
Viderman’s algorithm for quantum LDPC codes

Anirudh Krishna∗ Inbal Livni Navon† Mary Wootters‡

Abstract

Quantum low-density parity-check (LDPC) codes, a class of quantum error correcting codes, are considered
a blueprint for scalable quantum circuits. To use these codes, one needs efficient decoding algorithms. In the
classical setting, there are multiple efficient decoding algorithms available, including Viderman’s algorithm
(Viderman, TOCT 2013). Viderman’s algorithm for classical LDPC codes essentially reduces the error-
correction problem to that of erasure-correction, by identifying a small envelope L that is guaranteed to
contain the error set.

Our main result is a generalization of Viderman’s algorithm to quantum LDPC codes, namely hypergraph
product codes (Tillich, Zémor, IEEE T-IT, 2013). This is the first erasure-conversion algorithm that can
correct up to Ω(D) errors for constant-rate quantum LDPC codes, where D is the distance of the code.
In that sense, it is also fundamentally different from existing decoding algorithms, in particular from the
small-set-flip algorithm (Leverrier, Tillich, Zémor, FOCS, 2015). Moreover, in some parameter regimes,
our decoding algorithm improves on the decoding radius of existing algorithms. We note that we do not yet
have linear-time erasure-decoding algorithms for quantum LDPC codes, and thus the final running time of
the whole decoding algorithm is not linear; however, we view our linear-time envelope-finding algorithm as an
important first step.

1 Introduction.

Error correcting codes play a critical role in the storage and transmission of both classical and quantum
information, by protecting this information from corruption. Low-Density Parity-Check (LDPC) codes are a
ubiquitous family of graph-based error correcting codes. (Classical) LDPC codes were first introduced by Gallager
in the 1960’s [13], and today are used in practice for everything from satellite communication to 5G networks.
One of the reasons for their ubiquity is that LDPC codes support extremely fast decoding algorithms. Such
algorithms take a corrupted codeword w̃ ∈ {0, 1}n that is promised to be close in Hamming distance to a true
codeword w ∈ {0, 1}n, and “correct” w̃ to return w itself. Two of these algorithms are the Flip algorithm [25],
and Viderman’s algorithm [27].

Both algorithms run in linear time, but have very different flavors: Flip is a greedy algorithm, which iteratively
flips bits until they are all corrected; in contrast, Viderman’s algorithm essentially reduces the error-correction
problem to the erasure-correction problem1 by identifying a small envelope L that contains all of the errors, and
replacing them with ⊥; then an erasure-correction algorithm can be run to fill in the ⊥’s. The two algorithms
also give different guarantees: in particular, in some settings, Viderman’s algorithm can correct more errors, while
relaxing the constraints on the graph underlying the code construction.

Due to their importance in the classical setting, it is natural to adapt LDPC codes—and their decoding
algorithms—to the quantum setting. This was done by Tillich and Zémor in [26], who constructed quantum
LDPC Codes using hypergraph product codes. More recently, a series of exciting breakthroughs [9, 17, 16, 1] have
led to quantum LDPC Codes [23, 19] with a near-optimal (up to constant factors) trade-off between the amount
of redundancy required and the error correction capabilities.

Our question: A quantum Viderman’s algorithm? While many constructions of quantum LDPC codes
do come with linear-time decoding algorithms, all of the algorithms that we are aware of (which can correct up
to Ω(D) errors) are variants of the Flip algorithm mentioned above. In particular, it has been an open question

∗Stanford University.
†Stanford University.
‡Stanford University.
1In error correcting codes, an error is when a (qu)bit has a value that is different than it is supposed to have; in particular,

the decoder does not know which (qu)bits are in error. An erasure is when a (qu)bit is replaced by a special symbol ⊥. The

erasure-correction problem is generally easier than the error-correction problem, because the decoder knows where the erasures have
occured.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2481

D
ow

nl
oa

de
d

04
/1

8/
24

 to
 1

36
.1

52
.2

14
.8

9
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

whether or not a Viderman-style algorithm—which first reduces the problem to erasure-decoding—could be used
to correct a quantum LDPC code.

Our main result: the first Viderman-style algorithm for constant-rate Quantum LDPC Codes.
We discuss our results in more detail below in Section 1.1, but briefly, our algorithm applies to hypergraph product
codes, and identifies a small envelope L containing all of the errors in linear time.

Why we care. Before we discuss our results in more detail, we briefly mention a few points of motivation
for a Quantum Viderman-style algorithm for hypergraph product codes.

• Converting errors to erasures. As discussed above, Viderman’s algorithm, and our quantum analog,
identifies a small envelope L, which is guaranteed to contain all of the errors. Then it treats the (qu)bits
in L as erasures and runs an erasure-decoding algorithm to finish the job. In fact, coming up with such
conversion algorithms for quantum codes has been a goal in other work. For example, the UnionFind

algorithm of Delfosse & Nickerson gives such an algorithm for surface codes [4]. Moreover, there has been
some partial success for constant-rate quantum LDPC codes: Delfosse, Londe & Beverland give a version
of UnionFind that converts errors into erasures for hypergraph product codes [5]. However, the decoding
radius for hypergraph product codes is O(Dβ) for some β < 1, where D is the distance of the code. In
contrast, our work gives a linear-time algorithm to convert up to Ω(D) errors into erasures.

• Improved parameters for decoding quantum LDPC codes. Our quantum Viderman-style algorithm
has (modestly) improved parameters over quantum Flip-style algorithms in certain parameter regimes (see
Table 1 and the discussion in Section 1.1). Moreover, we are hopeful that the parameters can be further
improved. To support our hope, we note that improvements on the original version of (classical) Viderman’s
algorithm have led to improved algorithms for decoding classical expander codes when the graph is a very
good expander, in terms of the error radius and the requirements on the underlying graph [2]. As quantum
Flip-like algorithms have been extensively studied and optimized over the years, our algorithm provides
limited improvements over the state-of-the-art Flip-like algorithms, but it does significantly improve the
error radius over the first Flip-like results [18] (roughly saving a factor the underlying graph’s degree,
see Table 1). Given the classical landscape, we are hopeful that as our ideas are further developed, more
significant improvements will arise.

• A fundamentally new decoding algorithm. As mentioned above, all decoding algorithms for quantum
LDPC codes that we are aware of with decoding radius Ω(D) are similar to the Flip algorithm of [25].
Viderman’s algorithm is of a fundamentally different flavor than Flip, and—as we discuss more below in
Section 2—there were several challenges to overcome to make it work in the quantum setting. In addition
to expanding our algorithmic toolbox for quantum LDPC codes, we hope that overcoming these challenges
deepens our understanding of quantum LDPC codes, and will lead to further progress in the future.

• A fundamental class of codes. As mentioned above, hypergraph product codes were the first quantum
LDPC codes with decent distance, and remained the state-of-the-art for many years. In recent years, a series
of breakthroughs has resulted in quantum LDPC codes with much better distance. However, we believe
that hypergraph product codes are a good starting point.

Now that we have given the high-level motivation for a quantum Viderman-style algorithm, we outline our
results in more detail in Section 1.1. After that, we will survey related work in Section 1.2.

