
Federated Asymptotics: a model to compare federated

learning algorithms

Gary Cheng∗†

chenggar@stanford.edu

Karan Chadha∗†

knchadha@stanford.edu

John Duchi†‡

jduchi@stanford.edu

February 21, 2022

Abstract

We propose an asymptotic framework to analyze the performance of (personalized) federated
learning algorithms. In this new framework, we formulate federated learning as a multi-criterion
objective, where the goal is to minimize each client’s loss using information from all of the clients.
We analyze a linear regression model where, for a given client, we may theoretically compare the
performance of various algorithms in the high-dimensional asymptotic limit. This asymptotic multi-
criterion approach naturally models the high-dimensional, many-device nature of federated learning.
These tools make fairly precise predictions about the benefits of personalization and information
sharing in federated scenarios—at least in our (stylized) model—including that Federated Averaging
with simple client fine-tuning achieves the same asymptotic risk as the more intricate meta-
learning and proximal-regularized approaches and outperforming Federated Averaging without
personalization. We evaluate these predictions on federated versions of the EMNIST, CIFAR-100,
Shakespeare, and Stack Overflow datasets, where the experiments corroborate the theoretical
predictions, suggesting such frameworks may provide a useful guide to practical algorithmic
development.

1 Introduction

In Federated learning (FL), a collection of client machines, or devices, collect data and coordinate with
a central server to fit machine-learned models, where communication and availability constraints add
challenges [KMA+19]. A natural formulation here, assuming a supervised learning setting, is to assume
that among m distinct clients, each client i has distribution Pi, draws observations Z ∼ Pi, and wishes
to fit a model—which we represent abstractly as a parameter vector θ ∈ Θ—to minimize a risk, or
expected loss, Li(θ) := EPi [ℓ(θ;Z)], where the loss ℓ(θ; z) measures the performance of θ on example z.
Thus, at the most abstract level, the federated learning problem is to solve the multi-criterion problem

minimize
θ1,...,θm

(L1(θ1), . . . , Lm(θm)) . (1)

At this level, problem (1) is both trivial—one should simply minimize each risk Li individually—and
impossible, as no individual machine has enough data locally to effectively minimize Li. Consequently,
methods in federated learning typically take various departures from the multicriterion objective (1)
to provide more tractable problems. Many approaches build off of the empirical risk minimization
principal [Vap92, Vap95, HTF09], where we seek a single parameter θ that does well across all machines
and data, minimizing a (weighted) average loss

m∑

i=1

piLi(θ) (2)

∗Equal contribution, author order random
†Electrical Engineering Department, Stanford University
‡Statistics Department, Stanford University

1

a
rX

iv
:2

1
0
8
.0

7
3
1
3
v
3

[c

s.
L

G
]

 1
8
 F

e
b
 2

0
2
2

over θ ∈ Θ, where p ∈ R
m
+ satisfies pT1 = 1. This “zero personalization” approach has the advantage

that data is (relatively) plentiful, and has led to a substantial literature. Much of this work focuses
on developing efficient methods that limit possibly expensive and unreliable communication between
centralized servers and distributed devices [HM19, RCZ+21, MMR+17, KKM+20, MSS19, LSZ+20].
Given (i) the challenges of engineering such large-scale systems, (ii) the success of large-scale machine
learning models without personalization, and (iii) the plausibility that individual devices have similar
distributions Pi, the zero personalization approach is natural. However, as distributions across individual
devices are typically non-identical, it is of interest to develop methods more closely targeting problem (1).

One natural assumption to make is that the optimal client parameters are “close” to one another
and thus must be “close” to the minimizer of the zero-personalization objective (2). Approaches
leveraging this assumption [DTN20, SCST17, WMK+19, FMO20] regularize client parameters towards
the global parameter. While these methods are intuitive, most focus on showing convergence rates
to local minima. While convergence is important, these analyses do little to characterize the per-
formance of solutions attained—to what the methods actually converge. These issues motivate our paper.

Contributions:

1. New model (Sec. 2): We propose and analyze a (stylized) high-dimensional linear regression
model, where, for a given client, we can characterize the performance of collaborate-then-personalize
algorithms in the high-dimensional asymptotic limit.

2. Precise risk characterization: We use our stylized model to evaluate the asymptotic test loss
of several procedures. These include simple fine-tuned variants of Federated Averaging [MMR+17],
where one learns an average global model (2) and updates once using local data; meta-learning
variants of federated learning; and proximal-regularized personalization in federated learning.

3. Precise predictions and experiments: Our theory makes several percise predictions, including
that fairly naive methods—fine-tuning variants—should perform as well as more sophisticated
methods, as well as conditions under which federated methods improve upon zero-personalization (2)
or zero-collaboration methods. To test these predicted behaviors, we perform several experiments on
federated versions of the EMNIST, CIFAR-100, Shakespeare, and Stack Overflow datasets. Perhaps
surprisingly, the experiments are quite consistent with the behavior the theory predicts.

Our choice to study linear models in the high-dimensional asymptotic setting (when dimension and
samples scale proportionally) takes as motivation a growing phenomenological approach to research
in machine learning, where one develops simple models that predict (perhaps unexpected) complex
behavior in model-fitting. Such an approach has advantages: by developing simpler models, one
can isolate causative aspects of behavior and make precise predictions of performance, leveraging
these to provide insights in more complex models. Consider, for instance, [HMRT19], who show
that the “double-descent” phenomenon, where (neural-network) models show decreasing test loss as
model size grows, exists even in linear regression. In a robust (adversarial) learning setting, [CRS+19]
use a two-class Gaussian linear discriminant model to suggest ways that self-supervised training can
circumvent hardness results, using the predictions (on the simplified model) to inform a full deep
training pipeline substantially outperforming (then) state-of-the-art. [Fel19] develops clustering models
where memorization of data is necessary for good learning performance, suggesting new models for
understanding generalization. We view our contributions in this intellectual tradition: using a stylized
high-dimensional asymptotics to develop statistical insights underpinning Federated Learning (FL).
This allows direct comparison between different FL methods—not between upper bounds, but actual
losses—and serving as a basic framework to motivate new methodologies in Federated Learning.

Related Work. The tried-and-true method to adapt to new data distributions is fine-tuning [HR18].
In Federated Learning (FL), this broadly corresponds to fine-tuning a global model (e.g., from FedAvg)
on a user’s local data [WMK+19, YBS20, LHBS21]. While fine-tuning’s simplicity and practical efficacy
recommend it, we know of little theoretical analysis.

2

A major direction in FL is to design personalization-incentivizing objectives. [SCST17], for example,
build out of the literature on multitask and transfer learning [Car97, PY09] to formulate a multi-task
learning objective, treating each machine as an individual task; this and other papers [FMO20, MMRS20,
DTN20] show rates of convergence for optimization methods on these surrogates. These methods
use the heuristic that personalized, local models should lie “close” to one another, and the authors
provide empirical evidence for their improved performance. Yet it is not always clear what conditions
are necessary (or sufficient) for these specialized personalization methods to outperform naive zero
collaboration—fully local training on available data on each individual device—and zero personalization
(averaged) methods. In a related vein, meta-learning approaches [FAL17, FMO20, JKRK19] seek a
global model that can quickly “adapt” to local distributions Pi, typically by using a few gradient
steps. This generally yields a sophisticated non-convex objective, making it hard to give even heuristic
guarantees, leading authors instead to emphasize worst-case convergence rates of iterative algorithms
to (near) stationary points.

Other methods of personalization have also been proposed. In contrast to using a global model
to help train the local model, [MMRS20] and [ZMM+20] use a mixture of global and local models to
incorporate personalized features. [CZLS21], like we do, propose evaluating federated algorithms via
the formulation (1); they give minimax bounds to distinguish situations in which zero collaboration
and zero personalization (averaged) methods (2) are, respectively, worst-case optimal.

2 The Linear Model

We consider a high-dimensional asymptotic model, where clients solve statistically related linear
regression problems, and each client i ∈ [m] has a local dataset size ni smaller than (but comparable to)
the dimension d of the problem. This choice models the empirical fact that the data on a single client is
typically small relative to model dimension (e.g., even training the last layer of a deep neural network).

More concretely, each client i ∈ [m] will use an overparameterized linear regression problem to
recover an unknown parameter θ⋆i ∈ R

d. Client i has ni i.i.d. observations (xi,k, yi,k) ∈ R
d × R,

yi,k = xT
i,kθ

⋆
i + ξi,k, xi,k

iid∼ P i
x

and ξi,k
iid∼ P i

ξ .

We make the routine assumption that the features are centered, with E[xi,k] = 0 and Cov(xi,k) = Σi.
We also assume that the noise is centered with finite variance, i.e., E[ξi,k] = 0 and Var(ξi,k) = σ2

i . For
convenience, we let Xi ∈ R

ni×d and yi ∈ R
ni denote client i’s data, and X := [XT

1 , . . . , X
T
m]T . We also

let N :=
∑m

j=1 nj .

A prior P i
θ on the parameter θ⋆i relates tasks on each client, where conditional on θ⋆0 , θ

⋆
i is supported

on riS
d−1 + θ⋆0—the sphere of radius ri (bounded by a constant for all i ∈ [m]) centered at θ⋆0—with

E[θ⋆i] = θ⋆0 . The variation between clients is captured by differences in ri (label shift) and Σi (covariate
shift), while the similarity is captured by the shared center θ⋆0 . Intuitively, data from client j is useful to
client i as it provides information on the possible location of θ⋆0 . Lastly, we assume that the distributions
of x, θ⋆, and ξ are independent of each other and across clients.

Every client i seeks to minimize its local population loss—the squared prediction error of a new sample
xi,0 independent of the training set—conditioned on X. The sample loss is ℓ(θ; (x, y)) = (xT θ−y)2−σ2

i ,
giving per client test loss

Li(θ̂i | X) := E[(xT
i,0θ̂i − xT

i,0θ
⋆
i)

2 | X]

= E

[∥∥θ̂i − θ⋆i
∥∥2
Σi
| X
]

where the expectation is taken over (xi,0, θ
⋆
i , ξi) ∼ P i

x
×P i

θ⋆ ×P i
ξ and ‖x‖2Σ = xTΣx. It is essential here

that we focus on per client performance: the ultimate goal is to improve performance on any given client,
as per eq. (1). For analysis purposes, we often consider the equivalent bias-variance decomposition

Li(θ̂i|X) =
∥∥∥E[θ̂i|X]− θ⋆

∥∥∥
2

Σi︸ ︷︷ ︸
Bi(θ̂i|X)

+tr(Cov(θ̂i|X)Σi)︸ ︷︷ ︸
Vi(θ̂i|X)

. (3)

3

Our main asymptotic assumption, which captures the high-dimensional and many-device nature central
to modern federated learning problems, follows:

Assumption A1. As m → ∞, both d = d(m) → ∞ and nj = nj(m) → ∞ for j ∈ [m], and
limm

d
nj

= γj. Moreover, 1 < γmin ≤ limm infj∈[m]
d
nj
≤ limm supj∈[m]

d
nj
≤ γmax <∞.

Importantly, individual devices are overparameterized: we always have γj > 1, as is common, when the
dimension of models is large relative to local sample sizes, but may be smaller than the (full) sample.
Intuitively, γj captures the degree of overparameterization of the network for user j. We also require
control of the eigenspectrum of our data [cf. HMRT19, Assumption 1].

Definition 2.1. The empirical distribution of the eigenvalues of Σ is the function µ(·; Σ) : R→ R+

with

µ(s; Σ) :=
1

d

d∑

j=1

1 {s ≥ si} , (4)

where s1 ≥ s2 ≥ · · · ≥ sd are the eigenvalues of Σ.

Assumption A2. For each user i, data x ∼ P i
x

have the form x = Σ
1
2

i z. For some q > 2, κq < ∞,
and M <∞,

(a) The vector z ∈ R
d has independent entries with E[zi] = 0, E[z2i] = 1, and E[|zi|2q] ≤ κq <∞

(b) s1 = |||Σi|||op ≤M , sd = λmin(Σi) ≥ 1/M , and
∫
s−1dµ(s; Σi) < M .

(c) µ(·; Σi) converges weakly to νi

These conditions are standard, guaranteeing sufficient moments for convergence of covariance estimates,
that the eigenvalues of Σi do not accumulate near 0, and a mode of convergence for the spectrum of Σi.

3 Locally fine-tuning a global solution

In this section, we describe and analyze fine-tuning algorithms that use the FedAvg solution (a minimizer
of the objective (2)) as a warm start to find personalized models. We compare the test loss of these
algorithms with naive, zero personalization and zero collaboration approaches. Among other things, we
show that a ridge-regularized locally fine-tuned method outperforms the other methods.

3.1 Fine-tuned Federted Averaging (FTFA)

Fine-tuned Federated Averaging (FTFA) approximates minimizing the multi-criterion loss (1) using a
two-step procedure in Algorithm 1 (see Section 7 for detailed pseudocode). Let Si denote client i’s
sample. The idea is to replace the local expected risks Li in (2) with the local empirical risks

L̂i(θ) :=
1

ni

∑

z∈Si

ℓ(θ; z),

using the FedAvg solution θ̂FA
0 as a warm-start for local training in the second step. Intuitively, FTFA

interpolates between zero collaboration and zero personalization algorithms. Each client i can run this
local training phase independently of (and in parallel with) all others, as the data is fully local; this
separation makes FTFA essentially no more expensive than Federated Averaging.

For the linear model in Section 2, FTFA first minimizes the average weighted loss
∑m

j=1 pj
1

2nj
‖Xjθ − yj‖22

over all clients. As the local linear regression problem to minimize ‖Xiθ − yi‖22 is overparameterized,
first-order methods on it (including the stochastic gradient method) correspond to solving minimum

4

Algorithm 1 FTFA & RTFA (details in appendix)

1. The server coordinates (e.g. using FedAvg) to find a global model using data from all clients,
solving

θ̂FA
0 = argmin

θ

m∑

j=1

pjL̂j(θ), (5)

where p ∈ R
m
+ are weights satisfying

∑m
j=1 pj = 1. The server broadcasts θ̂FA

0 to all clients.

2.a. FTFA: Client i optimizes its risk L̂i using a first-order method initialized at θ̂FA
0 , returning

model θ̂FA
i .

2.b. RTFA: Client i minimizes a regularized empirical risk to return model

θ̂Ri (λ) = argmin
θ

L̂i(θ) +
λ

2

∥∥∥θ − θ̂FA
0

∥∥∥
2

2
.

ℓ2-norm interpolation problems [GLSS18, Thm. 1]. Thus, when performed to convergence (no matter
the first-order method), FTFA is equivalent to the two step procedure

θ̂FA
0 = argmin

θ

m∑

j=1

pj
1

2nj
‖Xjθ − yj‖22 (6)

θ̂FA
i = argmin

θ

{∥∥θ̂FA
0 − θ

∥∥
2

s.t. Xiθ = yi

}
, (7)

outputting model θ̂FA
i for client i. Before giving our result, we make an additional assumption regarding

the asymptotics of the number of clients and the dimension of the data.

Assumption A3. For a constant c and q > 2, (log d)cq
∑m

j=1 p
q/2+1
j nj → 0 as m, d, nj →∞.

In Assumption A3, pj is the weight associated with the loss of jth client when finding the global
model using federated averaging. To ground the assumption, consider two particular cases of interest:
(i) pj = 1/m, when every client is weighted equally, and (ii) pj = nj/N , when each data point is

weighted equally. When pj = 1/m, we have (log d)cq
∑m

j=1 p
q/2+1
j nj = N

m
(log d)cq

mq/2 . When pj = nj/N ,

using Assumption A1 we have (log d)cq
∑m

j=1 p
q/2+1
j nj = (log d)cq

∑m
j=1

n
q/2+2

j

Nq/2+1 ≤ (γmax

γmin
)q/2+1N

m
(log d)cq

mq/2 .

Thus, in both the cases, ignoring the polylog factors, if we have N
m

(log d)cq

mq/2 → 0 i.e., mq/2 grows faster
than the average client sample size, N/m, then Assumption A3 holds. With these assumptions defined,
we are able to compute the asymptotic test loss of FTFA.

