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ABSTRACT

Ridesplitting has become a popular type of shared mobility in major cities. A previous study re-
vealed that the existence of two types of scale effects—economies of scale and increasing returns
to scale—in ridesplitting service using trip records reported to the City of Chicago by transporta-
tion network companies (TNC). This paper confirms that the same scale effects are exhibited in
Manhattan, NY: both for the entire ridesplitting system as a whole and for each individual TNC
provider. Further, this paper investigates the influence of competition between TNCs on the overall
efficiency of the ridesplitting system in Manhattan. The level of competition is quantified by the
concept of entropy, and the efficiency is reflected by the matching rate and travel distance of shared
trips. The results indicate that the matching rate decreases and the travel distance of shared trips
increases as the intensity of competition rises, due to the lower demand received by each individual
TNC. An estimate of the potential for improvement that might be gained due to collaboration be-
tween TNCs under a “best-case scenario” is derived using linear regression models. The results in
this paper can be used by transportation policymakers to enhance the efficiency of the ridesplitting
service by building collaboration between TNCs.

Keywords: Ridesplitting, Transportation Network Company (TNC), Scale effects, Competition
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INTRODUCTION

The popularity of shared mobility—the shared use of vehicles by multiple people for different
trips—has grown rapidly in the last decade (/). Ridesplitting, also called pooled service, is a
shared ride-hailing service in which customers (riders) are willing to share vehicles with other
customers, who have placed separate and uncoordinated requests for the same service (2, 3). A
user willing to use this service sends a request, referred to as an authorized or requested shared
trip, to a Transportation Network Company, and the service company uses matching algorithms
and real-time demand data to match customers and drivers. Note an authorized shared trip will
not always wind up being matched; trips serving a single customer regardless of whether it was
authorized as a shared trip are still referred to as a single trip.

The upside of ridesplitting is a lower fare charged for individual customers. To encourage
the use of this travel mode, some US cities and states (e.g., Chicago, New York City, Georgia, New
Jersey) impose lower excise taxes on shared rides than on single rides (4). On the other hand, a
shared trip can impose a longer travel distance, a longer travel time, and a higher travel uncertainty
(5) due to the detour required for picking up and/or dropping off other customers. The tradeoff
between these two aspects—the money costs and the travel efficiency—plays a crucial role in how
much ridesplitting is used and thus whether this service can be operated in a financially sustainable
way.

In the US, UberPool and Lyft Shared Rides—both of which were launched in August 2014
(6)—are the two most common companies providing ridesplitting, referred to as TNCs (Trans-
portation Network Company). Note that Lyft discontinued their shared rides service in May 2023.
All TNC:s halted ridesplitting service in March 2020 due to the COVID-19 crisis, but the service
returned to Chicago in June 2022, and Lyft and Uber pooling returned to New York City in August
2021 and June 2022, respectively. The demand has been gradually increasing towards the normal
level. For example, the monthly number of authorized shared trips in the City of Chicago has in-
creased from 21,484 in June 2022 to 214,689 in April 2023, and the corresponding number in NYC
has increased from 51,238 in August 2021 to 75,213 in April 2023. However, when compared to
pre-pandemic levels, the authorized shared trips are considerably lower. In January 2020, the city
of Chicago had 1,499,012, and NYC had 3,694,815 authorized shared trips.

This study builds on the hypothesis that ridesplitting involves substantial scale effects: that
as participation rises the average quality of matches rises. The matching rate of a ridesplitting
system has been demonstrated to increase when the number of shared requests increases (7-9).
This pattern was documented in the ridesplitting systems in New York City, San Francisco, Singa-
pore, and Vienna (/0). (8) claims that the joint effect of passenger demand and matching window
can lead to a reduction in travel time for both single trips and shared trips. Another positive con-
sequence of the increase in the matching rate is that the number of vehicles per hundred shared
requests decreases (/7). Moreover, recent studies identified that the increase in shared demand can
also lead to an increase in the fleet size, which translates into a reduction in travel time resulting
from the increase in the fleet size (12).