1.1 Our Results Before we state our results, we introduce a bit of notation (see Section 3 for full definitions).
An JN,K,DK2 quantum error correcting code H encodes a set of K logical qubits in a set Q of N qubits. It is
defined by two sets X and Z, which are sets of constraints on the qubits in Q, and which must interact with each
other in a particular way. A codeword of H can be thought of as an assignment of 0 or 1 to each qubit so that all
of the constraints in X and Z are satisfied. The distance D of H (formally defined in Section 3) corresponds to
the number of (Pauli) errors that the code can correct. Thus, it is desirable to have K as close to N as possible,
while having D as large as possible.

A quantum code is a quantum LDPC code if all of the constraints in X and Z are sparse, meaning that not too
many qubits in Q are involved in each one. As with classical LDPC codes, this leads to a natural graph-theoretic

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2482

D
ow

nl
oa

de
d

04
/1

8/
24

 to
 1

36
.1

52
.2

14
.8

9
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

connection—sparse parity-checks can be represented as sparse bipartite graphs—and the constructions of codes
we consider are based on bipartite expander graphs.

There are two types of errors a quantum code may face, X-type errors and Z-type errors. The constraints
X are meant to correct Z-type errors, while the constraints Z are meant to correct X-type errors. It suffices to
deal with these two types individually, so for the rest of this overview we focus on Z-type errors. We refer to X
as “parity-checks,” and Z as “generators.”

Suppose that a codeword in H has been corrupted by a set of (Z-type) errors E ⊆ Q: that is, the value of
each qubit in E has been flipped. We are guaranteed that E (after being appropriately reduced, see Sections 2
and 3) is small, and we would like to correct these errors. The largest that |E| can be is D/2, half of the distance
of the code, so our goal will be to allow for |E| as close to this as possible. The number of (reduced) errors that
a code can tolerate is called the decoding radius.

1.1.1 Main Result: Viderman’s algorithm for hypergraph product codes Our main result is the first
quantum version of Viderman’s algorithm, which we call Small-Set-Find (SSFind, which we give at a high level
as Algorithm 2 and in more detail in Algorithm 3). SSFind applies to hypergraph product codes. Hypergraph
product codes are an important class of quantum LDPC codes, and were the first quantum LDPC codes shown
to achieve constant rate K/N and non-trivial distance D [26]. We formally define them in Section 3.4, and for
now just note that they are built out of a bipartite expander graph.

SSFind takes as input the set UNSAT ⊆ X of unsatisfied parity checks, and outputs an envelope L, with the
guarantees that E ⊆ L and that L is not too large. The following is our main result.

Theorem 1.1. Let H be an JN,K,DK2 hypergraph product code (see Section 3.4) on qubits Q and with X-parity-
checks X , constructed from an expander graph G = (V,E) with left-degree ∆V and right-degree ∆C , and expansion
parameter ϵ < 1/10.

Let E be a (reduced) error pattern with weight at most

|E| < γ ·D −∆V ,

where γ = ∆V

∆C
· 1−10ϵ

4 , and let UNSAT ⊆ X be the set of unsatisfied parity checks arising from E. Then SSFind

(Algorithm 3), given UNSAT, runs in time O∆V ,∆C
(|E|), and returns an envelope L ⊆ Q, so that E ⊆ L, and

|L| ≤ 1

γ
· |E|.

It is important to note that SSFind does not actually correct the errors E ; rather it reduces the problem to
that of erasure-decoding, and we can use an erasure-decoding algorithm from there. Notice that by combining
the assumption on |E| with the conclusion about |L|, we get that |L| < D, and in particular the code can be
uniquely decoded from |L| erasures. In the classical setting, there is a relatively simple linear-time erasure-
decoding algorithm that will do this [13, 24]. However, in the quantum setting, we unfortunately do not have
a linear-time erasure-decoding algorithm. Erasure-decoding amounts to solving a linear system and this can be
done via Gaussian elimination. The pivot points need only be qubits adjacent to the error and in this case, the
size of this set is at most N1/2. This implies that we can do erasure decoding in time O(N1.5). However, at
the moment, a linear-time erasure decoding algorithm that works up to the radius D remains elusive. This is a
major drawback of our result, as it means that a final decoding algorithm would run in time O(N1.5); however,
we are hopeful that follow-up work will provide a linear-time erasure-decoding algorithm, which will then result
in a linear-time algorithm for decoding from errors.

In Table 1, we compare the parameters of Theorem 1.1 to the existing decoding algorithm for hypergraph
product codes, which is called Small-Set-Flip (SSFlip). This algorithm works like Flip, except in each greedy
step instead of flipping a single bit, it flips a small set of bits at a time (hence the name). SSFlip was introduced
in [18], and further expanded in [11, 10, 14].2

As we see in Table 1, the parameters are in general incomparable. Our algorithm SSFind yields an
improvement in the decoding radius when G is an excellent expander, and there is a large gap between ∆V

2These works show that SSFlip can handle a constant fraction of stochastic errors (as opposed to O(
√
N) adversarial errors); they

also show that SSFlip is robust to errors in the parity check bits.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2483

D
ow

nl
oa

de
d

04
/1

8/
24

 to
 1

36
.1

52
.2

14
.8

9
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

and ∆C . For example, if ∆C = 2∆V (so r = 1/2) and ϵ = 1/20 is small, then the decoding radius for SSFind is
0.062D, compared to less than 0.058D for SSFlip (with the analysis in [14]).

Algorithm Decoding Radius
Required
Expansion

SSFlip [18] 1
3(1+∆C)D ϵ < 1/6

SSFlip [14]
(

2r(1−8ϵ)
4+2r(1−8ϵ)

)(
r√

1+r2

)
D ϵ < 1/8

This paper: SSFind plus
erasure-decoding

1−10ϵ
4 rD ϵ < 1/10

Table 1: Comparison of the parameters between different decoding algorithm of hypergraph product codes, with
underlying graph is G, which is an (αV , ϵV , αC , ϵC)-bipartite expander (Def. 3.2), with left and right degree ∆V

and ∆C respectively. Here we use r = ∆V

∆C
, ϵ = max(ϵV , ϵC). Above, D = min(αV |V |, αC |C|) is the distance of

the code.

1.2 Related Work
Algorithms for Classical LDPC Codes. While LDPC codes have been studied since the 1960’s [13],

the first linear-time decoding algorithms for graph-based codes (or, any codes) to correct a constant fraction
of worst-case errors was given by Sipser and Spielman [25] who studied expander codes; these are LDPC codes
where the underlying constraint graph is an expander.3 Sipser and Spielman introduced the Flip algorithm, a
greedy algorithm which iteratively flips bits until it converges. If the underlying expander G = (V,C,E) is an
(αV , ϵV)-expander (meaning that sets S of size at most αV n have neighborhoods of size at least |S|∆V (1− ϵV),
where ∆V is the left-degree of the graph), the resulting expander code of length n has minimum distance at least
αV n.

