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Abstract

This paper introduces the Fair Fairness Benchmark (FFB), a benchmarking frame-
work for in-processing group fairness methods. Ensuring fairness in machine learn-
ing is critical for ethical and legal compliance. However, there exist challenges in
comparing and developing of fairness methods due to inconsistencies in experimen-
tal settings, lack of accessible algorithmic implementations, and limited extensibil-
ity of current fairness packages and tools. To address these issues, we introduce an
open-source, standardized benchmark for evaluating in-processing group fairness
methods and provide a comprehensive analysis of state-of-the-art methods to ensure
different notions of group fairness. This work offers the following key contributions:
the provision of flexible, extensible, minimalistic, and research-oriented open-
source code; the establishment of unified fairness method benchmarking pipelines;
and extensive benchmarking, which yields key insights from 45, 079 experiments.
We believe our work will significantly facilitate the growth and development of the
fairness research community. The benchmark, including code and running logs, is
available at https://github.com/ahxt/fair_fairness_benchmark.

1 Introduction

Machine learning models trained on biased data have been found to perpetuate and even exacerbate the
bias against historically underrepresented and disadvantaged demographic groups when deployed [39,
43, 9, 48]. As a result, concerns about fairness have gained significant attention, especially as
applications of these models expand to high-stakes domains such as criminal justice, hiring process,
and credit scoring. To mitigate such algorithmic bias, a variety of fairness criteria and algorithms
have been proposed, which impose statistical constraints on the model to ensure equitable treatment
under the respective fairness notions [25, 10, 45]. However, a fair and objective comparison between
the proposed and existing algorithms to enforce fairness can be difficult due to the following reasons:

* Hard to compare the performance of two objectives: utility* and fairness. Often, there is a trade-off
between these two objectives [38, 55, 49]. Besides, the instability of the fairness performance of
those methods during the training process can complicate the pursuit of an optimal balance [49].

* Inconsistent experimental settings[37, 35]: Fairness methods can also be hindered by variations
in dataset preprocessing and the use of different backbones. These discrepancies can lead to
inconsistent (Table 1) and unfair comparison, further complicating the comparison of methods.

* Stable and customizable implementation of commonly used fairness methods are not accessible.
The fairness methods are often implemented in different programming languages and frameworks,
complicating the reproduction and the comparative analysis of various fairness approaches.

*This work was done while the first author was an intern at Meta.
We use utility to represent the performance of the downstream task.
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» Current fairness packages [4, 6] and tools often suffer from a lack of extensibility. This can make
it difficult for researchers and practitioners to build upon existing methods and develop new ones.

This work aims to facilitate the growth and development of the fairness research community by
addressing existing challenges, promoting more accessible and reproducible methods for fairness
implementation, and establishing efficient benchmarking techniques. To achieve these goals, we
develop a standardized benchmark for evaluating and comparing in-process group fairness methods,
which we make open-source. We also conduct comprehensive experiments and analysis of fairness
methods. The major contributions of our benchmark are summarized as follows:

» Extensible, Minimalistic, and Research-oriented Open-Source Code: We offer open-source
implementation for all preprocessing, methods, metrics, and training results, thus facilitating other
researchers to utilize and build upon this work. The Fair Fairness Benchmark is publicly available,
making it easy for researchers and practitioners to use and contribute to.

Unified Fairness Method Benchmarking Pipelines: Our benchmark includes a unified fairness
method development and evaluation pipeline, with three key components: First, we provide a
thorough statistical and experimental analysis of widely-used fairness datasets and identity some
widely-used datasets unsuitable for studying fairness issues; second, we standardize preprocessing
for these datasets, ensuring consistent, comparable evaluations; lastly, we present a range of bias
mitigation algorithms and comprehensive evaluation metrics for group fairness.

Comprehensive Benchmarking and Detailed Obsevations: We conduct comprehensive experi-
ments on 14 datasets (each with two sensitive attributes), 6 utility metrics and 9 fairness metrics.
We run a total of 45, 079 experiments. Our experiments yield the following key insights:

«» @ Not all widely used fairness datasets stably exhibit fairness issues.

% @ Current fairness methods clearly exhibit utility-fairness trade-offs.

E ® The HSIC achieves the best utility-fairness trade-off overall.

2 ® Adversarial debiasing methods exhibit instability.

& ® Utility-fairness trade-offs are generally controllable.
® Utility training curves are stable, while fairness curves are unstable.
@ Stopping training while learning rate is lower enough is effective.
Architecture does not significantly influence fairness performance.

Scope of this Work. We focus on the problem of in-processing group fairness, which is defined
as discrimination against demographic groups. We consider the fairness methods in the context of
binary classification and binary sensitive attributes.

Notation. The dataset is denoted as {(x;, s;, ;)\, }, where NV is the number of samples. For the
sample 7 in the dataset, x; € R is non-sensitive attributes, s; € {0, 1} represents the binary sensitive
attribute, and y; € {0,1} is the label of the downstream task. We use § € {0,1} to denote the
predicted label of the downstream task, which is obtained by thresholding the output of a machine
learning model f(x) : R% — [0, 1] with trainable parameter 6. Accordingly, we use X, Y, S and ¥
to denote the random variables.

2 Why is this Benchmark Needed?

Ensuring fairness in algorithmic predictions is crucial in the field of machine learning. However, fairly
comparing the current fairness method is challenging due to inconsistencies in data pre-processing
and a lack of flexibility in existing fairness packages. This section aims to analyze the critical issue
of current fairness methods and discuss the urgent need for a benchmark to address these challenges.