Most studies mentioned above were based on theoretical analysis and simulations, (/3)
confirmed the scale effects in ridesplitting data reported by Uber, Lyft, and Via to the city of
Chicago in 2019. These companies have only offered ridesplitting in large markets, which suggests
that there exists a threshold for the potential demand to make this service profitable. Specifically,
that study unveils two economic features that exist in ridesplitting as the number of authorized
shared trips during a time window increases:
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1. the average detour distance decreases (known as economies of scale (14)).

It can be easily seen that with the increase in the density of authorized shared trips, the
probability of an authorized shared trip being matched with another request that shares
close origins and destinations is higher. As a result, the average detour distance can be
decreased.

2. the matching rate in ridesplitting rises (known as emphincreasing returns to scale (/5)).

This can be explained by a similar reason. If the detours required to match two au-
thorized shared trips are too long to make the shared trip profitable, the customers are
simply taken straight to their destinations as single trips. Therefore, a shorter detour
distance that results from a rise in the density of ridesplitting requests can increase the
matching rate.

More detailed discussions on these two economic characteristics can be found in (/3).
However, these scale effects have only been identified empirically for the city of Chicago; whether
these findings are general—i.e., if they exist in other ridesplitting systems—is not clear.

Another shortcoming of (/3) is that, in the Chicago dataset, some trip data were obscured
or removed in order to protect customer privacy, which makes it challenging to precisely quantify
the scale effects. For example, the start and end timestamps of all trips were rounded to the nearest
15-minute interval, and the pickup and drop-off locations are at the census tract level. Moreover,
the TNC provider associated with each trip was also hidden. Compared to the Chicago dataset, the
trip records reported to NYC (New York City), called "TLC" (Taxi and Limousine Commission),
include more detailed information. Thus, the first question that can be answered by this dataset
is whether the same scale effects exist for each individual TNC provider. More interestingly, how
competition between TNC providers in the same region affects the scale effects can also be ex-
plored. (/6) developed a modeling and simulation framework based on Macroscopic Fundamental
Diagram (/7-19) and showed that competition between TNCs can undermine short-term network
mobility. The influence of competition on the economics of ridesplitting is also studied (20-22).
However, these studies use theoretical modeling based on equilibrium conditions and do not re-
flect the impact on the aforementioned scale effects. In addition, the assumptions employed in
these models might not be satisfied in reality, so it is critical to confirm the findings using empiri-
cal data (23). To this end, this paper investigates the impact of competition between TNC providers
on the scale effects in ridesplitting using the "TLC" dataset in Manhattan in 2019.

The contributions of this study are as follows. This study (1) confirms the scale effects
exist in the entire ridesplitting system in Manhattan and in each individual TNC provider; (2)
demonstrates that competition between TNCs can diminish the system efficiency, i.e., reduce the
matching rate and increase travel distance; (3) provides an estimate of the improvement in the
scale effects considering collaboration between TNCs under a “best-case scenario” accordng to
regression models developed from the “TLC" dataset.

The remainder of this paper is organized as follows. The following section describes the
“TLC" dataset and the filters used to process the data. The next section presents the existence of
scale effects in the entire ridesplitting system of Manhattan and in each individual TNC provider.
This is followed by a section showing the impact of competition between TNCs on the overall
efficiency of the ridesplitting system. The next section provides estimates on the improvement
in matching rate and travel distance resulting from collaboration between TNCs using regression
models. Finally, concluding remarks are provided.
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DATA
The "TLC" dataset includes trip information from the six boroughs of NYC: Newark, Queens,
Bronx, Manhattan, Staten Island, and Brooklyn. However, these boroughs are separated in space,
and the travel pattern varies significantly between these boroughs. Since Manhattan has the highest
trip density in both time and space, only trip data in Manhattan is considered in the rest of this paper
to reduce the impact of this variation. In 2019, four TNCs operated in Manhattan: Juno, Lyft, Uber,
and Via. Juno provides single rides only while the other three TNCs provide both single rides and
ridesplitting services. The following information associated with each trip is used:

* Taxi zone ids for origins and destinations;

 Start timestamp including month, date, hour, and minute rounded to the nearest 15 min

interval;

e Travel distance (mi);

* Travel time (min);

* Boolean for shared trip authorization; and,

* Boolean for matching of authorized shared trip matched.

