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Abstract

We design an (ε, δ)-differentially private algorithm to estimate the mean of a d-variate
distribution, with unknown covariance Σ, that is adaptive to Σ. To within polylogarithmic
factors, the estimator achieves optimal rates of convergence with respect to the induced
Mahalanobis norm ‖·‖

Σ
, takes time Õ(nd2) to compute, has near linear sample complexity

for sub-Gaussian distributions, allows Σ to be degenerate or low rank, and adaptively
extends beyond sub-Gaussianity. Prior to this work, other methods required exponential
computation time or the superlinear scaling n = Ω(d3/2) to achieve non-trivial error with
respect to the norm ‖·‖

Σ
.

1 Introduction

We cannot consider the theory of differential privacy complete until we have—at least—a
sample and computationally efficient estimator of the mean. To within logarithmic factors in
the dimension d and sample size n, we achieve both.

To make this a bit more precise, let P be a distribution on Rd with unknown mean

µ = EP [X] and unknown covariance Σ = EP [(X−µ)(X−µ)T ], and let Xi
iid∼ P , i ≤ n. For an

estimator µ̂, consider the covariance-normalized error errΣ(µ̂, µ) := (µ̂− µ)TΣ−1(µ̂ − µ). We
give an (ε, δ)-differentially private estimator µ̃ of µ such that, assuming the vectors Σ−1/2Xi

are sub-Gaussian and n = Ω̃(d/ε2),

errΣ(µ̃, µ) = (µ̃− µ)TΣ−1(µ̃ − µ) ≤ Õ(1)

[
d+ log 1

δ

n
+

d2 log2 1
δ

n2ε2

]
(1)

with probability at least 1 − δ, where the Õ(1) term hides dependence on the sub-Gaussian
parameter of Σ−1/2X and logarithmic factors in n. Except for a factor of log 1

δ and the hidden
logarithmic factors in n, this is optimal, and the method extends naturally to distributions
with heavier tails for which we can provide similar near-optimal guarantees.

By measuring error with respect to the covariance Σ of the data itself, we adopt the
familiar efficiency goals of classical theoretical statistics: that an estimator should be adaptive
to structure in covariates and should have (near)-optimal covariance. Mean estimation is, of
course, one of the most basic problems in statistics, and we have known for seventy-odd
years that the sample mean Xn := 1

n

∑n
i=1 Xi is efficient [9, 30], achieving the optimal error

E[(Xn − µ)TΣ−1(Xn − µ)] = d
n , with high-probability guarantees under appropriate moment

assumptions [39]. Perhaps stating the obvious, the sample mean is adaptive to the covariance
of the distribution: no matter Σ, the sample mean is efficient.

When we require estimators to be private, however, the story is less clear. While differential
privacy [14, 13] has become the de facto choice for protecting sensitive data in the sixteen or so
years since its release—with substantial theoretical advances and successful applications [17,
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3, 1, 28, 18, 12]—we know of no computationally efficient procedures that achieve order-
optimal sample complexity with respect to the natural Mahalanobis norm ‖v‖Σ =

√
vTΣ−1v

the population P induces via its covariance. Brown et al. [7] highlight this, developing
sample efficient procedures that achieve small error in the Mahalanobis metric even when
Σ is unknown. When the covariance Σ is known, estimators that truncate the data relative to
Σ and add Gaussian noise to such a trimmed mean with covariance proportional to Σ suffice
to privately estimate µ (under approximate differential privacy) with the essentially optimal
rate (1), so that n = Ω(d) observations suffice to estimate µ (see, e.g., [6, 7]). But in the more
realistic setting that Σ is unknown, to the best of our knowledge all prior work either requires
a sample of size n = Ω(d3/2); is intractable, taking time exponential in n or d to compute; or
assumes P is isotropic. Many of these further assume P is Gaussian, a stringent assumption
that never obtains in practice. See Section 1.1 for more discussion.

Our contribution is a polynomial-time private estimator (Algorithm 4, PRIVMEAN) whose
error matches the error achievable when the covariance is known (equivalently, the data is
isotropic) to polylogarithmic factors. In essence, our estimator privatizes a stable estimate
of the empirical mean by adding Gaussian noise with covariance proportional to a stable
estimate of the empirical covariance; it takes time Õ(nd2) to compute, has (nearly) linear
sample complexity for sub-Gaussian distributions, allows Σ to be degenerate or low-rank, and
naturally extends beyond sub-Gaussianity.

1.1 Related work

There are many connections between differential privacy and robust statistics [11], in that the
major focus of robust statistics is to develop estimators insensitive to outliers and corrupted
data [36, 24, 25, 19], while differential privacy makes the output (distributions) of estimators
similar even when individuals in the underlying data change [14, 13, 11]. While Tukey and
Huber’s initiation of robust statistics is more than sixty years old [36, 24], studying statistical
limits of estimation and inference from corrupted data, computational tractability was elusive:
only in the last decade have researchers developed computationally efficient methods for even
robustly estimating a sample mean [10]. Similarly, only recently has the community elucidated
trade-offs between statistical and computational considerations in robust estimation [10].

It is natural to wonder whether such trade-offs also arise with privacy. For example,
classical procedures in private query evaluation require exponential time in natural problem
parameters [20, 15]. Likewise, in estimation, following the “propose, test, release” framework
of Dwork and Lei [11], a number of sample efficient private estimators [32, 7, 22] require
testing whether a given statistic is robust to the removal of groups of data points, which can be
computationally intractable in high-dimensions. In a number of these settings, computationally
efficient estimators achieving comparable sample efficiency have emerged only within the last
year or so [e.g. 22, 27, 4, 2]. Our mean estimation setting is a striking example of a seemingly
simple problem for which no known sub-exponential time and sample efficient algorithm exists.
In particular, to the best of our knowledge, all previous work has either (i) exponential
runtime [7, 31]; (ii) is sample inefficient [26, 31], requiring sample size at least n = Ω(d3/2);
or (iii) otherwise essentially assumes the population covariance Σ is isotropic [26, 6, 23, 31]
(nominally, the paper [23] allows arbitrary covariance, but the squared error of its estimator
scales at least linearly with the condition number of the population covariance Σ, which is
effectively equivalent to assuming isotropic covariance [6]). Here we have highlighted the most
relevant (recent) examples; see in the paper [7] for coverage of earlier work.

The work most closely related to ours is that of Brown et al. [7], who also consider
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covariance-adaptive mean estimation and also achieve (nearly) linear sample complexity. They
give a roadmap to adaptive private mean estimation that circumvents private covariance
estimation, a task whose sample complexity is necessarily Ω(d3/2) (see the lower bound by
Dwork et al. [16]), and are the first to achieve sample complexity o(d3/2), let alone linear.
However, their estimators take exponential time to compute; moreover, while their accuracy
analysis is independent of the condition number of Σ, it assumes Σ is full rank. Finally, they
only consider Gaussian and sub-Gaussian distributions.

In concurrent work, Hopkins et al. [22] give a generic reduction from private estimation to
robust estimation and leverage this reduction to obtain private estimators with (near) optimal
sample complexity. While their reduction is generic, the resulting estimators are efficient only
in certain special cases, e.g., for Gaussian distributions whose algebraic moment relationships
allow efficient formulation, and their results for mean estimation assume bounded covariance.
They extend a line of work [27, 21] on obtaining efficient approximations of inefficient private
mechanisms via sum-of-squares (SoS) relaxations. While technically efficient, SoS estimators
typically incur large polynomial runtime and thus scale poorly to high-dimensional settings
or large amounts of data. Unlike our estimator, however, they are robust to corruption of a
constant fraction the data.

1.2 Organization

We provide a brief outline of the paper to come. Section 2 introduces notation and covers
the preliminary privacy definitions we require for our development. Our main estimator,
PRIVMEAN, consists of two main parts: stably estimating the covariance of the data to reasonable
accuracy and then estimating a truncated mean to which we add noise. We present our
algorithms in Section 3, where Section 3.1 gives the covariance estimator, Section 3.2 the
mean estimator, and Section 3.3 presents the full procedure; we analyze PRIVMEAN’s privacy
in Section 4, deferring some of the requisite proofs to Sections 6 and 7. We provide accuracy
analysis in Section 5, where we also present ADAMEAN (Algorithm 5), which allows PRIVMEAN
to adapt to the scale of the observed data.

2 Preliminary definitions, privacy properties, and mechanisms

To make our coming development smoother and easier, here we introduce notation and
recapitulate the privacy definitions we use throughout. We also review a few standard privacy
mechanisms, providing guarantees on their behavior; for those results that are not completely
standard, we include proofs in the appendices for completeness.

2.1 Notation

Semidefinite matrices and norms For a positive semidefinite (PSD) matrix A ∈ Rd×d,
we let Col(A) denote its columnspace and A† its pseudoinverse, while the square-root of the
pseudoinverse is A†/2. We let ΠA := A†A = A†/2A1/2 ∈ Rd×d denote the orthogonal projector
onto Col(A). Using the nuclear norm ‖A‖∗ =

∑n
i=1 σi(A) (the sum of A’s singular values), we

define the distance-like quantity for PSD matrices A,B as

dpsd(A,B) :=

{
max

{∥∥A†/2(B −A)A†/2∥∥
∗ ,
∥∥B†/2(A−B)B†/2∥∥

∗
}

if Col(A) = Col(B)

∞ otherwise,
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setting dpsd(A,B) = ∞ if A or B are not PSD. When A and B are invertible, dpsd(A,B) =
max{‖A−1/2BA−1/2 − I‖∗, ‖B−1/2AB−1/2 − I‖∗}, though we note in passing that it is not a
distance. The extended-value Mahalanobis norm ‖·‖A corresponding to A � 0 is

‖v‖2A := lim
t↓0

vT (A+ tI)−1v =

{
vTA†v v ∈ Col(A)

+∞ otherwise.

When A is non-singular, this is the standard ‖v‖A =
√
vTA−1v, and the norm has the

monotonicity property that if A � B, then ‖v‖A ≥ ‖v‖B for all v ∈ Rd.

Sets and Partitions For sets S, S′, define the distance dsym(S, S′) := max{|S \ S′| , |S′ \ S|}.
Given integers n and b, where we assume b divides n for simplicity, we let Pn,b be the set of all
partitions of [n] such that each subset constituting the partition has b elements. We represent
a given partition in Pn,b as a tuple of subsets S = (S1, . . . , Sn/b), where each Sj ⊂ [n] has b
elements and are pairwise disjoint.

Distributions We let W ∼ Lap(σ) denote that W has Laplace distribution with scale σ,
with density p(w) = 1

2σ exp(−|w|/σ). X ∼ N(µ,Σ) indicates that X is normal with mean µ
and covariance Σ � 0, where if Σ is not full rank we mean that X has support µ+ Col(Σ).

2.2 Privacy definition and basic properties

It will be convenient for us to use closeness of distributions in our derivations (cf. [12, Ch. 3.5]),
so we frame differential privacy as a type of closeness in distribution.

Definition 1 ((ε, δ)-closeness). Probability distributions P andQ are (ε, δ)-close in distribution,

denoted P
d
=ε,δ Q, if for all measurable sets A ⊂ X ,

P (A) ≤ eεQ(A) + δ and Q(A) ≤ eεP (A) + δ.

Similarly, random variables X and Y are (ε, δ)-close, X
d
=ε,δ Y , if their induced distributions

are: P(X ∈ ·) d
=ε,δ P(Y ∈ ·)

Differential privacy [14, 13] is then equivalent to this notion of closenss: a randomized function
(or mechanism) M from an input space X n to Y is then (ε, δ)-differentially private if and only
if for any vectors x, x′ ∈ X n differing in only a single element,

M(x)
d
=ε,δ M(x′).

The following results on closeness are standard [12, Ch. 3].

Lemma 2.1 (Basic composition). Let X,X ′, Y, Y ′ be random variables satisfying X
d
=εX ,δX

X ′, and Y
d
=εY ,δY Y ′. Then (X,Y )

d
=εX+εY ,δX+δY (X ′, Y ′).

Lemma 2.2 (Group composition). Let X1, . . . ,Xk be random variables with Xi
d
=εi,δi Xi+1

for each i. Let ε>i :=
∑k−1

j=i+1 εj , ε =
∑k−1

i=1 εi, and δ =
∑k

i=1 e
ε>iδi. Then X1

d
=ε,δ Xk.

Lemma 2.3 (Post-Processing). Let X,Y,W be random variables. Then for any function f ,

if X
d
=ε,δ Y , then f(X,W )

d
=ε,δ f(Y,W ).
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2.3 Mechanisms

We use several known mechanisms, and our procedures rely on their distributional closeness
properties. The first is the TOPk mechanism, which (approximately) returns the largest k
elements of a sample. In our analysis, it will be convenient to call the procedures we develop
with noise as an argument to allow easier tracking of distributional closeness.

Algorithm 1: Top-k DP (TOPk)

Input : data x ∈ Rp, threshold k
Noise : ξ1, ξ2 ∈ Rp

Output: R ⊆ [n] such that |R| = k, x̃ ∈ (R ∪ {⊥})p
1 y1 ← x+ ξ1
2 y2 ← x+ ξ2
3 R← index set comprising the k largest y1,j’s
4 for j ∈ [p] do
5 if j ∈ R then
6 x̃j ← y2,j
7 else
8 x̃j ← ⊥
9 return x̃

Lemma 2.4 (TOPk mechanism, [34], Theorem 2.1). Let γ, ε ∈ R+. Let x, x′ ∈ Rp be such that
‖x− x′‖∞ ≤ γ. Then for ξ1, ξ2 ∼ Lap(2kγε )p,

TOPk(x, k; ξ1, ξ2)
d
=ε,0 TOPk(x

′, k; ξ1, ξ2).

As our procedures rely on adding Gaussian noise, we require two distributional closeness
results for normal distributions. See Appendices A.1 and A.2 for proofs, which we include for
completeness, as they are both tweaks of existing results [12, 33].

Lemma 2.5 (Gaussians, distinct means). Let µ1, µ2 ∈ Rd and let Σ ∈ Rd×d be PSD. Suppose
‖µ1 − µ2‖Σ ≤ ρ and define

τ =





ρ
ε

√
2 log 5

4δ if 0 < ε ≤ 1

ρ/
(√

2 log 1
δ + 2ε −

√
2 log 1

δ

)
otherwise.

Then N(µ1, τ
2Σ)

d
=ε,δ N(µ2, τ

2Σ).

Brown et al. [7, Lemma 4.15] essentially give the next result, but we allow low rank covariance
matrices.

Lemma 2.6 (Gaussians, distinct covariances). Let µ ∈ Rd and Σ1,Σ2 ∈ Rd×d be PSD and

satisfy dpsd(Σ1,Σ2) ≤ γ <∞. Then N (µ,Σ1)
d
=ε,δ N (µ,Σ2) for ε ≥ 6γ log(2/δ).

We conclude with a standard guarantee for Laplacian random vectors [e.g. 12, Thm. 3.6].