Theorem 1. Consider the observation model in Sec. 2 and the estimator θ̂FA
i in (7). Let Assumption A1

hold, and let Assumptions A2 and A3 hold with c = 2 and q > 2. Additionally, assume that for each
m and j ∈ [m], |||E[Σ̂2

j]|||op ≤ τ2, where τ2 <∞. Then for client i, the asymptotic prediction bias and
variance of FTFA are

lim
m→∞

Bi(θ̂
FA
i |X)

p
= lim

m→∞
‖Πi[θ

⋆
0 − θ⋆i]‖2Σi

lim
m→∞

Vi(θ̂
FA
i |X)

p
= lim

m→∞

σ2
i

ni
tr(Σ̂†

iΣi),

where Πi := I − Σ̂†
i Σ̂i and ‖z‖2Σi

:= zTΣiz. The exact expressions of these limits for general choice Σ
in the implicit form can be found in the appendix. For the special case when Σi = I, the closed form

5

limits are

Bi(θ̂
FA
i |X)

p→ r2i

(
1− 1

γi

)
Vi(θ̂

FA
i |X)

p→ σ2
i

γi − 1
,

where
p→ denotes convergence in probability.

3.2 Ridge-tuned FedAvg (RTFA)

Minimum-norm results provide insight into the behavior of popular algorithms including SGM and
mirror descent. Having said that, we can also analyze ridge penalized versions of FTFA. In this
algorithm, the server finds the same global model as FTFA, but each client uses a regularized objective
to find a local personalized model as in 2b of Algorithm 1. More concretely, in the linear regression setup,
for appropriately chosen step size and as the number of steps taken goes to infinity, this corresponds to
the two step procedure with the first step (6) and second step

θ̂Ri (λ) = argmin
θ

1

2ni
‖Xiθ − yi‖22 +

λ

2

∥∥θ̂FA
0 − θ

∥∥2
2
, (8)

where RTFA outputs the model θ̂Ri (λ) for client i. Under the same assumptions as Theorem 1, we can
again calculate the asymptotic test loss.

Theorem 2. Let the conditions of Theorem 1 hold. Then for client i, the asymptotic prediction bias
and variance of RTFA are

lim
m→∞

Bi(θ̂
R
i (λ)|X)

p
= lim

m→∞
λ2
∥∥∥(Σ̂i + λI)−1(θ⋆0 − θ⋆i)

∥∥∥
2

Σi

lim
m→∞

Vi(θ̂
R
i (λ)|X)

p
= lim

m→∞

σ2
i

ni
tr(ΣiΣ̂i(λI + Σ̂i)

−2),

The exact expressions of these limits for general choice Σ in the implicit form can be found in the
appendix. For the special case when Σi = I, the closed form limits are

Bi(θ̂
R
i (λ)|X)

p→ r2i λ
2m′

i(−λ)
Vi(θ̂

R
i (λ)|X)

p→ σ2
i γi(mi(−λ)− λm′

i(−λ)),
where mi(z) is the Stieltjes transform of the limiting spectral measure νi of the covariance matrix Σi.
When Cov(xj,k) = I, mi(z) has the closed form expression mi(z) = (1−γi−z−

√
(1− γi − z)2 − 4γiz)/(2γiz).

For each client i ∈ [m], when λ is set to be the minimizing value λ⋆
i = σ2

i γi/r
2
i , the expression simplifies

to Li(θ̂
R
i (λ

⋆
i)|X)→ σ2

i γimi(−λ⋆
i).

With the optimal choice of hyperparameter λ, RTFA has lower test loss than FTFA; indeed, in
overparameterized linear regression, the ridge solution with regularization λ → 0 converges to the
minimum ℓ2-norm interpolant (7).

3.3 Comparison to Naive Estimators

Three natural baselines to which we may compare FTFA and RTFA are the zero personalization
estimator θ̂FA

0 , the zero collaboration estimator

θ̂Ni = argmin
θ
‖θ‖2 s.t. Xiθ = yi, (9)

and the ridge-penalized, zero-collaboration estimator

θ̂Ni (λ) = argmin
θ

1

2ni
‖Xiθ − yi‖22 +

λ

2
‖θ‖22 . (10)

As with FTFA and RTFA, we can compute the asymptotic test loss explicitly for each. We provide
expressions only for identity covariance case for clarity, similar results and comparisons hold for general
covariance matrices.

6

Corollary 3.1. Let the conditions of Theorem 1 hold and Σi = I for i. Then for client i,

Bi(θ̂
FA
0 |X)

p→ r2i and Vi(θ̂
FA
0 |X)

p→ 0.

Consider the estimator θ̂Ni defined by eq. (9). In addition to the above conditions, suppose that θ⋆i is
drawn such that ‖θ⋆i ‖2 = ρi is constant with respect to m. Further assume that for some q > 2, for

j ∈ [m] and k ∈ [nj], and l ∈ [d], E[(xj,k)
2q
l] ≤ κq <∞. Then

Bi(θ̂
N
i |X)

p→ ρ2i

(
1− 1

γi

)
and Vi(θ̂

N
i |X)

p→ σ2
i

γi − 1
.

Consider the estimator θ̂Ni (λ) defined by eq. (10). Then Under the preceding conditions,

Bi(θ̂
N
i (λ)|X)

p→ ρ2iλ
2m′

i(−λ)
Vi(θ̂

N
i (λ)|X)

p→ σ2
i γi(mi(−λ)− λm′

i(−λ)).

Moreover, if λ is set to be the loss-minimizer λ⋆
i = σ2

i γi/ρ
2
i , then Li(θ̂

N
i (λ⋆

i); θ
⋆|X)

p→ σ2
i γimi(−λ⋆

i).

Key to these results are the differences between the radii r2i = ‖θ⋆i − θ⋆0‖
2
2 and ρi = ‖θ⋆i ‖

2
2, where

r2i ≤ ρ2i , and their relationship to the other problem parameters. First, it is straightforward to see

that FTFA outperforms FedAvg, θ̂FA
0 , if and only if σ2

i < r2i (γi − 1)/γi. This makes intuitive sense: if
the noise is too large, then local tuning is fitting mostly to noise. FTFA always outperforms the zero-
collaboration estimator θ̂Ni , as ρi ≥ ri, and the difference ρ2i − r2i governs the gap between collaborative
and non-collaborative solutions. This remains true for the ridge-based solutions: a first-order expansion
comparing Theorem 2 and Corollary 3.1 shows that for ρi near ri, we have

Li(θ̂
R
i (σ

2
i γi/r

2
i) | X)− Li(θ̂

N
i (σ2

i γi/ρ
2
i) | X)

= C · (ρ2i − r2i) + o(ρ2i − r2i),

where C depends on all the problem parameters.
With appropriate regularization λ, RTFA mitigates the weaknesses of FTFA. Thus, formally, we

may show that RTFA with the optimal hyperparameter always outperforms the zero-personalization
estimator θ̂FA

0 (see the appendices). Furthermore, since ρi ≥ ri, its straightforward to see that RTFA

outperforms ridgeless zero-collaboration estimator θ̂Ni , and the ridge-regularized zero-collaboration

estimator θ̂Ni (λ⋆) as well.

4 Meta learning and Proximal Regularized Algorithms

The fine-tuning procedures in the previous section provide a (perhaps) naive baseline, so we consider
a few alternative federated learning procedures, both of which highlight the advantages of the high-
dimensional asymptotics in its ability to predict performance. While we cannot survey the numerous
procedures in FL, we pick two we consider representative: the first adapting meta learning [FMO20]
and the second using a proximal-regularized approach [DTN20]. In both cases, the researchers develop
convergence rates for their methods (in the former case, to stationary points), but no results on the
predictive performance or their statistical behavior exists. We develop these in this section, showing
that these more sophisticated approaches perform no better, in our asymptotic framework, than the
FTFA and RTFA algorithms we outline in Section 3.

4.1 Model-Agnostic Meta-Learning

Model-Agnostic Meta-Learning (MAML) [FAL17] was learns models that adapt to related tasks by
minimizing an empirical loss augmented evaluated not at a given parameter θ but at a “one-step-updated”
parameter θ − α∇L(θ), representing one-shot learning. [FMO20], contrasting this MAML approach to
the standard averaging objectives (2), adapt MAML to the federated setting, developing a method

7

we term MAML-FL. We describe their two step procedure in Algorithm 2 (see Section 7 for detailed
pseudocode). Algorithm 2 has two variants [FMO20]; in one, the Hessian term is ignored, and in the
other, the Hessian is approximated using finite differences. [FMO20] showed that these these algorithms
converge to a stationary point of eq. (11) (with pj = 1/m) for general non-convex smooth functions.

Algorithm 2 MAML-FL (details in Appendix 7)

1. Server and clients coordinate to (approximately) solve

θ̂M0 (α) = argmin
θ

m∑

j=1

pjL̂j(θ − α∇L̂j(θ)), (11)

where pj ∈ (0, 1) are weights such that
∑m

j=1 pj = 1 and α denotes stepsize. Server broadcasts

global model θ̂M0 (α) to clients.

2. Client i learns a model θ̂Mi (α) by optimizing its empirical risk, L̂i(·), using SGM initialized at θ̂M0 (α)

In our linear model, for appropriately chosen hyperparameters and as the number of steps taken
goes to infinity, this personalization method corresponds to the following two step procedure:

θ̂M0 (α) (12)

= argmin
θ

m∑

j=1

pj
2nj

∥∥∥∥Xj

[
θ − α

nj
XT

j (Xjθ − yj)

]
− yj

∥∥∥∥
2

2

θ̂Mi (α) = argmin
θ

∥∥∥θ̂M0 (α)− θ
∥∥∥
2

s.t. Xiθ = yi (13)

As in Section 3.1, we assume that the client model in step 2 of Alg. 2 has fully converged; any convergent
first-order method converges to the minimum norm interpolant (13). The representations (12) and (13)
allow us to analyze the test loss of the MAML-FL personalization scheme in our asymptotic framework.

Theorem 3. Consider the observation model in Section 2 and the estimator θ̂Mi (α) in (13). Let
Assumption A1 hold, Assumption A2 hold with q = 3v where v > 2, and Assumption A3 hold with c = 5
and q = v. Additionally, assume that for each m and all j ∈ [m], λmin (E[Σ̂j(I − αΣ̂j)

2]) ≥ λ0 > 0 and

|||E[Σ̂6
j]|||op ≤ τ6 <∞. Then for client i, the asymptotic prediction bias and variance of MAML-FL are

lim
m→∞

Bi(θ̂
M
i (α)|X)

p
= lim

m→∞
‖Πi[θ

⋆
0 − θ⋆i]‖2Σi

lim
m→∞

Vi(θ̂
M
i (α)|X)

p
= lim

m→∞

σ2
i

ni
tr(Σ̂†

iΣi),

where Πi := I − Σ̂†
i Σ̂i and ‖z‖2Σi

:= zTΣiz. The exact expressions of these limits for general choice Σ
in the implicit form are in the appendices. For the special case that Σi = I, the closed form limits are

Bi(θ̂
M
i (α)|X)

p→ r2i

(
1− 1

γi

)

Vi(θ̂
M
i (α)|X)

p→ σ2
i

γi − 1
.

In short, the asymptotic test risk of MAML-FL matches that of FTFA (Theorem 1). In general,

the MAML-FL objective (11) is typically non-convex even when L̂j is convex, making convergence
subtle. Even ignoring convexity, the inclusion of a derivative term in the objective can make the
standard smoothness conditions [Nes04] upon which convergence analyses (and algorithms) repose
fail to hold. Additionally, computing gradients of the MAML-FL objective (11) requires potentially
expensive second-order derivative computations or careful approximations to these, making optimization

8

more challenging and expensive irrespective of convexity. We provide more discussion in the appendices.
Theorem 3 thus suggests that one might be circumspect about choosing MAML-FL or similar algorithms
over simpler baselines that do not require such complexity in optimization.
Remark The algorithm [FMO20] propose performs only a single stochastic gradient step for
personalization, which is distinct from our analyzed procedure (13), as it is essentially equivalent to

running SGM until convergence from the initialization θ̂M0 (α)Mα (see step 2 of Algorithm 2). We
find two main justifications for this choice: first, experimental work of [JKRK19], in addition to our
own experiments (see Figures 5 and 6) empirically suggest that the more (stochastic gradient) steps
of personalization, the better performance we expect. Furthermore, as we mention above earlier,
performing personalization SGM steps locally, in parallel, and asynchronously is no more expensive
than running the first step of Algorithm 2. This guaranteed of convergence also presents a fair point of
comparison between the algorithms we consider.

4.2 Proximal-Regularized Approach

Instead of a sequential, fine-tuning approach, an alternative approach to personalization involves jointly
optimizing global and local parameters. In this vein, [DTN20] propose the pFedMe algorithm (whose
details we provide in the appendices) to solve the following coupled optimization problem to find
personalized models for each client:

(
θ̂P0 (λ), θ̂

P
1 (λ), . . . , θ̂

P
m(λ)

)
=

argmin
θ0,θ1,...,θm

m∑

j=1

pj

(
L̂i(θj) +

λ

2
‖θj − θ0‖22

)
.

The proximal penalty encourages the local models θi to be close to one another. In our linear model, for
appropriately chosen hyperparameters and as the number of steps taken goes to infinity, the proposed
optimization problem simplifies to

(
θ̂P0 (λ), θ̂

P
1 (λ), . . . , θ̂

P
m(λ)

)
= (14)

argmin
θ0,θ1,...,θm

m∑

j=1

pj

(
1

2nj
‖Xjθj − yj‖22 +

λ

2
‖θj − θ0‖22

)
,

where θ̂P0 (λ) denotes the global model and θ̂Pi (λ) denote the local models. We can again use our
asymptotic framework to analyze the test loss of this scheme. For this result, we use an additional
condition on supj∈[m] P(λmax(Σ̂j) > R) that gives us uniform control over the eigenvalues of all the
users.

Theorem 4. Consider the observation model n section 2 and the estimator θ̂Pi (λ) in (14). Let
Assumption A1 hold, and let Assumptions A3 and A2 hold with c = 2 and the same q > 2. Ad-
ditionally, assume that E[|||Σ̂2

j |||op] ≤ τ3 < ∞. Further suppose that there exists R ≥ M such that

lim supm→∞ supj∈[m] P(λmax (Σ̂j) > R) ≤ 1
16M2τ3

. Then for client i, the asymptotic prediction bias
and variance of pFedMe are

lim
m→∞

Bi(θ̂
P
i (λ)|X)

p
= lim

m→∞
λ2
∥∥∥(Σ̂i + λI)−1(θ⋆0 − θ⋆i)

∥∥∥
2

Σi

lim
m→∞

Vi(θ̂
P
i (λ)|X)

p
= lim

m→∞

σ2
i

ni
tr(ΣiΣ̂i(λI + Σ̂i)

−2),

See the appendices for exact expressions of these limits for general Σ. For the special case that Σi = I,
the limits are

Bi(θ̂
P
i (λ)|X)

p→ r2i λ
2m′

i(−λ)
Vi(θ̂

P
i (λ)|X)

p→ σ2
i γ(mi(−λ)− λm′

i(−λ)),

9

FL each perform 10 epochs of local training for each client before the evaluation of test accuracy. For
each client, pFedMe uses the local models to compute test accuracy. We first hyperparameter tune
each method using training and validation splits; again, see Appendix 8 for details. We track the test
accuracy of each tuned method over 11 trials using two different kinds of randomness:

1. Different seeds: We run each hyperparameter-tuned method on 11 different seeds. This captures
how different initializations and batching affect accuracy.

2. Different training-validation splits: We generate 11 different training / validation splits (same test
data) and run each hyperparameter-tuned method on each split. This captures how variations in
user data affect test accuracy.

Experimental setting Our experiments are “semi-synthetic” in that in each, we re-fit the top layer
of a pre-trained neural network. While this differs from some practice with experimental work in
federated learning, several considerations motivate our choices to take this tack, and we contend they
may be valuable for other researchers: (i) our (distributed) models are convex, that is, can be fit via
convex optimization. In the context of real-world engineering problems, it is important to know when a
method has converged and, if it does not, why it has not; in this vein, non-convexity can be a bugaboo,
as it hides the causes of divergent algorithms—is it non-convexity and poor optimization or engineering
issues (e.g. communication bugs)? This choice thus can be valuable even in real, large-scale systems.
(ii) In our experiments, we achieve state-of-the-art or near state-of-the-art results; using federated
approaches to fit full deep models appears to lead to substantial degradation in performance over a
single centralized, pre-trained model (see, e.g., [RCZ+21, Table 1], where accuracies on CIFAR-10
using a ResNet 18 are at best 78%, substantially lower than current state-of-the-art). A question
whose answer we do not know: if a federated learning method provides worse performance than a
downloadable model, what does the FL method’s performance tell us about good methodologies in
federated learning? (iii) Finally, computing with large-scale distributed models is computationally
expensive: the energy use for fitting large distributed models is substantial and may be a poor use of
resources [SGM19]. In effort to better approximate the use of a pre-trained model in real federated
learning applications, we use held-out data to pre-train a preliminary network in our Stack Overflow
experiments, doing the experimental training and validation on an independent dataset.