The following filters were used to remove suspicious data:

¢ Travel times of less than 2 minutes;

* Travel distances shorter than 0.1 miles;

* Missing origins or destinations

We also found some "matched" trips that were not "authorized" as shared trips. Specifi-
cally, 8.45% of Lyft trips in February 2019 possessed such attributes. The percentage for all other
combined TNC and month is below 1. Therefore, the data in February 2019 was excluded from
this study, and the rest of such records were fixed by changing them to authorized shared trips.

After applying the filters above, there are 67,176,764 trips remaining. Of these, 55,934,574
(83%) are single trips and 11,242,190 (17%) are (matched) shared trips. The distribution of average
daily trips across the four TNC providers is shown in Table 1. It shows that the high imbalance
exists in the proportions between single trips and shared trips served by each TNC provider. There
are 73% of single trips served by Uber while the corresponding value for the shared trips is only
35%. Via provides 4% of single trips while it fulfills 44% percent of shared trip orders. Overall,
the total number of rides provided by Uber is considerably higher than the other TNC providers.
This distribution highlights the significance of the investigation on whether the scale effects exist
in each individual TNC provider.

TABLE 1: Distribution of average daily trips

Single trips Shared trips (matched) Total trips
Number Percent Number Percent Number  Percent
Lyft 37,538 20 7,792 21 45,330 21
Uber 134,497 73 12,818 35 147,315 67
Via 6,622 4 16,248 44 22,870 10
Juno 4,734 3 0 0 4,734 2

Total 183,391 100 36,858 100 220,249 100
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In addition, Figure 1 and Figure 2 show the distribution of the origins of single trips and
shared trips for each TNC, respectively. It is evident that the TNC’s vary by their shares of sin-
gle/shared trips, so it is essential to explore scale effects at the level of individual TNC'’s.

SCALE EFFECTS

This section examines scale effects over the entire Borough of Manhattan and also at the level of
each individual TNC’s. To do so, the data were grouped based on hour (4), day of the week (d)
and month (m), and the average number of (authorized shared/matched shared/single) trips in each
hour-day-month combination was counted.

Economies of scale

The detour distance is defined as the extra travel distance of shared trips resulting from picking
up or dropping off other customers. It can be approximated as the difference between the travel
distance of a shared ride and the travel distance of a single ride that have the same origin and
destination and occur during the same time. The travel distance of the associated single rides is
referred to as baseline travel distance. However, as mentioned before, since the timestamps were
rounded to 15-min intervals, and the start and end locations of a trip are at a taxi zone level,
the exact timestamps, origins, and destinations of trips, which are required to identify a precise
estimate of the baseline travel distance, are not available in the dataset. To overcome this difficulty,
we need to assume all shared trips that start in the same 15-min interval and connect the same
origin and destination taxi zones have the same baseline travel distance. Consequently, the detour
distance and actual travel distance of a certain OD pair have the same pattern. For simplicity,
instead of the actual detour distance, the average travel distance over all shared trips between
an origin-desination pair (O,D) in hour 4, weekday d and month m, denoted by dS;D (h,d,m), is
investigated. /

There are 69 taxi zones in Manhattan. The influence of the average number of matched
shared trips, denoted by nsom’?(h,d ,m), on the travel distance of matched shared trips in the first
ten OD pairs with the highes7t number of trips of the entire system and each individual TNC were
examined. A similar pattern exists in all OD pairs. Therefore, for simplicity, only three pairs of OD
in each group are shown here in Figure 3. Since most data points have a relatively small number
of matched shared trips, a dense cloud of points occurs in the classical scatter plot, which makes
it impossible to visualize trends in the data. In addition, the dependent variable in the plots—the
number of realized shared trips—is discrete, which makes it more difficult to observe the actual
trend. Therefore, binned scatter plots are utilized (24) in Figure 3, in which an equal number of
observations are assigned to "bins". The point and bar in each bin are the point estimates evaluated
at the mean and the 95% confidence interval for the travel distance observed in each bin. The
results show that for both the entire system and within each TNC provider, the travel distances of
all examined OD pairs decrease as the number of matched shared trips increases.