Lemma 2.7 (Laplace mechanism). Let α, β > 0 and Z
iid∼ Lap(β/α). Then for any A ⊆ Rm

and η ∈ Rm such that ‖η‖1 ≤ β,

P(Z ∈ A) ≤ exp(α)P(Z ∈ A+ η).
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3 Algorithms

As our estimator and its full analysis are fairly involved, we provide a broad overview of our
procedures here. We compute the estimator, whose full treatment we give in Algorithm 4
(PRIVMEAN) in section 3.3, in two phases, consisting of a stable covariance estimate and a
stable mean estimate. Each carefully prunes outliers from the data, using plug-in quantities
from the remaining observations as substitutes for the usual plug-in mean and covariance.

In the first phase (Algorithm 2, COVSAFE), we obtain a robust but non-private estimate Σ̂
of the covariance. Assuming for convenience n is even, we pair observations and initially let

Σ̂ :=
1

n

n/2∑

i=1

(xi − xn/2+i)(xi − xn/2+i)
T .

As xi − xn/2+i is symmetric, we can prune pairs of observations for which ‖xi − xn/2+i‖Σ̂ is

large (regardless of the population mean µ), recompute Σ̂ on the remaining observations, and
repeat until convergence. The key is that this pruning, while it provides no formal robustness
guarantees, is stable to changes of a single example xi, ensuring Σ̂ itself is stable.

In the second phase (Algorithm 3, MEANSAFE), we first obtain a robust estimate µ̂ of the
empirical mean by trimming outliers with respect to ‖·‖Σ̂. Using ‖xi‖Σ̂ to determine whether
xi is influential for a mean estimate is unreliable, as the quantity may be arbitrarily large
even for non-outliers if ‖µ‖Σ̂ itself is large; unfortunately, paired observations (as in the stable
covariance estimation phase) are similarly unhelpful, as ‖xi − xj‖Σ̂ could be small if both
xi, xj are “outlying” in the same way. Instead, we randomly partition the n observations into
groups S of size O(log n

δ ) and prune all observations in a group S if any two observations
in S are far with respect to ‖·‖

Σ̂
, so that there is at least a pair of outlying observations in

the group. Assuming the total number of pruned observations across both phases is not too
large—and much of our analysis shows how to make the pruned observations stable across
different samples x, x′—we let µ̂ be the empirical mean of the un-pruned observations, then
release µ̃ ∼ N(µ̂, σ2(ε, δ)Σ̂), where the privacy budget determines σ2(ε, δ).

3.1 Stable covariance estimation

The first component of the private mean estimation algorithm is the covariance estimation
procedure COVSAFE in Alg. 2, which removes suitably unusual pairs of data points from the
sample x ∈ (Rd)n, then uses the remaining pairs to actually construct the covariance. The
procedure maintains an empirical covariance Σt of the remaining data at each iteration t,
so that {Σt} is a non-increasing (in the semidefinite order) sequence of matrices, and stores
removed indices in an iteratively growing collection Rt for t = 1, 2, . . .; the procedure thus
necessarily terminates after at most n/2 rounds of index removal. For convenience of our
analysis, COVSAFE also returns a transcript Γ of the removed indices and iteratively constructed
covariances, returning ⊥ if the data is so unstable that it removes too many indices.

The key is that the covariance estimates are appropriately stable (see Conditions (C.i)
and (C.ii) to come in Section 4), and with high probability on any given input x, the algorithm
guarantees that its output changes little when we remove index i or, if the data has too
much variance relative to itself, that the procedure simply returns Σ̂ =⊥. To allow cleaner
description of the precise results we require in our main privacy result in Section 4, for
a putative bound B on ‖xi − xj‖2Σ, acceptable number of outliers m, and privacy random
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Algorithm 2: Robust Covariance Estimation (COVSAFE)

Input : data x1:n
Params: threshold B, threshold m
Noise : z ∈ Rn/2+1, w ∈ R

1 x̃← x1:n/2 − xn/2+1:n

2 R0 ← ∅, Σ0 ← 1
n

∑n/2
i=1 x̃ix̃

T
i

3 converged← false, t← 0
4 while not converged do
5 t← t+ 1, Rt ← Rt−1, truncated← 0
6 for i ∈ [n/2] \Rt−1 do
7 if 2 log ‖x̃i‖Σt−1

+ zi + zn/2+1 > log (B) then

8 Rt ← Rt ∪ {i}
9 truncated← truncated+ 1

10 if truncated = 0 then
11 converged← true, T ← t

12 Σt ← 1
n

∑
i∈[n/2]\Rt

x̃ix̃
T
i

13 Γ← ([Ri]
T
t=0 , [Σt]

T
t=0 , T )

14 if |RT | > m+ w then
15 return ⊥,Γ
16 return ΣT ,Γ

variables Z and W to be specified, let

(Σ̂,Γ) := COVSAFEB,m(x;Z,W ), (2a)

where Γ = ([Σt]t≤T , [Rt]t≤T , T ) is the transcript of intermediate covariances and removed
indices, and for x̃ = x1:n/2 − xn/2+1:n (as in Line 1) define the leave-one-out covariance

Σ̂−i :=

{
Σ̂− 1

n1{i ∈ RT } x̃ix̃Ti if Σ̂ 6=⊥
⊥ otherwise,

(2b)

which is Σ̂ whenever COVSAFE does not remove index pair (i, n/2 + i) ∈ [n]2.

3.2 Stable mean estimation

The second component of the private mean estimation algorithm is a sample mean estimator,
adding noise commensurate with an estimated (positive semidefinite) noise covariance that we
abstractly call A ∈ Rd×d. The procedure MEANSAFE removes elements xi of the data x that are
“too far” from the bulk of the data, measured by ‖xi − xi′‖A, using randomization to be sure
that the removed indices are appropriately private. The algorithm uses TOPk to select groups
of indices that contain too many outlying datapoints, then removes all data associated with
these groups. By evaluating (random) groups of data, the procedure enforces privacy in that
if the majority of the data are appropriately close to a center point as measured by covariance,
then few groups have large diameter, and adding or removing a single datapoint xi can only
effect the removal of one group and the method may privately return a noisy empirical mean.
When many datapoints are outliers, the method is likely to return ⊥ regardless of the behavior
of any individual datapoint.
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Algorithm 3: Robust Mean Estimation (MEANSAFE)

Input : data x1:n, PSD matrix A ∈ Rd×d

Params: threshold B, batchsize b, threshold k
Noise : S = (S1, . . . , Sn/b) ∈ Pn,b, z, z

′ ∈ Rn/b, w ∈ R, zN ∈ Rd

Output: mean estimate µ̃
1 for j ∈ [n/b] do
2 Dj ← log(diamA(xSj ))

3 D̃ ← TOPk(D, k; z, z′)
4 R← ∅, t← 0 /* initialize removed indices to empty */

5 for j ∈ [n/b] do

6 if D̃j 6= ⊥ and D̃j > log(
√
B/4) then

7 R← R ∪ Sj

8 t← t+ 1

9 µ̂← 1
n−|R|

∑
i 6∈R xi

10 if t > 2k
3 + w then

11 µ̃← ⊥
12 else

13 µ̃← µ̂+A1/2zN

14 Γ←
(
D, D̃,R, t, µ̂

)

15 return µ̃,Γ

For use in Section 4, as with COVSAFE, we assign notation to the outputs of MEANSAFE.
Let x ∈ Rn×d be an arbitrary sample and A an arbitrary positive semidefinite matrix. For
parameters defining the supposed bound B on ‖xi − xj‖2Σ, group size b, acceptable outlier
count k, and privacy random variables (S, Z, Z ′,W,ZN), all to be specified later, define

(µ̃(x,A),Γ(x,A)) := MEANSAFEB,b,k(x,A;S, Z, Z ′,W,ZN). (3)

3.3 The private mean estimation algorithm

Given COVSAFE and MEANSAFE, Algorithm 4 (PRIVMEAN) combines the two (with appropriate
parameter settings) to perform private mean estimation. First, PRIVMEAN computes a stable
covariance estimate via COVSAFE, and assuming the returned covariance estimate Σ̂ 6=⊥, then
computes a trimmed mean to which it adds Gaussian noise with covariance proportional to Σ̂
using MEANSAFE. Theorem 2 in Section 4 shows that the parameter choices guarantee privacy.

We remark briefly on the runtime of PRIVMEAN. Each iteration of thewhile loop (beginning
in Line 4) of COVSAFE involves a d × d matrix inversion followed by taking (at most) n ≥ d
matrix-vector products, requiring O(nd2). We may modify COVSAFE without changing its
behavior to terminate after m + Wcov iterations, as rejecting more than m + Wcov indices
guarantees that COVSAFE (and hence PRIVMEAN) returns⊥ (see Line 14). With high probability,
we havem+Wcov = O(1ε log

1
δ ), and giving runtimeO(nd2 min{n, 1ε log 1

δ}). COVSAFE’s runtime
dominates MEANSAFE’s, giving total (high probability) runtime O(nd2 min{n, 1ε log 1

δ}). As an
aside, we may convert this expected runtime into a worst-case runtime of the same order
without effecting the privacy of PRIVMEAN by truncating Wcov to scale 1

ε log
1
δ .
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Algorithm 4: Covariance Adaptive Private Mean Estimation (PRIVMEAN)

Input : data x1:n
Params: threshold B, privacy budget (ε, δ)
Output: mean estimate µ̃

Robust Covariance Estimation

1 m← 16
ε log 1

δ , mmax ← m+ 16
ε log 1+eε/4

δ

2 σZ ← 32
√
eB(mmax+1)

nε , σWcov
← 16

ε

3 Zcov ∼ Lap(σZ)
n/2+1, Wcov ∼ Lap(σWcov

)

4 Σ̂,Γcov ← COVSAFEB,m(x;Zcov,Wcov)

5 if Σ̂ = ⊥ then
6 return ⊥

Private Mean Estimation

7 b← 1 + log2
6n2

δ , k ← 24
ε log 3

δ − 3

8 σtop ← 8k
nε

B
√
e

1−B
√
e/n

, σN ← 20b
√
B

nε exp(3σtop log
12n
bδ ), σWmean

← 8
ε

9 S ∼ Uni(Pn,b), Ztop, Z
′
top

iid∼ Lap(σtop)
n/b, W ∼ Lap(σWmean

), ZN ∼ N(0, σ2
N
Id×d)

10 µ̃,Γmean ← MEANSAFEB,b,k(x, Σ̂;S, Ztop, Z
′
top,W,ZN)

11 return µ̃

4 Main privacy result

The analysis of PRIVMEAN is fairly involved, though there are four key building blocks. The
first two conditions involve what we term internal and external leave-one-out stability of
the covariance estimates (2a) and (2b) COVSAFE returns. These conditions require that the
covariance estimates (2) are appropriately stable, both in terms of removing a single element
contributing to the covariance estimate Σ̂ on input x and in terms of stability across two
inputs x, x′ whose transformations in Line 1 of COVSAFE, i.e., x̃ = x1:n/2 − xn/2+1:n and
x̃′ = x′1:n/2 − x′n/2+1:n, differ only in a single element. Letting 0 ≤ a <∞ be a constant to be

determined later and γ ∈ (0, 1) be a probability, consider the conditions

(C.i) Internal leave-one-out stability. Let Σ̂ and Σ̂−i be the outputs (2) of COVSAFE on an
arbitrary input x of size n. Then for any index i ∈ [n/2], with probability at least 1−γ,

dpsd(Σ̂, Σ̂−i) ≤
a

n
or Σ̂ =⊥ .

(C.ii) External leave-one-out stability. Let Σ̂ and Σ̂′ be the outputs of COVSAFE on inputs x, x′

of size n such that x̃ and x̃′ differ only in index i ∈ [n/2], where Σ̂−i and Σ̂′
−i are defined

as in (2b). Then

Σ̂−i
d
=ε,δ Σ̂

′
−i.

The second two conditions involve the noisy truncated mean estimate (3) MEANSAFE

outputs. The first of these conditions (C.iii) essentially states MEANSAFE is stable over inputs
x and x′ differing in a single element, while the second states that MEANSAFE applied with
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identical input samples x, x′ but different covariance estimates A,A′ is stable so long as A,A′

are close in the same sense as in Condition (C.i).

(C.iii) Mean sample stability. Let µ̃(A, x) be the mean MEANSAFE outputs (3) on input covariance
A and data x, and let x, x′ differ only in one element. Then

µ̃(x,A)
d
=ε,δ µ̃(x

′, A).

(C.iv) Mean covariance stability. If dpsd(A,A
′) ≤ a

n , then µ̃(x,A)
d
=ε,δ µ̃(x,A

′).

Conditions (C.i)–(C.iv) form the basic privacy building blocks to show that PRIVMEAN is
differentially private, and the following proposition—a warm-up for the full Theorem 2 to
come—shows how we may relatively easily synthesize the conditions to achieve privacy.

Proposition 1. Let samples x, x′ differ in a single element, and let Σ̂ and µ̃(x, Σ̂) and Σ̂′ and
µ̃(x′, Σ̂′) be the covariance and mean estimates (2) and (3) for inputs x and x′, respectively.
Let Conditions (C.i)–(C.iv) hold. Then

µ̃(x, Σ̂)
d
=4ε,(e3ε+eε)δ+(e2ε+1)(δ+γ) µ̃(x

′, Σ̂′).

Proof. As x and x′ are adjacent, there exists i ∈ [n/2] such that x̃−i = x̃′−i. We have a string
of approximate distributional equalities that, together with the transitivity of distributional
closeness implied by group privacy (Lemma 2.2), make the proposition immediate. First, we
show that conditions (C.i) and (C.iv) imply

µ̃(x, Σ̂)
d
=ε,δ+γ µ̃(x, Σ̂−i) and µ̃(x′, Σ̂′)

d
=ε,δ+γ µ̃(x′, Σ̂′

−i).

We prove the first equality as the argument for the second is identical. Treating x as fixed,
let E be the event that dpsd(Σ̂, Σ̂−i) ≤ a

n or Σ̂ =⊥. Then for any measurable set O we have

P(µ̃(x, Σ̂) ∈ O) = E
[
P(µ̃(x, Σ̂) ∈ O | Σ̂)1{E}

]
+ E

[
P(µ̃(x, Σ̂) ∈ O | Σ̂)1{Ec}

]

(i)

≤ E
[(

eεP(µ̃(x, Σ̂−i) ∈ O | Σ̂−i) + δ
)
1{E}

]
+ P(Ec)

≤ eεP(µ̃(x, Σ̂−i) ∈ O) + δ + γ,

where inequality (i) is Condition (C.iv) and the final inequality follows from the γ probability
bound in Condition (C.i). Second, we have the distributional approximations

µ̃(x, Σ̂−i)
d
=ε,δ µ̃(x, Σ̂

′
−i)

by Condition (C.ii), because post-processing preserves distributional closeness (Lemma 2.3).
Finally, we observe from the mean sample stability condition (C.iii) that

µ̃(x, Σ̂′)
d
=ε,δ µ̃(x

′, Σ̂′).