When ϵV < 1/4, Sipser and Spielman showed that Flip can correct up to αV n/(∆V + 1) errors. Subsequent

works gave other algorithms that improved this to
(

1−3ϵV
1−2ϵV

)
αV n errors, which is better when ϵV < 1/3 [12, 28, 27];

the first two of these references are based on linear programming, and the third is what we refer to as Viderman’s
algorithm. In addition to improving the decoding radius, Viderman’s algorithm also requires less from the
underlying expander graph (in that ϵV can be taken to be larger), making it easier to obtain constructions.
As mentioned above, Viderman’s algorithm works by identifying an envelope L of “suspicious” bits, and then
treating them as erasures. More recently, [2] gave improved combinatorial bounds and algorithmic results for
expander codes. Their improved algorithms include variants and combinations of both Flip and Viderman’s
algorithm; in particular, for small ϵV < 1/8, they present a variant of Viderman’s algorithm that decodes up to

a significantly larger radius than previous works:
√
2−1
2ϵV

αV n for very small ϵV , and
1−2ϵV
4ϵV

αV n for slightly larger
ϵV that is still smaller than 1/8.

We note that there are several constructions of graph-based codes other than expander codes, most notably
Tanner constructions, where the code is constructed both from an expander graph and from an appropriate inner
code (for example, [29]). Decoding algorithms for these codes typically leverage decoding algorithms for the inner
code, and thus are a bit different from the focus of our paper.

Algorithms for Quantum LDPC Codes. Until recently, it was unclear whether asymptotically good
quantum LDPC codes (that is, with K,D = Ω(N)) even exist. Until 2020, hypergraph product codes were the
best candidates; Tillich & Zémor showed that they can achieve K = Θ(N) and D = Θ(

√
N) [26]. Shortly after,

Leverrier, Tillich & Zémor [18] proposed a quantum version of Flip called Small-Set-Flip (SSFlip) for (expander-
based) hypergraph product codes. The algorithm SSFlip is also a linear-time algorithm, and in the adversarial
setting can correct up to Θ(

√
N) errors, within a constant fraction of the optimal decoding radius.

3Equivalently, the code is defined as the kernel of a parity-check matrix H, which is the adjacency matrix of an unbalanced
expander graph.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2484

D
ow

nl
oa

de
d

04
/1

8/
24

 to
 1

36
.1

52
.2

14
.8

9
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Following a series of breakthroughs crossing the
√
N barrier [9, 17, 16, 1], asymptotically good quantum LDPC

codes were finally recently attained, first by Panteleev & Kalachev [23], and later simplified by Leverrier & Zémor
[19]. These constructions can be equipped with decoding algorithms [9, 20, 21, 15]. There are also variants on the
code construction that have efficient decoding algorithms: Lin & Hsieh [22] proposed a construction based on an
as-yet unresolved conjecture; Dinur et al. [8] also proposed a variant of the Tanner construction. The decoding
algorithms for all constant-rate quantum LDPC codes with distance exceeding the

√
N barrier are based on

generalizations of SSFlip.
There has been previous work on quantum error correcting codes that focuses on converting errors into

erasures. The UnionFind algorithm by Delfosse & Nickerson was the first erasure-conversion algorithm that
runs in almost-linear-time [6]. It builds on the linear-time maximum-likelihood erasure decoding algorithm of
Delfosse & Zémor [7] for surface codes. While UnionFind was first proposed for the surface code, it has since
been generalized to a broader class of codes [4, 5]. However, the decoding radius of UnionFind for LDPC codes
can be suboptimal. As it applies to hypergraph product codes, the decoding radius of this algorithm was only
guaranteed to scale as Θ(Dβ) for some constant 1 > β > 0. To the best of our knowledge, our algorithm is
the first erasure-conversion algorithm for constant-rate quantum LDPC codes that achieves a decoding radius of
Θ(D).

We provide a high-level contrast of UnionFind and Viderman’s algorithm at the end of Section 2.
Given an algorithm that reduces the problem to erasure-decoding, our next question is about efficient erasure-

decoding algorithm. As in the classical (linear) case, decoding a quantum error correcting code boils down to
solving a linear system, and can be done straightforwardly in time O(N3). As mentioned above, in the case of
hypergraph product codes, in fact this linear system can be solved in time O(N1.5). In the case of stochastic
erasures (where a hypergraph product code can recover from Ω(N) erasures, rather than Ω(

√
N)), Connolly et

al. [3] give an improved O(N2)-time erasure-decoding algorithm for hypergraph product codes, which generalizes
belief propagation.

1.3 Open Problems and Future Directions We view our work as the first step towards improved decoding
algorithms for quantum LDPC codes. While we are able to obtain a slight improvement in some parameter
regimes for hypergraph product codes, there is still much to do:

• Given that ours is only the first version of a quantum Viderman’s algorithm, we hope that future work will
build on our ideas to improve the parameters, obtaining bigger improvements over SSFlip (and in more
parameter regimes) than those reported in Table 1. In particular, we are hopeful that the ideas of [2] (which
improve Viderman’s algorithm in the classical case) can be applied on top of our work.

• We believe that our ideas can be extended to some of the more recent constructions of asymptotically
good LDPC codes. In particular, the construction of Lin and Hsieh [22] begins with a hypergraph product
code, and quotients it out by an appropriate group action to obtain a code with better distance. As their
construction is built directly on hypergraph product codes, this is the next natural target for our techniques4.

1.4 Organization In Section 2, we give a high-level technical overview of our approach, and introduce our
algorithm SSFind. In Section 3, we formally give the necessary background and definitions for expander graphs;
classical expander codes and Viderman’s algorithm; and quantum codes and hypergraph product codes. In
Section 4, we analyze SSFind on hypergraph product codes and prove our main theorem.

1.5 Acknowledgements AK is supported by the Bloch Postdoctoral Fellowship and NSF grant CCF-1844628.
AK would also like to thank Shashwat Silas for introducing him to Viderman’s algorithm and related discussions.
ILN is supported by the Simons Foundation Collaboration on the Theory of Algorithmic Fairness, the Sloan
Foundation Grant 2020-13941, and the Zuckerman STEM Leadership Program. MW was partially supported by
NSF grants CCF-1844628, CCF-2231157, and CCF-2133154

4To the best of our knowledge, the constructions of [23, 19, 8] are generalizations of Tanner codes. For this reason, it is unclear if
there is a straightforward generalization of Viderman’s algorithm to these settings.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2485

D
ow

nl
oa

de
d

04
/1

8/
24

 to
 1

36
.1

52
.2

14
.8

9
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

2 Technical Overview

We begin with an exposition of the classical version of Viderman’s algorithm [27]. Before we begin, we set up a bit
more notation. A (classical, binary, linear) error correcting code C with block length n is just a linear subspace of
Fn
2 . The distance d of C is the minimum Hamming distance between any two distinct elements (called codewords)

of C. In particular, given a corrupted codeword w̃ ∈ Fn
2 with Hamming distance less than d/2 from some w ∈ C,

the triangle inequality implies that it is in theory possible to recover w. The goal of a decoding algorithm is to
do so efficiently.