To test the strength and statistical significance of this effect, based on the visual patterns
observed in Figure 3, a regression model was fitted. Note that the purpose of the regression model
is to help to visualize the trend of the scatters instead of proposing any causation between the
parameters. The form of the regression model is shown in Equation (1), and the regression results
are provided in Table 2. The results confirm that the decreasing trend of travel distance with the
increase in the number of matched shared trips is statistically significant for all examined OD pairs
in individual TNCs and the entire system.
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TABLE 2: Regression results for travel distance (mile)

Dependent variable: dSOIYD(h, d,m)

Entire system Lyft
OD 1 OD2 OD 3 OD 1 OD 2 OD 3
o 0.305***  0.450***  0.474** 0.360"**  0.314"*  (0.288"**
ngi(h.d,m)
(0.052) (0.035) (0.039) (0.047) (0.045) (0.047)
Constant 0.104** 0.094***  0.095***  0.210"**  0.205***  0.189***
(0.030) (0.021) (0.022) (0.035) (0.032) (0.035)
R? 0.045 0.137 0.114 0.056 0.059 0.051
Adjusted R? 0.044 0.136 0.113 0.055 0.058 0.049
Uber Via
OD 1 OD 2 OD 3 OD 1 OD 2 OD 3
o 0.285***  0.461**  0.512**  0.180"**  0.319***  0.227***
ng i (h.d,m)
(0.048) (0.045) (0.046) (0.027) (0.048) (0.040)
Constant 0.129***  0.124**  0.080***  0.176***  0.190***  0.124***
(0.030) (0.028) (0.031) (0.015) (0.028) (0.026)
R? 0.042 0.090 0.115 0.080 0.113 0.069
Adjusted R? 0.040 0.089 0.114 0.078 0.110 0.067
Significance levels *p<0.1; *p<0.05; **p<0.01

Increasing returns to scale

Let n§ ;(h,d,m) and n§ ;(h,d,m) denote the average number of authorized and matched shared
trips in hour h, weekday d and month m for TNC i, respectively. The matched percentage for TNC
i in the corresponding period can be expressed as:

n?mji(h,d,m)
91(h7d7m) - n?a l-(h,d,m)

The matched percentage for the entire system can be obtained by replacing the numerator
and denominator in Equation 2 with the sum of the corresponding values over all TNCs. Figure
4 shows that for all individual TNCs and the entire system, the matched percentage, 6;(h,d,m),
increases with the number of authorized shared trips ng, ;(h,d,m). Similar to the travel distance,
a regression model was fitted to confirm that this trend is statistically significant. The form of
the model is shown in Equation (2), and the regression results are shown in Table 3. The results
confirm that the increasing returns to scale are statistically significant for all TNCs and the entire

system.

x 100 (% matched shared trips). )
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logy( 6;(h,d,m) = Bo+ Pilogyng, ;(h,d,m)

TABLE 3: Regression results for matched percentage (%)

Dependent variable:

Matched percentage log, 6;(h,d,m)

Entire system Lyft Uber Via
log;o ng’mi(h, d,m) 0.181*** 0.200"**  0.146™*  0.262***
(0.002) (0.005) (0.003) (0.004)
Constant 1.222%** 1.165%*  1.452***  1.063***
(0.007) (0.013) (0.008) (0.012)
R? 0.787 0.515 0.594 0.705
Adjusted R? 0.787 0.515 0.593 0.705