Combining each distributional equality, we have

µ̃(x, Σ̂)
d
=ε,δ+γ µ̃(x, Σ̂−i)

d
=ε,δ µ̃(x, Σ̂

′
−i)

d
=ε,δ+γ µ̃(x, Σ̂′)

d
=ε,δ µ̃(x

′, Σ̂′).

Apply Lemma 2.2.
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Finally, then, we come to our main privacy theorem, which verifies that the procedures
making up PRIVMEAN indeed satisfy Conditions (C.i)–(C.iv) with appropriate constants. We
state the theorem here, giving a proof that consists of lemmas making precise the constants
that appear in the conditions and whose proofs we defer.

Theorem 2. Let B <∞, δ ∈ (0, 1), and let x, x′ ∈ (Rd)n be adjacent samples, and let ε ≤ 8.
Define δ′ = (e3ε/4 + eε/4)δ + 2(eε/2 + 1)δ and let m ∈ N be as in line 1 of PRIVMEAN. Assume
that δ ≤ 1

n and n is large enough that

n ≥ 128
√
eB log n(1+eε/4)

δ

ε

(
m+ 1 +

16

ε
log

1 + eε/4

δ

)
= O(1)

B log2 1
δ

ε2
.

Then PRIVMEANB,(ε,δ)(x) is (ε, δ′)-differentially private.

As a brief remark, the condition ε ≤ 8 is only for convenience; a minor modification of the
proof allows arbitrary ε at the expense of a more convoluted theorem statement but in which
n remains of the same order.

Proof. By Proposition 1, it suffices to verify Conditions (C.i)–(C.iv), where we demonstrate
each holding with parameters (ε/4, δ). Throughout the proof, the value m ∈ N (line 1 in
PRIVMEAN) and parameter B <∞ remain tacit, as the privacy guarantee holds regardless.

First, we consider Conditions (C.i) and (C.ii) on the covariance estimates. We prove the
coming two lemmas in Section 6, which begins with preliminaries that we require for their
proofs before giving the proofs proper. Our first lemma provides sufficient conditions to
verify Condition (C.i), internal stability. Let z ∈ Rn/2+1 and w ∈ R be variables—these will
be random to allow privacy presently, but we use them for the definition—and let

Σ̂(x, z, w),
(
[Rt]

T
t=0, [Σt]

T
t=0, T

)
:= COVSAFEB,m(x; z, w), (4a)

where we leave the dependence of the transcript ([Rt], [Σt], T ) on (x, z, w) implicit, and redefine
Σ̂−i as in the definitions (2):

Σ̂−i(x, z, w) := Σ̂(x, z, w) − 1

n
1{i ∈ RT } x̃ix̃Ti (4b)

whenever Σ̂(x, z, w) 6= ⊥, and ⊥ otherwise. Then we have

Lemma 4.1 (Internal stability). Let Zj
iid∼ Lap(σ) and i ∈ [n/2]. Then with probability at

least 1− exp(− 1
4σ ), either Σ̂(x,Z,w) = ⊥ or

dpsd(Σ̂(x,Z,w), Σ̂−i(x,Z,w)) ≤
1

1−B
√
e/n

B
√
e

n
.

See Section 6.2 for a proof of Lemma 4.1. Turning to the condition (C.ii) on external stability
of COVSAFE, we compare the leave-one-out covariances Σ̂−i(x, z, w) and Σ̂−i(x

′, z, w) with input
samples x and x′, respectively, with identical (randomization) parameters z, w. Recalling
x̃ = x1:n/2 − xn/2+1:n and x̃′ = x′1:n/2 − x′n/2+1:n, we have the following guarantee:

Lemma 4.2 (External stability). Let γ ∈ (0, 1), Zj
iid∼ Lap(σZ), W ∼ Lap(σWcov

) and k ∈ N.

Define mmax = m+σWcov
log 1

γ and α = 1
σWcov

+ 2
√
eB(mmax+1)

nσZ
and β = γ

2 +
n
2 exp(− 1

4σZ
). For

all i ∈ [n/2], if x̃−i = x̃′−i then

Σ̂−i(x,Z,W )
d
=2α,(1+eα)β Σ̂−i(x

′, Z,W ).
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The lemma effectively shows that the sets of removed indices R and R′ are stable, and as they
determine Σ̂−i and Σ̂′

−i, this yields their closeness. See Section 6.3 for a proof of Lemma 4.2.
We turn to the guarantees of MEANSAFE, realizing Conditions (C.iii) and (C.iv). Recall

the definition (3) of µ̃(x,A) as the output of MEANSAFE on input x ∈ (Rd)n with positive
semidefinite A ∈ Rd×d, with parameters bound B, batchsize b, and threshold k ∈ N, and S,
Z, Z ′, and W as noise. We take Z,Z ′ ∈ Rn/b,W ∈ R to be Laplacian random variables,
ZN ∈ Rd to be Gaussian, and S to be a uniformly random partition of [n] into blocks of size
n/b; we track their scales in giving our distributional approximation guarantees.

To more cleanly state a general sample stability guarantee, which we may use to verify
Condition (C.iii), we define a number of additional parameters whose values we can determine.
Let the batchsize b ∈ N and threshold k > 0 satisfy b ≥ 4 and 2b(k+1) ≤ n. Let β1, γ ∈ (0, 1),
let α ≥ 0, and let σtop > 0 and σWmean

> 0. Define the constants

∆ :=
5b
√
B

2n
exp

(
3σtop log

2n

bγ

)
, β2 :=

1

2
e−(k/3−1)/σWmean + γ + n221−b

and

σN =





∆
α

√
2 log 5

4β1
if 0 ≤ α ≤ 1

∆√
2 log 1

β1
+2α−

√
2 log 1

β1

otherwise.

With these, we have a mean-sample stability result from which Condition (C.iii) develops:

Lemma 4.3. Let the conditions above hold and let Zj, Z
′
j
iid∼ Lap(σtop),W ∼ Lap(σWmean

), ZN

j
iid∼

N(0, σ2
N
) in (3). If x and x′ are adjacent, then

µ̃(x,A)
d
=α+1/σWmean

,β1+β2
µ̃(x′, A).

See Section 7.1 for a proof.
The last building block in the argument is to demonstrate Condition (C.iv), that the

estimates µ̃(x,A) and µ̃(x,A′) are close when A,A′ are close. For this, we give the following
lemma with general noise parameters.

Lemma 4.4. Let b, k ∈ N, β ∈ (0, 1), and a, σN, α2 > 0. Define α1 =
6a
n log 2

β , and define the

noise scale σtop = ka
nα2

. Then for Zj, Z
′
j
iid∼ Lap(σtop), Z

N

j
iid∼ N(0, σ2

N
), if

dpsd(A,A
′) ≤ a

n
then µ̃(x,A)

d
=α1+α2,β µ̃(x,A′).

See Section 7.2 for a proof.
For the final step, we put all the pieces together to prove the theorem. We give each of

the lemmas so the associated condition (of (C.i)–(C.iv)) holds with parameters (ε/4, δ), after
which we can then apply Proposition 1 directly. We do this in a somewhat odd order because
of the dependence on the noise scale between the different lemmas, beginning with

Condition (C.ii). For Zj
iid∼ Lap(σZ) and W ∼ Lap(σWcov

), we use Lemma 4.2 to guarantee

Condition (C.ii) that Σ̂−i
d
=ε/4,δ Σ̂′

−i. From the lemma statement, we have Σ̂−i
d
=2α,(1+eα)β

Σ̂′
−i, where α = 1

σWcov

+ 2
√
eB(mmax+1)

nσZ
, β = γ

2 +
n
2 exp(− 1

4σZ
), and mmax = m+σWcov

log 1
γ for

the m in line 1 of PRIVMEAN (though privacy does not depend on its value). We first achieve
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2α ≤ ε
4 . Setting σWcov

= 16
ε , it is sufficient that σZ is large enough that 2

√
eB(mmax+1)

nσZ
≤ ε

16 ,
i.e.,

σZ ≥
32
√
eB(mmax + 1)

nε
=

32
√
eB

nε

(
m+ 1 +

16 log 1
γ

ε

)
.

For the δ privacy component, we wish to have (1 + eα)β ≤ δ. As we have guaranteed α ≤ ε
4 ,

taking γ = δ
1+eε/4

and making sure σZ is small enough that n exp(− 1
4σZ

) ≤ γ = δ
1+eε/4

suffices.

For this, it is evidently sufficient that 1
σZ
≥ 4 log n(1+eε/4)

δ , i.e., (substituting for σZ)

n ≥ 128
√
eB log n(1+eε/4)

δ

ε

(
m+ 1 +

16

ε
log

1 + eε/4

δ

)

guarantees Σ̂−i
d
=ε/4,δ Σ̂

′
−i.

Condition (C.i). In Lemma 4.1, if the scale of the noise σZ on Zj
iid∼ Lap(σZ) satisfies

exp(− 1
4σZ

) ≤ γ, Condition (C.i) holds. The choice of σZ to satisfy Condition (C.ii) above and
the lower bound on n are evidently sufficient.

Condition (C.iii). Lemma 4.3 guarantees that if ZN

j
iid∼ N(0, σ2

N
), W ∼ Lap(σWmean

), and

S ∼ Uni(Pn,b), the call to MEANSAFE in line 10 of PRIVMEAN gives µ̃(x,A)
d
=α+1/σWmean

,β1+β2

µ̃(x′, A), with ∆, β2 and σN as defined in the lemma. To achieve α + 1
σWmean

= ε
4 , take

σWmean
= 8

ε and choose α = ε
8 . To achieve β1 + β2 ≤ δ, choose β1 = δ

2 and then recognize

that β2 ≤ δ
2 as long as γ ≤ δ

6 , n
221−b ≤ δ

6 (or b ≥ log2
6n2

δ + 1) and 1
2 exp(−

k/3+1
σWmean

) ≤ δ
6 (or

k ≥ 24
ε log 3

δ − 3). Thus, we arrive at

σN =
8∆

ε

√
log

5

2δ
=

20
√
Bb

nε
exp

(
3σtop log

12n

bδ

)

for (any) b ≥ 2 log 6n
δ +1 so long as ε

8 ≤ 1. (Otherwise we may use the alternative value for σN
preceding Lemma 4.3, which the (ε, δ)-differential privacy guarantee of Lemma 2.5 justifies.)

Condition (C.iv). The last condition to verify is that µ̃(x,A)
d
=ε/4,δ µ̃(x,A′) for close

enough A,A′. For this, we use Lemma 4.4, which guarantees that µ̃(x,A)
d
=α1+α2,δ µ̃(x,A′)

for α1 = 6a
n log 2

δ , where we take a = B
√
e

1−B
√
e/n

via Lemma 4.1, and arbitrary α2 > 0. Set

α2 = ε
8 and obtain σtop = 8ka

nε . When n ≥ 48a
ε log 2

δ , we have α1 ≤ ε
8 , and so the desired

privacy holds.
Making appropriate substitutions gives that each of conditions (C.i)–(C.iv) holds with

parameters (ε/4, δ). Proposition 1 gives the theorem.

5 Accuracy analysis

The second important component of our analysis of PRIVMEAN is its accuracy. We provide
two accuracy results: the first (Theorem 3) covers the case in which the data is sub-Gaussian,
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where we assume the method has some knowledge of the sub-Gaussian parameter of the
sampling distribution. Of course, it is unreasonable to assume that a given distribution is
sub-Gaussian or that we know its sub-Gaussian norms, and thus we extend PRIVMEAN via a
procedure that adapts to the actual scale of the data in Section 5.2.

Throughout this section, we let P be a distribution on Rd with mean µ and covariance Σ,

and we assume Xi
iid∼ P , i = 1, . . . , n. The classical (non-private) sample mean and covariance

are Xn = 1
n

∑n
i=1Xi and Σn = 1

n

∑n/2
i=1(Xi −Xn/2+i)(Xi −Xn/2+i)

T . We assume throughout
that P enjoys certain concentration properties, though we emphasize that our methods will
be adaptive to the parameters we specify here.

Assumption A1 (Sample concentration). Let c1 ≥ 64e and β ∈ (0, 1). For Xi
iid∼ P with

E[X] = µ and Cov(X) = Σ, there exists M <∞ such that the event

Esamp :=
{
max
i∈[n]
‖Xi − µ‖2Σ ≤M2/c1 and 1

2Σ � Σn � 3
2Σ
}

occurs with probability at least 1− β.

It is useful to give some context for the values of M we expect under various distributional
assumptions. Because E[‖Xi − µ‖2Σ] = d, the constant M2 typically scales at least as d. We
now give more detailed examples. In each, we let Zi = Σ−1/2(Xi − µ) be the whitened

data, defining the sample covariance ΣZ = 1
n

∑n/2
i=1(Zi − Zn/2+i)(Zi − Zn/2+i)

T . Because

‖Xi − µ‖Σ = ‖Zi‖2 and Σn = Σ1/2ΣZΣ
1/2, we have the equivalence

Esamp =

{
max
i∈[n]
‖Zi‖22 ≤M2/c1 and

∥∥ΣZ − I
∥∥
op
≤ 1

2

}
.

Example 1 (Sub-Gaussian random vectors): If for all v satisfying ‖v‖2 ≤ 1 the scalar
random variable 〈Z, v〉 is τ2-sub-Gaussian,

M2 ≤ O(1)τ2
[
d+ log

n

β

]
.

Indeed, a standard covering argument (see, e.g., [39, Ch. 5] or [38, Ch. 4]) gives that for all
t ≥ 0, P(‖Z‖2 ≥ t) ≤ 4d exp(−ct2/τ2), where c > 0 is a numerical constant. Replacing t2 with
O(1)(dτ2 + τ2t2) gives that P(‖Z‖2 ≥ Cτ

√
d+ t2) ≤ exp(−t2), and for any γ > 0, setting

t2 = log n
γ yields that with probability at least 1− γ,

max
i≤n
‖Zi‖22 ≤ O(1)τ2

[
d+ τ2 log

n

γ

]
.

To control the covariance, we use Vershynin [37, Theorem 5.39], which gives that with
probability at least 1− 2e−ct2 ,

∥∥ΣZ − I
∥∥
op
≤ O(1)τ2 max{

√
d/n+ t/

√
n, d/n+ t2/n}, so that

(igoring the sub-Gaussian constant) for n & d, setting t2 = O(1) log 1
γ gives

∥∥ΣZ − I
∥∥
op
≤ 1

2

with probability at least 1− γ. Set γ = β/2. ♦

Example 2 (General moment bounds): Suppose for some p ≥ 4 we have E[‖Xi − µ‖pΣ] =
E[‖Zi‖p2] ≤ τpdp/2, where necessarily τ ≥ 1. Then we can give two results: the first being that
asymptotically M = o(n1/p) and the second more quantitative. For the first, we claim that
maxi≤n ‖Zi‖2 /n1/p a.s.→ 0. To see this, note that for any ε > 0,

∞ >
1

εp
E[‖Z1‖p2] =

∫ ∞

0
P(‖Z1‖p2 ≥ εpt) dt ≥

∞∑

i=1

P(‖Zi‖p2 ≥ εpi).
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By the Borel-Cantelli lemma, the event ‖Zn‖2 ≥ εn1/p occurs only finitely often, and so the

claim follows. Meanwhile, the strong law of large numbers guarantees that ΣZ
a.s.→ I.