A classical LDPC code is a code that can be defined by a sparse bipartite graph G = (V,C,E) in the following
way. We associate the left-hand vertices V (with |V | = n) with the symbols of a codeword, and the right-hand
vertices C with parity-checks. We say that a string w ∈ Fn

2 is in C if, for each parity-check c ∈ C,
∑

v∈Γ(c) wv = 0,

where Γ(c) denotes the neighbors of c in G. We focus on the case where the underlying graph G is a bipartite
expander (see Definition 3.2); such a code is sometimes called an expander code [25].

2.1 Classical Viderman’s Algorithm Intuitively, Viderman’s algorithm works by iteratively identifying
“suspicious” bits and parity-checks; the suspicious bits are added to a set L (called the envelope), and the
suspicious parity checks are added to a set R. At the beginning, R is the set UNSAT of unsatisfied parity checks.
From there, the rule is simple: if a vertex v ∈ V is connected to too many suspicious checks, it, and all the checks
it touches, are labeled suspicious. This process repeats until it stabilizes (see Algorithm 1).

Algorithm 1 Find: Viderman’s decoding algorithm.

Input: UNSAT ⊆ C
Output: L ⊆ V

1: h← (1− 2ϵV)∆V , ▷ ϵV , ∆V are parameters of the underlying expander graph (see Section 3).
2: L← ∅, R← UNSAT
3: while ∃v ∈ V such that |Γ(v) ∩R| ≥ h do
4: L← L ∪ {v}
5: R← R ∪ Γ(v).
6: return L

At the end of the day, we hope that (a) the envelope L contains all of the errors; and (b) L is not too large.
Viderman showed that this is indeed the case, provided that the initial number of errors in E is small enough.

2.2 Quantum Viderman’s Algorithm for Hypergraph Product Codes We recall the notation for a
quantum error correcting code H from Section 1.1: H is defined by a set of parity checks X and generators Z,
and encodes K logical qubits into a set Q of N qubits. The parity checks X and generators Z serve to define two
vector spaces (aka, classical linear codes) CX and CZ respectively: X gives the parity-checks for CX and Z gives
the parity-checks for CZ .

5 For H to be a valid quantum code, we require C⊥
X ⊆ CZ .

Hypergraph Product Codes. We define hypergraph product codes formally in Section 3.4, but for now
we give an informal definition and a picture.

Let G = (V ∪ C,E) be a biregular bipartite graph. Our hypergraph product code will be built out of two
copies of G. Qubits are associated with elements of V × V ⊔ C × C; we write Q = QV ⊔ QC for the two parts,
where ⊔ denotes disjoint union. The X-type parity checks X and Z-type generators Z are associated with V ×C
and C × V respectively.

Now, we form a graph G on the vertices Q ⊔ X ⊔ Z, which is given by the graph product of two copies of G.
The way this graph product works is formally described in Section 3, and informally illustrated in Figure 1. For
example, the qubit (ν, v) ∈ V × V =: QV is connected to every element in {ν} × Γ(v) ⊂ V × C = X , where Γ(v)
denotes the neighborhood of v in G. In particular, there is a copy of G in the row indexed by ν ∈ V (as well as
by every other row and every column).

This graph product defines the sets X and Z, and hence the quantum hypergraph product code H.

5That is, CX is the kernel of the adjacency matrix defined by X , and similarly for CZ .

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2486

D
ow

nl
oa

de
d

04
/1

8/
24

 to
 1

36
.1

52
.2

14
.8

9
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Z

C

V

QC

QV

V

X

C

(ν, v)

(ν, ζ)

Each row is a
copy of G

Each column is
a copy of G

(c, v)

(c, ζ)

Figure 1: Definition-by-picture of hypergraph product codes [26], formed by taking the graph product of two
copies of G.

Reduced Errors. In order to explain what we mean by a “reduced” error in Theorem 1.1, we begin by
pointing out what seems to be (but is not actually) a major hurdle in designing quantum LDPC codes in general,
namely that the underlying graph G is no longer a good expander. (We note that this notion of reduced errors is
not specific to our work; we include it for background and motivation).

In more detail, in the classical setting, expansion of the underlying graph G guarantees that any small enough
set of errors E has many unique neighbors,6 which guarantees the existence of many unsatisfied parity checks that
whenever there are not too many errors. This guarantees that small sets of errors can be at least detected, and
ideally efficiently corrected.

However, the quantum code defined by the graph product G is not a very good expander, and in particular
there are very small sets with no unique neighbors. To see such an example, recall that the set of generators Z
is identified with C × V . Consider a particular generator (c, v) ∈ Z. Now consider the set

S(c, v) = Γ(c)× {v} ⊔ {c} × Γ(v),

which is the set of qubits that (c, v) is adjacent to in the graph depicted in Figure 1. This is a small set—indeed,
it has constant size if the degree of G is constant—but it actually has no unique neighbors. To see why, we
refer the reader to Figure 2(a), where we have zoomed in on (c, v) and S(c, v). Now consider the parity checks
contained in Γ(c)×Γ(v) ⊆ V ×C = X . As can be seen in Figure 2(a), each such parity-check is connected to two
qubits in S(c, v). In particular, if E = S(c, v), all of the parity-checks in X would be satisfied. Moreover, this is
unavoidable: the requirement that C⊥

X ⊆ CZ in fact necessitates this phenomenon.
At first glance then, the decoding task seems impossible, as there exist small sets of errors that cannot be

detected. However, the quantum decoding task is not identical to the classical decoding task. In more detail,
to correct a quantum error correcting code, it turns out that we do not need to be able to correct all small sets
of errors, we only need to correct errors up to “toggling” sets of the form S(c, v). (Formally, the codewords are
actually cosets modulo C⊥

Z , and we define the weight of a coset to be the smallest weight of any coset representative;
see Section 3).

Thus, the bad example in Figure 2(a) is not actually a bad example after all, because if we “toggle” the set
S(c, v), there are no errors at all. This motivates the definition of a reduced error, which is an error that has as

6A unique neighbor of a set E is a vertex that has exactly one neighbor in E.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2487

D
ow

nl
oa

de
d

04
/1

8/
24

 to
 1

36
.1

52
.2

14
.8

9
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

small weight as possible, modulo “toggling” sets like S(c, v). (That is, a reduced form of an error set E is a least
weight representative in its coset modulo C⊥

Z).
While this turns out to not be a problem for hypergraph product codes in general, this discussion does highlight

several challenges with adapting Find to the quantum setting. Below, we discuss these, and our solutions to them,
in more detail.

First challenge: treating a single qubit as “suspicious”. Given the discussion above, we now see
our first challenge in generalizing Viderman’s algorithm to the quantum setting. Viderman’s algorithm (Find in
Algorithm 1) works by investigating each bit separately, and deciding whether it is “suspicious” enough—that is,
has at least h suspicious neighbors—to add it to the envelope L. But now consider the example in Figure 2(b),
where there error set E consists of half of the set S(c, v) for some generator (c, v). For each qubit in S(c, v), half
of the parity-checks it is connected to are satisfied, and half are unsatisfied, regardless of whether that qubit is in
error or not. Further, if we “toggle” the set S(c, v), we get a completely different set of bad qubits that lead to
the same set UNSAT. How can we identify whether a single qubit is suspicious in this setting?