Current fairness packages lack flexibility for researchers. AIF360 [4] and FairL.earn [6] are two
well-known fairness packages that have successfully mitigated bias in machine learning algorithms.
As popular open-source Python packages, they provide practitioners with toolkits for detecting and
mitigating bias in their models and evaluating model fairness. AIF360 is a comprehensive fairness
toolkit offering a variety of algorithms and metrics for addressing bias in machine learning models.
FairLearn also provides multiple algorithms and fairness metrics for assessing model performance.
While both packages are highly recognized within the fair machine learning community, they may not
give researchers the desired flexibility for research purposes. We provide a more in-depth comparison
between AIF360, FairLearn, and FFB in Section 6.



Table 2: Fairness definitions and metrics used in the experiments. Appendix A lists a more compre-
hensive list of fairness metrics and their details. Their simple code implementations are at this url.

Abbreviation Name Formal Definition

dp [17] Demographic/Statistical Parity PY|S=0)=PY |S5=1)

prule [50] p-Rule P(Y=1|8=1)/P(Y =1|5=0)| <p/100

ppv [11] Predictive Parity Value Parity P(Y=1|Y,8§=0=PY =1|YV,5§=1)

bnegc [29] Balance for Negative Class E[f(X)|Y=0,S=0=E[f(X)|Y =0,5=1]
bposc [29] Balance for Positive Class E[f(X)|Y=1,S=0=E[f(X)|Y =1,5=1]

eopp [23] Equality of Opportunity PY|S=0,Y=1)=PY |S=1Y=1)

eodd [23] Equalized Odds P(Y|S=0,Y=y)=PY |S=1Y =y),y € {0,1}
abcc [22] Area Between CDF Curves fol |Fo(z) — Fi(z)|dz

Inconsistent experimental setting leads to unfair T,11e 1: The reported accuracy of tabular
comparison. Prior research has often experienced in-

: L . X '~ data varies in different papers.
consistencies in data pre-processing and train test split,

which has led to divergent performance results that Paper Adult German
hinder comparison and reproducibility. Minor varia-  Madras et al. [37] ~085 —
tions in data preparation and dataset split can signif-  zemel et al. [51] ~ 0.70 ~ 0.69
icantly impact the performance of machine learning  Eqwards and Storkey [18] ~ 0.83 —
algorithms. Due to these issues, the reported accuracy  Eeldman et al. [19] ~ 0.68 = 0.69
of tabular data (Adult,German) varies in different pa- [ ouizos et al. [35] ~ 0.82 ~ 0.78
pers [37, 51, 18, 19, 35] shown in Table 1. To tackle

these issues, we propose a standardized and consistent Armax 0.17 - 0.09
data pre-processing and split approach, including data APercentage 20%  13%

normalization, outlier removal, and the implementation
of a uniform train-test split ratio.

Sufficient and in-depth analysis of fairness methods is urgently needed. The current fairness
method lacks a comprehensive comparison, such as the training curves and stability, the influence of
the utility-fairness trade-off parameters, and how to select the best utility-fairness trade-offs during
the training process. Our benchmark addresses these shortcomings by offering more in-depth and
multifaceted analysis. To present a more thorough understanding of fairness methods, we investigate
the training stability, model performance under various fairness constraints, and the selection of
best-performing models.

3 FFB: Fair Fairness Benchmark

To overcome the above limitations of the previous methods, we introduce the Fair Fairness Benchmark
(FFB), a extensible, minimalistic, and research-oriented fairness benchmark package. Compare to
other fairness packages, FFB codebase has the following main characteristics:

» Extensible: We provide the source code for fairness methods implementation, allowing researchers
to modify, extend, and tailor these methods to suit their specific requirements and implement new
ideas upon our code. This fosters a more customizable approach to developing fairness methods.

* Minimalistic: We focus on delivering core fairness methods and allowing users to understand the
fundamental techniques comprehensively without being overwhelmed by unnecessary complexity.
This approach ensures that users can easily implement and integrate our methods into their existing
workflows while maintaining a solid grasp of the underlying concepts.

» Research-oriented: We include benchmark datasets and evaluation metrics that facilitate assessing

fairness methods. This simplifies the research process, allowing researchers to quickly compare
and analyze the effectiveness of different methods in various scenarios.

3.1 Group Fairness Metrics

To provide a comprehensive comparison for bias mitigating methods, we consider multiple fairness
metrics, including demographic parity, p-rule, equality of opportunity, equalized odds, the area
between CDF curves, etc. Table 2 presents the fairness metrics used in Section 4 and Section 5.



Table 3: The summary of the benchmarking datasets. The #nFeat/#cFeat is the number of the numeri-
cal/categorical features and the #allFeat is the total number of the features after our preprocessing.
The yo : y1/so : s1 is the ratio of two classes of the target label and the sensitive attributes. More
details about datasets are presented in Appendix B. The dataset loading codes are at this url.

Dataset Task SensAttr #Instances #nFeat #cFeat #allFeat Yo:y1 So:s1(Ist) sp: sy (2nd)
Adult [30] income gender, race 45,222 7 5 101 1:0.33 1:2.08 1:9.20
German [16] credit  gender, age 1,000 13 6 58  1:2.33 1:2.23 1:4.26
KDDCensus [16] income gender, race 292, 550 32 8 509 1:14.76 1:0.92 1:8.14
COMPAS [31] credit age 6,172 400 5 405 1:0.83 1:4.25 —
Bank [16] credit gender, race 41,188 10 9 62 1:0.13 1:37.58 1:37.58
ACS-I [15] income gender, race 195,665 8 1 908 1:0.70 1:0.89 1:1.62
ACS-E [15] employment gender, race 378,817 15 0 187 1:0.84 1:1.03 1:1.59
ACS-P [15] public  gender, race 138,554 18 0 1696  1:0.58 1:1.27 1:1.31
ACS-M[15] mobility gender, race 80,329 20 0 2678 1:3.26 1:0.95 1:1.32
ACS-T[15] traveltime gender, race 172,508 15 0 1567 1:0.94 1:0.89 1:1.61
CelebA-A [34] attractive  gender, age 202, 599 — — 48 x48 1:0.95 1:1.40 1:0.29
CelebA-W [34] wavy hair ~ gender, age 202,599 — — 48 x48 1:2.13 1:1.40 1:0.29
CelebA-S [34] smiling  gender, age 202,599 — — 48 x48 1:1.07 1:1.40 1:0.29
UTKFace [54] age gender, race 23,705 — — 48 x48 1:1.15 1:1.10 1:1.35