For more quantitative parameters, we first get by Markov’s inequality that

P(max
i∈[n]
‖Zi‖2 > t) ≤ nE[‖Z1‖p2]

tp
≤ nτpdp/2

tp
,

so setting M ≍ τ
√
dn1/p/β1/p, we have maxi ‖Zi‖2 ≤ M/c1 with probability at least 1 − β.

To show concentration of the covariance matrix, we apply Chen et al. [8, Theorem A.1 Part
2], treating p as a constant, obtaining

nE
[ ∥∥ΣZ − I

∥∥p/2
op

]2/p
.
√

n log d

√
E[‖Z‖42] + (n2/p log d)E[‖Z1‖p2]2/p

. max{
√

n log d, n2/p log d}E[‖Z1‖p2]2/p,

and so by Markov’s inequality

P(
∥∥ΣZ − I

∥∥
op

> 1
2) . max{n−p/4 logp/4 d, n1−p/2 logp/2 d}E[‖Z1‖p2] .

τp(d log d)p/2

np/2−1
,

which has bound β when n & (τ2d log d)p/(p−2)β−2/(p−2). ♦

5.1 Accuracy of PRIVMEAN

We give our promised accuracy guarantee whenever Assumption A1 holds. Though not strictly
necessary, we state the theorem assuming that δ is not too small to allow for a cleaner result.
Throughout, c denotes a numerical constant whose value can change from line to line.

Theorem 3. Let ε > 0 and e−d ≤ δ ≤ 1
n be privacy parameters and let Assumption A1 hold.

Let B ≥M2 and suppose n ≥ c
ε2
B log2 1

δ . Let µ̃ = PRIVMEANB,ε,δ(X1:n). Then with probability
at least 1− (β + 5δ), µ̃ 6= ⊥ and

∥∥µ̃−Xn

∥∥
Σ
≤ c
√
Bd log(1δ )

nε
.

Proof. We first show under the event Esamp that with probability at least 1 − 4δ over the
randomness in PRIVMEAN, both COVSAFE and MEANSAFE prune no observations, meaning the
sets of removed indices R = ∅ in both procedures (so that Line 7 in COVSAFE and Line 6

in MEANSAFE never fail), and thus µ̃ = Xn + Σ
1/2
n ZN. As Σn � 3

2Σ on Esamp, we have that

‖Σ1/2
n ZN‖2Σ ≤ 3

2‖ZN‖22. The result then follows follows once we show that ‖ZN‖2 ≤ c
√
Bd log( 1

δ
)

nε
with probability at least 1− δ and take a union bound over these events and Esamp.

Rearranging the condition in Line 7 of COVSAFE, the element Xi−Xn/2+i is pruned in the
first iteration only if

(Zcov)i + (Zcov)n/2+1 > log(B)− log(
∥∥Xi −Xn/2+i

∥∥2
Σn

)

(⋆)

≥ log(c1B/8M2) ≥ log(c1/8),

where (⋆) holds for all i ∈ [n/2] on event Esamp because

∥∥Xi −Xn/2+i

∥∥2
Σn
≤ 2

∥∥Xi −Xn/2+i

∥∥2
Σ
≤ 4 ‖Xi − µ‖2Σ + 4

∥∥Xn/2+i − µ
∥∥2
Σ
≤ 8M2/c1. (5)
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As c1 ≥ 64e by Assumption A1, if ‖Zcov‖∞ ≤ 1/2 then COVSAFE in line 7 prunes no entries,
instead simply passing Σn to MEANSAFE so long as Wcov + m > 0 (see line 14). Recall that

(Zcov)j
iid∼ Lap(σZ) for j = 1, . . . , n/2 + 1 and σZ = 32

√
eB(mmax+1)

nε ≤ cB log 1

δ
nε2 , so by taking a

union bound over the entries, we have with probability at least 1− δ that

‖Zcov‖∞ ≤
cB log 1

δ

nε2
log

(
n/2 + 1

δ

)
≤ 1

2
,

where the last inequality is by the assumptions that n ≥ cB log2( 1
δ
)

ε2
and δ ≤ 1

n . Also recall

that Wcov ∼ Lap(16ε ) and m = 16
ε log 1

δ , so Wcov +m > 0 with probability at least 1− δ
2 .

Continuing to the next phase of PRIVMEAN, MEANSAFE with input A = Σn prunes the
indices Sj only if

D̃j = Dj + (Z ′
top)j > log(

√
B/4).

By the same argument we used to obtain inequality (5), on Esamp we have for all j ∈ [n/b]
that

Dj = log(diamΣn
(XSj )) ≤ log(

√
8M2/c1),

and so if
∥∥Z ′

top

∥∥
∞ ≤ 1/2 then

D̃j ≤ log(
√

8M2/c1) +
1

2
≤ log(

√
B/4),

where the last inequality follows from c1 ≥ 64e and B ≥ M2. Thus, MEANSAFE prunes

no entries, and µ̃ = Xn + Σ
1/2
n ZN so long as Wmean + 2k

3 > 0 (see Line 10). Recall that

(Z ′
top)j

iid∼ Lap(σtop) for j = 1, . . . , n/b and σtop = 8k
nε

B
√
e

1−B
√
e/n
≤ cB log( 1

δ
)

nε2 . Another union

bound gives that with probability at least 1− δ,

‖Zcov‖∞ ≤
cB log(1δ )

nε2
log

n

bδ
≤ 1

2
,

where the last inequality follows from the assumption n ≥ cB log2 1

δ
ε2 and δ ≤ 1

n . Also, Wmean ∼
Lap(8ε ) and

2k
3 = 16

ε log 3
δ − 2, so Wmean − k > 8

ε log
3
δ − 2 ≥ 0 with probability at least 1− δ.

Therefore, PRIVMEAN returns Xn + Σ
1/2
n ZN with probability at least 1 − 4δ on the event

Esamp. Recall that ZN ∼ N(0, σ2
N
I) with σN = 20b

√
B

nε exp(3σtop log
12n
bδ ), and because σtop ≤

cB log( 1
δ
)

nε2
, δ ≤ 1

n , and n ≥ cB log2( 1
δ
)

ε2
, we have that σN ≤ c

√
B log( 1

δ
)

nε . Classical tail bounds on
the χ2-distribution [29, Lemma 1] give with probability at least 1− δ that

∥∥ZN
∥∥2
2
≤ σ2

N

[
d+ 2

√
d log 1

δ + 2 log 1
δ

]
≤ cBd log2 1

δ

n2ε2
,

where the last inequality follows from the bound on σN and assumption that e−d ≤ δ.

5.2 Adapting to heavy-tailed data

In practice, we may not have a priori knowledge of the concentration properties of the data.
Given the necessarily slowed rates of convergence for private estimators of means of random
variables with only pmoments [5], it is essential to be adaptive to the actual scale (and number
of moments) of the problem. We therefore develop ADAMEAN, which automatically tunes the
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threshold parameter B by repeatedly calling PRIVMEAN and doubling B until µ̃ 6= ⊥. The
key is that upon termination of ADAMEAN, the effective B is at most twice the realized scale
O(1)maxi≤n ‖Zi‖2 of the random variables. To ensure privacy irrespective of the number of
calls to PRIVMEAN, with each successive call ADAMEAN progressively decreases the privacy budget
allocated to PRIVMEAN; in particular, as

∑∞
t=1 1/t

2 = π2/6, via basic composition we can bound

the total privacy loss of ADAMEAN by a factor π2

6 over the privacy loss of PRIVMEAN. Aside from
an extra factor polylogarithmic in B/d, ADAMEAN matches the accuracy of PRIVMEAN, as we
show presently.

Algorithm 5: Fully Adaptive Private Mean Estimation (ADAMEAN)

Input : data x1:n
Params: privacy budget (ε, δ)
Output: mean estimate µ̃

1 for t = 1, 2, . . . do
2 µ̃t ← PRIVMEANd2t−1,(ε/t2,δ/t2)(x)

3 if µ̃t 6=⊥ then
4 return µ̃t

Theorem 4 (Accuracy of ADAMEAN). Let ε > 0 and e−d ≤ δ ≤ 1
n be privacy parameters and

let event Esamp hold. Let s = max{1, log2 4M2

d } and assume n ≥ cmax{d,M2}s2
ε2 log2 s2

δ . Let
µ̃ = ADAMEANε,δ(X1:n). Then with probability at least 1− (5 + π2/3)δ,

∥∥µ̃−Xn

∥∥
Σ
≤ cs2 log(s

2

δ )max{M
√
d,M log(s

2

δ ), d}
nε

. (6)

Proof. Let t⋆ be the smallest positive integer such that M2 ≤ d2t
⋆−1 and let tstop be the

iteration when ADAMEAN terminates (which may be infinite). Note that t⋆ ≤ s. The proof
comes in two parts: on the event Esamp, we first show that either tstop > t⋆ or µ̃ satisfies the
claim (6) with probability at least 1 − π2δ/6; secondly, we show ADAMEAN terminates with
tstop ≤ t⋆ with probability at least 1− 5δ. The result then follows via a union bound.

We carry out the first part with the help of the following lemma.

Lemma 5.1. Let ε > 0 and e−d ≤ δ ≤ 1
n be privacy parameters and let B ≥ 0. Suppose the

event Esamp holds and let µ̃ = PRIVMEANB,(ε,δ)(X1:n). Then with probability at least 1−2δ over
the randomness of PRIVMEAN, µ̃ = ⊥ or

∥∥µ̃−Xn

∥∥
Σ
≤ c log 1

δ max{M log 1
δ ,
√
Bd}

nε
.

Proof. Suppose µ̃ 6= ⊥ as otherwise the claim is trivial. Let Σ̂ denote the covariance estimate
of COVSAFE (that is, ΣT at the final iteration of COVSAFE), and let µ̂ denote the empirical mean
of the observations not pruned by MEANSAFE so that µ̃ = µ̂+ Σ̂1/2ZN. Then by the condition
for returning ⊥ in Line 11 of MEANSAFE, MEANSAFE prunes at most b(2k3 +Wmean) points and
so

∥∥µ̂−Xn

∥∥
Σ
≤ b(2k3 +Wmean)maxi ‖Xi − µ̂‖Σ

n

≤ b(2k3 +Wmean) (maxi ‖Xi − µ‖Σ + ‖µ− µ̂‖Σ)
n
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≤ 2b(2k3 +Wmean)maxi ‖Xi − µ‖Σ
n

(⋆)

≤ 2b(2k3 +Wmean)M√
c1n

,

with (⋆) following directly from Esamp. Recalling that k = 24
ε log 3

δ − 3 and W ∼ Lap(8ε ),

it follows that 2k
3 + W < 24

ε log 3
δ with probability at least 1 − δ

6 . Recalling also that b =

1 + log2
6n2

δ , it follows that on Esamp,

∥∥µ̂−Xn

∥∥
Σ
≤ 2(1 + log2

6n2

δ )(24ε log 3
δ )M√

c1n
≤ cM log2 1

δ

nε

with probability at least 1− δ
6 .

Meanwhile, observe Esamp implies Σ̂ � Σn � 2Σ as pruning entries (line 7) in COVSAFE

only shrinks its covariance estimate. Thus, ‖Σ̂1/2ZN‖Σ ≤
√
2‖Σ̂1/2ZN‖Σ̂ =

√
2‖ZN‖2. From

the same argument as in Theorem 3,

∥∥ZN
∥∥
2
≤ c
√
Bd log(1δ )

nε

with probability at least 1− δ.
The preceding two displays together imply Lemma 5.1 after taking a union bound.

Applying Lemma 5.1 with the mapping B = d2t−1, ε 7→ ε/t2 and δ 7→ δ/t2, we have for
any 1 ≤ t ≤ t⋆ that under the event Esamp, with probability at least 1− 2δ/t2, either µ̃t = ⊥
or

∥∥µ̃t −Xn

∥∥
Σ
≤ ct2 log(t2/δ)max{M log(t2/δ), d2(t−1)/2}

nε
,

where the latter case µ̃t satisfies Eq. (6) as t ≤ t⋆ ≤ s. Then via a union bound this same
event holds simultaneously for all 1 ≤ t ≤ t⋆ with probability at least 1 − π2δ/3, and thus
either tstop > t⋆ or ADAMEAN terminates and µ̃ satisfies the claim (6).

Proceeding to the second part of the proof, recall that d2t
⋆−1 ≥ M2 and so by applying

Theorem 3 with B = d2t
⋆−1, it follows under Esamp that µ̃t⋆ 6= ⊥, and thus ADAMEAN terminates

after tstop ≤ t⋆ iterations, with probability at least 1 − 5δ/(t⋆)2 ≥ 1 − 5δ. The claim (6)
follows.

Example 3 (Example 1 continued): In this case, Σ−1/2Xi is τ2-sub-Gaussian, so M2 .

τ2(d + log n
β ) in Assumption A1. Thus, the sample mean concentrates as

∥∥Xn − µ
∥∥
Σ

.

τ
√

(d+ log(1/δ))/n with probability at least 1 − δ, and assuming δ ≥ e−d, Theorem 4
then implies with probability at least 1 − O(δ) over µ̃ = ADAMEANε,δ(X1:n) that (ignoring
polylogarithmic factors in n)

‖µ̃− µ‖Σ = Õ

(
τ

√
d

n
+

τd log 1
δ

nε

)
.

This rate is, up to a factor of log 1
δ and polylogarithmic factors in n, minimax-optimal for

the sub-Gaussian setting (see [35] or [26, Lemma 6.7] for a lower bound on Gaussian mean
estimation with known covariance matrix). ♦

Example 4 (Example 2, continued): Recall here that E[‖Xi − µ‖pΣ] ≤ τpdp/2 for p ≥ 4 and
τ ≥ 1. By Theorem 4, with probability at least 1− 5δ over µ̃ = ADAMEANε,δ(X1:n), we have

‖µ̃− µ‖Σ ≤
∥∥Xn − µ

∥∥
Σ
+ Õ

(
maxi ‖Xi − µ‖Σ

√
d log 1

δ

nε

)
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so long as the empirical covariance satisfies 1
2Σ � Σn � 3

2Σ. As this occurs with constant

probability and ‖Xn − µ‖Σ .
√

d/n with constant probability, we substitute the bounds on
maxi ‖Xi − µ‖Σ from Example 2 to obtain that with (any) constant probability,

‖µ̃− µ‖Σ = Õ

(√
d

n
+

τd log 1
δ

n1−1/pε

)
.

By combining minimax lower bounds of Barber and Duchi [5, Proposition 4] and Steinke and
Ullman [35], the best known minimax lower bound is that with constant probability,

‖µ̃− µ‖Σ &

√
d

n
+ τ

d
2p−1

2p log
p−1

2p 1
δ

(nε)1−1/p
.