Results Figures 1 to 4 plot test accuracy against communication rounds. The performance of
MAML-FL is similar to that of FTFA and RTFA, and on the Stack Overflow and EMNIST datasets,
where the total dataset size is much larger than the other datasets, the accuracies of MAML-FL, FTFA
and RTFA are nearly identical. This is consistent with our theoretical claims. The performances of the
naive, zero communication and zero personalization algorithms are worse than that of FTFA, RTFA
and MAML-FL in all figures. This is also consistent with our theoretical claims. The performance of
pFedMe in Figures 1 to 3 is worse than that of FTFA, RTFA and MAML-FL.

In Figures 5 and 6, we plot the test accuracy of FTFA and MAML-FL and vary the number
of personalization steps each algorithm takes. In both plots, the global model performs the worst,
and performance improves monotonically as we increase the number of personalization steps. As
personalization steps are cheap relative to the centralized training procedure, this suggests benefits for
clients to locally train to convergence.

11

References

[BY93] ZD Bai and YQ Yin. Limit of the smallest eigenvalue of a large dimensional sample covariance
matrix. Annals of Probability, 21(3):1275–1294, 1993.

[Car97] R. Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.

[CATvS17] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre van Schaik. EMNIST: Extending
MNIST to handwritten letters. In 2017 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2017.

[CGT12] Richard Chen, Alex Gittens, and Joel A. Tropp. The masked sample covariance estimator: an
analysis using matrix concentration inequalities. Information and Inference, to appear, 2012.

[CRS+19] Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, Percy Liang, and John Duchi. Unlabeled data
improves adversarial robustness. In Advances in Neural Information Processing Systems 32, 2019.

[CZLS21] Shuxiao Chen, Qinqing Zheng, Qi Long, and Weijie J. Su. A theorem of the alternative for
personalized federated learning. arXiv:2103.01901 [stat.ML], 2021.

[dlPnG99] Victor H. de la Peña and Evarist Giné. Decoupling: From Dependence to Independence. Springer,
1999.

[DTN20] Canh Dinh, Nguyen Tran, and Tuan Dung Nguyen. Personalized federated learning with moreau
envelopes. arXiv:2006.08848 [cs.LG], 2020.

[FAL17] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the 34th International Conference on Machine Learning, 2017.

[Fel19] Vitaly Feldman. Does learning require memorization? a short tale about a long tail.
arXiv:1906.05271 [cs.LG], 2019.

[FMO20] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning with theo-
retical guarantees: A model-agnostic meta-learning approach. In Advances in Neural Information
Processing Systems 33, 2020.

[GLSS18] Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in
terms of optimization geometry. In Proceedings of the 35th International Conference on Machine
Learning, 2018.

[HLS+20] Chaoyang He, Songze Li, Jinhyun So, Mi Zhang, Hongyi Wang, Xiaoyang Wang, Praneeth
Vepakomma, Abhishek Singh, Hang Qiu, Li Shen, Peilin Zhao, Yan Kang, Yang Liu, Ramesh
Raskar, Qiang Yang, Murali Annavaram, and Salman Avestimehr. FedML: A research library and
benchmark for federated machine learning. arXiv:2007.13518 [cs.LG], 2020.

[HM19] Farzin Haddadpour and Mehrdad Mahdavi. On the convergence of local descent methods in
federated learning. arXiv:1910.14425 [cs.LG], 2019.

[HMRT19] Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan Tibshirani. Surprises in high-
dimensional ridgeless linear least squares interpolation. arXiv:1903.08560 [math.ST], 2019.

[HR18] Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification.
arXiv:1801.06146 [cs.LG], 2018.

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning.
Springer, second edition, 2009.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 770–778, 2016.

[JKRK19] Yihan Jiang, Jakub Konečný, Keith Rush, and Sreeram Kannan. Improving federated learning
personalization via model agnostic meta learning. arXiv:1909.12488 [cs.LG], 2019.

12

[KH09] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

[KKM+20] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for federated learning. In
Proceedings of the 37th International Conference on Machine Learning, 2020.

[KMA+19] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances
and open problems in federated learning. arXiv:1912.04977 [cs.LG], 2019.

[LHBS21] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated
learning through personalization. In ICML, 2021.

[LSZ+20] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. In Proceedings of Machine Learning and Systems,
volume 2, pages 429–450, 2020.

[MMR+17] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Proceedings of the
20th International Conference on Artificial Intelligence and Statistics, 2017.

[MMRS20] Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. Three approaches for
personalization with applications to federated learning. arXiv:2002.10619 [cs.LG], 2020.

[MRR+19] Brendan McMahan, Keith Rush, Michael Reneer, Zachary Garrett, and TensorFlow Federated
Team. Tensorflow federated stack overflow dataset. https://www.tensorflow.org/federated/

api_docs/python/tff/simulation/datasets/stackoverflow/load_data, 2019.

[MSS19] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning. In
Proceedings of the 36th International Conference on Machine Learning, 2019.

[Nes04] Y. Nesterov. Introductory Lectures on Convex Optimization. Kluwer Academic Publishers, 2004.

[PY09] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering, 22(10):1345–1359, 2009.

[RCZ+21] Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný,
Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In Proceedings of
the Ninth International Conference on Learning Representations, 2021.

[SCST17] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated multi-task
learning. In Advances in Neural Information Processing Systems 17, 2017.

[SGM19] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in NLP. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics (ACL), 2019.

[SS90] G. W. Stewart and Ji-Guang Sun. Matrix Perturbation Theory. Academic Press, 1990.

[Vap92] V. Vapnik. Principles of risk minimization for learning theory. In John E. Moody, Steve J. Hanson,
and Richard P. Lippmann, editors, Advances in Neural Information Processing Systems 4, pages
831–838. Morgan Kaufmann, 1992.

[Vap95] V.N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

[wei20] weiaicunzai. Pytorch-cifar100. https://github.com/weiaicunzai/pytorch-cifar100, 2020.

[WMK+19] Kangkang Wang, Rajiv Mathews, Chloé Kiddon, Hubert Eichner, Françoise Beaufays, and Daniel
Ramage. Federated evaluation of on-device personalization. arXiv:1910.10252 [cs.LG], 2019.

[YBS20] Tao Yu, Eugene Bagdasaryan, and Vitaly Shmatikov. Salvaging federated learning by local
adaptation. arXiv:2002.04758 [cs.LG], 2020.

[ZMM+20] Edvin Listo Zec, Olof Mogren, John Martinsson, Leon René Sütfeld, and Daniel Gillblad. Specialized
federated learning using a mixture of experts. arXiv:2010.02056 [cs.LG], 2020.

13

6 Proofs

6.1 Additional Notation

To simplify notation, we define some aggregated parameters, Xi := [xi,1, . . . ,xi,ni
]T ∈ R

ni×d, yi =
[yi,1, . . . , yi,ni

]T ∈ R
ni , X := [XT

1 , . . . , X
T
m]T ∈ R

N×d, and y := [yT
1 , . . . ,y

T
m]T ∈ R

N . Additionally, we

define Σ̂i := XT
i Xi/ni ∈ R

d×d. We use the notation a . b to denote a ≤ Kb for some absolute constant
K.

6.2 Useful Lemmas

Lemma 6.1. Let xj be vectors in R
d and let ζj be Rademacher (±1) random variables. Then, we have

E



∥∥∥∥∥∥

m∑

j=1

ζjxj

∥∥∥∥∥∥

p

2



1/p

≤
√

p− 1




m∑

j=1

‖xj‖22




1/2

,

where the expectation is over the Rademacher random variables.

Proof Using Theorem 1.3.1 of [dlPnG99], we have

E



∥∥∥∥∥∥

m∑

j=1

ζjxj

∥∥∥∥∥∥

p

2



1/p

≤
√
p− 1E




∥∥∥∥∥∥

m∑

j=1

ζjxj

∥∥∥∥∥∥

2

2




1/2

=
√

p− 1E




m∑

i,j=1

〈ζjζixT
j xi〉




=
√
p− 1




m∑

j=1

‖xj‖22




1/2

Lemma 6.2. For all clients j ∈ [m], let the data xj,k ∈ R
d for k ∈ [n] be such that xj,k = Σ

1/2
j zj,k for

some Σj, zj,k, and p > 2 that satisfy Assumption A2. Let (xj,k)l ∈ R denote the l ∈ [d] entry of the

vector xj,k ∈ R
d. Define Σ̂j =

1
nj

∑
k∈[nj]

xj,kx
T
j,k. Then, we have

E

[∣∣∣
∣∣∣
∣∣∣Σ̂j

∣∣∣
∣∣∣
∣∣∣
p

op

]
≤ K(e log d)pnj ,

where the inequality holds up to constant factors for sufficiently large m.

Proof We first show a helpful fact that E[(zj,k)
2p
l] ≤ κp < ∞ implies E[‖xj,k‖2p2]1/(2p) .

√
d. For

any j ∈ [m], we have by Jensen’s inequality

E[‖xj,k‖2p2] ≤M2p
E[‖zj,k‖2p2] = M2pdpE

[(
1

d

d∑

l=1

(zj,k)
2
l

)p]
≤M2pdp

1

d

d∑

l=1

E[(zj,k)
2p
l] ≤M2pκpd

p

14

We define some constant C4 > M2pκp. With this fact and Theorem A.1 from [CGT12], we have

E

[∣∣∣
∣∣∣
∣∣∣Σ̂j

∣∣∣
∣∣∣
∣∣∣
p

op

]
= E



∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

n∑

k=1

xj,kx
T
j,k

n

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

p

op


 ≤ 22p−1

(
|||Σj |||pop +

(e log d)p

np
j

E

[
max

k

∣∣∣∣∣∣xj,kx
T
j,k

∣∣∣∣∣∣p
op

])

≤ 22p−1

(
C +

(e log d)p

np−1
j

E

[
‖xj,k‖2p2

])

≤ 22p−1

(
C + C4

(e log d)pdp

np−1
j

)

Now, 22p−1

(
C + C4

(e log d)pdp

np−1

j

)
≤ K(e log d)pnj for some absolute constant K since d

nj
→ γi.

Lemma 6.3. For all clients j ∈ [m], let the data xj,k ∈ R
d for k ∈ [n] be such that xj,k = Σ

1/2
j zj,k

for some Σj, zj,k, and q′ > 2 that satisfy Assumption A2. Further let q′ = pq where p ≥ 1 and q ≥ 2.

Let Σ̂j = 1
nj

∑
k∈[nj]

xj,kx
T
j,k and µj = E[Σ̂p

j]. Additionally assume that
∣∣∣
∣∣∣
∣∣∣E[Σ̂2p

j]
∣∣∣
∣∣∣
∣∣∣
op
≤ C3 for some

constant C3. Let d, nj grow as in Assumption A1. Then we have for sufficiently large m,

P



∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

m∑

j=1

pj

(
Σ̂p

j − µj

)
∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
op

> t


 ≤ 2q−1C2

tq


(log d)q/2

m∑

j=1

p
q/2+1
j + (log d)pq+q

m∑

j=1

pqjnj


 .

Further supposing that (log d)pq+q
∑m

j=1 p
q
jnj → 0 , we get that

∣∣∣
∣∣∣
∣∣∣
∑m

j=1 pj

(
Σ̂p

j − µj

)∣∣∣
∣∣∣
∣∣∣
op

p→ 0 .

Proof Using Markov’s inequality, Jensen’s inequality, and symmeterization, we have with ζj iid
Rademacher

P



∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

m∑

j=1

pj

(
Σ̂p

j − µj

)
∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
op

> t


 ≤

E

[∣∣∣
∣∣∣
∣∣∣
∑m

j=1 pj(Σ̂
p
j − µj)

∣∣∣
∣∣∣
∣∣∣
q

op

]

tq
≤ 2q

E

[∣∣∣
∣∣∣
∣∣∣
∑m

j=1 pjΣ̂
p
j ζj

∣∣∣
∣∣∣
∣∣∣
q

op

]

tq

We use the second part of Theorem A.1 with q ≥ 2 from [CGT12] to bound the RHS.

E



∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

m∑

j=1

pjΣ̂
p
j ζj

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

q

op


 ≤


√e log d

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
E[

m∑

j=1

p2j Σ̂
2p
j]1/2

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
op

+ (2e log d)E

[
max

j

∣∣∣
∣∣∣
∣∣∣pjΣ̂p

j

∣∣∣
∣∣∣
∣∣∣
q

op

]1/q



q

≤ 2q−1(e log d)q/2

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
E[

m∑

j=1

p2j Σ̂
2p
j]1/2

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

q

op

+ 2q−1(e log d)qE

[
max

j
pqj

∣∣∣
∣∣∣
∣∣∣Σ̂p

j

∣∣∣
∣∣∣
∣∣∣
q

op

]

≤ 2q−1(e log d)q/2

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
E




m∑

j=1

p2j Σ̂
2p
j



∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

q/2

op

+ 2q−1(e log d)qE




m∑

j=1

pqj

∣∣∣
∣∣∣
∣∣∣Σ̂j

∣∣∣
∣∣∣
∣∣∣
pq

op




Now we bound the RHS of this quantity using the first part of Theorem A.1. For each j ∈ [m], we
have by Lemma 6.2 for sufficiently large m,

E

[∣∣∣
∣∣∣
∣∣∣Σ̂j

∣∣∣
∣∣∣
∣∣∣
pq

op

]
≤ K(e log d)pqnj ,

for some absolute constant K. Supposing that
∣∣∣
∣∣∣
∣∣∣E
[
Σ̂2p

j

]∣∣∣
∣∣∣
∣∣∣
op
≤ C3 exist for all j. Combining all the

inequalities, we have for sufficiently large m,

15

E



∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

m∑

j=1

pjΣ̂
p
j ξj

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

q

op


 ≤ 2q−1(e log d)q/2




m∑

j=1

p
q/2+1
j

∣∣∣
∣∣∣
∣∣∣E
[
Σ̂2p

j

]∣∣∣
∣∣∣
∣∣∣
q/2

op




+ 2q−1(e log d)q
m∑

j=1

pqjK(e log d)pqnj

≤ C2


(log d)q/2

m∑

j=1

p
q/2+1
j + (log d)pq+q

m∑

j=1

pqjnj


 ,

where in the first term of the first inequality, we use Jensen’s inequality to pull out
∑m

j=1 pj of the
expectation.

To prove the second part of the lemma, we observe that if (log d)(p+1)q
∑m

j=1 p
q
jnj → 0 as m→∞

such that d/ni → γi > 1 for all devices i ∈ [m], then (log d)q/2
∑m

j=1 p
q/2+1
j → 0. To see this, we first

observe

(log d)(p+1)q
m∑

j=1

pqjnj ≥ (max
j∈[m]

pj(log d)
p+1)q,

so we know that maxj∈[m] pj(log d)
p+1 → 0. Further, by Holder’s inequality, we know that

(log d)q/2
m∑

j=1

p
q/2+1
j ≤ (max

j∈[m]
pj log d)

q/2.

By the continuity of the q/2 power, we get the result.

Lemma 6.4. Let U ∈ R
d×d and V ∈ R

d×d be positive semidefinite matrices such that λmin (U) ≥ λ0

for some constant λ0. Let d, nj ,m → ∞ as in Assumption A1. Suppose |||V − U |||op
p→ 0, then∣∣∣∣∣∣V −1 − U−1

∣∣∣∣∣∣
op

p→ 0.

Proof For any t > 0, we have by Theorem 2.5 (from Section III) of [SS90]

P
(∣∣∣∣∣∣V −1 − U−1

∣∣∣∣∣∣
op

> t
)

≤ P

(
∣∣∣∣∣∣V −1 − U−1

∣∣∣∣∣∣
op

> t ∩ |||V − U |||op <
1

|||U−1|||op

)
+ P

(
|||V − U |||op ≥ λ0

)

≤ P

(
∣∣∣∣∣∣U−1(V − U)

∣∣∣∣∣∣
op

>
t

t+ |||U−1|||op

)
+ o(1)

≤ P

(
|||V − U |||op >

tλ0

t+ λ−1
0

)
+ o(1)

We know this quantity goes to 0 by assumption.