3.2 Benchmarking Datasets

To provide a comprehensive comparison of fairness methods, we adopted multiple commonly-used
fairness datasets [32] for our experiments, including tabular and image datasets. Table 3 summarizes
the datasets used. they are publicly available and can be downloaded from the corresponding websites.
We also present the number of features and the ratio of the target label and sensitive attributes. For
example, the target label ratio of KDDCensus is 1 : 14.76, which is an extremely unbalanced dataset.

3.3 Data Preprocessing

To ensure a fair comparison and maintain the reproducibility of the fairness approach, we adhere to a
conventional data preprocessing strategy. We apply standard normalization for numerical features
while employing one-hot encoding to process the categorical features. We also split the data into
training and test sets with random seeds. We use the training set to train the model and the test set to
evaluate the model’s performance. We use the same data preprocessing strategy for all the datasets.

3.4 Benchmarking Fairness Methods

In this section, we introduce the benchmarking methodology employed in our experiments. The
benchmarking methods can be classified into three categories: surrogate loss, independence con-
straints, and adversarial debiasing techniques. In this paper, we focus on in-processing methods
for fairness primarily due to the following: 1) They intervene directly in the learning algorithm to
ensure fairness, which provides a more nuanced and effective approach to mitigating bias; 2) The
emergence of more in-processing techniques designed in deep neural networks calls for systematic
comparison; 3) In-processing methods are susceptible to information leakage since they do not
require sensitive attributes during inference. In particular, we consider the following three types
of in-processing methods. Gap Regularization [12] simplifies optimization by offering a smooth
approximation to real loss functions, which are often non-convex or difficult to optimize directly. This
approach includes Dif fDP, DiffEodd, and DiffEopp. Independence introduces fairness constraint
into the optimization process to minimize the impact of protected attributes on model predictions
while maintaining performance. This approach includes PRemover [28] and HSIC [33]. Adversarial
Learning’® minimizes the utility loss while preventing the adversary from accurately predicting
the protected attributes. This approach includes AdvDebias [52, 36, 5, 18, 1] and LAFTR [37]. The
fairness methods are present as follows:

* ERMis a standard machine learning method that minimizes the empirical risk of the training data.
It is a common baseline for fairness methods.

3For all adversarial learning methods, we use gradient reversal layer [20] for better training stability.



Table 4: Bias examination for all datasets. We identify the biased dataset specified with sensitive
attributes with the reported utility and fairness performance of ERM. Numbers (e.g., +35+++7) mean
that the bias is too small, indicating is not suitable for fairness accessment. The biased datasets are
marked with v, while the unbiased datasets are marked with x. The X indicates that the bias exists
but with a large standard deviation. The results are based on 10 trials with varying data splits and
training seeds, to ensure reliable outcomes. The table is generated from a total of 910 runs.

