’ - ||, < A}]

)
< exp(a)E [P(f/ +AV2ZN € O | @P(t < 2K/3 + W | t)} + B

(i)
< exp(a + 1/0Wi, )E [P(E + AV2ZN € O | P( < 2k/3+ W | ¥)] + 6y

= exp(a + 1/0W,..,)P(11 € O) + B, (21)

with step (i) following from the privacy of the Gaussian mechanism with noise oy and
sensitivity bound ||z — /|| < A (Lemma 2.5); step (ii) from [t —¢'| < 1 by Lemma 7.1 and
that W ~ Lap(ow,,..,); and the final equality follows directly from Observation 7.1, applied
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here to the execution of MEANSAFE on data z’/. Combining inequalities (20) and (21) yields
the claim (19) when O C R?,
For the case that O = {1}, we have

P(ji = 1) = E[P(t > 2k/3 + W | 1)]
1 1
S € °Wmean E [P(t/ > 2kj/3 + W | t/)] = eXpUWmcan ]P)(ZZ = J_)

Here, the two equalities follow from the condition for returning 1 in Line 11 of MEANSAFE,
while the inequality follows because |t — /| < 1 by Lemma 7.1 and that W ~ Lap(ow,,....)-
The claim (19) for arbitrary O is immediate.

7.1.2 Proof of Claim 7.4

Consider the event &£ that for all indices iy,i2 € [n|, with iy € Sj, and iy € Sj,, we have
lyir — yio|l < 2max{diam(ys; ),diam(ys; )}. The claim holds on &: for any J C [n/b] and
Sy = UjesSj, there exist ji,jo € J with iy € S and iy € S}, attaining diam(ys,) =
lyis — iz I, and so

Yy = iz | < 2max{diam(ys,, ), diam(yg,, )} <2 max diam(ys; ).

It remains to show that £ occurs with probability at least 1 — n?27. As there are (Z) < %nQ
unordered pairs of distinct indices i1,i2 € [n], the result obtains from a union bound if we
show that [|y;, — v, || > 2max{diam(ys; ),diam(ys;, )} occurs with probability at most 21-b,

Proceeding, let i1,i2 € [n] and i1 € Sj,,i2 € S}, and let ¢ = %Hy21 — Yio||- If iy = ig or
J1 = Jo, there is nothing to show, so assume iy # i and j; # jo. Let C1 = {i € [n] \ {i1,i2} |
llyiy —will < ¢} and Co = {i € [n] \ {i1,i2} | ||lyi, — yill < ¢} be those indices i for which y;
is close to y;, or y;,, respectively. By the triangle inequality, C is disjoint from C5, and so
without loss of generality, we suppose that |C| < (n —2)/2.

We wish to show that diam(ygjl) > ¢, for which it is sufficient that there exists an index
in S, \ {i1} not in Cy. So by showing S}, \ {i1} C C; occurs with probability at most 217?,
we will be done. As & ~ Uni(P,}), the set Sj, \ {i1} is a uniformly distributed subset of
[n] \ {i1,i2} of size b — 1. Consequently, there are (2‘:12) distinct values it can take and (LC_HI')
values such that S;, \ {i1} C Ci. Therefore, the probability that S;, \ {i1} C C; is

|C1] b—2 ) B
]P)(Sjl \{Zl} C 01) _ (b—l) _ H (’01‘ —Z)+ < ( ‘Cl‘ >b 1 . 21_1)’

92 :
(275) g 2 n—2
where the last inequality follows because |C1| < (n — 2)/2.

7.1.3 Proof of Claim 7.5

Recall that

- 1 ~ 1 '
’u:n—]R\ij and u:n_‘R,‘ij,
JER JER'

and define

~ 1 - 1
Ran:= RUR', [la1 = ——— Z Tj, i = Z ;.



Lemma 7.1 gives |R®\ RS;| = [Ran \ R| < b, and by assumption on the batchsize b and
rejection threshold & we also have |Ran| < b+ |R| < b+ kb < 3.
Applying Lemma 7.2 with S = RS, and S’ = R°, we get

|R\ RS, diama(xpge) < 2bdiam 4 (x ge)
|R¢| - n

15— Fanll 4 <
as |R| < [Ran| < §. Applying Lemma 7.2 again, this time with dataset 2/, S = Rj and
S" = R*, we get ||/ — filyll 4 < Zdiama (2.