6.3 Some useful definitions from previous work

In this section, we recall some definitions from [HMRT19] that will be useful in finding the exact
expressions for risk. The expressions for asymptotic risk in high dimensional regression problems (both
ridge and ridgeless) are given in an implicit form in [HMRT19]. It depends on the geometry of the

covariance matrix Σ and the true solution to the regression problem θ⋆. Let Σ =
∑d

i=1 siviv
T
i denote

16

the eigenvalue decomposition of Σ with s1 ≥ s2 · · · ≥ sd, and let (c, . . . , vTd θ
⋆) denote the inner products

of θ⋆ with the eigenvectors. We define two probability distributions which will be useful in giving the
expressions for risk:

Ĥn(s) :=
1

d

d∑

i=1

1{s ≥ si} , Ĝn(s) :=
1

‖θ⋆‖22

d∑

i=1

(vTi θ
⋆)21{s ≥ si} .

Note that Ĝn is a reweighted version of Ĥn and both have the same support (eigenvalues of Σ).

Definition 6.1. For γ ∈ R
+, let c0 = c0(γ, Ĥn) be the unique non-negative solution of

1− 1

γ
=

∫
1

1 + c0γs
dĤn(s),

the predicted bias and variance is then defined as

B(Ĥn, Ĝn, γ) := ‖θ⋆‖22



1 + γc0

∫
s2

(1+c0γs)
dĤn(s)

∫
s

(1+c0γs)
dĤn(s)



 ·

∫
s

(1 + c0γs)
dĜn(s), (15)

V (Ĥn, γ) := σ2γ

∫
s2

(1+c0γs)
dĤn(s)

∫
s

(1+c0γs)
dĤn(s)

. (16)

Definition 6.2. For γ ∈ R
+ and z ∈ C+, let mn(z) = m(z; Ĥn, γ) be the unique solution of

mn(z) :=

∫
1

s[1− γ − γzmn(z)]− z
dĤn(s).

Further, define mn,1(z) = mn,1(z; Ĥn, γ) as

mn,1(z) :=

∫ s2[1−γ−γzmn(z)]
[s[1−γ−γzmn(z)]−z]2 dĤn(s)

1− γ
∫

zs
[s[1−γ−γzmn(z)]−z]2 dĤn(s)

The definitions are extended analytically to Im(z) = 0 whenever possible, the predicted bias and variance
are then defined by

B(λ; Ĥn, Ĝn, γ) := λ2 ‖θ⋆‖2 (1 + γmn,1(−λ))
∫

s

[λ+ (1− γ + γλmn(−λ))s]2
dĜn(s), (17)

V (λ; Ĥn, γ) := σ2γ

∫
s2((1− γ + γλm′

n(−λ)))
[λ+ (1− γ + γλmn(−λ))s]2

dĤn(s). (18)

6.4 Proof of Theorem 1

On solving (6) and (7), the closed form of the estimators θ̂FA
0 and θ̂FA

i is given by

θ̂FA
0 = argmin

θ

m∑

j=1

pj
1

2nj
‖Xjθ − yj‖22 =




m∑

j=1

pjΣ̂j




−1
m∑

j=1

pj
XT

j yj

nj

=




m∑

j=1

pjΣ̂j




−1
m∑

j=1

pjΣ̂jθ
⋆
j +




m∑

j=1

pjΣ̂j




−1
m∑

j=1

pj
XT

j ξj

nj
(19)

and

θ̂FA
i = (I − Σ̂†

i Σ̂i)θ̂
FA
0 +X†

i yi = (I − Σ̂†
i Σ̂i)θ̂

FA
0 + Σ̂†

i Σ̂iθ
⋆
i +

1

ni
Σ̂†

iX
T
i ξi

= Πi







m∑

j=1

pjΣ̂j




−1
m∑

j=1

pjΣ̂jθ
⋆
j +




m∑

j=1

pjΣ̂j




−1
m∑

j=1

pj
XT

j ξj

nj


+ Σ̂†

i Σ̂iθ
⋆
i +

1

ni
Σ̂†

iX
T
i ξi

17

We now calculate the risk by splitting it into two parts as in (3), and then calculate the asymptotic
bias and variance.

Bias:

Bi(θ̂
FA
i |X) :=

∥∥∥E[θ̂FA
i |X]− θ⋆i

∥∥∥
2

Σi

=

∥∥∥∥∥∥∥
Πi







m∑

j=1

pjΣ̂j




−1
m∑

j=1

pjΣ̂j(θ
⋆
j − θ⋆i)




∥∥∥∥∥∥∥

2

Σi

=

∥∥∥∥∥∥∥
Σ

1/2
i Πi


θ⋆0 − θ⋆i +




m∑

j=1

pjΣ̂j




−1
m∑

j=1

pjΣ̂j(θ
⋆
j − θ⋆0)




∥∥∥∥∥∥∥

2

2

The idea is to show that the second term goes to 0 and use results from [HMRT19] to find the asymptotic
bias. For simplicity, we let ∆j := θ⋆j − θ⋆0 , and we define the event:

Bt :=





∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣




m∑

j=1

pjΣ̂j




−1

−




m∑

j=1

pjΣj




−1
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
op

> t





At :=





∥∥∥∥∥∥∥




m∑

j=1

pjΣ̂j




−1
m∑

j=1

pjΣ̂j∆j

∥∥∥∥∥∥∥
Σi

> t





The proof proceeds in the following steps:

Bias Proof Outline

Step 1. We first show for any t > 0, the P(Bt)→ 0 as d→∞

Step 2. Then we show for any t > 0, the P(At)→ 0 as d→∞

Step 3. We show that for any t ∈ (0, 1]on event Ac
t , Bi(θ̂

FA
i |X) ≤ ‖Πi[θ

⋆
0 − θ⋆i]‖

2
Σi

+ ct and

Bi(θ̂
FA
i |X) ≥ ‖Πi[θ

⋆
0 − θ⋆i]‖

2
Σi
− ct

Step 4. Show that limd→∞ P(|Bi(θ̂
FA
i |X)− ‖Πi[θ

⋆
0 − θ⋆i]‖

2
Σi
| ≤ ε) = 1

Step 5. Finally, using the asymptotic limit of ‖Πi[θ
⋆
0 − θ⋆i]‖

2
Σi

from Theorem 1 of [HMRT19], we get
the result.

Step 1 Since we have λmin (
∑m

j=1 pjΣj) > 1/M > 0, it suffices to show by Lemma 6.4 that the
probability of

Ct :=





∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

m∑

j=1

pjΣ̂j −
m∑

j=1

pjΣj

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
op

> t





goes to 0 as d,m→∞ (obeying Assumption A1). Using Lemma 6.3 with p = 1, we have that

P(Ct) ≤
2q−1C2

tq


(log d)q/2

m∑

j=1

p
q/2+1
j + (log d)2q

m∑

j=1

pqjnj




Since (log d)2q
∑m

j=1 p
q
jnj → 0, this quantity goes to 0.

18

Step 2 Fix any t > 0,

P(At) ≤ P








∥∥∥∥∥∥∥




m∑

j=1

pjΣ̂j




−1
m∑

j=1

pjΣ̂j∆j

∥∥∥∥∥∥∥
Σi

> t




∩Bc

c1


+ P (Bc1)

≤ P


M(c1 +M)

∥∥∥∥∥∥

m∑

j=1

pjΣ̂j∆j

∥∥∥∥∥∥
2

> t


+ P (Bc1)

By Step 1, we know that P (Bc1) → 0. The second inequality comes from ‖Ax‖2 ≤ |||A|||op ‖x‖2
and triangle inequality. Now to bound the first term, we use Markov and a Khintchine inequality
(Lemma 6.1). We have that

P


M(c1 +M)

∥∥∥∥∥∥

m∑

j=1

pjΣ̂j∆j

∥∥∥∥∥∥
2

> t


 ≤

(M(c1 +M))qE
[∥∥∥
∑m

j=1 pjΣ̂j∆j

∥∥∥
q

2

]

tq

≤

(
2M(c1 +M)

√
q
)q

E

[(∑m
j=1

∥∥∥pjΣ̂j∆j

∥∥∥
2

2

)q/2
]

tq

Using Jensen’s inequality and the definition of operator norm, we have

(
2M(c1 +M)

√
q
)q

E

[(∑m
j=1 p

2
j

∥∥∥Σ̂j∆j

∥∥∥
2

2

)q/2
]

tq
=

(
2M(c1 +M)

√
q
)q

E

[(∑m
j=1 pj · pj

∥∥∥Σ̂j∆j

∥∥∥
2

2

)q/2
]

tq

≤

(
2M(c1 +M)

√
q
)q∑m

j=1 p
q/2+1
j E

[∥∥∥Σ̂j∆j

∥∥∥
q

2

]

tq

≤

(
2M(c1 +M)

√
q
)q∑m

j=1 p
q/2+1
j E

[∣∣∣
∣∣∣
∣∣∣Σ̂j

∣∣∣
∣∣∣
∣∣∣
q

op

]
E
[
‖∆j‖q2

]

tq

Lastly, we can bound this using Lemma 6.2 as follows.

P


M(c1 +M)

∥∥∥∥∥∥

m∑

j=1

pjΣ̂j∆j

∥∥∥∥∥∥
2

> t


 ≤

K
(
2M(c1 +M)

√
q
)q

(e log d)q
∑m

j=1 njp
q/2+1
j E[‖∆j‖q2]

tq
→ 0,

using (log d)q
∑m

j=1 p
q/2+1
j njr

q
j → 0.

Step 3 For any t ∈ (0, 1], on the event Ac
t , we have that

B(θ̂FA
i |X) = ‖Πi[θ

⋆
0 − θ⋆i + E]‖2Σi

for some vector E where we know ‖E‖2 ≤ t(which means ‖E‖2 ≤ t
√
M).

Thus, we have

‖Πi[θ
⋆
0 − θ⋆i + E]‖2Σi

≤ ‖Πi[θ
⋆
0 − θ⋆i]‖2Σi

+ ‖ΠiE‖2Σi
+ 2 ‖ΠiE‖Σi

‖Πi[θ
⋆
0 − θ⋆i]‖Σi

≤ ‖Πi[θ
⋆
0 − θ⋆i]‖

2
Σi

+M2t2 + 2tM3/2r2i

‖Πi[θ
⋆
0 − θ⋆i + E]‖2Σi

≥ ‖Πi[θ
⋆
0 − θ⋆i]‖2Σi

+ ‖ΠiE‖2Σi
− 2 ‖ΠiE‖2 ‖Πi[θ

⋆
0 − θ⋆i]‖Σi

≥ ‖Πi[θ
⋆
0 − θ⋆i]‖2Σi

− 2tM2r2i

Since t ∈ (0, 1], we have that t2 ≤ t and thus we can choose c = M2 + 2M3/2r2i

19

Step 4 Reparameterizing ε := ct, we have that for any ε > 0

lim
n→∞

P(|Bi(θ̂
FA
i |X)− ‖Πi[θ

⋆
0 − θ⋆i]‖2Σi

| ≤ ε) ≥ lim
n→∞

P(|Bi(θ̂
FA
i |X)− ‖Πi[θ

⋆
0 − θ⋆i]‖2Σi

| ≤ ε ∧ c)

≥ lim
n→∞

P(Ac
ε
c∧1) = 1

Step 5 Using Theorem 3 of [HMRT19], as d→∞, such that d
ni
→ γi > 1, we know that the limit

of ‖Πi[θ
⋆
0 − θ⋆i]‖

2
Σi

is given by (15) with γ = γi and Ĥn, Ĝn be the empirical spectral distribution and
weighted empirical spectral distribution of Σi respectively.

In the case when Σi = I, using Theorem 1 of [HMRT19] we have Bi(θ̂
FA
i |X) = ‖Πi[θ

⋆
0 − θ⋆i]‖

2
2 →

r2i

(
1− 1

γi

)
.

Variance:

We let ξi = [ξi,1, . . . , ξi,n] denote the vector of noise.

Vi(θ̂
FA
i |X) = tr(Cov(θ̂FA

i |X)Σi) = E

[∥∥∥θ̂FA
i − E

[
θ̂FA
i |X

]∥∥∥
2

Σi

|X
]

= E




∥∥∥∥∥∥∥
Πi







m∑

j=1

pjΣ̂j




−1
m∑

j=1

pj
XT

j ξj

nj


+

1

ni
Σ̂†

iX
T
i ξi

∥∥∥∥∥∥∥

2

Σi

|X




=

m∑

j=1

p2j
nj

tr


ΠiΣiΠi




m∑

j=1

pjΣ̂j




−1

Σ̂j




m∑

j=1

pjΣ̂j




−1

σ2

j

︸ ︷︷ ︸
(i)

+

2 tr


ΣiΣ̂

†
i

XT
i Xi

n2
i




m∑

j=1

pjΣ̂j




−1

Πi


σ2

i

︸ ︷︷ ︸
(ii)

+
1

n2
i

tr
(
Σ̂†

iX
T
i XiΣ̂

†
iΣi

)
σ2
i

︸ ︷︷ ︸
(iii)

We now study the asymptotic behavior of each of the terms (i), (ii) and (iii) separately.

(i) Using the Cauchy Schwartz inequality on Schatten p−norms and using the fact that the nuclear
norm of a projection matrix is at most d, we get

m∑

j=1

p2jσ
2
j

nj
tr


ΠiΣiΠi




m∑

j=1

pjΣ̂j




−1

Σ̂j




m∑

j=1

pjΣ̂j




−1



≤
m∑

j=1

p2jσ
2
j

nj
|||Πi|||1 |||Σi|||op |||Πi|||op

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣




m∑

j=1

pjΣ̂j




−1
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
op

∣∣∣
∣∣∣
∣∣∣Σ̂j

∣∣∣
∣∣∣
∣∣∣
op

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣




m∑

j=1

pjΣ̂j




−1
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
op

≤ C3σ
2
maxγmax




m∑

j=1

p2j

∣∣∣
∣∣∣
∣∣∣Σ̂j

∣∣∣
∣∣∣
∣∣∣
op


 , (20)

20

where the last inequality holds with probability going to 1 for some constant C3 because P(Bt)→ 0.

Lastly, we show that P

(∑m
j=1 p

2
j

∣∣∣
∣∣∣
∣∣∣Σ̂j

∣∣∣
∣∣∣
∣∣∣
op

> t

)
→ 0. Using Markov’s and Jensen’s inequality, we have

P




m∑

j=1

p2j

∣∣∣
∣∣∣
∣∣∣Σ̂j

∣∣∣
∣∣∣
∣∣∣
op

> t


 ≤

E

[∑m
j=1 p

2
j

∣∣∣
∣∣∣
∣∣∣Σ̂j

∣∣∣
∣∣∣
∣∣∣
op

]q

tq
≤

∑m
j=1 p

q+1
j E

[∣∣∣
∣∣∣
∣∣∣Σ̂j

∣∣∣
∣∣∣
∣∣∣
q

op

]

tq

Using Lemma 6.2, we have

P




m∑

j=1

p2j

∣∣∣
∣∣∣
∣∣∣Σ̂j

∣∣∣
∣∣∣
∣∣∣
op

> t


 ≤ K

∑m
j=1 p

q+1
j (e log d)qnj

tq

Finally, since we know that
∑m

j=1 p
q+1
j (e log d)qnj → 0, we have

∑m
j=1 p

2
j

∣∣∣
∣∣∣
∣∣∣Σ̂j

∣∣∣
∣∣∣
∣∣∣
op

p→ 0. Thus,

m∑

j=1

p2jσ
2
j

nj
tr


ΠiΣiΠi




m∑

j=1

pjΣ̂j




−1

Σ̂j




m∑

j=1

pjΣ̂j




−1

 p→ 0

(ii) Using the Cauchy Schwartz inequality on Schatten p−norms and using the fact that the nuclear
norm of a projection matrix is d− n, we get

2piσ
2

ni
tr


ΠiΣiΣ̂

†
i Σ̂i




m∑

j=1

pjΣ̂j




−1

 ≤

2piσ
2

ni
|||Πi|||1 |||Σi|||op

∣∣∣
∣∣∣
∣∣∣Σ̂†

i Σ̂i

∣∣∣
∣∣∣
∣∣∣
op

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣




m∑

j=1

pjΣ̂j




−1
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
op

≤ C4pi,

where the last inequality holds with probability going to 1 for some constant C4 because P(Bt)→ 0
and using Assumption A2. Since pi → 0, we have

2piσ
2

ni
tr


ΠiΣiΣ̂

†
i Σ̂i




m∑

j=1

pjΣ̂j




−1

→ 0

(iii)
1

n2
i

tr(Σ̂†
iX

T
i XiΣ̂

†
iΣi)σ

2
i =

1

ni
tr(Σ̂†

iΣi)σ
2
i

Using Theorem 3 of [HMRT19], as d→∞, such that d
ni
→ γi > 1, we know that the limit of

σ2
i

ni
tr(Σ̂†

iΣi)

is given by (16) with γ = γi and Ĥn, Ĝn be the empirical spectral distribution and weighted empirical
spectral distribution of Σi respectively.