The adaptive method thus achieves optimal scaling in n, but it may be loose in ε and off by
a factor of d1/2p in dimension dependence. ♦

6 Proofs for stable covariance estimation

In this section, we provide the proofs of Lemmas 4.1 and 4.2, though we begin with a collection
of preliminary results that allow us to actually prove the main two lemmas. In the proofs,
we refer to each execution of the while loop beginning in Line 4 of COVSAFE as an iteration
of COVSAFE and use the transcript Γ as a convenient means for tracking the full execution of
COVSAFE through all iterations.

6.1 Properties of COVSAFE

We first formalize deterministic properties about the execution of COVSAFE, giving conditions
under which outputs of COVSAFE are quite stable. In the sequel, we use these to give sets
to which the noise variables Z and W belong with high probability, guaranteeing stability.
Recall the notation (4) that Σ̂(x, z, w) is the output of COVSAFE on input sample x and noise
z ∈ Rn/2+1, w ∈ R, with transcript Γ = ([Rt]t≤T , [Σt]t≤T , T ) depending implicitly on (x, z, w),

and Σ̂−i(x, z, w) is the corresponding leave-one-out covariance. We shorthand Σ̂ = Σ̂(x, z, w)
and Σ̂−i = Σ̂−i(x, z, w) and take x̃ = x1:n/2 − xn/2+1:n as in Line 1 of COVSAFE.

Lemma 6.1 gives necessary and sufficient conditions for pruning x̃i in iteration t + 1 of
COVSAFE, i.e., i ∈ Rt+1, and Lemma 6.2 gives similar conditions for ever pruning x̃i (that is,
whether i ∈ RT ).

Lemma 6.1. Index i ∈ Rt+1 if and only if log
(
‖x̃i‖2Σt

)
+ zi + zn/2+1 > log(B).

Proof. The “if” direction is immediate from the condition for adding an element to Rt+1 (see
line 7 of COVSAFE). For the other direction, if i ∈ Rt+1 then (again from the same condition)
we must have for some s ≤ t that

log
(
‖x̃i‖2Σs

)
+ zi + zn/2+1 > log(B).

Because s ≤ t, we have Rs ⊂ Rt and therefore Σs � Σt, this in turn implies log
(
‖x̃i‖2Σt

)
+

zi + zn/2+1 > log(B).
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Lemma 6.2. Index i /∈ RT if and only if log(‖x̃i‖2ΣT
) + zi + zn/2+1 ≤ log(B).

Proof. Observe that ΣT−1 = ΣT because the inner while loop of COVSAFE terminates only if
the algorithm prunes no observations in the previous iteration (see line 10 of COVSAFE). Then
the claim follows by applying Lemma 6.1 with t = T − 1.

Finally, we may completely characterize Σ̂−i via the removed indices RT,−i and the
threshold m+ w, as prescribed by the lemma below.

Lemma 6.3. Σ̂−i =
1
n

∑
j /∈RT,−i∪{i} x̃j x̃

T
j if and only if |RT | ≤ m+ w.

Proof. The claim follows immediately from the return condition in Line 14 of COVSAFE, as
Σ̂ 6= ⊥ implies Σ̂−i = Σ̂− 1

n1{i /∈ RT } x̃ix̃Ti , where Σ̂ = ΣT = 1
n

∑
j /∈RT

x̃j x̃
T
j by definition.

6.2 Proof of Lemma 4.1

We shorthand Σ̂ = Σ̂(x,Z,w) and Σ̂−i = Σ̂−i(x,Z,w) throughout the proof. Assume that

Σ̂ 6= ⊥, as otherwise the result is trivial, and recall Zj
iid∼ Lap(σ). Observe if i ∈ RT we have

Σ̂ = Σ̂−i by definition; thus, we need only consider i 6∈ RT . Proceeding, Lemma 6.2 gives

log
(
‖x̃i‖2Σ̂

)
+ Zi + Zn/2+1 ≤ log(B)

for all i /∈ RT , from which it follows that ‖x̃i‖2Σ̂ ≤ B
√
e whenever Zi + Zn/2+1 ≥ −1/2. We

now use that ‖x̃i‖2Σ̂ ≤ B
√
e implies that dpsd(Σ̂, Σ̂−i) is small, which follows from the following

linear algebraic lemma.

Lemma 6.4. Let A ∈ Rd×d be positive semi-definite and a ∈ Rd satisfy ‖a‖2A < 1. Then

dpsd(A,A − aaT ) ≤ 1

1− ‖a‖2A
‖a‖2A .

Proof. Define C = A− aaT for shorthand. We first establish that Col(C) = Col(A). Because
‖a‖2A is finite, it follows that a ∈ Col(A) and so Col(C) ⊂ Col(A). On the other hand, by
expanding C we have

C = A1/2(I −A†/2aaTA†/2)A1/2 � (1− ‖a‖2A)A, (7)

thus implying that Col(C) = Col(A).
We also have from (7) that C† � 1

1−‖a‖2A
A†, and so

∥∥C†/2(A− C)C†/2∥∥
∗ =

∥∥C†/2aaTC†/2∥∥
∗ = ‖a‖

2
C ≤

‖a‖2A
1− ‖a‖2A

.

A parallel calculation yields ‖A†/2(C −A)A†/2‖∗ = ‖a‖2A, proving the claim.

Lemma 6.4 immediately shows that Σ̂−i = Σ̂− 1
n x̃ix̃

T
i 1{i ∈ RT } satisfies

dpsd(Σ̂, Σ̂−i) ≤
1

1−B
√
e/n

B
√
e

n

whenever Zi + Zn/2+1 ≥ −1
2 . To show that this occurs with high probability, we use the

following result, which follows from the observation that if c ≥ 0, then for any independent
variables X,Y we have P(X + Y > c) ≤ P(X > c/2) + P(Y > c/2) by a union bound:

Observation 6.1. Let X,Y
iid∼ Lap(σ) and c ≥ 0. Then P(X + Y > c) ≤ exp(− c

2σ ).

We see that P(Zi + Zn/2+1 < −1
2) ≤ exp(− 1

4σ ) as claimed.
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6.3 Proof of Lemma 4.2

The proof of Lemma 4.2 comes in four steps. The crux of the proof is a coupling argument
where, via the running assumption x̃−i = x̃′−i, we equate the execution of COVSAFE on x to
that on x′ by perturbing Z in a careful way that changes the distribution of Z little. Step
one in this approach, which we provide in Lemma 6.5, is a deterministic lemma relating the
collections R and R′ of indices COVSAFE removes on adjacent inputs x and x′ via the noise input
values z. In the second and third steps, which consist of Lemmas 6.6 and 6.7 respectively,
we construct a map π : Rn/2+1 → Rn/2+1 such that Z and π(Z) have similar distributions
and for which Σ̂−i(x, z,W ) and Σ̂−i(x

′, π(z),W ) (recall the definition (4b)) likewise have
similar distributions for all z, where we use the randomness in W for the latter distributional
approximation. Lemma 6.6 relates the distributions of the removed indices RT,−i, while
Lemma 6.7 relates the probabilities that COVSAFE aborts and returns ⊥. In Sec. 6.3.1, we
finally synthesize the intermediate lemmas to give the proof of Lemma 4.2.

Our first step is the deterministic lemma relating the collections of removed indices.

Lemma 6.5. Let z, z′ ∈ Rn/2+1 and w ∈ R, and let

Σ̂,
(
[Rt]

T
t=0, [Σt]

T
t=0, T

)
:= COVSAFEB,m(x; z, w),

Σ̂′,
(
[R′

t]
T ′

t=0, [Σ
′
t]
T ′

t=0, T
′
)
:= COVSAFEB,m(x′; z′, w).

Assume x̃′i = 0. The following hold.

(a) If z′j + z′n/2+1 ≥ zj + zn/2+1 for all j ∈ RT,−i, then RT,−i ⊂ R′
T ′,−i.

(b) If z′j + z′n/2+1 ≥ zj + zn/2+1 for all j /∈ R′
T ′,−i, then RT,−i ⊂ R′

T ′,−i.

Additionally assume that n ≥ 2B
√
e and zi + zn/2+1 ≥ −1/2. Then the following hold.

(c) If z′j + z′n/2+1 ≤ zj + zn/2+1 − 2B
√
e/n for all j ∈ R′

T ′,−i, then R′
T ′,−i ⊂ RT,−i.

(d) If z′j + z′n/2+1 ≤ zj + zn/2+1 − 2B
√
e/n for all j /∈ RT,−i, then R′

T ′,−i ⊂ RT,−i.

Proof. We prove each claim by induction over t ∈ N.
Proceeding with the first claim (a), observe trivially that R0,−i = ∅ ⊂ R′

T ′,−i. Now suppose
for the sake of induction that Rt,−i ⊂ R′

T ′,−i. If t = T then there is nothing to show, so we
take t < T . Our assumption that x̃−i = x̃′−i and x̃′i = 0 implies Σt � Σ′

T ′ . Thus, for all
j ∈ Rt,−i ⊂ RT,−i we have

log(B)
(i)
< log

(
‖x̃j‖2Σt

)
+ zj + zn/2+1

(ii)

≤ log
(
‖x̃j‖2Σ′

T ′

)
+ zj + zn/2+1

(iii)

≤ log
(
‖x̃j‖2Σ′

T ′

)
+ z′j + z′n/2+1,

where inequality (i) follows from Lemma 6.1 (applied with noise z), inequality (ii) because
Σt � Σ′

T ′ , and inequality (iii) is by assumption in case (a). Lemma 6.2 (with data x′ and
noise z′) then gives that j ∈ R′

T ′,−i if and only if logB < log(‖x̃j‖2Σ′
T ′
) + z′j + z′n/2+1, and as

j ∈ Rt,−i was arbitrary we have Rt+1,−i ⊂ R′
T ′,−i. This completes the inductive step and so

Rt,−i ⊂ R′
T ′,−i for all t ≤ T and the first claim holds.

The proof of claim (b) relies on a similar inductive argument as that for the first claim (a).
Equivalent to the inclusion RT,−i ⊂ R′

T ′,−i is that if j 6∈ R′
T ′,−i, then j 6∈ RT,−i. Consider
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j 6∈ R′
T ′,−i, and begin with the inductive assumption that Rt,−i ⊂ R′

T ′,−i; it suffices to show
that j 6∈ Rt+1,−i. Because Σt � Σ′

T ′ by construction of Σt, we obtain

log
(
‖x̃j‖2Σt

)
+ zj + zn/2+1 ≤ log

(
‖x̃j‖2Σ′

T ′

)
+ zj + zn/2+1

(i)

≤ log
(
‖x̃j‖2Σ′

T ′

)
+ z′j + z′n/2+1 ≤ log(B),

where step (i) is by the assumption that zj + zn/2+1 ≤ z′j + z′n/2+1 in part (b) and the final

inequality is Lemma 6.2. Applying Lemma 6.1 with the inequality log
(
‖x̃j‖2Σt

)
+zj+zn/2+1 ≤

logB then guarantees that j 6∈ Rt+1,−i as desired, completing the proof of claim (b).
For the proof of claim (c), we induct on R′

t,−i for t ≤ T ′ and must account for the possibility

that ΣT � Σ′
t even if R′

t,−i ⊂ RT,−i, because ΣT may include the term x̃ix̃
T
i (i.e., i /∈ RT ).

The base case for t = 0 is trivial, so assume that R′
t,−i ⊂ RT,−i. If i 6∈ RT , then Lemma 6.2

and the standing assumption that zi + zn/2+1 ≥ −1
2 guarantee that

log
(
‖x̃j‖2ΣT

)
≤ logB − zi − zn/2+1 ≤ logB +

1

2
= log(B

√
e),

i.e., ‖x̃j‖2ΣT
≤ B
√
e. We require the following technical observation about positive definite

matrices, whose proof we temporarily defer.

Observation 6.2. Let Σ ∈ Rd×d be positive semi-definite, α ≥ 0, and u ∈ Rd. Define
Σ′ := Σ− αuuT . If ‖u‖2Σ ≤ 1

2α , then Σ′ � 1
2Σ and for any v ∈ Col(Σ),

∣∣∣log
(
‖v‖2Σ

)
− log

(
‖v‖2Σ′

)∣∣∣ ≤ 2α ‖u‖2Σ .

As ‖x̃i‖2ΣT
≤ B
√
e, Observation 6.2 applies with u = x̃i and α = 1

n when n ≥ 2B
√
e, and thus

log
(
‖v‖2ΣT− 1

n
1{i/∈RT }x̃ix̃T

i

)
≤ log

(
‖v‖2ΣT

)
+

2B
√
e

n
(8)

for all v, and in particular, for v = x̃j for each j ∈ [n/2]. On the other hand, regardless of
whether i ∈ RT , the inductive assumption that R′

t,−i ⊂ RT,−i guarantees that

Σ′
t � ΣT −

1

n
1{i /∈ RT } x̃ix̃Ti . (9)

Considering j ∈ R′
t+1,−i, then, Lemma 6.1 implies

logB < log(‖x̃j‖2Σ′
t
) + z′j + z′n/2+1

(i)

≤ log
(
‖x̃j‖2ΣT− 1

n
1{i 6∈RT }x̃ix̃T

i

)
+ z′j + z′n/2+1

(ii)

≤ log
(
‖x̃j‖2ΣT

)
+

2B
√
e

n
+ z′j + z′n/2+1

(iii)

≤ log
(
‖x̃j‖2ΣT

)
+ zj + zn/2+1.

Here inequality (i) follows from the ordering relation (9); inequality (ii) holds because if
i ∈ RT , then ΣT = ΣT − 1

n1{i 6∈ RT } x̃ix̃Ti and if i 6∈ RT then inequality (8) holds; the
final inequality (iii) follows by assumption under claim (c). This gives the induction that
R′

t+1,−i ⊂ RT,−i, as Lemma 6.1 shows that j ∈ RT,−i.
Claim (d) follows from an essentially identical induction argument, mutatis mutandis, as

that for claim (c).
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Proof of Observation 6.2. We finally return to prove the claimed observation. That
Σ′ � 1

2Σ follows by observing that u ∈ Col(Σ) and hence

Σ− αuuT = Σ1/2 (I − αΣ†/2uuTΣ†/2)︸ ︷︷ ︸
�(1/2)I

Σ1/2 � 1

2
Σ.

This also implies that Col(Σ′) = Col(Σ).
To prove the remainder of the lemma, it suffices to show for v ∈ Col(Σ) that log(‖v‖2Σ′) ≤

log(‖v‖2Σ) + 2α ‖u‖2Σ, since the other direction is immediate from Σ � Σ′. Observe that

(Σ− αuuT )† = Σ†/2(I − αΣ†/2uuTΣ†/2)−1Σ†/2.