Now we bound fian — [il;, where recalling that index i is the sole (potentially) differing
index in z, 2’ (that is, x_; = 2’_;), we can write as

1 ,y_ {i & Ra}

m o gy = T E Tl oy
Hall = Hap = (zj — o) n— [Ronl (zi — ;)

—|R
n = [l JERan
If i € R,y, this difference is 0. Otherwise, i ¢ R and i ¢ R'. As |Ra| <
pick some j* & Ruy U {i}. Because z;; = x;/, we have both Ha:, —xjr|
and both ||z} — 2 4 < diama(z’.). The triangle inequality then gives |lz; — il <
2 max{diam (2 ge), diam4 (2 )}, and so ||fan — fhyll 4 < 2 max{diama(zpe), diama(zy.)}-
Combining the above, the claim follows immediately from

5, We may
4 < diamg(zpge)

172 = B'l] 4 < 1A = Faull g + [[7an = Bl 4 + 180 = 7] 4
2bdiam 4 (z ge) N 4 max{diam4 (zge), diam (25 )} N 2bdiam 4 (g )

<
n n n

7.2 Proof of Lemma 4.4
Unpacking the execution transcripts I'(z, A) and I'(z, A’) from (3) as

(D,D,R,t,fi) :=D(z,A) and (D',D',R ¢ ji') :=T(z, A",

observe that given the pair (D, AY2ZN), [i(z, A) is independent of A (see the execution of
MEANSAFE), and analogously, fi(x, A’) is independent of A’ given (D', A’V/2ZN). Therefore,

by showing A'/2ZN iahg AY2ZN and D iw,o D', basic composition (Lemma 2.1) and the

post-processing property (Lemma 2.3) will imply the claimed result that 1z goq—i—az,ﬁ i

Recalling ZN ~ N(0,031), we have AY/2ZN ~ N(0,03A) and AV/2ZN ~ N(0,03A’), and
so A/2zN ial,ﬁ A2ZN follows immediately from the assumption dpsq(4, A’) < 2 and the
closeness of Gaussian distributions with differing covariances (Lemma 2.6).

To show D iag,o D' , we make the following observation to bound the sensitivity of the
log-Mahalanobis norm for A and A’.

Observation 7.2. Suppose A, A’ € R4 and dpsq(A, A') < v < oo. Then for any v € Col(A),
|log |[v]| 4 — log ||v]| o | < /2. For any v & Col(A), log||v|| 4 = log||v]| 4 = oc.

Proof. Observe dpsq(A, A’) < oo trivially implies A and A" are PSD and their columnspaces
coincide, from which the second claim immediately follows. For v € Col(A), we only show
log [|v]| 4 < 37 + log ||v]| 4, as the reverse inequality holds by symmetry. By assumption,

|72 a - an a2

< dpsd(Av A/) < Y
P

O
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and hence A'1/2(A — A")A'1/2 < 4I. Conjugating by A"/? and rearranging terms, we have
My ATy < (147)A’. Because 114 = T4, we have I 4 ATl 4» = A, which yields A < (1+~)A4/,
or equivalently A" < (1 +~)At. Therefore ||v]|%, < (1+7)|lv]|%. Taking square roots and

logarithms on both sides proves the claim as log(y/1+7) < 3. O

This observation, coupled with our construction that both zi(z, A) and f(x, A") use the same
(random) partition S = (S1,...,Sy), implies |D; — Dj| < g for all j € [n/b]; hence
|D —D'| < 5= (the indices where the entries are infinite coincide). The closeness properties

of TOPk (Lemma 2.4) and our choice oy, = nkT‘fQ then give D ia%o D'

8 Discussion

The simplicity of mean estimation in classical statistics belies the sophistication necessary
to adaptively and accurately estimate a mean under differential privacy constraints. While
we have developed (nearly) minimax optimal procedures for mean estimation, a number of
questions remain open, and we hope that we or others will tackle them. From a practical
perspective, while our procedure is implementable, the numerical constant factors we have
maintained to guarantee privacy—in addition to the logarithmic factors in n and log %—may
make effective use of the procedure challeenging. From a theoretical perspective, it is still
interesting to attempt to remove the logarithmic factors present in our bounds. Additionally,
while we can adapt to weaker than sub-Gaussian moment bounds (via the method ADAMEAN),
it may be possible to provide a sharper procedure or tighter analysis to achieve optimal
dependence on dimension d and privacy level ¢, as in the case that p moments are available,
our results appear to be roughly a factor of (v/d/e)!/? loose (recall Examples 2 and 4). It will
be interesting to see the extent of possibilities for differentially private estimation in these
more general cases.