In the case when Σi = I, using Theorem 1 of [HMRT19] we have Vi(θ̂
FA
i |X) =

σ2
i

ni
tr(Σ̂†

i)→
σ2
i

γi−1 .

21

6.5 Proof of Theorem 2

We use the global model from (6) and the personalized model from (8). The closed form of the

estimators θ̂FA
0 and θ̂Ri (λ) is given by

θ̂FA
0 = argmin

θ

m∑

j=1

pj
1

2nj
‖Xjθ − yj‖2 =




m∑

j=1

pjΣ̂j




−1
m∑

j=1

pj
XT

j yj

nj

=




m∑

j=1

pjΣ̂j




−1
m∑

j=1

pjΣ̂jθ
⋆
j +




m∑

j=1

pjΣ̂j




−1
m∑

j=1

pj
XT

j ξj

nj

and

θ̂Ri (λ) = argmin
θ

1

2ni
‖Xiθ − yi‖22 +

λ

2

∥∥∥θ̂FA
0 − θ

∥∥∥
2

2

= (Σ̂i + λI)−1

(
λθ̂FA + Σ̂iθ

⋆
i +

1

ni
XT

i ξi

)

We now calculate the risk by splitting it into two parts as in (3), and then calculate the asymptotic
bias and variance.

Bias:

B(θ̂Ri (λ)|X) :=
∥∥∥E[θ̂Ri (λ)|X]− θ⋆i

∥∥∥
2

Σi

= λ2

∥∥∥∥∥∥∥
(Σ̂i + λI)−1







m∑

j=1

pjΣ̂j




−1
m∑

j=1

pjΣ̂j(θ
⋆
j − θ⋆i)




∥∥∥∥∥∥∥

2

Σi

= λ2

∥∥∥∥∥∥∥
(Σ̂i + λI)−1


θ⋆0 − θ⋆i +




m∑

j=1

pjΣ̂j




−1
m∑

j=1

pjΣ̂j(θ
⋆
j − θ⋆0)




∥∥∥∥∥∥∥

2

Σi

The idea is to show that the second term goes to 0 and use results from [HMRT19] to find the
asymptotic bias. For simplicity, we let ∆j := θ⋆j − θ⋆0 , and we define the event:

Bt :=





∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣




m∑

j=1

pjΣ̂j




−1

−




m∑

j=1

pjΣj




−1
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
op

> t





At :=





∥∥∥∥∥∥∥




m∑

j=1

pjΣ̂j




−1
m∑

j=1

pjΣ̂j∆j

∥∥∥∥∥∥∥
Σi

> t





The proof proceeds in the following steps:

22

Bias Proof Outline

Step 1. We first show for any t > 0, the P(Bt)→ 0 as d→∞

Step 2. We show for any t > 0, the P(At)→ 0 as d→∞

Step 3. We show that for any t ∈ (0, 1] on event Ac
t , B(θ̂Ri (λ)|X) ≤ λ2

∥∥∥(Σ̂i + λI)−1[θ⋆0 − θ⋆i]
∥∥∥
2

Σi

+ ct

and B(θ̂Ri (λ)|X) ≥ λ2
∥∥∥(Σ̂i + λI)−1[θ⋆0 − θ⋆i]

∥∥∥
2

Σi

− ct

Step 4. Show that limd→∞ P(|B(θ̂Ri (λ)|X)− λ2
∥∥∥(Σ̂i + λI)−1[θ⋆0 − θ⋆i]

∥∥∥
2

Σi

| ≤ ε) = 1

Step 5. Finally, using the asymptotic limit of λ2
∥∥∥(Σ̂i + λI)−1[θ⋆0 − θ⋆i]

∥∥∥
2

Σi

from Corollary 5 of

[HMRT19], we get the result.

Step 1 and Step 2 follow from Step 1 and Step 2 of proof of Theorem 1.

Step 3 For any t ∈ (0, 1], on the event Ac
t where T−1

i = (Σ̂i + λI)−1, we have that

B(θ̂Ri (λ)|X) = λ2
∥∥T−1

i [θ⋆0 − θ⋆i + E]
∥∥2
Σi

for some vector E where we know ‖E‖Σi
≤ t (which means ‖E‖2 ≤ t

√
M).

We can form the bounds

∥∥T−1
i [θ⋆0 − θ⋆i + E]

∥∥2
Σi
≤
∥∥T−1

i [θ⋆0 − θ⋆i]
∥∥2
Σi

+
∥∥T−1

i E
∥∥2
Σi

+ 2
∥∥T−1

i E
∥∥
Σi

∥∥T−1
i [θ⋆0 − θ⋆i]

∥∥
Σi

≤
∥∥T−1

i [θ⋆0 − θ⋆i]
∥∥2
Σi

+M2λ−2t2 + 2M3/2tλ−2r2i
∥∥T−1

i [θ⋆0 − θ⋆i + E]
∥∥2
Σi
≥
∥∥T−1

i [θ⋆0 − θ⋆i]
∥∥2
Σi

+
∥∥T−1

i E
∥∥2
Σi
− 2

∥∥T−1
i E

∥∥
Σi

∥∥T−1
i [θ⋆0 − θ⋆i]

∥∥
Σi

≥
∥∥T−1

i [θ⋆0 − θ⋆i]
∥∥2
Σi
− 2M2tλ−2r2i .

Since t ∈ (0, 1], we have that t2 ≤ t and thus we can choose c = λ−2(M2 + 2M3/2r2i).

Step 4 Reparameterizing ε := ct, we have that for any ε > 0

lim
n→∞

P(|B(θ̂Ri (λ)|X)− λ2
∥∥∥(Σ̂i + λI)−1[θ⋆0 − θ⋆i]

∥∥∥
2

Σi

| ≤ ε)

≥ lim
n→∞

P(|B(θ̂Ri (λ)|X)− λ2
∥∥∥(Σ̂i + λI)−1[θ⋆0 − θ⋆i]

∥∥∥
2

Σi

| ≤ ε ∧ c)

≥ lim
n→∞

P(Ac
ε
c∧1) = 1.

Step 5 Using Theorem 6 of [HMRT19], as d→∞, such that d
ni
→ γi > 1, we know that the limit

of λ2
∥∥∥(Σ̂i + λI)−1[θ⋆0 − θ⋆i]

∥∥∥
2

Σi

is given by (17) with γ = γi and Ĥn, Ĝn be the empirical spectral

distribution and weighted empirical spectral distribution of Σi respectively.
In the case when Σi = I, using Corollary 5 of [HMRT19] we have Bi(θ̂

R
i (λ)|X) = ‖Πi[θ

⋆
0 − θ⋆i]‖

2
2 →

r2i λ
2m′

i(−λ).

23

Variance:

We let ξi = [ξi,1, . . . , ξi,n] denote the vector of noise. Substituting in the variance formula and using
E[ξiξ

T
j] = 0 and E[ξiξ

T
i] = σ2I, we get

Var(θ̂Ri (λ)|X) = E




∥∥∥∥∥∥∥
(Σ̂i + λI)−1




1

ni
XT

i ξi + λ




m∑

j=1

pjΣ̂j




−1
m∑

j=1

pj
XT

j ξj

nj




∥∥∥∥∥∥∥

2

Σi

∣∣∣∣X




=

m∑

j=1

λ2p2j
nj

tr


(Σ̂i + λI)−1Σ(Σ̂i + λI)−1




m∑

j=1

pjΣ̂j




−1

Σ̂j




m∑

j=1

pjΣ̂j




−1

σ2

j

︸ ︷︷ ︸
(i)

+ 2λpi tr



XT

i Xi

n2
i




m∑

j=1

pjΣ̂j




−1

(Σ̂i + λI)−1Σ(Σ̂i + λI)−1


σ2

i

︸ ︷︷ ︸
(ii)

+tr
(
(Σ̂i + λI)−1Σ(Σ̂i + λI)−1Σ̂i

) σ2
i

ni︸ ︷︷ ︸
(iii)

We now study the asymptotic behavior of each of the terms (i), (ii) and (iii) separately.

(i) Using the Cauchy Schwartz inequality on Schatten p−norms, we get

m∑

j=1

p2jλ
2σ2

j

nj
tr


(Σ̂i + λI)−1Σ(Σ̂i + λI)−1




m∑

j=1

pjΣ̂j




−1

Σ̂j




m∑

j=1

pjΣ̂j




−1



≤
m∑

j=1

λ2p2jσ
2
j

nj
|||(Σ̂i + λI)−1|||1 |||Σ|||op

∣∣∣
∣∣∣
∣∣∣(Σ̂i + λI)−1

∣∣∣
∣∣∣
∣∣∣
op

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣




m∑

j=1

pjΣ̂j




−1
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
op

∣∣∣
∣∣∣
∣∣∣Σ̂j

∣∣∣
∣∣∣
∣∣∣
op

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣




m∑

j=1

pjΣ̂j




−1
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
op

≤ C5σ
2
max γmax




m∑

j=1

p2j

∣∣∣
∣∣∣
∣∣∣Σ̂j

∣∣∣
∣∣∣
∣∣∣
op


 ,

where the last inequality holds with probability going to 1 for some constant C5 because P(Bt)→ 0.
Note that this expression is same as (20) and hence the rest of the analysis for this term is same as the
one in the proof of FTFA (Section 6.4).

(ii) Using the Cauchy Schwartz inequality on Schatten p−norms, we get

2piλσ
2
i

ni
tr


(Σ̂i + λI)−1Σ̂i




m∑

j=1

pjΣ̂j




−1

(Σ̂i + λI)−1Σ




≤ 2piλσ
2
i

ni
|||(Σ̂i + λI)−1|||1

∣∣∣
∣∣∣
∣∣∣Σ̂i

∣∣∣
∣∣∣
∣∣∣
op

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣




m∑

j=1

pjΣ̂j




−1
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
op

|||Σ|||op
∣∣∣
∣∣∣
∣∣∣(Σ̂i + λI)−1

∣∣∣
∣∣∣
∣∣∣
op

≤ C6σ
2
i dpi

λni
,

where C6 is an absolute constant which captures an upper bound on the operator norm of the sample
covariance matrix Σ̂i using Bai Yin Theorem [BY93], and an upper bound on the operator norm of

24

(∑m
j=1 pjΣ̂j

)−1

, which follows from P(Bt)→ 0. Since pi → 0, we have

2piλσ
2
i

ni
tr

(
(Σ̂i + λI)−1Σ̂i

(∑m
j=1 pjΣ̂j

)−1

(Σ̂i + λI)−1Σ

)
p→ 0

(iii) Using Theorem 3 of [HMRT19], as d → ∞, such that d
ni
→ γi > 1, we know that the limit of

tr((Σ̂i + λI)−2Σ̂iΣi)
σ2
i

ni
is given by (18) with γ = γi and Ĥn, Ĝn be the empirical spectral distribution

and weighted empirical spectral distribution of Σi respectively.

In the case when Σi = I, using Theorem 1 of [HMRT19] we have Vi(θ̂
R
i (λ)|X) =

σ2
i

ni
tr((Σ̂i +

λI)−2Σ̂†
iΣi)

p→ σ2
i

γi−1 .

6.6 Proof of Theorem 3

On solving (12) and (13), the closed form of the estimators θ̂M0 (α) and θ̂Mi (α) is given by

θ̂M0 (α) := argmin
θ

m∑

j=1

pj
2nj

∥∥∥∥Xj

[
θ − α

nj
XT

j (Xjθ − yj)

]
− yj

∥∥∥∥
2

2

= argmin
θ

m∑

j=1

pj
2nj

∥∥∥
(
In −

α

n
XjX

T
j

)
(Xjθ − yj)

∥∥∥
2

2

=




m∑

j=1

pj
nj

XT
j W

2
j Xj




−1
m∑

j=1

pj
nj

XT
j W

2
j yj

where Wj := I − α
nj
XjX

T
j and

θ̂Mi (α) := argmin
θ

∥∥∥θ̂M0 (α)− θ
∥∥∥
2

s.t. Xiθ = yi

= (I − Σ̂†
i Σ̂i)θ̂

M
0 (α) + Σ̂†

i Σ̂iθ
⋆
i +

1

ni
Σ̂†

iX
T
i ξi

We now calculate the risk by splitting it into two parts as in (3), and then calculate the asymptotic
bias and variance.

Bias:

B(θ̂Mi (α)|X) :=
∥∥∥E[θ̂Mi (α)|X]− θ⋆i

∥∥∥
2

Σi

=

∥∥∥∥∥∥∥
Πi







m∑

j=1

pj
nj

XT
j W

2
j Xj




−1
m∑

j=1

pj
nj

XT
j W

2
j Xj(θ

⋆
j − θ⋆i)




∥∥∥∥∥∥∥

2

2

=

∥∥∥∥∥∥∥
Πi


θ⋆0 − θ⋆i +




m∑

j=1

pj
nj

XT
j W

2
j Xj




−1
m∑

j=1

pj
nj

XT
j W

2
j Xj(θ

⋆
j − θ⋆0)




∥∥∥∥∥∥∥

2

Σi

For simplicity, we let ∆j := θ⋆j − θ⋆0 , and we define the events:

Bt :=





∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣




m∑

j=1

pj
nj

XT
j W

2
j Xj




−1

− E




m∑

j=1

pj
1

nj
XT

j W
2
j Xj



−1
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
op

> t





(21)

At :=





∥∥∥∥∥∥∥




m∑

j=1

pj
nj

XT
j W

2
j Xj




−1
m∑

j=1

pj
nj

XT
j W

2
j Xj∆j

∥∥∥∥∥∥∥
Σi

> t





(22)

25

The proof proceeds in the following steps:

Bias Proof Outline

Step 1. We first show for any t > 0, the P(Bt)→ 0 as d→∞

Step 2. Then, we show for any t > 0, the P(At)→ 0 as d→∞

Step 3. We show that for any t ∈ (0, 1]1 on event Ac
t , B(θ̂Mi (α)|X) ≤ ‖Πi[θ

⋆
0 − θ⋆i]‖

2
Σi

+ ct and

B(θ̂Mi (α)|X) ≥ ‖Πi[θ
⋆
0 − θ⋆i]‖

2
Σi
− ct

Step 4. Show that limd→∞ P(|B(θ̂Mi (α)|X)− ‖Πi[θ
⋆
0 − θ⋆i]‖

2
Σi
| ≤ ε) = 1

Step 5. Finally, using the asymptotic limit of ‖Πi[θ
⋆
0 − θ⋆i]‖

2
Σi

from Theorem 1 of [HMRT19], we get
the result.

We now give the detailed proof:

Step 1 Since λmin (E
[

1
nj
XT

j W
2
j Xj

]
) ≥ λ0, it suffices to show by Lemma 6.4 that the probability of

Ct :=





∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

m∑

j=1

pj

(
1

nj
XT

j W
2
j Xj − E

[
1

nj
XT

j W
2
j Xj

])∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
op

> t





goes to 0 as d,m→∞ under Assumption A1.