Utility Fairness
atas s
Dataset SenAtr acc auc ap f1 dp abcc prule eodd eopp Bias?
Bank- Age 91.17+0.57  94.05+0.19  62.41+1.83 54.31x11.14  10.88+4.27  10.64+163 44.48+5.95 10.71x5.68 6.16+4.90 X
Gender 75.4242.03 78554197 89.21+1.06 83.02+1.54 7.36+4.35 4.89+1.77 90474574 144541155  2.7441.76 X
Age 75194216  77.21+260 88.28+1.74 82.90+1.62 12.20+6.02 10.01+1.63 84.44+717 17.97+107m1  8.26+6.12 X
Adult Gender  85.35+0.34  91.06+0.34  78.50+0.72  66.78+0.75  16.67+0.60 18.36+0.71  32.54+262 14.16+3.12  7.93+2.88 v
Race 85.21+0.27  91.10+0.16  78.65+0.35  66.85+0.46  12.23+0.72  12.59+0.60 41.54=268 13.12+2.65  8.81+2.03 v
S Gender  67.07+0.80 72.56+0.7a  67.99+0.03  59.77+227 13.43+2.4s8  5.80+112  65.12+8.25  19.67+6.02  11.54+4.73 v
Race 67.13+1.06 72.98+050 68.24+0.72  60.58+3.06 16.83+3.48  8.15+112  61.83xas6  29.03+6.66  20.05+3.95 v
KDDCensus Gender  94.88+0.4s8  94.03+0.04  99.55+0.00  97.32+0.24  3.61x1.60 5204035  96.35x162  14.97+7.11 OFFrosr v
Raee 94.49+0.78  94.40+0.08  99.57+0.01  97.13x038  F35+rrr 3.31xoas  9864=rts  6.56xs.83 0:28+625 X
ES Gender  82.30+0.12  90.28+0.00  86.02+0.15  77.91+0.19  9.10+0.31 8.27+0.24  79.01+0.65  3.38z0.61 FF5+omt v
Race 82.40+0.00  90.40+0.00 86.17+0.14  78.11+0.11 9.81+0.39 T.71+0.20  77.24%0.82 9.72+0.73 6.21+0.48 v
Gender 81.63+0.12 88.95+0.08 83.12+012  81.31:016  0:60x020  O56+or2 9887=esr  10.77+020  6:90+6ts X
Raee 81.99+0.16  90.00+0.13  85.58+0.24  81.38+0.11  +42+om5  0:99+0rr 9729=owz 3.48z0.82 2349+0m15 X
Gender 71.92+0.s  75.25+0.16 67.23+0.22  52.93+0.711  2:09+66+r 235466 91.26+252  2:30+tse +52++00 X
Raee 71.70+0.22  75.00+0.31  67.01+0.28 52.06+0.50  OA48+os2  +:98+o20  978F=rss  4.63z0.38 4.03+0.72 X
Gender 76.81+0.32  72.85+0.36 88.40+0.22  86.54+0.31  OF8zerr  O84+ere 9980+ere O4Bzesr  0:08+ewe X
Raee 76.98+0.65 73.23+0.61 88.53+027  86.70+0.04  OH=zorr FA5torr  9988zots 082+ts O38+029 X
ST Gender  66.36+0.22 73.54+0a8 71.59+014  66.51+031  8.60+0.45 5.02+0.28  84.65+0.74 12.90+0.82  5.72+0.44 v
Race 66.45+0.20 73.64+0.17 71.67+0.10  66.26+0.47  9.62:x067  6.07+0.22  83.09:0.92  15.19+1.24  6.50+0.99 v
CelebA-A Gender  78.19+0.44 86.67+0.53 86.66+0.64  79.17+04s  52.39+1.27  37.67+0.08 30.42+1.23 70.84+315 35.53+1.82 v
Race 78.19+0.44  86.67+0.53  86.66+0.64  79.17+0.a7  41.90+1.08  31.15+117 33.43x17m1 37424226  18.83+1.04 v
e Gender  82.50+0.76  88.38+0.86  80.38+1.57  70.14+164  33.92+1.35 29.52+112  16.89+2.00  52.71+a28  39.62+3.40 v
ese Race 82.50+0.76  88.38+0.86 80.38+157  70.14+1.64 10.27+071  10.61x0.47 64.59+235 10.63+218  6.48+1.04 v
CelebA-S Gender  89.95+3.40 96.51+1.84  96.67+1.80 89.08+6.79  14.09+1.08 13.02+1.46 72.76+3.44  6.99+1.16 6.51+1.06 v
Race 89.95+3.40  96.51x1.84  96.67+1.80 89.08+6.79  5.91x0.75 5.59+0.70  88.21x250  6.46x1.06 0:82+650 v
G Gender 83.34x071  91.78+0.57  91.36+0.67 81.66+0.85  25.68+1.88 20.57+1.23 54.61+2.54  28.66+4.12 17.16+2.63 v
ace Race 83.34+0.71  91.78+057 91.36+0.67 81.66+0.85  23.25+1.71  18.99+1.22 59.67+263 23.07+3.64  16.68+2.70 v

» DiffDP, DiffEopp, DiffEodd are the gap regularization methods for demographic parity,
equalized opportunity, and equalized odds [12]. As these fairness definitions cannot be optimized
directly, gap regularization is differentiable and can be optimized using gradient descent.

* PRemover [28] (PrejudiceRemover) minimizes the mutual information between the prediction
accuracy and the sensitive attributes.

* HSIC [21, 3, 33] minimizes the Hilbert-Schmidt Independence Criterion between the prediction
accuracy and the sensitive attributes.

» AdvDebias [52, 36,5, 18, 1] (adversarial debiasing) learns a classifier that maximizes the prediction
ability and simultaneously minimizes an adversary to predict the sensitive attributes from the
predictions.

* LAFTR [37] is a fair representation learning method that aims to learn an intermediate representation
that minimizes the classification loss, reconstruction error, and the adversary’s ability to predict
the sensitive attributes from the representation.

4 Bias Examination for Widely Used Fairness Benchmark Datasets

The presence of bias in the current widely used dataset is not well examined and investigated as it
should be, even though such bias can significantly influence the assessment of fairness methods. As
such, our work endeavors to delve deeper into this issue by exploring the inherent bias in the widely
used dataset. We aim to assess the suitability of these datasets for fairness evaluation critically.
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(a) Tabular Data, across Adult, German, Bank, KDDCensus, ACS-1/E/P/M/T datasets.

0.0 0.5 1.0 0.0 1.0 0.0 0.5 1.0 0.0 0.5 1.0

05
Fairness (abcc) Fairness (dp) Fairness (abcc) Fairness (dp)

(b) Image Data, across CelebA-A/W/S, UTKFace datasets with multiple targets.
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(c) Tabular Data on eodd and eodd. (d) Image Data on eodd and eodd.
Figure 1: The utility-fairness trade-offs of current fairness methods — DiffDP, , HSIC,

LAFTR, and AdvDebias. To plot the fairness and utility performance in one figure, for each dataset,
we normalize the utility (acc,auc) and fairness (abcc, dp) based on the performance of ERM, which
is denoted as the point (1.0, 1.0). The figures clearly show that utility-fairness exhibits trader-offs.
These figures are generated from a total of 27568 runs. We present figures of the individual method
on the individual dataset in our repo.

@ Not all widely used fairness datasets stably exhibit fairness issues. We systematically identify
datasets that not only have demonstrated bias but are also prevalently used in fairness research. We
found that in some cases, the bias in these datasets is either not consistently present or its manifestation
varies significantly. This finding indicates that relying on these datasets for fairness analysis might not
always provide stable or reliable results, suggesting the need for more rigorous dataset selection or
bias evaluation methodologies in future fairness studies. The biased datasets are marked with « while
unbiased ones are with X. The X indicates that the bias exists but with a large standard deviation.

S Benchmarking Current Fairness Methods

In this section, we present comprehensive experiments to benchmark the performance of existing
in-processing group fairness methods. We aim to provide a holistic overview of the group fairness
methods, identifying both their strengths and areas for improvement.