A Proofs of standard privacy results

A.1 Proof of Lemma 2.5

The first case follows from Dwork and Roth [12, Theorem 3.22]. For the second, we use
Mironov’s Rényi-differential privacy [33]. The Rényi a-divergence between distributions P
and @ is Dy (P|Q) = =15 log f(g—g)o‘dQ, and [33, Proposition 3] if D, (P|Q) < ¢, then for

all measurable A and ¢ > 0 we have P(A) < exp(c+ %)Q(A) + 9. The Rényi divergence
for Gaussians has the explicit form

[0
Dq (N(p1,725)|N(p2, 72%)) = 5.2 1 — pall% -

When p > |1 — p2]ls;, we set § = a — 1 and see that for € satisfying
2B log(1/0)

°= 212 272 3

we obtain N(u,72X) 25,5 N(p2,72%). Choosing B to minimize the preceding & we obtain

€= % + fy/2log%, and solving for n = % in %7]2—1— ,/2log%pn—€ yields

1 p
T = — =
N \/ZIOg%—I—%—\/Qlog%
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is always sufficient to guarantee N(up,72%) 25,5 N(p2, 725%).

A.2 Proof of Lemma 2.6

Without loss of generality, we may assume p = 0. We first reduce to the case where ¥ and
Yo are full-rank. Because dpsq(X1,X2) < 0o, we have immediately that there exists a vector
space V' C R? with V = Col(X;) = Col(%3). Letting k& = dim(Col(%;)), take U € RI**
to be an orthonormal matrix such that V' = Col(U). The random variables X ~ N (0,%;)
and Y ~ N (0,%3) have support V and multiplication by U” is an isomorphism between V'
and R¥ so X £_; Y if and only if UTX £_5 UTY. Of course, UTX ~ N (0,UT%,U) and
UTy ~ N (O,UTZQU) and both UTS U and UTS,U are full rank. The orthogonality of
U gives dpsa(UTS1U, UTS5U) = dpsa(E1,52) < . Hence, by showing the lemma for the
full-rank matrices UTS,U and UTE5U, we will have shown the claim for ¥; and Xs.

We proceed with the full-rank case with an argument similar to Brown et al. [7, Lemma
4.15]. Define Dy = 21/222_121/2—1 and Dy = E;MEI_IE;M—I. As D1 has the same spectrum
as 22_1/22122_1/2 — I, we have by assumption that || Di||, <+ and ||Dal|, < 7.

Let f; be the density of P, = N(0,%;) and fy that of P, = N(0,%5). Then, to show
(¢,0)-closeness, it suffices to show (W) := ‘log %‘ < ¢ with probability at least 1 — ¢
when W is drawn from either P; or P,. By symmetry, it suffices to only show this bound for
the case when W ~ P;. Expanding ¢, we have

e 1 I 1] det(,)
_ |2 1 1 vl < 2 T(n-1 _ y-1 1
(w) ‘210g det(3y) + 5 (35 ] )w' <3 ‘w (35 X )w‘—l—2

1 __ N “7
%8 Jet(xy)

. (22)

The final term is independent of w and has the bound

‘1 det(22)

1/2 1/2
& Jet (%)

= max {log det(25/* 271 85%), log det(ziﬂzglziﬂ)}

< max{tr(Dy), tr(D1)} < max{|[ Dz, [|Dill.} <,

where the first inequality holds because logdet(A) < tr(A — I) for any positive definite A.
Now we bound the first term on the right hand side of inequality (22) with high probability.
Since W ~ P;, the whitened random variable Z = 21_1/2W ~ N(0,I). We then have

whE -sihw| =12"Dz

)

and so by the Hanson-Wright inequality [e.g. 38, Thm. 6.2.1], we have with probability at
least 1 — § that

2 2 2
|Z"D1Z| < |tx(D1)] + 2 | D1l \/logg + 21 D1llop logg < 5ylog 5

where the inequality holds because ||Di|,, < [|Dillg < [Dill, <~ and log3 > 1. Thus

(W) < 6y log% < ¢ with probability at least 1 — .
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