By the inequality I − αΣ†/2uuTΣ†/2 � (1− α ‖u‖2Σ)I we have

(I − αΣ†/2uuTΣ†/2)−1 � (1− α ‖u‖2Σ)−1I � (1 + 2α ‖u‖2Σ)I,

where the final inequality follows from the assumption that ‖u‖2Σ ≤ 1
2α . Combining this with

the preceding display implies that

Σ′† � (1 + 2α ‖u‖2Σ)Σ†

and so

log
(
‖v‖2Σ′

)
≤ log

(
(1 + 2α ‖u‖2Σ) ‖v‖2Σ

)
≤ log

(
‖v‖2Σ

)
+ 2α ‖u‖2Σ

as desired.

We move to the second step we outline at the beginning of this section, which relates the
distributions of removed indices RT in the execution of COVSAFE on adjacent inputs x and x′.
The key idea is to construct a deterministic map π so that the execution of COVSAFE on input
x with noise z and that on x′ with noise π(z) is similar—leveraging Lemma 6.5—and to show
that the distributions of π(Z) and Z are similar. Lemma 6.3 shows that the set of outlier
indices RT,−i completely determines Σ̂−i except in the case that Σ̂−i = ⊥, which occurs with
high probability if |RT,−i| is large, so the next lemma controls the distribution of the sets
of removed indices. To state the lemma, we require a few events whose probabilities we can

control. Recalling that Zj
iid∼ Lap(σZ), define

Eprune := {z ∈ Rn/2+1 | zj + zn/2+1 ≥ −1/2 for all j ∈ [n/2]}. (10)

To set notation for the remainder of the proof, we shorthand the definition (4a) as

Σ̂, ([Rt]
T
t=0, [Σt]

T
t=0, T ) := COVSAFEB,m(x;Z,W )

Σ̂′, ([R′
t]
T ′

t=0, [Σ
′
t]
T ′

t=0, T
′) := COVSAFEB,m(x′;Z,W ),

(11)

and the definition (4b) as

Σ̂−i = Σ̂− 1

n
1{i 6∈ RT } x̃ix̃Ti and Σ̂′

−i = Σ̂′ − 1

n
1
{
i 6∈ R′

T

}
x̃′ix̃

′T
i ,

where ⊥+ v = ⊥ for any vector v.
We have the following distributional guarantee on the removed indices regardless of W .
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Lemma 6.6. Let S ⊂ [n/2] \ {i} and define α = 2
√
eB(|S|+1)
nσZ

. If x̃′i = 0, then

(a) P(RT,−i = S,Z ∈ Eprune) ≤ exp (α)P(R′
T ′,−i = S).

(b) P(R′
T ′,−i = S,Z ∈ Eprune) ≤ exp (α)P(RT,−i = S).

Proof. The input noise Z completely determines RT and R′
T ′ in COVSAFE (see the while loop

constructing Rt in lines 4–12). Consequently, we may define sets of input noise Z yielding a
given set of removed indices, letting

Z(S) := {z ∈ Rn/2+1 | RT,−i = S for Z = z}
Z ′(S) := {z ∈ Rn/2+1 | R′

T ′,−i = S for Z = z},

so Z ∈ Z(S) is equivalent to RT,−i = S. It suffices to show that

P (Z ∈ Z(S) ∩ Eprune) ≤ eαP
(
Z ∈ Z ′(S)

)
and

P
(
Z ∈ Z ′(S) ∩ Eprune

)
≤ eαP (Z ∈ Z(S)) , (12)

as claim (a) follows via the first bound and claim (b) the second.
Proceeding with the first bound, define η ∈ Rn/2+1 and π : Rn/2+1 → Rn/2+1 by

ηj :=





2B
√
e/n j ∈ S

−2B√e/n j = n/2 + 1

0 otherwise,

π(z) := z + η.

The deterministic removals Lemma 6.5 shows that on Z ∈ Eprune, if we let z = Z and z′ = π(z)
so that zj + zn/2+1 ≥ z′j + z′n/2+1 for j ∈ S, then parts (a) and (d) of Lemma 6.5 give

π(Z(S) ∩ Eprune) ⊂ Z ′(S).

The first bound in (12) then follows by the standard Laplacian ratio bounds in Lemma 2.7.

Indeed, we have Zj
iid∼ Lap(σZ) = Lap(‖η‖1 σZ

‖η‖
1

) and ‖η‖1 = 2
√
eB(|S|+1)

n . Then setting

β = ‖η‖1 yields β/σZ ≤ α, so we can apply Lemma 2.7 to obtain the claimed bound (12) via

P(Z ∈ Z(S) ∩ Eprune) ≤ eαP(Z ∈ π(Z(S) ∩ Eprune)) ≤ eαP(Z ∈ Z ′(S)).

The proof of the second bound (12) is essentially the same, only this time we let

ηj :=

{
2B
√
e/n j ∈ S

0 otherwise,
π(z) = z + η.

Then the event Z ∈ Eprune implies π(Z) ∈ Eprune, as π(Z)j + π(Z)n/2+1 ≥ Zj +Zn/2+1 for all
j ∈ [n/2]. We may thus appeal to cases (b) and (c) of Lemma 6.5 with the settings z = π(Z),
z′ = Z and R′

T ′,−n = S and proceed with the same argument as above.

The third step we outline at the beginning of the proof of Lemma 4.2 is to relate the
probabilities that COVSAFE aborts on neighboring inputs x and x′. Recall Σ̂ and Σ̂′ are the
covariances COVSAFE outputs on inputs x and x′, respectively, as in definition (11).

Lemma 6.7. Let σZ , σW > 0, Zj
iid∼ Lap(σZ), and W ∼ Lap(σW ) in definition (11). If

x̃−i = x̃′−i and x̃′i = 0, then
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(a) P(Σ̂ = ⊥) ≤ exp( 1
σW

)P(Σ̂′ = ⊥).

(b) P(Σ̂′ = ⊥, Z ∈ Eprune) ≤ exp(2
√
eB

nσZ
)P(Σ̂ = ⊥).

Proof. Let f denote the density of W , so that f(w) = 1
2σWcov

exp(−|w|/σWcov
), and thus

| log f(w)
f(w−1) | ≤ 1

σWcov

for all w, and recall the thresholdm ∈ N in line 14 of COVSAFE. Proceeding

with the first claim of the lemma, we have the following sequence of inequalities:

P
(
Σ̂ = ⊥

) (i)

≤
∫

P (|RT | > m+ w) f(w)dw ≤
∫

P (|RT,−i| > m+ w − 1) f(w)dw

(ii)

≤
∫

P
(∣∣R′

T ′,−i

∣∣ > m+ w − 1
)
f(w)dw

≤ exp(1/σWcov
)

∫
P
(∣∣R′

T ′,−i

∣∣ > m+ w − 1
)
f(w − 1)dw

(iii)
= exp(1/σWcov

)P(Σ̂′ = ⊥).
Here, step (i) follows from Lemma 6.3 that Σ̂′ = ⊥ if and only if |R′

T | > m+w. Step (ii) follows
from the coupling argument in Lemma 6.5 part (a) : because the noise Z is identical in both
executions of COVSAFE(x;Z,W ) and COVSAFE(x′;Z,W ), we have RT,−i ⊂ R′

T ′,−i. Step (iii)
applies because of Lemma 6.3 again, as the assumption x̃′i = 0 guarantees R′

T ′,−i = R′
T ′ (recall

the rejection threshold in Line 7). Claim (a) follows.
For the claim (b), again applying Lemma 6.3 we have

P
(
Σ̂′ = ⊥, Z ∈ Eprune

)
=

∫
P
(∣∣R′

T ′,−i

∣∣ > m+ w,Z ∈ Eprune
)
f(w)dw

and ∫
P (|RT,−i| > m+ w) f(w)dw ≤ P

(
Σ̂ = ⊥

)
.

Combining these displays, it thus suffices to show for all w that

P
(∣∣R′

T ′,−i

∣∣ > m+ w,Z ∈ Eprune
)
≤ exp

(
2
√
eB

nσZ

)
P (|RT,−i| > m+ w) . (13)

To this end, we adopt a similar tack as in the proof of Lemma 6.6, defining

Z(w) := {z ∈ Rn/2+1 | |RT,−i| > m+ w for Z = z}
Z ′(w) := {z ∈ Rn/2+1 |

∣∣R′
T ′,−i

∣∣ > m+ w for Z = z}
and the single coordinate perturbation π(z) := z + η for η ∈ Rn/2+1 the vector with all zeros

except that ηn/2+1 = 2
√
eB
n . Similar to our proof of Lemma 6.6, the mapping π guarantees

that z′ = π(z) satisfies z′j + z′n/2+1 ≤ zj + zn/2+1 − 2B
√
e

n for all j, which is precisely the

condition for case (c) of Lemma 6.5, and so R′
T ′,−i ⊂ RT,−i irrespective of R′

T ′,−i and RT,−i.
It thus holds simultaneously for all w ∈ R that

π
(
Z ′(w) ∩ Eprune

)
⊂ Z(w).

Noting that ‖η‖1 =
2
√
eB
n , Lemma 2.7 on likelihood ratios for Laplace random variables then

guarantees

P(Z ∈ Z ′(w)∩Eprune) ≤ exp

(
2
√
eB

nσZ

)
P(Z ∈ π(Z ′(w)∩Eprune)) ≤ exp

(
2
√
eB

nσZ

)
P(Z ∈ Z(w)),

which is equivalent to inequality (13).
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6.3.1 Finalizing proof of Lemma 4.2

By combining Lemmas 6.6 and 6.7, we can prove the stability of COVSAFE. Recall the set
Eprune in (10) and that W ∼ Lap(σWcov

), and additionally define

Ethr :=
(
−∞, σWcov

log
1

γ

]
.

The key part of our argument is to show that when x and x′ are adjacent but x̃′i = 0, if the

noise variables Z,W satisfy Z ∈ Eprune and W ∈ Ethr, then for Σ̂ and Σ̂′ as in the call (11) the

leave-one-out covariances Σ̂−i and Σ̂′
−i are similar. We then bound the probabilities of the

individual events and use a group composition argument to give the lemma for arbitrary x̃′i.
With this in mind, let A ∈ Rd×d and note that for any fixed sample x, Σ̂ and Σ̂−i can

take only finitely many values. For

α =
1

σWcov

+
2
√
eB(mmax + 1)

nσZ
,

we show for any A ∈ Rd×d ∪ {⊥} that

P
(
Σ̂−i = A,Z ∈ Eprune,W ∈ Ethr

)
≤ exp(α)P

(
Σ̂′
−i = A

)
and (14)

P
(
Σ̂′
−i = A,Z ∈ Eprune,W ∈ Ethr

)
≤ exp(α)P

(
Σ̂−i = A

)
. (15)

Lemma 6.7 already implies both inequalities (14) and (15) hold for A = ⊥, so all that remains
is to show the same for A ∈ Rd×d.

Proceeding first with inequality (14), let f(w) = 1
2σWcov

exp(−|w|/σWcov
) be the density of

W and S(A) := {S ⊂ [n/2] \ {i} | A = 1
n

∑
j /∈S∪{i} x̃j x̃

T
j }. Marginalizing over W gives

P
(
Σ̂−i = A,Z ∈ Eprune,W ∈ Ethr

)

(i)
=

∫

Ethr
P (RT,−i ∈ S(A), |RT | ≤ m+ w,Z ∈ Eprune) f(w)dw

≤
∫

P (RT,−i ∈ S(A), |RT,−i| ≤ min{m+ w,mmax}, Z ∈ Eprune) f(w)dw,

where step (i) follows from the condition that |RT | ≤ m + w if and only if Σ̂−i 6= ⊥ from
Lemma 6.3, and the final inequality follows because Ethr = {w | w ≤ mmax}. Continuing,
note for each S ∈ S(A), we can have S = RT,−i with |RT,−i| ≤ min{m + w,mmax} only if
|S| ≤ min{m+ w,mmax} ≤ mmax, so that by case (a) of Lemma 6.6

P(RT,−i ∈ S(A), |RT,−i| ≤ min{m+ w,mmax}, Z ∈ Eprune)

≤ exp

(
2
√
eB(mmax + 1)

nσZ

)
P
(
R′

T ′,−i ∈ S(A),
∣∣R′

T ′,−i

∣∣ ≤ m+ w
)
.

Returning to the integral above, we obtain inequality (14) by integrating and applying
Lemma 6.3:

∫
P
(
R′

T ′,−i ∈ S(A),
∣∣R′

T ′,−i

∣∣ ≤ m+ w
)
f(w)dw = P(Σ̂′

−i = A)
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as R′
T ′,−i = R′

T ′ because x̃′i = 0 by assumption.
The proof of inequality (15) is essentially the same, only now we must take additional

care to account for the possibility that i ∈ RT . As in the preceding integral inequalities,
Lemma 6.3 gives

P
(
Σ̂′
−i = A,Z ∈ Eprune,W ∈ Ethr

)

≤
∫

Ethr
P
(
R′

T ′,−i ∈ S(A),
∣∣R′

T ′,−i

∣∣ ≤ min{m+ w,mmax}, Z ∈ Eprune
)
f(w)dw.

In this case, with reasoning identical to that above, we apply case (b) of Lemma 6.6 to achieve

P
(
R′

T ′,−i ∈ S(A),
∣∣R′

T ′,−i

∣∣ ≤ min{m+ w,mmax}, Z ∈ Eprune
)

≤ exp

(
2
√
eB(mmax + 1)

nσZ

)
P (RT,−i ∈ S(A), |RT,−i| ≤ m+ w) ,

so

P
(
Σ̂′
−i = A,Z ∈ Eprune,W ∈ Ethr

)

≤ exp

(
2
√
eB(mmax + 1)

nσZ

)∫
P (RT,−i ∈ S(A), |RT,−i| ≤ m+ w) f(w)dw.

We upper bound the final integral by noting that

P
(
Σ̂−i = A

)
(⋆)
=

∫
P (RT,−i ∈ S(A), |RT | ≤ m+ w) f(w)dw

≥
∫

P (RT,−i ∈ S(A), |RT,−i| ≤ m+w − 1) f(w)dw,

where (⋆) follows from Lemma 6.3, and then using | log f(w)
f(w+1) | ≤ 1

σWcov

for all w to see that

∫
P (RT,−i ∈ S(A), |RT,−i| ≤ m+ w) f(w)dw ≤ exp

(
1

σWcov

)
P
(
Σ̂−i = A

)
,

which gives inequality (15) once we substitute α = 1
σWcov

+ 2
√
eB(mmax+1)

nσZ
.

We combine inequalities (14) and (15) to get Lemma 4.2. For any set C ⊂ Rd×d ∪ {⊥},

P(Σ̂−i ∈ C) ≤ P(Σ̂−i ∈ C,Z ∈ Eprune,W ∈ Ethr) + P(Z 6∈ Eprune) + P(W 6∈ Ethr)
≤ eαP(Σ̂′

−i ∈ C) + P(Z 6∈ Eprune) + P(W 6∈ Ethr)

by inequality (14). We then have the immediate bounds P(W 6∈ Ethr) = P(W > σWcov
log 1

γ ) =
1
2 exp(− log 1

γ ) =
γ
2 . Similarly, P(Z 6∈ Eprune) ≤ n

2 exp(− 1
4σZ

) by Observation 6.1. The upper

bound on P(Σ̂′
−i ∈ C) is similar but uses inequality (15).