Experimental Setting. For tabular datasets, we use a two-layer Multi-layer Perceptron with 256
neurons each for all datasets. We use different bath sizes for different datasets based on the total
number of instances of each dataset. For image datasets, we use various neural networks (such as
ResNet-18 [24] and ResNet-152) as the backbone. We don’t use weight decay for all datasets and
all fairness methods. We use linear learning rate decay for all datasets and all fairness methods. We
use Adam [14] as the optimizer with a learning rate of 0.001 for both tabular and image data. As
these objectives, utility and fairness, often present trade-offs, it can be challenging to determine when
to stop model training, and this issue is rarely discussed in the previous literature. In this work, we
adopted a straightforward stopping strategy based on our experience. We employ a linear decay
strategy for the learning rate, halving it every 50 training steps. The model training is stopped when
the learning rate decreases to a value below 1e~>. We provide all the wandb * running logs at our
repo, including all the hyperparameters for each run of experiment and the training process.

*https://wandb.ai/
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Figure 2: The fairness performance with varying fairness control hyperparameters. The intensity of
the color represents the size of the control parameters. In most cases, the larger value of control
parameters yields better fairness performance, while ones have worse fairness performance.
These figures are generated from 13110 runs of experiments.

5.1 How the Bias Mitigating Methods Perform on Utility-Fairness Trade-offs?

In this section, we present the results of experiments conducted to assess the performance of existing
in-processing fairness methods in terms of the utility-fairness trade-offs. We analyze how well these
methods balance optimizing utility and ensuring fairness in decision-making. To accurately reflect
the performance of the different methods, we aggregate the performance across different datasets in
one figure. To do so, we normalize the utility (acc,auc) and fairness (abcc, dp) performance based
on the performance of the ERM. From the results, we make the following major observations:

@ The utility-fairness performance of the current fairness method exhibits trade-offs. We first
present the utility-fairness trade-offs of the existing in-processing fairness methods in Figure 1. We
conduct experiments using various in-processing fairness methods and analyze the ability to adjust
the trade-offs to cater to specific needs while maintaining a balance between accuracy and fairness.

® The HSIC method achieves the best utility-fairness trade-off overall. The HSIC method
consistently excels in balancing utility and fairness, outperforming other approaches across
our tests. This method, depicted in green in Figure 1, shows particular effectiveness when applied
to tabular data. It exhibits a significant ability to improve fairness measures without compromising
the precision of utility, maintaining high accuracy in predictions. This quality affirms the robustness
of the HSIC method in preserving utility-fairness equilibrium under various conditions. However,
when this method is applied to image data, it exhibits a relative performance decline, showing lower
fairness and utility scores.

@ Adversarial debiasing methods exhibit instability. As illustrated in Figure 1, the utility-fairness
points representing the AdvDebias method are scattered randomly across the figures, failing to
depict a consistent trade-off pattern. This randomness suggests an inherent instability in adversarial
debiasing methods. This inconsistency is further demonstrated in subsequent experiments, where the
training curves reveal that these methods are difficult to control effectively.

5.2 Can the Utility-fairness Trade-offs be Controlled?

Hereby we investigate the extent to which the utility-fairness trade-offs can be controlled and fine-
tuned. We conduct experiments using various in-processing fairness methods and analyze the ability
to adjust the trade-offs to cater to specific needs and requirements while maintaining a balance
between accuracy and fairness.

® The utility-fairness trade-offs are generally controllable. The intensity of color in Figure 2
corresponds to the size of the control parameters. With the exception of adversarial debiasing, we
find that the performance of most methods can be modulated effectively through the adjustment of
hyperparameters. Specifically, larger control hyperparameters tend to yield lower dp and abcc values,
indicating enhanced fairness. This implies that the trade-offs between utility and fairness can be
actively managed in most cases, providing a crucial degree of flexibility in fairness-oriented data
processing tasks. In comparison, the adversarial debiasing method (AdvDebias) is hard to control.
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5.3 How do Utility and Fairness Performance Change During Training Process?
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viation for fairness metrics is signifi- Figure 4: The training curves on image dataset. The results
cantly larger than that for utility met- are similar to tabular dataset that training curves for fairness
rics.  Among the fairness methods, metrics typically have lager standard deviation than utility

LAFTR shows the most stable fairness Performance.

performance. Even though the value

of fairness metrics is small, the large standard deviation still suggests unstable fairness performance.
The results indicate a future research direction focused on enhancing fairness training stability.

@ Stopping training while the learning rate is lower enough proves effective. In our work, we
halt the model training when the learning rate diminishes to a value less than 1e~®, which is decayed
by multiplying by 0.1 every 50 training steps. This approach results in stable fairness metrics, thereby
validating its effectiveness and rationale. The utilization of learning rate decay to halt training results
in stable fairness metrics, thereby affirming its efficacy and reasonableness.

5.4 How does Model Size Influence Fairness Performance?

We conduct experiments to explore the influence of model size on fairness performance. We use
various neural networks with the number of neural network trainable parameters spanning from
11.6M to 126.9M.3 The results are presented in Figure 5.

SWe use the following architectures: ResNet-18 (11.6M), ResNet-34 (21.8M), ResNet-50 (25.6M), ResNet-
101 (44.5M), ResNet-152 (60.2M), ResNext-50 (25.0M), ResNext101 (88.8M), wide_ResNet-50 (68.9M), and
wide_ResNet101 (126.9M).
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Figure 5: The performance with varying size of neural networks. The x-axis is the number of model
parameters. There is no clear relationship between model size and performance.

The architecture does not significantly influence fairness performance. An increase in neural
network parameters does not yield significant changes in utility or fairness performance. This suggests
larger models do not naturally mitigate that dataset bias. The results observed from the
method indicate a potential correlation between utility performance and bias: fairness performance
may deteriorate as utility increases, exhibiting trade-offs between them across different models.