P(Ct) = P



∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

m∑

j=1

pj

[[
Σ̂j − 2α2Σ̂2

j + α2Σ̂3
j

]
− E

[
1

nj
XT

j W
2
j Xj

]]∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
op

> t




≤ P



∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

m∑

j=1

pj

(
Σ̂j − µ1,j

)
∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
op

> t/3




+ P



∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
2α

m∑

j=1

pj

(
Σ̂2

j − µ2,j

)
∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
op

> t/3


+ P



∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
α2

m∑

j=1

pj

(
Σ̂3

j − µ3,j

)
∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
op

> t/3


 , (23)

where µp,j := E[Σ̂p
j]. We repeatedly apply Lemma 6.3 for p = 1, 2, 3 to bound each of these three terms.

It is clear that if E[‖xj,k‖6q2]1/(6q) .
√
d,
∣∣∣
∣∣∣
∣∣∣E[Σ̂6

j]
∣∣∣
∣∣∣
∣∣∣
op
≤ C3 for some constant C3, (log d)

4q
∑m

j=1 p
q
jnj → 0,

and (log d)q/2
∑m

j=1 p
q/2+1
j → 0, then (23) goes to 0.

Step 2

P(At) ≤ P(At ∩Bc
c1) + P(Bc1)

≤ P


M

(
c1 +

1

λ0

)∥∥∥∥∥∥

m∑

j=1

pj
nj

XT
j W

2
j Xj∆j

∥∥∥∥∥∥
2

> t


+ P(Bc1)

26

From Step 1, we know that limn→∞ P(Bc1) = 0. The second inequality comes from the fact that
‖Ax‖2 ≤ |||A|||op ‖x‖2. To handle the first term, we use Markov’s inequality.

P


c2

∥∥∥∥∥∥

m∑

j=1

pj
nj

XT
j W

2
j Xj∆j

∥∥∥∥∥∥
2

> t


 ≤ cq2

tq
E



∥∥∥∥∥∥

m∑

j=1

pj
nj

XT
j W

2
j Xj∆j

∥∥∥∥∥∥

q

2




≤ (2c2
√
q)q

tq
E







m∑

j=1

∥∥∥∥
pj
nj

XT
j W

2
j Xj∆j

∥∥∥∥
2

2




q/2



≤ (2c2
√
q)q

tq

m∑

j=1

pjE



(
pj

∥∥∥∥
1

nj
XT

j W
2
j Xj∆j

∥∥∥∥
2

2

)q/2



=
(2c2
√
q)q

tq

m∑

j=1

p
q/2+1
j E

[∥∥∥Σ̂j(I − αΣ̂j)
2∆j

∥∥∥
q

2

]

≤ (8c2
√
q)q

2tq

m∑

j=1

p
q/2+1
j E

[∣∣∣
∣∣∣
∣∣∣Σ̂j

∣∣∣
∣∣∣
∣∣∣
q

op
+ α2

∣∣∣
∣∣∣
∣∣∣Σ̂j

∣∣∣
∣∣∣
∣∣∣
3q

op

]
E[‖∆j‖q2]

≤ (8c2
√
q)q

2tq

m∑

j=1

p
q/2+1
j

[
α2K(e log d)3qnj

]
rqj ,

where the last step follows from Lemma 6.2 and the final expression goes to 0 since (log d)3q
∑m

j=1 p
q/2+1
j njr

q
j →

0.

Step 3, 4 and 5 are same as the bias calculation of proof of Theorem 1.

Variance:

We let ξi = [ξi,1, . . . , ξi,n] denote the vector of noise.

Vi(θ̂
M
i (α); θ⋆i |X) = tr(Cov(θ̂Mi (α)|X)Σ) = E[

∥∥∥θ̂Mi (α)− E[θ̂Mi (α)|X]
∥∥∥
2

Σi

|X]

= E[

∥∥∥∥∥∥∥
Πi







m∑

j=1

pj
nj

XT
j W

2
j Xj




−1
m∑

j=1

pj
nj

XT
j W

2
j ξj


+

1

ni
Σ̂†

iX
T
i ξi

∥∥∥∥∥∥∥

2

Σi

|X]

=

m∑

j=1

p2j
n2
j

tr


ΠiΣiΠi




m∑

j=1

pj
nj

XT
j W

2
j Xj




−1

XT
j W

4
j Xj




m∑

j=1

pj
nj

XT
j W

2
j Xj




−1

σ2

j

︸ ︷︷ ︸
(i)

+

2 tr


Σ̂†

i

XT
i W

2
j Xi

n2
i




m∑

j=1

pj
nj

XT
j W

2
j Xj




−1

ΠiΣi


σ2

i

︸ ︷︷ ︸
(ii)

+
1

n2
i

tr(Σ̂†
iX

T
i XiΣ̂

†
iΣi)σ

2
i

︸ ︷︷ ︸
(iii)

We now study the asymptotic behavior of each of the terms (i), (ii) and (iii) separately.

27

(i) Using the Cauchy Schwartz inequality on Schatten p−norms and using the fact that the nuclear
norm of a projection matrix is at most d, we get

m∑

j=1

p2jσ
2
j

nj
tr


ΠiΣiΠi




m∑

j=1

pj
nj

XT
j W

2
j Xj




−1

Σ̂j(I − αΣ̂j)
4




m∑

j=1

pj
nj

XT
j W

2
j Xj




−1



≤
m∑

j=1

p2jσ
2
j

nj
|||Πi|||1 |||Σi|||op |||Πi|||op

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣




m∑

j=1

pj
nj

XT
j W

2
j Xj




−1
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
op

∣∣∣
∣∣∣
∣∣∣Σ̂j(I − αΣ̂j)

4
∣∣∣
∣∣∣
∣∣∣
op

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣




m∑

j=1

pj
nj

XT
j W

2
j Xj




−1
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
op

≤ C7σ
2
max γmax




m∑

j=1

p2j

∣∣∣
∣∣∣
∣∣∣Σ̂j(I − αΣ̂j)

4
∣∣∣
∣∣∣
∣∣∣
op


 ,

where the last inequality holds with probability going to 1 for some constant C7 because P(Ct)→ 0.

Lastly, we show that P

(∑m
j=1 p

2
j

∣∣∣
∣∣∣
∣∣∣Σ̂j(I − αΣ̂j)

4
∣∣∣
∣∣∣
∣∣∣
op

> t

)
→ 0. Using Markov’s and Jensen’s inequality,

we have

P




m∑

j=1

p2j

∣∣∣
∣∣∣
∣∣∣Σ̂j(I − Σ̂j)

4
∣∣∣
∣∣∣
∣∣∣
op

> t


 ≤

E

[∑m
j=1 p

2
j

∣∣∣
∣∣∣
∣∣∣Σ̂j(I − αΣ̂j)

4
∣∣∣
∣∣∣
∣∣∣
op

]q

tq

≤

∑m
j=1 p

q+1
j E

[∣∣∣
∣∣∣
∣∣∣Σ̂j(I − αΣ̂j)

4
∣∣∣
∣∣∣
∣∣∣
q

op

]

tq

≤

∑m
j=1 p

q+1
j E

[∣∣∣
∣∣∣
∣∣∣Σ̂j

∣∣∣
∣∣∣
∣∣∣
op

∣∣∣
∣∣∣
∣∣∣(I − αΣ̂j)

∣∣∣
∣∣∣
∣∣∣
4q

op

]

tq

≤

∑m
j=1 p

q+1
j E

[∣∣∣
∣∣∣
∣∣∣Σ̂j

∣∣∣
∣∣∣
∣∣∣
op

(
|||I|||op + α

∣∣∣
∣∣∣
∣∣∣Σ̂j

∣∣∣
∣∣∣
∣∣∣
op

)4q
]

tq

≤ 24q−1

∑m
j=1 p

q+1
j E

[∣∣∣
∣∣∣
∣∣∣Σ̂j

∣∣∣
∣∣∣
∣∣∣
op

+ α4
∣∣∣
∣∣∣
∣∣∣Σ̂j

∣∣∣
∣∣∣
∣∣∣
5q

op

]

tq

Using Lemma 6.2 and Markov’s inequality, we have

P




m∑

j=1

p2j

∣∣∣
∣∣∣
∣∣∣Σ̂j

∣∣∣
∣∣∣
∣∣∣
op

> t


 ≤ 24q−1

(
K1

∑m
j=1 p

q+1
j (e log d)nj

tq
+K2α

4

∑m
j=1 p

q+1
j (e log d)5qnj

tq

)
.

Finally, since we know that
∑m

j=1 p
q+1
j (log d)5qnj → 0, we have P

(∑m
j=1 p

2
j

∣∣∣
∣∣∣
∣∣∣Σ̂j(I − αΣ̂j)

4
∣∣∣
∣∣∣
∣∣∣
op

> t

)
→

0.

(ii) Using the Cauchy Schwartz inequality on Schatten p−norms and using the fact that the nuclear
norm of a projection matrix is d− n, we get

28

2 tr


Σ̂†

i

XT
i W

2
i Xi

n2
i




m∑

j=1

pj
nj

XT
j W

2
j Xj




−1

ΠiΣi


σ2

i

= 2 tr


ΠiΣiΣ̂

†
i

Σ̂i(I − Σ̂i)
2

ni




m∑

j=1

pj
nj

XT
j W

2
j Xj




−1

σ2

i

≤ 2piσ
2

ni
|||Πi|||1 |||Σi|||op

∣∣∣
∣∣∣
∣∣∣Σ̂†

i Σ̂i

∣∣∣
∣∣∣
∣∣∣
op

∣∣∣
∣∣∣
∣∣∣(I − Σ̂i)

2
∣∣∣
∣∣∣
∣∣∣
op

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣




m∑

j=1

pj
nj

XT
j W

2
j Xj




−1
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
op

≤ C4pi,

where the last inequality holds with probability going to 1 for some constant C4 because P(Bt)→ 0
and using Assumption A2. Since pi → 0, we have

2 tr


Σ̂†

i

XT
i W

2
i Xi

n2
i




m∑

j=1

pj
nj

XT
j W

2
j Xj




−1

ΠiΣi


σ2

i → 0

(iii)
1

n2
i

tr(Σ̂†
iX

T
i XiΣ̂

†
iΣi)σ

2
i =

1

ni
tr(Σ̂†

iΣi)σ
2
i

Using Theorem 3 of [HMRT19], as d→∞, such that d
ni
→ γi > 1, we know that the limit of

σ2
i

ni
tr(Σ̂†

iΣi)

is given by (16) with γ = γi and Ĥn, Ĝn be the empirical spectral distribution and weighted empirical
spectral distribution of Σi respectively.

In the case when Σi = I, using Theorem 1 of [HMRT19] we have Vi(θ̂
M
i (α)|X) =

σ2
i

ni
tr(Σ̂†

i)→
σ2
i

γi−1 .

6.7 Proof of Theorem 4

The solution to this minimization problem in (14) is given by

θ̂P0 (λ) = θ⋆0 +Q−1




m∑

j=1

pjT
−1
j Σ̂j∆j +

m∑

j=1

pjT
−1
j

1

nj
XT

j ξj


 ,

where ∆j = θ⋆j − θ⋆0 , Tj = Σ̂j + λI and Q = I − λ
∑m

j=1 pjT
−1
j . The personalized solutions are then

given by

θ̂Pi (λ) = T−1
i

(
λθ̂P0 (λ) + Σ̂iθ

⋆
i +

1

ni
XT

i ξi

)

We now calculate the risk by splitting it into two parts as in (3), and then calculate the asymptotic
bias and variance.

Bias:

Let ∆j := θ⋆j − θ⋆0 , then we have

B(θ̂Pi (λ)|X) :=

∥∥∥∥∥∥
T−1
i


λθ⋆0 − λθ⋆i + λQ−1




m∑

j=1

pjT
−1
j Σ̂j∆j





∥∥∥∥∥∥

2

Σi

29

The idea is to show that the second term goes to 0 and use results from [HMRT19] to find the
asymptotic bias. To do this, we first define the events:

Ct :=





∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

m∑

j=1

pj(T
−1
j − E[T−1

j])

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
op

> t





At :=





∥∥∥∥∥∥
Q−1




m∑

j=1

pjT
−1
j Σ̂j∆j



∥∥∥∥∥∥
Σi

> t





The proof proceeds in the following steps:

Bias Proof Outline

Step 1. We first show for any t > 0, the P(Ct)→ 0 as d→∞

Step 2. Then, we show for any t > 0, the P(At)→ 0 as d→∞.

Step 3. We show that for any t ∈ (0, 1], B(θ̂Pi (λ)|X) ≤
∥∥T−1

i [λθ⋆0 − λθ⋆i]
∥∥2
2
+ ct and B(θ,X) ≥∥∥T−1

i [λθ⋆0 − λθ⋆i]
∥∥2
2
− ct

Step 4. Show that limd→∞ P(|B(θ̂Pi (λ)|X)−
∥∥T−1

i [λθ⋆0 − λθ⋆i]
∥∥2
2
| ≤ ε) = 1

Step 5. Finally, using the asymptotic limit of
∥∥T−1

i [λθ⋆0 − λθ⋆i]
∥∥2
2

from Corollary 5 of [HMRT19], we
get the result.

We now give the detailed proof:

Step 1

P(Ct) = P



∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

m∑

j=1

pj(T
−1
j − E[T−1

j])

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
op

> t


 ≤

2qE

[∣∣∣
∣∣∣
∣∣∣
∑m

j=1 ξjpjT
−1
j

∣∣∣
∣∣∣
∣∣∣
q

op

]

tq
,

We use Theorem A.1 from [CGT12] to bound this object.

E



∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

m∑

j=1

ξjT
−1
j

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

q

op


 ≤



√
e log d

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣




m∑

j=1

p2jE[T
−1
j]




1/2
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
op

+ (e log d)(Emax
j

∣∣∣∣∣∣pjT−1
j

∣∣∣∣∣∣q
op
)1/q




q

≤ 2q−1



√

e log d
q

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣




m∑

j=1

p2jE[(T
−1
j)2]




1/2
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

q

op

+ (e log d)q(Emax
j

∣∣∣∣∣∣pjT−1
j

∣∣∣∣∣∣q
op
)




≤ 2q−1



√
e log d

q

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

m∑

j=1

p2jE[(T
−1
j)2]

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

q/2

op

+
(e log d)q maxj p

q
j

λq




≤ 2q−1


√e log d

q
m∑

j=1

p
q/2+1
j

∣∣∣
∣∣∣
∣∣∣(E[(T−1

j)2])q/2
∣∣∣
∣∣∣
∣∣∣
op

+
1

λq
(e log d)q

m∑

j=1

pqj




≤ 2q−1

λq


(e log d)q/2

m∑

j=1

p
q/2+1
j + (e log d)q

m∑

j=1

pqj


 ,

30

where we use the fact that
∣∣∣∣∣∣T−1

j

∣∣∣∣∣∣
op

=
∣∣∣
∣∣∣
∣∣∣(Σ̂j + λI)−1

∣∣∣
∣∣∣
∣∣∣
op
≤ 1

λ since Σ̂j is always positive semidefinite.

Since (log d)q/2
∑m

j=1 p
q/2+1
j and (log d)q

∑m
j=1 p

q
j , we get that P(Ct)→ 0 for all t > 0.

Step 2 To prove this step, we will first use a helpful lemma,

Lemma 6.5. Suppose that Σ = E[Σ̂] ∈ R
d,d has a spectrum supported on [a, b] where 0 < a < b <∞.