To this point, we have shown that if x and x′′ are adjacent samples differing only in that
the difference x̃i = xi − xn/2+i may be non-zero while x̃′′i = x′′i − x′′n/2+i = 0, then returning

to the notation (4) and identifying Σ̂−i = Σ̂−i(x,Z,W ) and Σ̂′
−i = Σ̂−i(x

′′, Z,W ),

Σ̂−i(x,Z,W )
d
=α,β Σ̂−i(x

′′, Z,W )
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for α = 1
σWcov

+ 2
√
eB(mmax+1)

nσZ
and β = γ

2 + n
2 exp(− 1

4σZ
). Thus we obtain that if x′ is any

sample satisfying x′−i = x−i,

Σ̂−i(x,Z,W )
d
=α,β Σ̂−i(x

′′, Z,W )
d
=α,β Σ̂−i(x

′, Z,W ).

Using group composition (Lemma 2.2), we obtain

Σ̂−i(x,Z,W )
d
=2α,β+eαβ Σ̂−i(x

′, Z,W ),

which is the desired Lemma 4.2.

7 Proofs for mean estimation

In this section, we provide the proofs of Lemmas 4.3 and 4.4. Throughout, we differentiate
outputs of MEANSAFE on inputs x versus x′ (orA versusA′) via tick marks, so that (for example)
µ̂ corresponds to the mean in Line 9 of MEANSAFE on input sample x, or D′

j corresponds to
the log-diameter in Line 2 of MEANSAFE on input sample x′. We will make this precise using
the function Γ(x,A) from (3), which is the transcript MEANSAFE outputs on input x,A.

7.1 Proof of Lemma 4.3

We shorthand µ̃(x,A) and µ̃(x′, A) as µ̃ and µ̃′ respectively, and unpack the corresponding
execution transcripts:

(D, D̃,R, t, µ̂) := Γ(x,A) and (D′, D̃′, R′, t′, µ̂′) := Γ(x′, A).

Throughout our arguments, i ∈ [n] denotes the index at which the samples x, x′ differ, that
is, x−i = x′−i while we may have xi 6= x′i.

The main idea in the proof of Lemma 4.3 is to first bound the sensitivity of the mean,
showing that (with high probability) ‖µ̂− µ̂′‖A is small, unless there are too many outlying
entries xj. We do this in Lemma 7.3 by showing that for appropriate subgroup sizes b (recall
the random partition S of [n] into blocks of size n/b in MEANSAFE), the MEANSAFE algorithm
correctly identifies all outliers without pruning many inlying datapoints. In the second step,
we finalize the proof (section 7.1.1) by combining the sensitivity bound with more or less
standard distributional stability guarantees for Gaussian distributions, which we list in the
preliminary section 2.

We begin by formalizing two properties that will be helpful to proving the sensitivity
bound in Lemma 7.3. We recall the notation t (respectively t′) for denoting the number of
pruned groups in Lines 5–8 of MEANSAFE on inputs x and x′, while R and R′ denote the sets
of all pruned indices. Of the next two lemmas, Lemma 7.1 bounds differences between R and
R′ and t and t′, while Lemma 7.2 is a generic lemma that bounds the difference of empirical
means with nested index sets. These two lemmas are combined in Lemma 7.3 to bound the
difference between the estimated mean µ̂ = 1

n−|R|
∑

j 6∈R xj and µ̂′.

Before stating Lemma 7.1, recall for sets S, S′ that dsym(S, S′) = max{|S \ S′| , |S′ \ S|}.

Lemma 7.1 (Stability of rejected indices). Let t, t′ and R,R′ be as above. Then |t− t′| ≤ 1
and dsym(R,R′) ≤ b.
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Proof. Let the set J := {j | D̃j 6= ⊥, D̃j ≥ log(
√
B/4)} index the subgroups pruned by the

execution of MEANSAFE on the sample x′, and similarly define J ′ relative to D̃′ for the sample x′.
Then t = |J | and R = ∪j∈JSj , and also t′ = |J ′| and R′ = ∪j∈J ′S′

j. We show dsym(J, J
′) ≤ 1,

from which the claim |t − t′| ≤ 1 follows immediately and the claim dsym(R,R′) ≤ b follows
from the fact that |Sj| = b for all j ∈ [n/b].

Recalling x and x′ differ only at index i, suppose that i ∈ Sℓ for ℓ ∈ [n/b]. Then xSj = x′Sj

for all j 6= ℓ; in particular, diamA(xSj ) = diamA(x
′
Sj
) and so Dj = D′

j for j 6= ℓ. Thus, the

indices of the k largest elements of D+Z andD′+Z, i.e., those subgroups identified by TOPk as
having the largest diameters, which we denote by K = {j | D̃j 6= ⊥} and K ′ = {j | D̃′

j 6= ⊥}
respectively, differ by at most one index: dsym(K,K ′) ≤ 1 with equality obtaining only if
ℓ is in exactly one of K or K ′. If ℓ is in neither K nor K ′, then J = J ′ and the claim
dsym(J, J

′) ≤ 1 follows. Otherwise, supposing ℓ ∈ K, the bound dsym(K,K ′) ≤ 1 implies

K \ {ℓ} ⊂ K ′ and thus D̃K\{ℓ} = D̃′
K\{ℓ}, or vice versa if ℓ ∈ K ′; dsym(J, J ′) ≤ 1 then follows

from J ⊂ K and J ′ ⊂ K ′.

Lemma 7.2. Let {y1, . . . , yn} be an arbitrary collection of vectors and S ⊂ S′ ⊂ [n]. Define
µS := 1

|S|
∑

i∈S yi and µS′ := 1
|S′|
∑

i∈S′ yi. Then

‖µS − µS′‖ ≤
|S′ \ S|diam‖·‖(yS′)

|S′| .

Proof. Observe

µS − µS′ = µS −


 |S|
|S′|µS +

1

|S′|
∑

i∈S′\S
yi


 =

1

|S′|
∑

i∈S′\S
(µS − yi),

where from the assumption that S ⊂ S′ we have

max
i∈S′\S

‖yi − µS‖ ≤ max
j∈S,i∈S′

‖yi − yj‖ ≤ diam‖·‖(S
′).

The claim then follows as ‖µS − µS′‖ ≤ 1
|S′|
∑

i∈S′\S diam‖·‖(yS′) =
|S′\S|diam‖·‖(xS′)

|S′| .

We now turn to the first step we outline, providing an explicit bound on ‖µ̂− µ̂′‖A except

on the event that max{t, t′} = k. Recall the definition ∆ = 5b
√
B

2n exp(3σtop log
2n
bγ ) in the

statement of Lemma 4.3.

Lemma 7.3. With probability at least 1− γ − n221−b, max{t, t′} = k or ‖µ̂− µ̂′‖A ≤ ∆.

Proof. We first show that with probability at least 1 − n22−b over the random partition
S ∼ Uni(Pn,b), S = (S1, . . . , Sn/b),

diamA(xRc) ≤ 1

2
exp(2 ‖Z‖∞ +

∥∥Z ′∥∥
∞)
√
B, (16)

with the same bound holding for x′ by symmetry. To this end, observe that for the index set

J := {j ∈ [n/b] | D̃j 6= ⊥, D̃j ≥ log(
√
B/4)},

MEANSAFE constructs the removed indices R in Lines 5–8 via the union R = ∪j∈JSj. The
first step in the bound (16) is to bound the diameter of the set xRc by the diameters of the
constituent sets within R, which the following generic lemma allows (see Section 7.1.2 for a
proof).
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Claim 7.4. Let {y1, . . . , yn} be an arbitrary collection of vectors and S ∼ Uni(Pn,b). With
probability at least 1 − n22−b, for all index sets J ⊂ [n/b], the set SJ := ∪j∈JSj satisfies
diam‖·‖(ySJ

) ≤ 2maxj∈J diam‖·‖(ySj).

In light of Claim 7.4, inequality (16) follows by showing

diamA(xSj ) ≤ exp(2 ‖Z‖∞ +
∥∥Z ′∥∥

∞)
√
B/4 (17)

for all j 6∈ J on the event t < k. When t < k, there exists an index ℓ ∈ [n/b] such that D̃ℓ 6= ⊥
and D̃ℓ ≤ log(

√
B/4), i.e., ℓ indexes one of the k largest elements of D + Z but ℓ /∈ J . Thus,

for j /∈ J such that D̃j = ⊥, i.e., log(diamA(xSj )) +Zj is not among the k largest elements of
D + Z (by the construction in TOPk), we have

log(diamA(xSj )) ≤ log(diamA(xSℓ
)) + 2 ‖Z‖∞ .

Meanwhile, for all j /∈ J such that D̃j 6= ⊥, including j = ℓ, from the definition of J we
immediately have

log(diamA(xSj )) + Z ′
j ≤ log(

√
B/4).

The claim (17), and hence claim (16), thus follows from the preceding two displays. Moreover,
via a union bound over the two executions of MEANSAFE, Claim 7.4 gives

max{diamA(xRc),diamA(x
′
R′c)} ≤ exp(2 ‖Z‖∞ +

∥∥Z ′∥∥
∞)

√
B

2
or max{t, t′} = k (18)

with probability at least 1− n221−b.
We can now bound ‖µ̂− µ̂′‖A for µ̂ = 1

n−|R|
∑

j /∈R xj and µ̂ = 1
n−|R′|

∑
j /∈R′ x′j via the

following claim (essentially, a number of applications of the triangle inequality), whose proof
we also defer (see Section 7.1.3).

Claim 7.5. ‖µ̂− µ̂′‖A ≤
4(b+1)

n max{diamA(xRc),diamA(x
′
R′c)}.

Using Claim 7.5, the main Lemma 7.3 follows relatively quickly. By combining the
display (18) with the fact that, by elementary calculation,

P(max{‖Z‖∞ ,
∥∥Z ′∥∥

∞} > σtop log(2n/bγ)) ≤ γ,

we obtain that with probability at least 1− γ − n221−b, max{t, t′} = k or

∥∥µ̂′ − µ̂′∥∥
A
≤ 2(b+ 1)

√
B

n
exp

(
2 ‖Z‖∞ +

∥∥Z ′∥∥
∞
)
≤ 2(b+ 1)

√
B

n
exp

(
3σtop log

2n

bγ

)
.

Recalling the assumption that the batchsize b ≥ 4 (so 2(b+1) ≤ 5
2b), we obtain the lemma.

7.1.1 Finalizing proof of Lemma 4.3

We prove for any (measurable) event O ⊂ Rd ∪ {⊥} that

P(µ̃ ∈ O) ≤ eα+1/σWmeanP(µ̃′ ∈ O) + β1 + β2, (19)
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where α > 0 and β1 ∈ (0, 1) determine the Gaussian noise scale for ZN ∼ N(0, σ2
N
I) via

σN =





∆
α

√
1.25 log 1

β1
if α ≤ 1

∆√
2 log 1

β1
+2α−

√
2 log 1

β1

otherwise,
and β2 =

1

2
e−(k/3−1)/σWmean + γ + n221−b.

The other direction follows by symmetry. We treat O ⊂ Rd and O =⊥ separately, merging the
two cases at the end to show the claim (19). Supposing first O ⊂ Rd, the following observation
delineates necessary and sufficient conditions for µ̃ ∈ O.

Observation 7.1. Let O ⊂ Rd. Then µ̃ ∈ O if and only if t ≤ 2k/3+W and µ̂+A1/2ZN ∈ O.

Proof. From the condition for returning ⊥ in Line 11 of MEANSAFE, we immediately have
µ̃ = ⊥ /∈ Rd if and only if t > 2k/3 + W ; thus, the condition t ≤ 2k/3 + W is necessary
and sufficient for µ̃ ∈ Rd. As either µ̃ = ⊥ or µ̃ = µ̂ + A1/2ZN by definition, it then follows
trivially that t ≤ 2k/3 +W and µ̂+A1/2ZN ∈ O together suffice to obtain µ̃ ∈ O.

Marginalizing over the number of sets of rejected indices t and µ̂ we have the following
sequence of inequalities:

P(µ̃ ∈ O)

= E
[
P(µ̂+A1/2ZN ∈ O | µ̂)P(t ≤ 2k/3 +W | t)

]

(i)

≤ E
[
P(µ̂+A1/2ZN ∈ O | µ̂)P(t ≤ 2k/3 +W | t)1

{∥∥µ̂′ − µ̂′∥∥
A
≤ ∆

}]

+ E
[
P(t ≤ 2k/3 +W | t)1

{
max{t, t′} = k

}]
+ γ + n221−b

(ii)

≤ E
[
P(µ̂+A1/2ZN ∈ O | µ̂)P(t ≤ 2k/3 +W | t)1

{∥∥µ̂′ − µ̂′∥∥
A
≤ ∆

}]

+ P(W ≥ k/3− 1) + γ + n221−b

= E
[
P(µ̂+A1/2ZN ∈ O | µ̂)P(t ≤ 2k/3 +W | t)1

{∥∥µ̂′ − µ̂′∥∥
A
≤ ∆

}]
+ β2 (20)

Here, step (i) follows because ‖µ̂′ − µ̂′‖A ≤ ∆ or max{t, t′} = k occurs with probability
at least 1 − γ − n221−b by Lemma 7.3; step (ii) because |t− t′| ≤ 1 by Lemma 7.1 and so
max{t, t′} = k implies t ≥ k−1; the final equality follows from the identity P (W ≥ k/3 − 1) =
1
2e

−(k/3−1)/σWmean and definition of β2.
Continuing, we can bound the last expectation in the preceding display by

E
[
P(µ̂+A1/2ZN ∈ O | µ̂)P(t ≤ 2k/3 +W | t)1

{∥∥µ̂′ − µ̂′∥∥
A
≤ ∆

}]

(i)

≤ exp(α)E
[
P(µ̂′ +A1/2ZN ∈ O | µ̂′)P(t ≤ 2k/3 +W | t)

]
+ β1

(ii)

≤ exp(α + 1/σWmean
)E
[
P(µ̂′ +A1/2ZN ∈ O | µ̂′)P(t′ ≤ 2k/3 +W | t′)

]
+ β1

= exp(α+ 1/σWmean
)P(µ̃′ ∈ O) + β1, (21)

with step (i) following from the privacy of the Gaussian mechanism with noise σN and
sensitivity bound ‖µ̂− µ̂′‖ ≤ ∆ (Lemma 2.5); step (ii) from |t− t′| ≤ 1 by Lemma 7.1 and
that W ∼ Lap(σWmean

); and the final equality follows directly from Observation 7.1, applied
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here to the execution of MEANSAFE on data x′. Combining inequalities (20) and (21) yields
the claim (19) when O ⊂ Rd.