6 Related Work

Algorithmic Fairness Fairness in machine learning has garnered considerable attention in recent
years. The goal of fairness in machine learning is to ensure that the machine learning models are fair
and unbiased towards an individual or group. Thus, fairness in machine learning can be divided into t
categories: group fairness [17, 23, 13, 50, 37] and individual fairness [17, 46]. Group fairness aims
to ensure that the machine learning models are fair to different groups of people, while individual
fairness aims to “similar individuals should be treated similarly.” To mitigate fairness and bias
problems in machine learning models, bias mitigation methods can be divided into three categories:
pre-processing [27, 8], in-processing [28, 52, 37, 53, 7, 2, 47, 40], and post-processing [23, 26].
Given that the group fairness metrics are widely adopted in real-world applications and the emergence
of more in-processing techniques designed in deep neural network models, we focus on benchmarking
in-processing methods for group fairness for neural network models for tabular and image data.

Fairness Packages and Benchmarks There are many fairness packages in the literature. Among
them, AIF360 [4] and FairLearn [6] are the two most widely used Python packages that provide
a set of metrics and algorithms to measure and mitigate bias in machine learning models. They
provide a set of metrics to measure the bias of machine learning models, including disparate impact,
statistical parity difference, and equal opportunity difference, and a set of algorithms to mitigate the
bias of machine learning models. However, both AIF360 and FairLearn implement the bias mitigation
algorithms using Scikit-learn [42] API design (e.g., the use of fit() function) with complicated
class inheritance, making the understanding and direct modification of implementation difficult. In
comparison, our benchmark decouples the implementation of different bias mitigation algorithms
using Pytorch-style [41] training scripts and provides a unified fairness evaluation interface for a
comprehensive list of group fairness metrics. One recently proposed benchmark [44] also aims to
benchmark bias mitigation algorithms. However, their benchmark only includes adversarial learning
methods and datasets (e.g., a synthetic dataset and CI-MNIST) without fairness implications and uses
dp and eodd as the fairness metrics. In contrast, our benchmark is more comprehensive in terms of
algorithms, datasets, and fairness evaluation metrics.

7 Discussions

This paper introduces Fair Fairness Benchmark (FFB) to benchmark the in-processing group fair-
ness models, offering extensible, minimalistic, and research-oriented open-source code, as well as
comprehensive experiments to benchmark the existing in-processing group fairness method.

Future work. Our plan for subsequent phases of this work involves extending the scope of the FFB
to include a wider range of in-processing group fairness methods. Moreover, we intend to incorporate
additional definitions of fairness into our evaluations.

Social Impact. Our benchmark, with its extensible, minimalistic, and research-oriented open-
source code, is designed to facilitate researchers and practitioners to explore and implement fairness
methods. Standardized dataset preprocessing and reference baseline implementation will help reduce
inconsistencies and make fairness more accessible, especially for beginners in the field. Ultimately,
our work aims to stimulate future research for fairness and foster the development of fairness models.
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A

Details of the Group Fairness

In this section, we provide the details of the group fairness. We first introduce the definition of group
fairness. Then, we introduce the existing group fairness metrics and algorithms.

dp (Demographic Parlty or Statistical Parity) [51]. A classifier satisfies demographlc parity if the
predicted outcome Y is independent of the sensitive attribute S, i.e., P(Y | S = 0) = P(Y |
S=1).

prule [50]. A classifier satisfies p%-rule if the ratio between the probability of subjects having a
certain sensitive attribute value assigned the positive decision outcome and the probability of
subjects not having that value also assigned the positive outcome should be no less than p/100,

ie,|P(Y=1|8=1)/P(Y =1|5=0)| <p/100.

eopp (Equality of Opportunity) [23]. A classifier satisfies equalized opportunity if the predicted
outcome Y is independent of the sensitive attribute S when the label Y = 1,ie., P(Y | S =
0,Y=1)=PY |S=1Y=1).

eodd (Equalized Odds) [23]. A classifier satisfies equalized odds if the predicted outcome Y is
independent of the sensitive attribute S conditioned on the label Y, ie., P(Y | S =0,Y =y) =
acc (Accuracy Parity). A classifier satisfies accuracy parity if the error rates of different sensitive
attribute values are the same, i.e., P(Y #Y | S=0)=PY #Y | S=1),y € {0,1}.

aucp (ROC AUC Parity). A classifier satisfies ROC AUC parity if its area under the receiver
operating characteristic curve of w.r.t. different sensitive attribute values are the same.

ppv (Predictive Parity Value Parity) A classifier satisfies predictive parity value parity if the
probability of a subject with a positive predictive value belonging to the positive class w.r.t.
different sensitive attribute values are the same, ie.,, P(Y =1 |Y,S =0) = P(Y =1 |
V,5=1).

bnegc (Balance for Negative Class). A classifier satisfies balance for the negative class if the
average predicted probability of a subject belonging to the negative class is the same w.r.t.
different sensitive attribute values, i.e., E[f(X) |Y =0,5 =0 =E[f(X) | Y =0,5 =1].

bposc (Balance for Positive Class). A classifier satisfies balance for the negative class if the
average predicted probability of a subject belonging to the positive class is the same w.r.t.
different sensitive attribute values, i.e., E[f(X) | Y =1, =0 =E[f(X) | Y =1,5 =1].

abcc (Area Between Cumulative density function Curves) [22] is proposed to precisely measure
the violation of demographic parity at the distribution level. The new fairness metrics directly
measure the difference between the distributions of the prediction probability for different
demographic groups
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B Details of the Benchmarking Datasets

In this section, we provide the details of the benchmarking datasets. We first introduce the bench-
marking datasets. Then, we introduce the data preprocessing and data splitting.