Further suppose that E

[∣∣∣
∣∣∣
∣∣∣Σ̂2
∣∣∣
∣∣∣
∣∣∣
op

]
≤ τ and there exists an R ≥ b such that P(λmax (Σ̂) > R) ≤ a2

8τ , then

∣∣∣
∣∣∣
∣∣∣E[(Σ̂ + λI)−1]

∣∣∣
∣∣∣
∣∣∣
op
≤ 1

λ

(
1− a3

16τ(R+ λ)

)
≤ 1

λ

Proof Fix an arbitrary vector u ∈ R
d with unit ℓ2 norm. We fix δ = a/2 > 0, we define the event

A := {uT Σ̂u ≥ δ} and B := {λmax (Σ̂) ≤ R}

uT
E[(Σ̂ + λI)−1]u ≤ E[1 {A ∩B}uT (Σ̂ + λI)−1u] +

1

λ
(1− P(A ∩B))

Let σ2
i and vi denote the ith eigenvalue and eigenvector of Σ̂ respectively sorted in descending order

with respect to eigenvalue (σ2
1 ≥ σ2

2 ≥ . . . ≥ σ2
d). On the event A, we have that uT (Σ̂ + λI)−1u has

value no larger than

max
α∈Rd

d∑

i=1

1

σ2
i + λ

αi

s.t. α ≥ 0

1Tα = 1

d∑

i=1

σ2
i αi ≥ δ

The dual of this problem is

min
θ

max
j∈[d]

{
θσ2

j +
1

σ2
j + λ

}
− θδ

s.t. θ ≥ 0

It suffices to demonstrate that there exists a θ which satisfies the constraints of the dual and has
objective value less than 1

λ . We can verify that selecting θ = 1
λ(σ2

1
+λ)

has an objective value of

1

λ
− δ

λ(σ2
1 + λ)

which is less than the desired 1
λ . All that remains is to lower bound P(A ∩ B) ≥ P(A)− P(Bc). We

know by Paley-Zygmund

P(A) ≥ P

(
uT Σ̂u ≥ δ

a
uTΣu

)
≥ P

(
uT Σ̂u ≥ 1

2
uTΣu

)
≥ (uTΣu)2

4E[(uT Σ̂u)2]
≥ a2

4τ

Note that a2/4τ < 1 because the second moment of a random variable is no smaller than the first
moment squared of the random variable. Moreover, by construction, R is large enough such that
P(Bc) ≤ P(A)/2, thus,

uT
E[(Σ̂ + λI)−1]u ≤ 1

λ

(
1− a

2(R+ λ)

)
a2

8τ
+

1

λ

(
1− a2

8τ

)

=
1

λ

(
1− a3

16τ(R+ λ)

)

31

Recall that we have the assumptions that for sufficiently large m, for all j ∈ [m] we have Σj has a

spectrum supported on [a, b] where a = 1/M and b = M and E

[∣∣∣
∣∣∣
∣∣∣Σ̂2

j

∣∣∣
∣∣∣
∣∣∣
op

]
≤ τ3. Moreover, since we

have the assumption that there exists an R ≥ b such that lim supm→∞ supj∈[m] P(λmax (Σ̂j) > R) ≤
a2

16τ3
, by Lemma 6.5 there exists and 1 > ε > 0 such that for sufficiently large m, for all j ∈ [m],∣∣∣

∣∣∣
∣∣∣E[(Σ̂j + λI)−1]

∣∣∣
∣∣∣
∣∣∣
op
≤ 1−ε

λ .

P(At) ≤ P(At ∩ Cc
c1) + P(Cc1)

Since we know P(Cc1)→ 0, it suffices to bound the first term.

P(At ∩ Cc
c1) ≤ P


√M

∣∣∣∣∣∣Q−1
∣∣∣∣∣∣
op

∥∥∥∥∥∥




m∑

j=1

pjT
−1
j Σ̂j∆j



∥∥∥∥∥∥
2

> t ∩ Cc
c1




= P



√
M


1−

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
λ

m∑

j=1

pjT
−1
j

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
op




−1 ∥∥∥∥∥∥




m∑

j=1

pjT
−1
j Σ̂j∆j



∥∥∥∥∥∥
2

> t ∩ Cc
c1




≤ P



√
M


1−

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
λ

m∑

j=1

pjE[T
−1
j] + Ec1

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
op




−1 ∥∥∥∥∥∥




m∑

j=1

pjT
−1
j Σ̂j∆j



∥∥∥∥∥∥
2

> t




≤ P



√
M


1− λ

m∑

j=1

pj
∣∣∣∣∣∣E[T−1

j]
∣∣∣∣∣∣
op
− c1




−1 ∥∥∥∥∥∥




m∑

j=1

pjT
−1
j Σ̂j∆j



∥∥∥∥∥∥
2

> t




where we used Jensen’s inequality in the last step. Ec1 is a matrix error term which on the event Cc
c1

has operator norm bounded by c1. As discussed, we have that
∑m

j=1 pj
∣∣∣∣∣∣E[T−1

j]
∣∣∣∣∣∣
op

is less than 1−ε
λ ,

which shows there exists a constant c2, such that
√
M(1− λ

∑m
j=1 pj

∣∣∣∣∣∣E[T−1
j]
∣∣∣∣∣∣
op
− c1)

−1 < c2. Now,

we have, using Lemma 6.1,

P


c2

∥∥∥∥∥∥

m∑

j=1

pjT
−1
j Σ̂j∆j

∥∥∥∥∥∥
2

> t


 ≤

cq2E
[∥∥∥
∑m

j=1 pjT
−1
j Σ̂j∆j

∥∥∥
q

2

]

tq
≤

(2c2
√
q)qE

[(∑m
j=1

∥∥∥pjT−1
j Σ̂j∆j

∥∥∥
2

2

)q/2
]

tq

Using Jensen’s inequality and the definition of operator norm, we have

(2c2
√
q)qE

[(∑m
j=1 p

2
j

∥∥∥T−1
j Σ̂j∆j

∥∥∥
2

2

)q/2
]

tq
=

(2c2
√
q)qE

[(∑m
j=1 pj · pj

∥∥∥T−1
j Σ̂j∆j

∥∥∥
2

2

)q/2
]

tq

≤
(2c2
√
q)q
∑m

j=1 p
q/2+1
j E

[∥∥∥T−1
j Σ̂j∆j

∥∥∥
q

2

]

tq

≤
(2c2
√
q)q
∑m

j=1 p
q/2+1
j E

[∣∣∣∣∣∣T−1
j

∣∣∣∣∣∣q
op

]
E

[∣∣∣
∣∣∣
∣∣∣Σ̂j

∣∣∣
∣∣∣
∣∣∣
q

op

]
E
[
‖∆j‖q2

]

tq

Lastly, we can bound this using Lemma 6.2 as follows and using the fact that
∣∣∣∣∣∣T−1

j

∣∣∣∣∣∣
op
≤ 1

λ .

P


c2

∥∥∥∥∥∥

m∑

j=1

pjT
−1
j Σ̂j∆j

∥∥∥∥∥∥
2

> t


 ≤

(2c2
√
q)q
∑m

j=1 p
q/2+1
j Knj(e log d)

qrqj
λqtq

→ 0,

32

using (log d)q
∑m

j=1 njp
q/2+1
j → 0

Step 3 For any t ∈ (0, 1], on the event Ac
t , we have that

B(θ̂Pi (λ)|X) =
∥∥T−1

i [λθ⋆0 − λθ⋆i + E]
∥∥2
Σi

for some vector E where we know ‖E‖Σi
≤ t (which means ‖E‖2 ≤ t

√
M).

We can form the bounds

∥∥T−1
i [λθ⋆0 − λθ⋆i + E]

∥∥2
Σi
≤ λ2

∥∥T−1
i [θ⋆0 − θ⋆i]

∥∥2
Σi

+
∥∥T−1

i E
∥∥2
Σi

+ 2λ
∥∥T−1

i E
∥∥
Σi

∥∥T−1
i [θ⋆0 − θ⋆i]

∥∥
Σi

≤ λ2
∥∥T−1

i [θ⋆0 − θ⋆i]
∥∥2
Σi

+ λ−2t2M2 + 2tλ−1r2iM
3/2

∥∥T−1
i [λθ⋆0 − λθ⋆i + E]

∥∥2
Σi
≥ λ2

∥∥T−1
i [θ⋆0 − θ⋆i]

∥∥2
Σi

+
∥∥T−1

i E
∥∥2
Σi
− 2λ

∥∥T−1
i E

∥∥
Σi

∥∥T−1
i [θ⋆0 − θ⋆i]

∥∥
Σi

≥ λ2
∥∥T−1

i [θ⋆0 − θ⋆i]
∥∥2
Σi
− 2tλ−1r2iM

3/2

Since t ∈ (0, 1], we have that t2 ≤ t and thus we can choose c = λ−2M2 + 2r2i λ
−1M3/2

Step 4 Reparameterizing ε := ct, we have that for any ε > 0

lim
n→∞

P(|B(θ̂Pi (λ), X)−
∥∥T−1

i [θ⋆0 − θ⋆i]
∥∥2
Σi
| ≤ ε) ≥ lim

n→∞
P(|B(θ̂Pi (λ)|X)−

∥∥T−1
i [θ⋆0 − θ⋆i]

∥∥2
Σi
| ≤ ε ∧ c)

≥ lim
n→∞

P(Ac
ε
c∧1) = 1

Step 5 Using Theorem 6 of [HMRT19], as d→∞, such that d
ni
→ γi > 1, we know that the limit

of λ2
∥∥∥(Σ̂i + λI)−1[θ⋆0 − θ⋆i]

∥∥∥
2

Σi

is given by (17) with γ = γi and Ĥn, Ĝn be the empirical spectral

distribution and weighted empirical spectral distribution of Σi respectively.
In the case when Σi = I, using Corollary 5 of [HMRT19] we have Bi(θ̂

P
i (λ)|X) = ‖Πi[θ

⋆
0 − θ⋆i]‖

2
2 →

r2i λ
2m′

i(−λ).

Variance

Var(θ̂Pi (λ)|X) = E




∥∥∥∥∥∥
T−1
i


λQ−1




m∑

j=1

pjT
−1
j

1

n
XT

j ξj


+

1

ni
XT

i ξi



∥∥∥∥∥∥

2

Σi




=

m∑

j=1

λ2p2j
nj

tr
(
T−1
i ΣiT

−1
i Q−1TjΣ̂jTjQ

−1
)
σ2
j

︸ ︷︷ ︸
(i)

+
2λσ2

i pi
ni

2 tr
(
ΣiT

−1
i Q−1T−1

i Σ̂iT
−1
i

)

︸ ︷︷ ︸
(ii)

+ tr
(
T−1
i ΣiT

−1
i Σ̂i

) σ2
i

ni︸ ︷︷ ︸
(iii)

We now study the asymptotic behavior of each of the terms (i), (ii) and (iii) separately. In these steps,
we will have to bound

∣∣∣∣∣∣Q−1
∣∣∣∣∣∣
op

. To do this, we observe that there exists a sufficiently large constant t

33

such that the following statement is true.

P(
∣∣∣∣∣∣Q−1

∣∣∣∣∣∣
op

> t) = P(
∣∣∣∣∣∣Q−1

∣∣∣∣∣∣
op

> t ∩ Cc
c1) + P(Cc1)

= P





1−

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
λ

m∑

j=1

pjT
−1
j

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
op




−1

> t ∩ Cc
c1


+ o(1)

≤ P





1−

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
λ

m∑

j=1

pjE[T
−1
j] + Ec1

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
op




−1

> t


+ o(1)

≤ P





1− λ

m∑

j=1

pj
∣∣∣∣∣∣E[T−1

j]
∣∣∣∣∣∣
op
− c1




−1

> t


+ o(1)

≤ o(1).

This is true because of Lemma 6.5.

(i) Using the Cauchy Schwartz inequality on Schatten p−norms and using the high probability bounds
from the bias proof, we get that for some constant C8, the following holds with probability going to 1.

m∑

j=1

λ2p2j
nj

tr
(
T−1
i ΣiT

−1
i Q−1TjΣ̂jTjQ

−1
)
σ2
j

≤
m∑

j=1

σ2
jλ

2p2j
nj

|||T−1
i |||1

∣∣∣∣∣∣T−1
i

∣∣∣∣∣∣
op
|||Σi|||op

∣∣∣∣∣∣Q−1
∣∣∣∣∣∣
op
|||Tj |||op

∣∣∣
∣∣∣
∣∣∣Σ̂j

∣∣∣
∣∣∣
∣∣∣
op
|||Tj |||op

∣∣∣∣∣∣Q−1
∣∣∣∣∣∣
op

≤
m∑

j=1

MC8σ
2
jλ

2p2jd

nj

∣∣∣
∣∣∣
∣∣∣Σ̂j

∣∣∣
∣∣∣
∣∣∣
op

≤ γmaxMC8σ
2
max λ

2
m∑

j=1

p2j

∣∣∣
∣∣∣
∣∣∣Σ̂j

∣∣∣
∣∣∣
∣∣∣
op

∣∣∣∣∣∣Q−1
∣∣∣∣∣∣
op

is upper bounded by some constant as shown above. We use the same technique as in proof

of the variance of Theorem 1 calculation from Section 6.4 to show that
∑m

j=1 p
2
j

∣∣∣
∣∣∣
∣∣∣Σ̂j

∣∣∣
∣∣∣
∣∣∣
op

p→ 0.

(ii) Using the Cauchy Schwartz inequality on Schatten p−norms and using the high probability
bounds from the bias proof, we get that for some constant C9, the following holds with probability
going to 1.

2λσ2
i pi

ni
2 tr

(
ΣiT

−1
i Q−1T−1

i Σ̂iT
−1
i

)
≤ 2piλσ

2
i

ni
|||T−1

i |||1
∣∣∣∣∣∣T−1

i

∣∣∣∣∣∣
op
|||Σi|||op

∣∣∣∣∣∣Q−1
∣∣∣∣∣∣
op

∣∣∣∣∣∣T−1
i

∣∣∣∣∣∣
op

∣∣∣
∣∣∣
∣∣∣Σ̂i

∣∣∣
∣∣∣
∣∣∣
op

≤ MC9σ
2
i dpi

λni
.

∣∣∣∣∣∣Q−1
∣∣∣∣∣∣
op

is upper bounded by some constant as shown above. Moreover, since pi → 0, we have

2λσ2pi

ni
2 tr

(
T−1
i Q−1T−1

i Σ̂iT
−1
i

)
p→ 0

(iii) Using Theorem 3 of [HMRT19], as d → ∞, such that d
ni
→ γi > 1, we know that the limit of

tr((Σ̂i + λI)−2Σ̂iΣi)
σ2
i

ni
is given by (18) with γ = γi and Ĥn, Ĝn be the empirical spectral distribution

and weighted empirical spectral distribution of Σi respectively.

In the case when Σi = I, using Theorem 1 of [HMRT19] we have Vi(θ̂
P
i (λ)|X) =

σ2
i

ni
tr((Σ̂i +

λI)−2Σ̂†
iΣi)

p→ σ2
i

γi−1 .

34

6.8 Proof of Corollary 3.1

We first prove that ρi ≥ ri. If we let ω ∈ Ω be the probability space associated with θ⋆i , we claim that
〈θ⋆0 , θ⋆i (ω)− θ⋆0〉 = 0 for all (not just a.s.) ω ∈ Ω. For the sake of contradiction, suppose that there exists
ω′ such that 〈θ⋆0 , θ⋆i (ω′)− θ⋆0〉 > 0. If there exists ω′′ 6= ω′ such that 〈θ⋆0 , θ⋆i (ω′′)− θ⋆0〉 6= 〈θ⋆0 , θ⋆i (ω′)− θ⋆0〉,
then observe that the following equalities are true:

‖θ⋆i (ω′)− θ⋆0‖
2
2 + ‖θ⋆0‖

2
2 + 2〈θ⋆0 , θ⋆i (ω′)− θ⋆0〉 = ‖θ⋆i (ω′)‖22 = ρ2i = ‖θ⋆i (ω′′)‖22
= ‖θ⋆i (ω′′)− θ⋆0‖

2
2 + ‖θ⋆0‖

2
2 + 2〈θ⋆0 , θ⋆i (ω′′)− θ⋆0〉

In looking at the first and last term, we see that this implies 〈θ⋆0 , θ⋆i (ω′)− θ⋆0〉 = 〈θ⋆0 , θ⋆i (ω′′)− θ⋆0〉,
which is a contradiction. Consider the other possibility that for all ω′′ ∈ Ω, 〈θ⋆0 , θ⋆i (ω′′) − θ⋆0〉 =
〈θ⋆0 , θ⋆i (ω′) − θ⋆0〉 > 0. This would imply that E[〈θ⋆0 , θ⋆i (ω) − θ⋆0〉] > 0 which is a contradiction, since

E[θ⋆i (ω)] = θ⋆0 . Now since 〈θ⋆0 , θ⋆i (ω)− θ⋆0〉 = 0, we have that ρ2i = r2i + ‖θ⋆0‖
2
2 ≥ r2i .

To show the result for θ̂FA
0 , recall eq. (19). The bias associated with this estimator is

Bi(θ̂
FA
0 |X) =

∥∥∥∥∥∥
θ⋆0 − θ⋆i + (

m∑

j=1

pjΣ̂j)
−1

m∑

j=1

pjΣ̂j(θ
⋆
j − θ⋆0)

∥∥∥∥∥∥

2

2

Using the bias proof of Theorem 1, treating Πi as the identity, we know that this quantity converges
in probability to r2i . Showing the variance of θ̂FA

0 (0) of goes to 0 follows directly from part (i) of the
variance proof of Theorem 1, again treating Πi as the identity.