For the case that O = {⊥}, we have

P(µ̃ = ⊥) = E [P(t > 2k/3 +W | t)]

≤ e
1

σWmean E
[
P(t′ > 2k/3 +W | t′)

]
= exp

1

σWmean P(µ̃ = ⊥).

Here, the two equalities follow from the condition for returning ⊥ in Line 11 of MEANSAFE,
while the inequality follows because |t− t′| ≤ 1 by Lemma 7.1 and that W ∼ Lap(σWmean

).
The claim (19) for arbitrary O is immediate.

7.1.2 Proof of Claim 7.4

Consider the event E that for all indices i1, i2 ∈ [n], with i1 ∈ Sj1 and i2 ∈ Sj2 , we have
‖yi1 − yi2‖ ≤ 2max{diam(ySj1

),diam(ySj2
)}. The claim holds on E : for any J ⊂ [n/b] and

SJ := ∪j∈JSj, there exist j1, j2 ∈ J with i1 ∈ Sj1 and i2 ∈ Sj2 attaining diam(ySJ
) =

‖yi1 − yi2‖, and so

‖yi1 − yi2‖ ≤ 2max{diam(ySj1
),diam(ySj2

)} ≤ 2max
j∈J

diam(ySj).

It remains to show that E occurs with probability at least 1− n22−b. As there are
(n
2

)
≤ 1

2n
2

unordered pairs of distinct indices i1, i2 ∈ [n], the result obtains from a union bound if we
show that ‖yi1 − yi2‖ > 2max{diam(ySj1

),diam(ySj2
)} occurs with probability at most 21−b.

Proceeding, let i1, i2 ∈ [n] and i1 ∈ Sj1 , i2 ∈ Sj2 and let c = 1
2 ‖yi1 − yi2‖. If i1 = i2 or

j1 = j2, there is nothing to show, so assume i1 6= i2 and j1 6= j2. Let C1 = {i ∈ [n] \ {i1, i2} |
‖yi1 − yi‖ < c} and C2 = {i ∈ [n] \ {i1, i2} | ‖yi2 − yi‖ < c} be those indices i for which yi
is close to yi1 or yi2 , respectively. By the triangle inequality, C1 is disjoint from C2, and so
without loss of generality, we suppose that |C1| ≤ (n− 2)/2.

We wish to show that diam(ySj1
) ≥ c, for which it is sufficient that there exists an index

in Sj1 \ {i1} not in C1. So by showing Sj1 \ {i1} ⊂ C1 occurs with probability at most 21−b,
we will be done. As S ∼ Uni(Pn,b), the set Sj1 \ {i1} is a uniformly distributed subset of

[n] \ {i1, i2} of size b− 1. Consequently, there are
(n−2
b−1

)
distinct values it can take and

(|C1|
b−1

)

values such that Sj1 \ {i1} ⊂ C1. Therefore, the probability that Sj1 \ {i1} ⊂ C1 is

P(Sj1 \ {i1} ⊂ C1) =

(|C1|
b−1

)
(n−2
b−1

) =
b−2∏

i=0

(|C1| − i)+
n− 2− i

≤
( |C1|
n− 2

)b−1

≤ 21−b,

where the last inequality follows because |C1| ≤ (n− 2)/2.

7.1.3 Proof of Claim 7.5

Recall that

µ̂ =
1

n− |R|
∑

j 6∈R
xj and µ̂′ =

1

n− |R′|
∑

j 6∈R′

x′j ,

and define

Rall := R ∪R′, µ̂all :=
1

n− |Rall|
∑

j 6∈Rall

xj, µ̂′
all :=

1

n− |Rall|
∑

j 6∈Rall

x′j.
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Lemma 7.1 gives |Rc \Rc
all| = |Rall \R| ≤ b, and by assumption on the batchsize b and

rejection threshold k we also have |Rall| ≤ b+ |R| ≤ b+ kb ≤ n
2 .

Applying Lemma 7.2 with S = Rc
all, and S′ = Rc, we get

‖µ̂− µ̂all‖A ≤
|Rc \Rc

all| diamA(xRc)

|Rc| ≤ 2bdiamA(xRc)

n

as |R| ≤ |Rall| ≤ n
2 . Applying Lemma 7.2 again, this time with dataset x′, S = R′c

all and

S′ = R′c, we get ‖µ̂′ − µ̂′
all‖A ≤ 2b

n diamA(x
′
R′c).

Now we bound µ̂all − µ̂′
all, where recalling that index i is the sole (potentially) differing

index in x, x′ (that is, x−i = x′−i), we can write as

µ̂all − µ̂′
all =

1

n− |Rall|
∑

j 6∈Rall

(xj − x′j) =
1 {i 6∈ Rall}
n− |Rall|

(xi − x′i).

If i ∈ Rall, this difference is 0. Otherwise, i 6∈ R and i 6∈ R′. As |Rall| ≤ n
2 , we may

pick some j′ 6∈ Rall ∪ {i}. Because xj′ = x′j′ , we have both
∥∥xi − xj′

∥∥
A
≤ diamA(xRc)

and both
∥∥x′i − xj′

∥∥
A
≤ diamA(x

′
R′c). The triangle inequality then gives ‖xi − x′i‖A ≤

2max{diamA(xRc),diamA(x
′
R′c)}, and so ‖µ̂all − µ̂′

all‖A ≤ 4
n max{diamA(xRc),diamA(x

′
R′c)}.

Combining the above, the claim follows immediately from

∥∥µ̂− µ̂′∥∥
A
≤ ‖µ̂− µ̂all‖A +

∥∥µ̂all − µ̂′
all

∥∥
A
+
∥∥µ̂′

all − µ̂′∥∥
A

≤ 2bdiamA(xRc)

n
+

4max{diamA(xRc),diamA(x
′
R′c)}

n
+

2bdiamA(x
′
R′c)

n
.

7.2 Proof of Lemma 4.4

Unpacking the execution transcripts Γ(x,A) and Γ(x,A′) from (3) as

(D, D̃,R, t, µ̂) := Γ(x,A) and (D′, D̃′, R′, t′, µ̂′) := Γ(x,A′),

observe that given the pair (D̃,A1/2ZN), µ̃(x,A) is independent of A (see the execution of
MEANSAFE), and analogously, µ̃(x,A′) is independent of A′ given (D̃′, A′1/2ZN). Therefore,

by showing A1/2ZN d
=α1,β A′1/2ZN and D̃

d
=α2,0 D̃′, basic composition (Lemma 2.1) and the

post-processing property (Lemma 2.3) will imply the claimed result that µ̃
d
=α1+α2,β µ̃′.

Recalling ZN ∼ N(0, σ2
N
I), we have A1/2ZN ∼ N(0, σ2

N
A) and A′1/2ZN ∼ N(0, σ2

N
A′), and

so A1/2ZN d
=α1,β A′1/2ZN follows immediately from the assumption dpsd(A,A

′) ≤ a
n and the

closeness of Gaussian distributions with differing covariances (Lemma 2.6).

To show D̃
d
=α2,0 D̃′, we make the following observation to bound the sensitivity of the

log-Mahalanobis norm for A and A′.

Observation 7.2. Suppose A,A′ ∈ Rd×d and dpsd(A,A
′) ≤ γ <∞. Then for any v ∈ Col(A),

| log ‖v‖A − log ‖v‖A′ | ≤ γ/2. For any v 6∈ Col(A), log ‖v‖A = log ‖v‖A′ =∞.

Proof. Observe dpsd(A,A
′) < ∞ trivially implies A and A′ are PSD and their columnspaces

coincide, from which the second claim immediately follows. For v ∈ Col(A), we only show
log ‖v‖A′ ≤ 1

2γ + log ‖v‖A, as the reverse inequality holds by symmetry. By assumption,

∥∥∥A′†/2(A−A′)A′†/2
∥∥∥
op
≤ dpsd(A,A

′) ≤ γ
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and hence A′†/2(A − A′)A′†/2 � γI. Conjugating by A′1/2 and rearranging terms, we have
ΠA′AΠA′ � (1+γ)A′. Because ΠA′ = ΠA, we have ΠA′AΠA′ = A, which yields A � (1+γ)A′,
or equivalently A′† � (1 + γ)A†. Therefore ‖v‖2A′ ≤ (1 + γ) ‖v‖2A. Taking square roots and
logarithms on both sides proves the claim as log(

√
1 + γ) ≤ γ

2 .

This observation, coupled with our construction that both µ̃(x,A) and µ̃(x,A′) use the same
(random) partition S = (S1, . . . , Sn/b), implies |Dj − D′

j | ≤ a
2n for all j ∈ [n/b]; hence

‖D −D′‖∞ ≤ a
2n (the indices where the entries are infinite coincide). The closeness properties

of TOPk (Lemma 2.4) and our choice σtop = ka
nα2

then give D̃
d
=α2,0 D̃

′.

8 Discussion

The simplicity of mean estimation in classical statistics belies the sophistication necessary
to adaptively and accurately estimate a mean under differential privacy constraints. While
we have developed (nearly) minimax optimal procedures for mean estimation, a number of
questions remain open, and we hope that we or others will tackle them. From a practical
perspective, while our procedure is implementable, the numerical constant factors we have
maintained to guarantee privacy—in addition to the logarithmic factors in n and log 1

δ—may
make effective use of the procedure challeenging. From a theoretical perspective, it is still
interesting to attempt to remove the logarithmic factors present in our bounds. Additionally,
while we can adapt to weaker than sub-Gaussian moment bounds (via the method ADAMEAN),
it may be possible to provide a sharper procedure or tighter analysis to achieve optimal
dependence on dimension d and privacy level ε, as in the case that p moments are available,
our results appear to be roughly a factor of (

√
d/ε)1/p loose (recall Examples 2 and 4). It will

be interesting to see the extent of possibilities for differentially private estimation in these
more general cases.

A Proofs of standard privacy results

A.1 Proof of Lemma 2.5

The first case follows from Dwork and Roth [12, Theorem 3.22]. For the second, we use
Mironov’s Rényi-differential privacy [33]. The Rényi α-divergence between distributions P
and Q is Dα (P ||Q) = 1

α−1 log
∫
(dPdQ)αdQ, and [33, Proposition 3] if Dα (P ||Q) ≤ c, then for

all measurable A and δ > 0 we have P (A) ≤ exp(c+ log(1/δ)
α−1 )Q(A) + δ. The Rényi divergence

for Gaussians has the explicit form

Dα

(
N(µ1, τ

2Σ)||N(µ2, τ
2Σ)
)
=

α

2τ2
‖µ1 − µ2‖2Σ .

When ρ ≥ ‖µ1 − µ2‖Σ, we set β = α− 1 and see that for ε satisfying

ε =
ρ2

2τ2
+

βρ2

2τ2
+

log(1/δ)

β

we obtain N(µ1, τ
2Σ)

d
=ε,δ N(µ2, τ

2Σ). Choosing β to minimize the preceding ε we obtain

ε = ρ2

2τ2 + ρ
τ

√
2 log 1

δ , and solving for η = 1
τ in ρ2

2 η
2 +

√
2 log 1

δρη − ε yields

τ =
1

η
=

ρ√
2 log 1

δ + 2ε −
√

2 log 1
δ
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is always sufficient to guarantee N(µ1, τ
2Σ)

d
=ε,δ N(µ2, τ

2Σ).

A.2 Proof of Lemma 2.6

Without loss of generality, we may assume µ = 0. We first reduce to the case where Σ1 and
Σ2 are full-rank. Because dpsd(Σ1,Σ2) < ∞, we have immediately that there exists a vector
space V ⊂ Rd with V = Col(Σ1) = Col(Σ2). Letting k = dim(Col(Σ1)), take U ∈ Rd×k

to be an orthonormal matrix such that V = Col(U). The random variables X ∼ N (0,Σ1)
and Y ∼ N (0,Σ2) have support V and multiplication by UT is an isomorphism between V

and Rk, so X
d
=ε,δ Y if and only if UTX

d
=ε,δ UTY . Of course, UTX ∼ N

(
0, UTΣ1U

)
and

UTY ∼ N
(
0, UTΣ2U

)
and both UTΣ1U and UTΣ2U are full rank. The orthogonality of

U gives dpsd(U
TΣ1U,U

TΣ2U) = dpsd(Σ1,Σ2) ≤ γ. Hence, by showing the lemma for the
full-rank matrices UTΣ1U and UTΣ2U , we will have shown the claim for Σ1 and Σ2.

We proceed with the full-rank case with an argument similar to Brown et al. [7, Lemma

4.15]. Define D1 = Σ
1/2
1 Σ−1

2 Σ
1/2
1 −I andD2 = Σ

1/2
2 Σ−1

1 Σ
1/2
2 −I. As D1 has the same spectrum

as Σ
−1/2
2 Σ1Σ

−1/2
2 − I, we have by assumption that ‖D1‖∗ ≤ γ and ‖D2‖∗ ≤ γ.

Let f1 be the density of P1 = N (0,Σ1) and f2 that of P2 = N (0,Σ2). Then, to show

(ε, δ)-closeness, it suffices to show ℓ(W ) :=
∣∣∣log f1(W )

f2(W )

∣∣∣ ≤ ε with probability at least 1 − δ

when W is drawn from either P1 or P2. By symmetry, it suffices to only show this bound for
the case when W ∼ P1. Expanding ℓ, we have

ℓ(w) =

∣∣∣∣
1

2
log

det(Σ2)

det(Σ1)
+

1

2
wT (Σ−1

2 − Σ−1
1 )w

∣∣∣∣ ≤
1

2

∣∣wT (Σ−1
2 − Σ−1

1 )w
∣∣+1

2

∣∣∣∣log
det(Σ2)

det(Σ1)

∣∣∣∣ . (22)

The final term is independent of w and has the bound
∣∣∣∣log

det(Σ2)

det(Σ1)

∣∣∣∣ = max
{
log det(Σ

1/2
2 Σ−1

1 Σ
1/2
2 ), log det(Σ

1/2
1 Σ−1

2 Σ
1/2
1 )

}

≤ max{tr(D2), tr(D1)} ≤ max{‖D2‖∗ , ‖D1‖∗} ≤ γ,

where the first inequality holds because log det(A) ≤ tr(A− I) for any positive definite A.
Now we bound the first term on the right hand side of inequality (22) with high probability.

Since W ∼ P1, the whitened random variable Z = Σ
−1/2
1 W ∼ N(0, I). We then have

∣∣W T (Σ−1
2 − Σ−1

1 )W
∣∣ =

∣∣ZTD1Z
∣∣ ,

and so by the Hanson-Wright inequality [e.g. 38, Thm. 6.2.1], we have with probability at
least 1− δ that

∣∣ZTD1Z
∣∣ ≤ |tr(D1)|+ 2 ‖D1‖Fr

√
log

2

δ
+ 2 ‖D1‖op log

2

δ
≤ 5γ log

2

δ
,

where the inequality holds because ‖D1‖op ≤ ‖D1‖Fr ≤ ‖D1‖∗ ≤ γ and log 2
δ ≥ 1. Thus

ℓ(W ) ≤ 6γ log 2
δ ≤ ε with probability at least 1− δ.
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