Significance levels

1 IMPACT OF COMPETITION

*p<0.1; *p<0.05; **p<0.01

11

3)

2 The previous section demonstrates that the two scale effects exist in all TNC providers and across
3 the entire ridesplitting system as a whole in Manhattan. Since there are three TNC providers
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operating in this region, the demand for shared trips, which has a strong effect on travel distances
and matching rates, received by each provider is by definition less than or equal to what would
be realized if there was only a single TNC provider (or if the shared requests could be matched
between different providers). This split of demand is expected to reduce the efficiency of the
system, and the magnitude of this reduction is expected to depend on the intensity of competition.
Competition is reflected by the difference in the demand distribution across all three TNCs;
competition is more intense when the distribution is more even. For example, the most intensely
competitive scenario would occur when each of the three TNCs receives one third of the total
shared requests. The least intense competition would occur when one TNC received all the shared
requests; in this case, there would be no competition between services. The concept of entropy,
which describes the disorder and randomness of system states, has been widely used to model
diversity in transportation systems (25—27). In this paper, we use entropy to quantify the degree of
competition between TNCs. The entropy for an OD pair during an hour can be expressed as:

0,D 0,D
EO’D(Z) _ _Z?:npi (t) lnpi (t)

Inn @

where piO’D (t) is the ratio of shared requested between OD received by TNC i in hour ¢, and 7 is
the number of TNCs, which is equal to three. The entropy increases with competition intensity.
The entropy is equal to 1 when piO’D(t) = % for all i’s and equal to 0 when there is no competition
at all, i.e., only one TNC receives shared requests.

Different from the aggregation method in the previous section, we use data from 1-hour
intervals without further aggregation to compute the variables in Equation (4). This is because
the competition level may be misinterpreted by aggregation. Assume there are three hours in
each of which there is only one distinct TNC receiving the same number of shared requests. In
this example, no competition should be considered since each TNC receives requests in different
periods. However, after aggregating these three hours together, the ratio of the shared requests of
each TNC is % and thus, the entropy becomes 1, which represents the most intensive scenario. We
use the symbol ¢ for the hourly intervals in Equation (4) to distinguish the notation for an hour in
the aggregation level from the previous section.

The first ten OD pairs with the highest number of shared requests were analyzed. The in-
fluence of competition on travel distances and matching rates is shown in Figure 5 and Figure 6,
respectively. For simplicity, only the first six OD pairs are shown, but all other OD pairs have a
similar pattern. Note that the points with less than 10 shared requests in an hour were removed
from the plots because the low number of shared requests can lead to a large randomness in entropy,
travel distance and matched percentage. For example, let us consider two cases for the number of
shared requests received by each TNC. In the first case, each TNC receives one request in an hour,
and in the second case, each TNC receives 100 requests in an hour. The entropies of these two
cases are equal; however, since the number of requests in the first case is so low that it is highly
likely that these requests happen in different time windows, which makes it difficult to estimate
the true competition. Therefore, it is assumed that the entropy can reflect competition more accu-
rately when the shared demand is higher, and the points with low number of shared requests were
removed. Consistent with expectations, the results show that as the entropy increases, the travel
distance increases, and the matching rate decreases. Based on the observed pattern, the regression
model, shown in Equation (5), was fitted for both travel distance and matched percentage. The
results are shown in Table 4 and Table 5, respectively. All results are statistically significant.
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FIGURE 5: Impact of competition on travel distance
TABLE 4: Regression results for travel distance (mile)
Dependent variable:
dP (1)
OD 1 OD 2 OD 3 OD 4 OD 5 OD 6
exp(EO’D(t)) 0.191*** 0.260*** 0.213**  0.259**  (0.248*** 0.360***
(0.017) (0.023) (0.031) (0.034) (0.028) (0.045)
Constant -0.062**  —-0.195*** —-0.077 —0.133* —-0.130"* —0.200**
(0.031) (0.050) (0.067) (0.074) (0.058) (0.089)
RZ 0.208 0.287 0.199 0.193 0.263 0.353
Adjusted RZ 0.207 0.285 0.195 0.189 0.260 0.347