The way we deal with this is, instead of checking for suspicious single qubits, we check for suspicious small
sets of qubits, namely every reduced subset F in each local view Γ(c) × Γ(v). We note that this is a similar
solution to how SSFlip deals with the same issue. However, in the case of Viderman’s algorithm, there are a few
additional challenges that we must consider.

(a)

{c} × Γ(v)

Γ
(c
)
×
{v
}

(c, v)

(b)

{c} × Γ(v)

Γ
(c
)
×
{v
}

(c, v)

Figure 2: A view of S(c, v) for a generator (c, v), as well as the parity-checks in X = V × C that are connected
to S(c, v). (a) An illustration of the fact that the set S(c, v) has no unique neighbors. (b) A bad example for
naively applying Viderman’s algorithm. The error E is depicted in red, and failed parity-checks are marked in
gray. Here, all qubits in S(c, v) look equally “suspicious,” in the sense that they are connected to roughly the
same number of failed parity-checks.

Second challenge: defining “suspiciousness”. Once we decide to look at small sets F , we still need to
decide how to measure the “suspiciousness” of a set F , to decide whether to add it to the envelope L.7 A first
attempt would be simply to count the number of suspicious parity checks that F is connected to (that is, the
quantity |Λ(F) ∩ R|, where Λ(·) denotes the neighborhood8 of F , and R denotes the set of suspicious parity
checks), normalized by |Λ(F)|. However, the example Figure 2(b) shows that this will probably not work. Indeed,
if F were the set of errors shown in Figure 2(b), then |Λ(F) ∩ R| is not that large, only about 2/3 of |Λ(F)|. If
we set our threshold as low as 2/3 (relative to (1− 2ϵV) in the classical case), it seems likely that the envelope L
will grow extremely large, given that the underlying graph is not a good expander.

Instead, we define a score function score(F) (Definition 4.2). The main differences between the first attempt
above and our score function are that we look only at unique neighbors of F in the numerator, and we consider
the intersection with the complement Rc instead of R. (We also normalize things slightly differently.) That is,
instead of calling a set F suspicious when |Λ(F) ∩R| is large (relative to |Λ(F)|), we instead call it suspicious if
|Λ(u)(F)∩Rc| is small (relative to some measure ∥F∥ of the size of F). These seem like small changes, but they
have important implications.

7In the classical version of Viderman’s algorithm, we use “L” and “R” as the envelope and set of suspicious checks, respectively.
To avoid confusion, we use L and R in the quantum setting.

8In the quantum setting, we use Λ to denote neighborhoods, and we use Γ in the classical setting.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2488

D
ow

nl
oa

de
d

04
/1

8/
24

 to
 1

36
.1

52
.2

14
.8

9
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

In particular, sets F with lots of “cancellations” (that is, where Λ(F) \ Λ(u)(F) is large) will in general have
smaller unique neighborhoods than sets F with not as many cancellations. Thus, sets with more cancellations
will in general register as more “suspicious” than sets with fewer cancellations.

(a) R

{c} × Γ(v)

Γ
(c
)
×
{v
}

(c, v)

(b) R

{c} × Γ(v)

Γ
(c
)
×
{v
}

(c, v)

Figure 3: The two sets F ⊂ Q marked as orange circles; and their unique neighborhoods Λ(u)(F) ⊂ X marked
as shaded orange squares. The set R of “suspicious” parity checks is drawn in blue lines. The set F in (b) will
count as much more “suspicious” with our score function than the one in (a), intuitively because it has more
“cancellations”.

To see an example of this, consider the two sets F shown in Figure 3 (a) and (b). The set shown in (a)
would count as more suspicious than the set in (b) with either of the score functions |Λ(F) ∩ R|/|Λ(F)| or
|Λ(u)(F)∩R|/|Λ(F)| (and would also be more suspicious if we normalized by ∥F∥, which is what we actually do
in our score function). However, if we ask that |Λ(u)(F)∩Rc|/|Λ(F)| is small, the set shown in (a) would actually
count as less suspicous than the set in (b) (and it would be the same if we normalized by ∥F∥). Thus, our score
function has the desired behavior while the other two candidates do not: sets with more “cancellations” should
count as more suspicious.

We remark that we view coming up with the “right” score function to be one of the main contributions of
our work. As the discussion above shows, there are many options, and subtle differences can be important.

Interlude: the algorithm! With these first two challenges and solutions described, we can now state an
informal version of SSFind (see Algorithm 3 for the formal version). Intuitively, our algorithm works the same
way as the classical Viderman’s algorithm Find, except that (1) we consider small sets F rather than single qubits
when updating L; and (2) we use our score function score to decide if a set F should be added to L.

Algorithm 2 High-level description of SSFind; see Algorithm 3 for the full version.

Input: UNSAT ⊆ X
Output: L ⊆ Q.

1: L ← ∅
2: R ← UNSAT
3: while ∃ an appropriate set F such that score(F) ≤ h do
4: L ← L ∪ F .
5: R ← R∪ Λ(F)
6: return L.

Third Challenge: the analysis. Once we have our candidate algorithm, the analysis turns out to be much
more delicate than the analysis of the classical Viderman’s algorithm (Find). We give a brief overview of the
proof structure, and the challenges that arise.

First, we recap the analysis of Find in the classical case. For completeness, we present a simplified version
of the classical analysis (simpler than in [27], but with a worse quantitative result) in Appendix A. We give a
high-level overview here, and we suggest that the reader go through Appendix A before reading our proof of
correctness for the quantum algorithm.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2489

D
ow

nl
oa

de
d

04
/1

8/
24

 to
 1

36
.1

52
.2

14
.8

9
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Intuitively, the analysis of Find proceeds in two steps, coverage and bounded growth. In the coverage step, we
need to show that the envelope eventually contains all of the errors E . In the bounded growth step, we need to
show that the envelope does not grow too large. Below, we discuss both steps, and explain why they are difficult
to generalize to the quantum setting.

Challenge 3a: Coverage Step. At a very high level, the argument for coverage in the classical case is as follows.
Suppose that the envelope L does not cover all of E , and let B = E \L be the part that has not been covered. By
expansion of the underlying graph, the unique neighborhood Γ(u)(B) of B is large. By an averaging argument,
there exists some v ∈ B with many neighbors in Γ(u)(B). However, we claim that Γ(u)(B) ⊆ R: that is, every
element of Γ(u)(B) has already been labeled as suspicious. Indeed, either these elements have another neighbor in
E \B, in which case they were already labeled as suspicious since E \B ⊆ L has already been labeled suspicious;
or they do not, in which case they were in Γ(u)(E) and hence were in UNSAT, which was labeled suspicious at the
beginning. But then v has many neighbors in R, meaning it should have already been added to L, a contradiction.

While the coverage proof in the classical case is quite simple, in the quantum case things get much more
complicated. It is still true, and not hard to see, that Λ(u)(B) ⊆ R (where we use the caligraphic letters B and
R to represent the quantum analogs of B and R). However, we are no longer easily guaranteed the existence of
a qubit q ∈ B that touches many of these vertices, since our graph does not have expansion. Instead, we employ
a delicate argument that leverages expansion of the rows and columns separately. This argument is handled in
Section 4.2.