The result regarding the estimator θ̂Ni is a direct consequence of Theorem 1 from [HMRT19]. The

result regarding the estimator θ̂Ni (λ) is a direct consequence of Corollary 5 from [HMRT19].

6.9 Proof that RTFA has lower risk than FedAvg

We show that RTFA with optimal hyperparameter has lower risk than FedAvg by using the fact that
(1− 1/γ)2 ≤ (1 + 1/γ)2 for γ ≥ 1 and completing the square:

Li(θ̂
R
i (λ

⋆); θ⋆i |X) =
1

2


r2i

(
1− 1

γ

)
− σ2

i +

√

r4i

(
1− 1

γ

)2

+ σ4
i + 2σ2

i r
2
i

(
1 +

1

γ

)


≤ r2i = Li(θ̂
FA
0 ; θ⋆i |X).

35

Algorithm 3 Naive local training

Require: m: number of users, K: epochs
1: for i← 1 to m do
2: Each client runs K epochs of SGM with personal stepsize α
3: end for

Algorithm 4 Federated Averaging [MMR+17]

Require: R: Communication Rounds, D: Number of users sampled each round, K: Number of local
update steps, θ̂FA

0,0 : Initial iterate for global model
1: for r ← 0 to R− 1 do
2: Server samples a subset of clients Sr uniformly at random such that |Sr| = D

3: Server sends θ̂FA
0,r to all clients in Sr

4: for i ∈ Sr do
5: Set θ̂FA

i,r+1,0 ← θ̂FA
0,r

6: for k ← 1 to K do
7: Sample a batch Di

k of size B from user i’s data Di

8: Compute Stochastic Gradient g(θ̂FA
i,r+1,k−1;Di

k) =
1
B

∑
S∈Di

k
∇F (θ̂FA

i,r+1,k−1;S)

Set θ̂FA
i,r+1,k ← θ̂FA

i,r+1,k−1 − ηg(θ̂FA
i,r+1,k−1;Di

k)
9: end for

10: Client i sends θ̂FA
i,r+1,K back to the server.

11: end for
12: Server updates the central model using θ̂FA

0,r+1 =
∑D

j=1
nj∑D

j=1
nj
θ̂FA
i,r+1,K .

13: end for
14: return θ̂FA

0,R

7 Algorithm implementations

In this section, we give all steps of the exact algorithms used to implement all algorithms in the
experiments section.

Algorithm 5 FTFA

Require: P : Personalization iterations
1: Server sends θ̂FA

0 = θ̂FA
0,R (using Algorithm 4 with stepsize η) to all clients

2: for i← 1 to m do
3: Run P steps of SGM on L̂i(·) using θ̂FA

0 as initial point with learning rate α and output θ̂FA
i,P

4: end for
5: return θ̂FA

i,P

36

Algorithm 6 RTFA

Require: P : Personalization iterations
1: Server sends θ̂FA

0 = θ̂FA
0,R (using Algorithm 4 with stepsize η) to all clients

2: for i← 1 to m do

3: Run P steps of SGM on L̂i(θ) +
λ
2

∥∥∥θ − θ̂FA
0

∥∥∥
2

2
with learning rate α and output θ̂FA

i,P

4: end for
5: return θ̂FA

i,P

Algorithm 7 MAML-FL-HF [FMO20]

Require: R: Communication Rounds, D: Number of users sampled each round, K: Number of local
update steps, θ̂M0,0(α): Initial iterate for global model

1: for r ← 0 to R− 1 do
2: Server samples a subset of clients Sr uniformly at random such that |Sr| = D

3: Server sends θ̂M0,r(α) to all clients in Sr
4: for i ∈ Sr do
5: Set θ̂Mi,r+1,0(α)← θ̂M0,r(α)
6: for k ← 1 to K do
7: Sample a batch Di

k of size B from user i’s data Di

8: Compute Stochastic Gradient g(θ̂Mi,r+1,k−1(α);Di
k) =

1
B

∑
S∈Di

k
∇F (θ̂Mi,r+1,k−1(α);S)

Set θ̂Mi,r+1,k(α)← θ̂Mi,r+1,k−1(α)− αg(θ̂Mi,r+1,k−1(α);Di
k)

9: end for
10: Client i sends θ̂Mi,r+1,K(α) back to the server.
11: end for
12: Server updates the central model using θ̂M0,r+1(α) =

∑D
j=1

nj∑D
j=1

nj
θ̂Mi,r+1,K(α).

13: end for
14: Server sends θ̂M0,R(α) to all clients
15: for i← 1 to m do
16: Run P steps of SGM on L̂i(·) using θ̂M0 (α) as initial point with learning rate α and output

θ̂Mi,P (α)
17: end for
18: return θ̂M0,R(α)

8 Experimental Details

8.1 Dataset Details

In this section, we provide detailed descriptions on datasets and how they were divided into users. We
perform experiments on federated versions of the Shakespeare [MMR+17], CIFAR-100 [KH09], EMNIST
[CATvS17], and Stack Overflow [MRR+19] datasets. We download all datasets using FedML APIs
[HLS+20] which in turn get their datasets from [MRR+19]. For each dataset, for each client, we divide
their data into train, validation and test sets with roughly a 80%, 10%, 10% split. The information
regarding the number of users in each dataset, dimension of the model used, and the division of all
samples into train, validation and test sets is given in Table 1.

Dataset Users Dimension Train Validation Test Total Samples
CIFAR 100 600 51200 48000 6000 6000 60000
Shakespeare 669 23040 33244 4494 5288 43026
EMNIST 3400 31744 595523 76062 77483 749068

Stackoverflow-nwp 300 960384 155702 19341 19736 194779

Table 1: Dataset Information

37

Algorithm 8 pFedMe [DTN20]

Require: R: Communication Rounds, D: Number of users sampled each round, K: Number of local
update steps, θ̂P0,0(λ): Initial iterate for global model

1: for r ← 0 to R− 1 do
2: Server samples a subset of clients Sr uniformly at random such that |Sr| = D

3: Server sends θ̂P0,r(λ) to all clients in Sr
4: for i ∈ Sr do
5: Set θ̂Pi,r+1,0(λ)← θ̂P0,r(λ)
6: for k ← 1 to K do
7: Sample a batch Di

k of size B from user i’s data Di

8: Compute θi(θ̂
P
i,r+1,k−1(λ)) = argminθ

1
B

∑
S∈Di

k
∇F (θ;S) + λ

2

∥∥∥θ − θ̂Pi,r+1,k−1(λ)
∥∥∥
2

2

9: Set θ̂Pi,r+1,k(λ)← θ̂Pi,r+1,k−1(λ)− ηλ(θ̂Pi,r+1,k−1(λ)− θi(θ̂
P
i,r+1,k−1(λ)))

10: end for
11: Client i sends θ̂Pi,r+1,K(λ) back to the server.
12: end for
13: Server updates the central model using θ̂P0,r+1(λ) = (1− β)θ̂P0,r(λ) + β

∑D
j=1

nj∑D
j=1

nj
θ̂Pi,r+1,K(λ).

14: end for
15: return θ̂P0,R(λ)

Shakespeare Shakespeare is a language modeling dataset built using the works of William Shake-
speare and the clients correspond to a speaking role with at least two lines. The task here is next
character prediction. The way lines are split into sequences of length 80, and the description of the
vocabulary size is same as [RCZ+21] (Appendix C.3). Additionally, we filtered out clients with less
than 3 sequences of data, so as to have a train-validation-test split for all the clients. This brought the
number of clients down to 669. More information on sample sizes can be found in Table 1. The models
trained on this dataset are trained on two Tesla P100-PCIE-12GB GPUs.

CIFAR-100 CIFAR-100 is an image classification dataset with 100 classes and each image consisting
of 3 channels of 32x32 pixels. We use the clients created in the Tensorflow Federated framework
[MRR+19] — client division is described in Appendix F of [RCZ+21]. Instead of using 500 clients
for training and 100 clients for testing as in [RCZ+21], we divided each clients’ dataset into train,
validation and test sets and use all the clients’ corresponding data for training, validation and testing
respectively. The models trained on this dataset are trained on two Titan Xp GPUs.

EMNIST EMNIST contains images of upper and lower characters of the English language along
with images of digits, with total 62 classes. The federated version of EMNIST partitions images by
their author providing the dataset natural heterogenity according to the writing style of each person.
The task is to classify images into the 62 classes. As in other datasets, we divide each clients’ data into
train, validation and test sets randomly. The models trained on this dataset are trained on two Tesla
P100-PCIE-12GB GPUs.

Stack Overflow Stack Overflow is a language model consisting of questions and answers from the
StackOverflow website. The task we focus on is next word prediction. As described in Appendix C.4 of
[RCZ+21], we also restrict to the 10000 most frequently used words, and perform padding/truncation
to ensure each sentence to have 20 words. Additionally, due to scalability issues, we use only a sample
of 300 clients from the original dataset from [MRR+19] and for each client, we divide their data into
train, validation and test sets randomly. The models trained on this dataset are trained on two Titan
Xp GPUs.

38

8.2 Hyperparameter Tuning Details

8.2.1 Pretrained Model

We now describe how we obtain our pretrained models. First, we train and hyperparameter tune a
neural net classifier on the train and validation sets in a non-federated manner. The details of the
hyperparameter sweep are as follows:

Shakespeare For this dataset we use the same neural network architecture as used for Shakespeare
in [MMR+17]. It has an embedding layer, an LSTM layer and a fully connected layer. We use the
StepLR learning rate scheduler of PyTorch , and we hyperparameter tune over the step size [0.0001,
0.001, 0.01, 0.1, 1] and the learning rate decay gamma [0.1, 0.3, 0.5] for 25 epochs with a batch size of
128.

CIFAR-100 For this dataset we use the Res-Net18 architecture [HZRS16]. We perform the standard
preprocessing for CIFAR datasets for train, validation and test data. For training images, we perform
a random crop to shape (32, 32, 3) with padding size 4, followed by a horizontal random flip. For all
training, validationn and testing images, we normalize each image according to their mean and standard
deviation. We use the hyperparameters specified by [wei20] to train our nets for 200 epochs.

EMNIST For this dataset, the architecture we use is similar to that found in [RCZ+21]; the exact
architecture can be found in our code. We use the StepLR learning rate scheduler of PyTorch, and we
hyperparameter tune over the step size [0.0001, 0.001, 0.01, 0.1, 1] and the learning rate decay gamma
[0.1, 0.3, 0.5] for 25 epochs with a batch size of 128.

Stackoverflow For this dataset we use the same neural network architecture as used for Stack
Overflow next word prediction task in [RCZ+21]. We use the StepLR learning rate scheduler of
PyTorch, and we hyperparameter tune over the step size [0.0001, 0.001, 0.01, 0.1, 1] and the learning
rate decay gamma [0.1, 0.3, 0.5] for 25 epochs with a batch size of 128.

8.2.2 Federated Last Layer Training

After selecting the best hyperparameters for each net, we pass our data through said net and store their
representations (i.e., output from penultimate layer). These representations are the data we operate on
in our federated experiments.

Using these representations, we do multi-class logistic regression with each of the federated learning
algorithms we test; we adapt and extend this code base [DTN20] to do our experiments. For all of our
algorithms, the number of global iterations R is set to 400, and the number of local iterations K is
set to 20. The number of users sampled at global iteration r, D, is set to 20. The batch size per local
iteration, B, is 32. The random seed is set to 1. For algorithms FTFA, RTFA, MAML-FL-FO, and
MAML-FL-HF, we set the number of personalization epochs P to be 10. We fix some hyperparameters
due to computational resource restrictions and to avoid conflating variables; we choose to fix these
ones out of precedence, see experimental details of [RCZ+21]. We now describe what parameters we
hyperparameter tune over for each algorithm.

Naive Local Training This algorithm is described in Algorithm 3. We hyperparameter tune over
the step size α [0.0001, 0.001, 0.01, 0.1, 1, 10].

FedAvg This algorithm is described in Algorithm 4. We hyperparameter tune over the step size η
[0.0001, 0.001, 0.01, 0.1, 1, 10].

FTFA This algorithm is described in Algorithm 1. We hyperparameter tune over the step size of
FedAvg η [0.0001, 0.001, 0.01, 0.1, 1], and the step size of the personalization SGM steps α [0.0001,
0.001, 0.01, 0.1, 1].

39

RTFA This algorithm is described in Algorithm 6. We hyperparameter tune over the step size of
FedAvg η [0.0001, 0.001, 0.01, 0.1, 1], the step size of the personalization SGM steps α [0.0001, 0.001,
0.01, 0.1, 1], and the ridge parameter λ [0.001, 0.01, 0.1, 1, 10].

MAML-FL-HF This is the hessian free version of the algorithm, i.e., the hessian term is approximated
via finite differences (details can be found in [FMO20]). This algorithm is described in Algorithm 7. We
hyperparameter tune over the step size η [0.0001, 0.001, 0.01, 0.1, 1], the step size of the personalization
SGM steps α [0.0001, 0.001, 0.01, 0.1, 1], and the hessian finite-difference-approximation parameter δ
[0.001, 0.00001]. We used only two different values of δ because the results of preliminary experiments
suggested little change in accuracy with changing δ.

MAML-FL-FO This is the first order version of the algorithm, i.e., the hessian term is set to 0
(details can be found in [FMO20]). This algorithm is described in Algorithm 7. We hyperparameter
tune over the step size η [0.0001, 0.001, 0.01, 0.1, 1], the step size of the personalization SGM steps α
[0.0001, 0.001, 0.01, 0.1, 1].

pFedMe This algorithm is described in Algorithm 8. We hyperparameter tune over the step size η
[0.0005, 0.005, 0.05], and the weight β [1, 2]. The proximal optimization step size, hyperparameter K,
and prox-regularizer λ associated with approximately solving the prox problem is set to 0.05, 5, and
15 respectively. We chose these hyperparameters based on the suggestions from [DTN20]. We were
unable to hyperparameter tune pFedMe as much as, for example, RTFA because each run of pFedMe
takes significantly longer to run. Additionally, for this same reason, we were unable to run pFedMe
on the Stack Overflow dataset. While we do not have wall clock comparisons (due to multiple jobs
running on the same gpu), we have observed that pFedMe, with the hyperparameters we specified,
takes approximately 20x the compute time to complete relative to FTFA, RTFA, and MAML-FL-FO.

The ideal hyperparameters for each dataset can be found in the tables below:

Algorithm η α λ δ β
Naive Local - 0.1 - - -

FedAvg 0.1 - - - -
FTFA 1 0.1 - - -
RTFA 1 0.1 0.1 - -

MAML-FL-HF 1 0.1 - 0.00001 -
MAML-FL-FO 1 0.1 - - -

pFedMe 0.05 - - - 2

Table 2: Shakespeare Best Hyperparameters

Algorithm η α λ δ β
Naive Local - 0.1 - - -

FedAvg 0.01 - - - -
FTFA 0.001 0.1 - - -
RTFA 0.001 0.1 0.1 - -

MAML-FL-HF 0.001 0.01 - 0.001 -
MAML-FL-FO 0.001 0.01 - - -

pFedMe 0.05 - - - 1

Table 3: CIFAR-100 Best Hyperparameters

40

	1 Introduction
	2 The Linear Model
	3 Locally fine-tuning a global solution
	3.1 Fine-tuned Federted Averaging (FTFA)
	3.2 Ridge-tuned FedAvg (RTFA)
	3.3 Comparison to Naive Estimators

	4 Meta learning and Proximal Regularized Algorithms
	4.1 Model-Agnostic Meta-Learning
	4.2 Proximal-Regularized Approach

	5 Experiments
	6 Proofs
	6.1 Additional Notation
	6.2 Useful Lemmas
	6.3 Some useful definitions from previous work
	6.4 Proof of thm:perfedavg
	6.5 Proof of thm:perridge
	6.6 Proof of thm:permaml
	6.7 Proof of thm:prox
	6.8 Proof of cor:naive
	6.9 Proof that RTFA has lower risk than FedAvg

	7 Algorithm implementations
	8 Experimental Details
	8.1 Dataset Details
	8.2 Hyperparameter Tuning Details
	8.2.1 Pretrained Model
	8.2.2 Federated Last Layer Training

	8.3 Additional Results