Significance levels

*p<0.1; *p<0.05; ***p<0.01
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FIGURE 6: Impact of competition on matched percentage
TABLE 5: Regression results for matched percentage
Dependent variable:
OD 1 OD 2 OD3 OD 4 OD 5 OD 6
exp(E9P(t)) —11.930 —19.590 —15.450 —14.396 —15.180 —12.320
(1.630) (2.232) (2.956) (2.432) (2.492) (3.297)
* % % * % % * % % * %k % * % % * % %
Constant 76.175%**  101.023***  94.232***  94.117*** 97.906*** 93.569***
(3.006) (4.859) (6.324) (5.358) (5.214) (6.509)
R? 0.100 0.198 0.128 0.124 0.142 0.106
Adjusted R? 0.098 0.195 0.123 0.120 0.138 0.098

Significance levels

“p<0.1; *p<0.05; **p<0.01

1 IMPROVEMENT FROM COLLABORATION
2 The results from the previous section reveal that competition between TNCs can reduce the effi-
3 ciency of aridesplitting system in terms of the matched percentage and travel distances. Following
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that, this section develops regression models to estimate the potential improvement in efficiency
as a result of a comprehensive collaboration between TNCs. This is defined as the scenario un-
der which the real-time demand information from all TNCs are shared, and all authorized shared
requests regardless of the associated TNC can be matched. Under this setting, the ridesplitting
system operates as if there was only one TNC provider. Therefore, we regard this as a “best-case
scenario”.

It has been shown that both demand and the level of competition have a statistically sig-
nificant impact on the matching rate and travel distance for shared trips. Therefore, these two
parameters are considered independent variables in the regression models. Similar to previous
sections, we selected the first six OD pairs with the highest number of shared authorizations and
developed regression models for matched percentage and travel distance.

The regression model for the average travel distance of shared trips has the following form:

log(d?(1)) = Po-+ Br—grp— + BEP(1) ©)
ns, (t)
where n{"” () is the number of authorized shared trips in hour 7.
An inverse logistic transformation was applied to the matching rate to ensure that the es-
timated matching rate is between 0 and 1. The regression model for the matching rate has the
following form:

0.D
log (1(—99—Q(l§)(z)) = Bo+ B log m> +BECP (1) (7

The results of both fitted models are shown in Table 6 and Table 7, respectively. The
results indicate that travel distance decreases and matching rate increases as the number of shared
authorizations increases and entropy decreases.

TABLE 6: Regression results for travel distance (mile) with collaboration

Dependent variable:

log(dy"” (1))

oD 1 oD 2 oD 3 oD 4 oD 5 OD6
ﬁ([) 15.196"  14.124**  11.929"*  13.474™* 12418  17.104**
Nsg

(1.291) (1.406) (2.985) (2.067) (2.297) (3.899)
EODP (1) 0.982%*  1.505™*  1.178**  1.347"*  1.432"*  1.420**

(0.078) (0.102) (0.151) (0.121) (0.125) (0.158)
Constant —3.105%%  —3.343"*F  _2.046**  —3.059*** 3,089 —3.156%"*

(0.103) (0.136) (0.265) (0.187) (0.210) (0.330)
R? 0.423 0.503 0.309 0.414 0.411 0.488
Adjusted R? 0.421 0.500 0.301 0.410 0.406 0.479
Significance levels *p<0.1; *p<0.05; **p<0.01

The estimates of improvement in both metrics resulting from the comprehensive collabora-
tion were obtained from the fitted models when setting the entropy value equal to zero. This would
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TABLE 7: Regression results for matching rate with collaboration

Dependent variable:

GO’D
log( l—Govgzt) )