Challenge 3b: Bounded growth step. Again, we recap the high-level argument in the classical case. The basic
idea is to bound |Γ(L)|, the size of the neighborhood of the envelope, in two ways. First, by expansion, |Γ(L)|
must be large if L is large. On the other hand, consider building L one vertex at a time. Each time we add a
vertex v to L, how much can |Γ(L)| change? Intuitively, this is not too much, because we only add vertices to
L because they have many neighbors in R; but a large part of R made up of Γ(L) (the rest is UNSAT). Thus,
any vertex has many neighbors in R, hence many neighbors in Γ(L), and so does not add too much to Γ(L).
This gives an upper bound on |Γ(L)|. If L gets too large, these two bounds yield a contradiction, completing the
argument.

We mirror the same basic approach—proving both an upper bound and a lower bound—in the quantum
setting, but again it is now much more difficult. For the lower bound, we no longer have good expansion, so we
cannot argue immediately that |Λ(L)| is large just because L is large; however, it turns out that we can do this by
again leverage the fact that both the rows and columns expand. For the upper bound, one challenge comes from
our change to the score function. As discussed above, intuitively the score function says that a set with more
“cancellations” should be more suspicious; thus, relative to the classical argument, we may be adding “suspicious”
sets whose neighborhoods do not overlap as much with R. However, we can again use the expansion of the rows
and columns to show that this term is manageable.

To complete the bounded growth step, which is handled in Section 4.3, we put together the upper bound
and the lower bound on |Λ(L)|, and conclude that L has not grown too large. This then completes our proof of
correctness.

2.3 Comparison with UnionFind As UnionFind is also an erasure-conversion algorithm that can be applied
to hypergraph product codes [5] (although with asymptotically smaller error radius, as noted above), we briefly
describe it to contrast it with SSFind. UnionFind iteratively maintains and updates a set of disjoint clusters
{Clusti} in the subgraph of G induced by Q ⊔ X . Each cluster Clusti forms a connected component in the graph
that includes both parity checks and qubits. The clusters are initialized as the neighborhoods of UNSAT. In
each iteration, UnionFind tries to find errors Ẽi in each cluster Clusti such that the syndrome of Ẽi is equal to
the unsatisfied parity checks in the interior of Clusti. If no such error is found, it enlarges Clusti by adding to
it all neighbors of Clusti. If two clusters Clusti overlap, then they are merged. The main difference between
the UnionFind algorithm and a Viderman-style algorithm is that Viderman’s algorithm does not add the full
neighborhood of suspected parity-checks, but only those that are “suspicious enough”.

The clusters Clusti can be compared to the union of the envelope L and the suspicious parity checks R. In
contrast to UnionFind, SSFind only adds sets of qubits F to L if they have a sufficiently low score. Furthermore,
these sets are subsets of the support S(z) for generators z ∈ Z. Finally, SSFind does not verify whether the
envelope contains an error in each iteration; rather, it proceeds until there are no more sets of qubits with
sufficiently low score.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2490

D
ow

nl
oa

de
d

04
/1

8/
24

 to
 1

36
.1

52
.2

14
.8

9
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

3 Background and Definitions

Before we proceed to the proof, we give the formal definitions that we will need.

3.1 Expander graphs Let V = [n] and C = [m], and G = (V ∪ C,E) be an undirected bipartite graph that
is biregular with left node degree ∆V and right node degree ∆C .

Definition 3.1. (Graph neighborhood) For SV ⊆ V and SC ⊆ C, let E(SV , ST) denote the set of edges
between SV and ST .

For SV ⊆ V , we denote by Γ(SV) the neighborhood of SV

Γ(SV) = {c ∈ C | |E({c}, SV)| ≥ 1} .(3.1)

For SV ⊆ V , Γ(u)(SV) denotes the unique neighborhood of S

Γ(u)(SV) = {c ∈ C | |E({c}, SV)| = 1} .(3.2)

The definition of neighborhood of SC ⊂ C is analogous.

Definition 3.2. (Vertex expander) We say G is an (αV , ϵV) left vertex-expander if for all SV ⊆ V ,

|SV | ≤ αV n =⇒ |Γ(SV)| ≥ (1− ϵV)∆V |SV | .(3.3)

The graph G is an (αC , ϵC) right vertex-expander if

|SC | ≤ αCm =⇒ |Γ(SC)| ≥ (1− ϵC)∆C |SC | .(3.4)

The graph G is an (αV , ϵV , αC , ϵC) bidirectional vertex expander if it is an (αV , ϵV ,) left vertex-expander and
(αC , ϵC) right vertex-expander.

The parameter ϵV is related to the number of collisions between outgoing edges of SV ⊂ V , i.e. vertices in C
where multiple edges from SV are incident. Specifically, by a simple averaging argument we can deduce that for
SV ⊂ V , if |Γ(SV)| ≥ (1− ϵV)∆V |SV | then also |Γ(u)(SV)| ≥ (1− 2ϵV)∆V |SV |.

3.2 Classical expander codes Expander codes were introduced by Sipser and Spielman [25]. They are built
from a good vertex expander, and defined as follows.

Definition 3.3. (Expander code) Let G = (V ∪ C,E) be a (∆V ,∆C) bi-regular bipartite graph, which is an
(αV , ϵV) left-vertex expander. Denote |V | = n, |C| = m.

The expander code induced by the graph G is the subspace C ⊂ {0, 1}n such that for every w ∈ C and c ∈ C,⊕
v∈Γ(c)

wv = 0 ,

where ⊕ is the XOR function.

As discussed earlier, Sipser and Spielman suggested a decoding algorithm Flip for expander codes, based on bit
flips. Viderman [27] suggested a different decoding algorithm, Find, which finds a set of “suspicious” bits L that
are guaranteed to contain the error E . Viderman shows that as long as the parameter ϵV ≤ 1/3 and the number
of errors is at most

|E| ≤
(
1− 3ϵV
1− 2ϵV

)
n,

then Find is correct, and returns a small envelope.
We have already given a version of the Find algorithm in Algorithm 1. For completeness, in Appendix A we

give a slightly simpler proof than the one in [27] for the correctness of Algorithm 1. We obtain worse guarantees,
but this slightly simpler proof (which is implicit in [27]) is the one we generalize.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2491

D
ow

nl
oa

de
d

04
/1

8/
24

 to
 1

36
.1

52
.2

14
.8

9
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

3.3 Quantum codes Given a classical code C ∈ FN
2 , we let C⊥ = {u : ∀v ∈ C,

∑
i uivi = 0 (mod 2)}

denote its dual. An JN,K,DK CSS quantum code H on a set of N qubits Q is specified by two classical codes
CZ ,CX ⊆ FN

2 that obey the relation C⊥
X ⊆ CZ . The codes C⊥

X and C⊥
Z form the parity checks for the quantum

code. We let X and Z be the basis for C⊥
X and C⊥

Z respectively.
The number of encoded qubits K is defined as

K = dim(CX/C⊥
Z) = dim(CX) + dim(CZ)−N .(3.5)

The distances DZ and DX are defined as

DZ = min{|e| : e ∈ CX \ C⊥
Z} , DX = min{|e| : e ∈ CZ \ C⊥

X} .(3.6)

The distance of the code H is defined as D = min(DX , DZ).
We identify the set of qubits Q with the set {1, ..., N} and vectors e ∈ FN

2 with their support E ⊆ Q.
Addition of vectors mod 2 corresponds to the symmetric difference of sets, denoted ⊕: For E1, E2 ⊆ Q, we have
E1 ⊕ E2 = [E1 \ E2] ∪ [E2 \ E1].