¢ Tabular Datasets

Adult’ [30]. The Adult dataset is widely used in machine learning and data mining research.
It contains 1994 U.S. census data. The task of the dataset is to predict whether a person makes
over $50K a year, given an individual’s demographic and financial information. The dataset
includes sensitive information such as age and gender. In the literature, gender is mostly used
as the (binary) sensitive attribute to evaluate group fairness.

COMPAS?® [31]. The COMPAS dataset contains records of criminal defendants, and it is used to
predict whether the defendant will recidivate within two years. The dataset includes attributes
related to the defendant, such as their criminal history, and demographic information, such as
gender and race.

German’ [16]. The German Credit dataset contains information on individuals who applied
for credit at a German bank, including their financial status, credit history, and demographic
information (e.g., gender and age). It is used to predict whether an individual should receive a
positive or negative credit risk rating.

Bank!® [16]. The bank marketing dataset is used to analyze the effectiveness of marketing
strategies of a Portuguese banking institution by predicting if the client will subscribe to a
term deposit. The input variables of the dataset include the bank client’s personal information
and other bank marketing activities related to the client. Age was studied as the sensitive
attribute in [50].

KDDCensus!!' [16]. Similar to the Adult dataset, the task of the KDD Census dataset is to
predict whether the individual’s income is above $50k with more instances. The sensitive
attributes are gender and race.

ACS-I/E/P/M/T'? [15]. The ACS dataset provides several prediction tasks (e.g., predict
whether an individual’s income is above $50K or whether an individual is employed). It is
constructed from the American Community Survey (ACS) Public Use Microdata Sample
(PUMS). All tasks contain features for race, gender, and other task-related features.

* Image Datasets

— CelebA-A/W/S'3 [34] The CelebFaces Attributes dataset comprises 20k face images from 10k
celebrities. Each image is annotated with 40 binary labels indicating specific facial attributes
such as gender, hair color, and age.

— UTKFace'* [54]. The UTKFace dataset is a large-scale face dataset that contains over 20k
face images of people from different ethnicities and ages. The images are annotated with age,
gender, and ethnicity information.

7https:
8https:
9https:
Ohttps:
Thttps:
12https:
13https:
14https:

//archive.ics.uci.edu/ml/datasets/adult
//github.com/propublica/compas-analysis
//archive.ics.uci.edu/dataset/144/statlog+german+credit+data
//archive.ics.uci.edu/dataset/222/bank+marketing
//archive.ics.uci.edu/ml/datasets/Census-Income+(KDD)
//github.com/zykls/folktables
//mmlab.ie.cuhk.edu.hk/projects/CelebA.html
//susanqq.github.io/UTKFace/
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C Detailed Experimental Settings

We present the details of the experimental setting in Tables 5 to 7. Table 5 presents the common
hyperparameters used by both Tabular and Image datasets, including an initial learning rate of 0.01,
Adam as the optimizer, zero weight decay, StepLR as the scheduler with a step of 50, a gamma value
of 0.1, and 150 training steps in total. Table 6 presents the range of control hyperparameters used for
various fairness methods. Each method has a unique range of these parameters. Table 7 indicates the
batch sizes chosen for various datasets during training, ranging from 32 for the German and COMPAS
datasets to a large 4096 for the KDDCensus and ACS-I/E/P/M/T datasets, with CelebA-A/W/S and
UTKFace datasets using a batch size of 128, which are determined by the number of instances of the
datasets.

Table 5: Common Hyper-parameters.

Dataset, Initial LR Optimizer Weight Decay Scheduler StepLR_step StepLR_gamma Training steps

Tabular| 0.01 Adam 0.0 StepLR 50 0.1 150
Image 0.01 Adam 0.0 StepLR 50 0.1 150

Table 6: The fairness control hyperparameter selections.

Dataset Control hyperparameter

DiffDP 0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0, 2.5, 3.0, 3.5, 4
DiffEodd | 0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0,2.5,3.0,3.5,4
DiffEopp | 0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0,2.5,3.0,3.5, 4
PRemover | 0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.40, 0.45, 0.50, 0.6, 0.7, 0.8, 0.9, 1.0

HSIC 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000
AdvDebias | 0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0,2.5,3.0,3.5,4
LAFTR 0.1,0.2,0.3,0.4,0.5,1,2,3,4,5

Table 7: The batch size for different datasets during the training.

Dataset Bank German Adult COMPAS KDDCensus ACS-I/E/P/M/T CelebA-A/W/S UTKFace
Batch Size | 1024 32 1024 32 4096 4096 128 128
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D More Experiment Results on Adult
In this appendix, we present the experimental results on Adult datasets.

D.1 Utility-Fairness Trade-offs

We plot the utility-fairness trade-offs for the Adult dataset with gender as the sensitive attribute and
present the results in Figures 6 and 7.
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Figure 6: The Utility-Fairness Trade-offs with acc as utility metric.
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Figure 7: The Utility-Fairness Trade-offs with auc as utility metric.

D.2 Training Curves and Hyperparameters for Controlling Fairness

We plot the utility and fairness training curves for varying fairness control hyperparameters on the
Adult dataset, and present the results in Figure 8. The intensity of the color represents the size of
the control parameters. In most cases, the larger value of control parameters yields better fairness
performance, while ones have worse fairness performance.
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Figure 8: Hyperparameters for Controlling Fairness on Adult dataset.
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E More Experiment Results on CelebA-A

In this appendix, we present the experimental results on the CelebA-A dataset.