OD 1 OD 2 OD3 OD 4 OD 5 OD 6

log( 0})(1)) —0.479**  —0.555* —-0.164  —0.777"*  —0.548 —1.530
Rsq

(0.171) (0.295) (0.424) (0.280) (0.445) (1.155)
EOP (1) —0.913**  —2.010"** —1.511"* —1.468"* —2.513"* —1.386""

(0.152) (0.303) (0.281) (0.233) (0.334) (0.616)
Constant —0.504 0.487 1.232 —0.259 1.220 —1.822

(0.467) (0.789) (1.096) (0.743) (1.142) (2.957)
R? 0.095 0.132 0.138 0.168 0.205 0.062
Adjusted R? 0.091 0.126 0.129 0.162 0.198 0.046
Significance levels *p<0.1; *p<0.05; **p<0.01

indicate the prediction when only one TNC provider receives shared requests. The results for travel
distance and matched percentage are shown in Figure 7 and Figure 8, respectively. In both figures,
the blue points are the original data, the red points are the results from the fitted models, and the
green points are the results from collaboration (i.e., when the entropy is set to zero). The red and
green curves are added to help visualize the trend.

The results reveal that the collaboration can improve the efficiency of the ridesplitting sys-
tem significantly. According to the scale effects, the efficiency of the system can be improved by
the increase in demand. Therefore, as expected, the improvement is more significant when the
number of authorized shared trips is low. When the demand is relatively high, each individual
TNC can receive enough requests to maintain a relatively high efficiency within their own service.
Quantitatively, on average, the matched percentage can be improved by up to 25%, and the travel
distance can be reduced by up to 0.3 miles. Quantitatively, the best improvement is seen at the
lowest demand which improves the matched percentage by 20.9% and reduces travel distance by
0.25 miles on average. The worst improvement is observed at the highest demand with matched
percentage increasing 13.65% and a travel distance reduction of 0.086 miles on average.

It is worth re-emphasizing that the estimates are for a “best-case scenario”, which assumes a
system with only one TNC providing the ridesplitting service. The actual improvement can highly
depend on the policy and the matching algorithm. For example, a more reasonable scenario is that
all TNC:s first try to match the share requests within their own services, and they only send/accept
requests that cannot be fulfilled by their own to other TNCs. This scenario is expected to generate
a lower improvement than the values shown in this section.

CONCLUDING REMARKS

This paper confirms that the economies of scale and increasing returns to scale found in the
ridesplitting system of Chicago (/3) also exist in both the entire ridesplitting system of Manhattan
and each individual TNC provider. This finding strengthens the generalization of the scale effects
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FIGURE 7: Improvement from collaboration on travel distance

in the ridesplitting service. In addition, TNC information associated with each trip is provided in
the Manhattan “TLC" dataset. Using this information, this paper investigates the impact of com-
petition, reflected by the concept of entropy, between TNCs on the scale effects. It is found that
competition leads to a decrease in matched percentage and an increase in the travel distance for
shared trips. When the entropy is higher, i.e., when competition is more intensive, the demand for
shared trips received by each TNC tends to be lower, so the influence is more significant. More-
over, the improvement resulting from a “best-case scenario” for collaboration, under which all
shared requests can be potentially matched regardless of the associated TNC, is estimated. The
results manifest that the efficiency of the ridesplitting service can be improved by collaboration.
The findings in this paper can be used by transportation agents and policymakers to improve the
ridesplitting service through building and strengthening collaborations between TNCs.

Lyft discontinued its pooled service in May 2023, which is the most recent month that the
trip data is currently available. After receiving more trip records in the future, it is essential to con-
firm if Lyft’s dropping from this service leads to the findings identified by this paper. Although the
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FIGURE 8: Improvement from collaboration on matched percentage

general findings about the influence of competition and collaboration on the ridesplitting service
are interesting, the actual improvement highly depends on the matching algorithms and policies.
Therefore, it is promising to propose a practical, sustainable, and beneficial policy for the realiza-
tion of collaboration. Furthermore, it is interesting to investigate if similar findings exist during
and after the re-introduction processing of ridesplitting from the COVID pandemic.
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