For z ∈ Z and χ ∈ X , S(z) ⊆ Q and S(χ) ⊆ Q denote the supports of the corresponding basis element.
It turns out that X and Z errors can be corrected separately. As the two cases mirror each other, we will

only consider Z-type errors. The X-type parity checks are used to correct them and we shall refer to these as
parity checks. In this case, we are interested in the syndromes for the X-type parity checks. For an error E , we
let UNSAT denote the X-type syndrome (unsatisfied X-type parity checks):

UNSAT = {χ||S(χ) ∩ E| ̸= 0 (mod 2)} .(3.7)

The Z-type parity checks are not treated as constraints in this view; rather they define C⊥
Z , the set of words

equivalent to the trivial codeword. We refer to the set Z of Z-type parity checks as generators.

3.4 Hypergraph Product Codes Let G = (V ∪ C,E) be a (∆V ,∆C)-biregular bipartite graph. Suppose it
is an (αV , ϵV , αC , ϵC) bidirectional vertex-expander, with |V | = n and |C| = m. Recall that we denote by Γ the
neighborhood in the graph G. We assume that the graph is unbalanced, i.e. that n > m and ∆C > ∆V .

The [n, k, d] code C(G) is the code defined on Definition 3.3, where V and C are associated with bits and
parity checks respectively. The [m, kT , dT] code D(G) is the code associated with the graph G, in which C and V
swap roles: V is associated with parity checks and C with the bits. For convenience, we say that d =∞ (dT =∞)
if k = 0 (kT = 0).

The hypergraph product code H is an JN,K,DK code where N = n2 + m2, K = (k)2 + (kT)2 and
D = min(d, dT).9 For the proof of these facts, we point the reader to the original paper by Tillich and Zémor
[26]. We proceed to describe the code construction.

Definition 3.4. Let G1 = (V1∪C1, E1) and G2 = (V2∪C2, E2) denote two copies of G. The hypergraph product
code H is constructed from the graph product G := G1 ×G2, where,

1. The set of qubits, denoted Q, is associated with QV ⊔QC , where QV = V1 × V2 and QC = C1 × C2.

2. The set of Z stabilizer generators, denoted Z, is associated with C1× V2. We shall let z denote a generator
and write z ∼ (c, v) ∈ C1 × V2 to say z is identified with the tuple (c, v). The support S(z) of the generator
z is

(3.8) S(z) = {(ν, v) : ν ∈ Γ(c)} ∪ {(c, ζ) : ζ ∈ Γ(v)} .

3. The set of X stabilizer generators, denoted X , is associated with V1 × C2. For ν ∈ V1 and ζ ∈ C2, the
support S(χ) of a parity check χ ∼ (ν, ζ) is

(3.9) S(χ) = {(ν, v) : v ∈ Γ(ζ)} ∪ {(c, ζ) : c ∈ Γ(ν)} .

9Technically the actual distance may be larger than min(d, dT), which is the design distance, so we should have written
D ≥ min(d, dT). However, for simplicity, we will refer to the design distance as simply the “distance,” and denote it by D.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2492

D
ow

nl
oa

de
d

04
/1

8/
24

 to
 1

36
.1

52
.2

14
.8

9
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

We refer to Fig. 1 for an illustration.
Throughout, we use Roman letters for C1 and V2, and Greek letters for C2 and V1. Thus, generators are

Roman tuples like (c, v), while parity checks are Greek tuples like (ν, ζ).
We note that in this case, the codes C⊥

Z and C⊥
X are given by

C⊥
Z = span(S(c1, v2) : c1 ∈ C1, v2 ∈ V2) , C⊥

X = span(S(ν1, ζ2) : ν1 ∈ V1, ζ2 ∈ C2) .

If we ignore the generators Z, we get a bipartite graph between the qubits Q and then X-type parity checks
X (that is, the induced graph of G on the vertices Q⊔ X). We denote this graph by GX .

To make the notations clearer, we use different symbols the neighborhood in the classical graph G and in the
quantum graph G. In the classical setting, we use Γ, while in the quantum setting, we use Λ. Formally, we have
the following definitions.

Definition 3.5. (Quantum neighborhood) Let G = (V ∪ C,E) be a graph and GX be the graph induced by
qubits Q and parity checks X . For a qubit q ∈ Q, we denote its neighborhood by Λ(q), defined as follows:

Λ({ν1, v2}) = {(ν1, ζ2)|ζ2 ∈ Γ(v2)} , Λ({c1, ζ2}) = {(ν1, ζ2)|ν1 ∈ Γ(c1)} ,

where Γ is the neighborhood in the classic graph G.
This naturally extends to a set of qubits, A ⊆ Q, Λ(A) = ∪q∈AΛ(A).
The unique neighborhood Λ(u)(A) and multineighborhood Λ(m)(A) mirror their classical definitions:

Λ(u)(A) = {χ| there is a unique q ∈ Q such that χ ∈ Λ(q)} , Λ(m)(A) = Λ(A) \ Λ(u)(A) .

For a generator z ∈ Z, we shall abuse notation to write Λ(z) to refer to Λ(S(z)).
In addition, we will use the following notation:

• For a set of qubits A ∈ Q, let AV = A ∩QV and AC = A ∩QC .

• Let ∆ = ∆C ×∆V .

• Let ϵ = max(ϵC , ϵV).

Finally, we define a notion that will be useful in our analysis.

Definition 3.6. (Weighted norm) For A ⊆ Q, we define ∥A∥ = |AV |
∆C

+ |AC |
∆V

.

3.5 Projections of sets In this section, we introduce some notation for referring to projections of sets on to
the component graphs G1 and G2. This notation will be used for all projections throughout this paper.

Definition 3.7. (Projection) Let G = (Q,X) be a graph that is a product of G1 and G2.
For all ν1 ∈ V1 and all v2 ∈ V2, let A(v2) ⊂ V1,A(ν1) ⊂ V2 be the projections on to G1 and G2 respectively:

A(v2) = {ν′1|(ν′1, v2) ∈ AV } , A(ν1) = {v′2|(ν1, v′2) ∈ AV } .