E.1 Utility-Fairness Trade-offs

We plot the utility-fairness trade-offs for the CelebA-A dataset with gender as the sensitive attribute
and present the results in Figure 9. The results show the utility-fairness trade-offs in CelebA-A

dataset.
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Figure 9: The Utility-Fairness Trade-offs

E.2 Training Curves and Hyperparameters for Controlling Fairness

We plot the utility and fairness training curves for varying fairness control hyperparameters on the
CelebA-A dataset, and present the results in Figure 10. The intensity of the color represents the size
of the control parameters. In most cases, the larger value of control parameters yields better fairness

performance, while

ones have worse fairness performance.
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Figure 10: Training Curves and Hyperparameters for Controlling Fairness one CelebA-A dataset.
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F Implementation Comparison with AIF360 and FairLearn

In this section, we provide the implementations of adversarial debiasing in AIF360, FairLearn, and
FFB to demonstrate FFB are extensible, minimalistic, and research-oriented compared to existing
fairness packages. Algorithm 1, Algorithm 2, and Algorithm 3 show the implementation of adversarial
debiasing in AIF360, FairLearn, and FFB, respectively.

We can see that both AIF360 and FairLearn use Scikit-learn API design (e.g., the use of
fit() function), whereas FFB use Pytorch-style implementation, which provides a unified data
preprocessing pipeline and fairness evaluation interface in a single script. Thus, researchers
using FFB can use the bias mitigation method and reproduce the experimental results us-
ing one line of command. Additionally, AIF360 and FairLearn use complicated class inheri-
tance (e.g., AdversarialFairnessClassifier in FairLearn inherents AdversarialFairness and
ClassifierMixin), AdversarialDebiasing in AIF360 inherents Transformer), and other exter-
nal dependencies (e.g., AdversarialFairness in FairLearn uses backendEngine_ to implement the
training step), making the implementation hard to read. This makes researchers hard to understand
and re-implement the bias mitigation methods.

Algorithm 1 AdvDebias in AIF360

class AdversarialDebiasing(Transformer):

def __init__(self):

def _classifier_model(self, features, features_dim, keep_prob):
. # deine classifier

def _adversary_model(self, pred_logits, true_labels):
. # deine adversary model

def predict(self, dataset):

def fit(self, dataset):
with tf.variable_scope(self.scope_name):

# tf graph construction

self.sess.run(tf.global_variables_initializer())
self.sess.run(tf.local_variables_initializer())

for epoch in range(self.num_epochs):
# training
for i in range(num_train_samples//self.batch_size):
batch_feed_dict = {self.features_ph: batch_features,
self.true_labels_ph: batch_labels,
self.protected_attributes_ph: batch_protected_attributes,
self.keep_prob: 0.8}
if self.debias:
_, _, pred_labels_loss_value, pred_protected_attributes_loss_vale = self.sess.run([
classifier_minimizer,
adversary_minimizer,
pred_labels_loss,
pred_protected_attributes_loss], feed_dict=batch_feed_dict)
if i % 200 == 0:
. # logging
else:
_, pred_labels_loss_value = self.sess.run(
[classifier_minimizer,
pred_labels_loss], feed_dict=batch_feed_dict)
if i % 200 == 0:
. # logging
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Algorithm 2 AdvDebias in FairLearn

class _AdversarialFairness(BaseEstimator):

def __init__(self):
def __setup(self, X, Y, A):

def fit(self, X, y, *, sensitive_features=None):
X, Y, A = self._validate_input(X, y, sensitive_features, reinitialize=True)

for epoch in range(epochs):
batch_slice = slice(
batch * batch_size,
min((batch + 1) * batch_size, X.shape[0]),

)
(LP, LA) = self.backendEngine_.train_step(
X[batch_slice], Y[batch_slice], A[batch_slice]

)
predictor_losses.append(LP)
adversary_losses.append(LA)

def partial_fit(self, X, y, %, sensitive_features=None):
def decision_function(self, X):

def predict(self, X):

def _validate_input(self, X, Y, A, reinitialize=False):
def _validate_backend(self):

def _set_predictor_function(self):

class AdversarialFairnessClassifier(_AdversarialFairness, ClassifierMixin):
def __init__(self):
"""Initialize model by setting the predictor loss and function.
self._estimator_type = "classifier”
super(AdversarialFairnessClassifier, self).__init__()

nun
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Algorithm 3 AdvDebias in FFB

class Adversary(nn.Module):

class MLP(nn.Module):

def test(model, test_loader, criterion, device, args=None):

def train(clf, adv, data_loader, clf_criterion, adv_criterion, clf_optimizer, adv_optimizer):

if __name__ == ’__main__’:
parser = argparse.ArgumentParser()
parser.add_argument(’--dataset’, type=str, default="adult")
parser.add_argument(’--model’, type=str, default="MLP")

args = parser.parse_args()

# Dataset selection

if args.dataset == "adult”:
X, vy, s = load_adult_data(sensitive_attribute=args.sensitive_attr)
elif args.dataset == "compas”:

X, y, s = load_compas_data( sensitive_attribute=args.sensitive_attr)
# Unified Dataset preprocessing (e.g., train/test split, )

# define network architecture, etc. optimizer

clf = MLP(n_features=n_features, num_classes=1, mlp_layers=[512, 256, 64]).to(device)
clf_criterion = nn.BCELoss()

clf_optimizer = optim.Adam( clf.parameters(), lr=args.lr)

adv = Adversary( n_sensitive = 1 ).to(device)
adv_criterion = nn.BCELoss(reduction="mean")
adv_optimizer = optim.Adam(adv.parameters(), lr=args.lr)

for epoch in range(1, args.num_epochs+1):
# begin training
train(clf, adv, train_loader, clf_criterion, adv_criterion, clf_optimizer, adv_optimizer)

if epoch % args.logging_steps == @ or epoch == args.num_epochs:
test_metrics = test(model=clf, test_loader=test_loader, criterion=clf_criterion, device=device)
# logging metrics
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