We obtain A1
V ⊂ V1 and A2

V ⊂ V2 as the union of sets

A1
V =

⋃
v2

A(v2) , A2
V =

⋃
ν1

A(ν1) .(3.10)

Similarly, for all c1 ∈ C1 and ζ2 ∈ C2, let A(c1) ⊂ C2 and A(c2) ⊂ C1 denote the projections on to G1 and G2

respectively:

A(c1) = {ζ ′2|(c1, ζ ′2) ∈ AC} , A(ζ2) = {c′1|(c′1, ζ2) ∈ AC} .(3.11)

We obtain A1
C ⊂ C1 and A2

C ⊂ C2 as the union of sets

A2
C =

⋃
c1∈C1

A(c1) , A1
C =

⋃
ζ2∈C2

A(ζ2) .(3.12)

We refer to Figure 4 for a schematic.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2493

D
ow

nl
oa

de
d

04
/1

8/
24

 to
 1

36
.1

52
.2

14
.8

9
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

C1

V1

V2 C2

A2
V

A1
V

Γ(A2
V)

A(v2) Γ(A(v2))

v2

A2
C

A1
C

Γ
(A

1 C
)

Figure 4: Qubits that formA are denoted using circular nodes in V1×V2 and C1×C2. The projectionsA1
V , A2

V , A1
C

and A2
C of A are indicated. The neighbors Λ(A) within V1 ×C2 are depicted using square nodes; the projections

Γ(A2
V) and Γ(A1

C) are indicated. For a specific v2 ∈ V2, the neighbors Λ(A(v2) × {v2}) = Γ(A(v2)) × {v2} are
also depicted along the dashed line.

3.6 Properties of reduced sets Recall from Section 2 that we are allowed to “toggle” elements of S(z) for
z ∈ Z without changing the codeword (that is, as above, we are working modulo C⊥

Z). To this end, we define a
reduced error as one of minimum weight modulo this toggling. Formally, we have the following definition:

Definition 3.8. (Reduced representation) Given E ⊂ Q, let [E] be the equivalence class of E defined by

[E] = {E ⊕ S|S ∈ C⊥
Z} .

The reduced representation E ∈ [E] is the smallest element in [E]. If there are several elements with the minimum
weight, we pick one arbitrarily.

Similarly, we can define a locally reduced set in the support of a generator.

Definition 3.9. (Locally Reduced set) Let z be a generator and let S(z) be its support. We say that a set
F ⊆ S(z) is locally reduced if

|FV |+ |FC | ≤ (∆V − |FV |) + (∆C − |FC |) .(3.13)

If F is locally reduced then we can bound the size of |FV | · |FC | via the following lemma, where we recall the
notation ∥F∥ from Definition 3.6.

Lemma 3.1. If F ⊆ S(z) is locally reduced, then

|FV | · |FC | ≤
1

4
∆∥F∥ .

Proof. We can write the claim as

|FV |
(
∆V

2
− |FC |

)
+ |FC |

(
∆C

2
− |FV |

)
≥ 0 .(3.14)

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2494

D
ow

nl
oa

de
d

04
/1

8/
24

 to
 1

36
.1

52
.2

14
.8

9
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Consider the LHS, we can write it as

min(|FV |, |FC |) ·
[(

∆V

2
− |FC |

)
+

(
∆C

2
− |FV |

)]
≥ 0(3.15)

By assumption, F is locally reduced and this implies

|FV |+ |FC | ≤
1

2
(∆V +∆C) .(3.16)

Furthermore, min(|FV |, |FC |) is non-negative.

4 Viderman’s algorithm for Hypergraph Product Codes

In this section, we present a quantum version of Viderman’s algorithm for hypergraph product codes, and prove
that it is correct. The objective of this section is to prove Theorem 1.1.

Our algorithm, SSFind, is presented in Section 4.1. Given a set of Z-type errors E ⊆ Q, SSFind produces an
envelope L such that it contains the reduced version of the error E . In Section 4.2, we prove that L contains the
reduced version of E . In Section 4.3, we prove that when E is small enough, L does not grow too much.

For the entirety of this section, we assume we have a quantum expander code that is constructed from a graph
G, that is the graph product of two copies of a graph G that is a (∆V ,∆C)-biregular, (αV , ϵV , αC , ϵC)-bidirectional
expander as described in Section 3.4. For clarity, we denote the two copies asG1 = (V1∪C1, E1), G2 = (V2∪C2, E2).

4.1 SSFind We begin by recalling from Section 2 why Find (Algorithm 1, the classical version of Viderman’s
algorithm) does not extend directly to the quantum setting. In each iteration, the classical algorithm Find adds
a single bit to the envelope L if it has a lot of overlap with the set of untrustworthy checks R. To be precise, the
Find algorithm adds a bit v to the envelope if at least (1− 2ϵV) ·∆V of the neighbors of v are in R. Suppose we
encounter the example in Figure 5 (a reprise of Figure 2). There are errors only within the support of a single
generator z ∼ (c, v) ∈ Z, and these errors are in both V1×V2 qubits and in C1×C2 qubits. The shaded rectangles
indicate UNSAT. Parity checks that are adjacent to two errors are satisfied, and therefore no error qubit has
(1 − 2ϵV)∆V unsatisfied parity checks adjacent to it. If we reduce the threshold of the Find algorithm to cover
errors in these cases, we would have to reduce it from (1− 2ϵV)∆V to 1/2∆V ,

and then the envelope might end up growing uncontrollably and cover the entire set of qubits.

{c1} × Γ(v2)

Γ
(c

1
)
×
{v

2
}

E ∩ {c1} × Γ(v2)

E ∩ Γ(c1)× {v2}

(c
1 , v

2)

Figure 5: The neighborhood of a generator (c1, v2). Error is marked in red and unsatisfied parity checks are
shaded.

As discussed in Section 2, we overcome this problem by taking into consideration neighborhoods of sets of
qubits rather than the neighborhood of one qubit at a time. Let S(z) be the support of z ∈ Z. In Definition 4.2,
we define a score over sets F ⊂ S(z) that, as discussed in Section 2, accounts for the fact that parity checks that
witness both VV errors and CC errors can be satisfied; that is, “cancellations” can occur. The score is then used
in the algorithm SSFind (Algorithm 3) to identify “suspicious” qubits.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2495

D
ow

nl
oa

de
d

04
/1

8/
24

 to
 1

36
.1

52
.2

14
.8

9
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Definition 4.1. For each generator z ∈ Z, we define the collection of locally reduced sets in the neighborhood of
z to be

M(z) =

{
F ⊆ S(z)

∣∣∣∣ |FV |+ |FC | ≤
1

2
(∆V +∆C)

}
.

Let M(Z) =
⋃

z∈Z M(z) be the union over locally reduced sets across all generators.

The SSFind algorithm will maintain an envelope L of qubits it believes are suspicious, and a set of parity
checks R that are also suspicious. The algorithm labels a parity check as suspicious whenever it touches a
suspicious qubit, and thus we always have Λ(L) ⊂ R. In each iteration, SSFind searches over F ∈ M(Z) and
evaluates their score, which we formally define below. If the score of a set F is small, it is considered suspicious.
See Section 2 for a discussion of the intuition behind this score function.

Definition 4.2. (Score) Let R ⊆ X be a set of parity checks and let Rc be its complement. For F ∈ M(Z),
we define the score of F as

score(F) = |Λ
(u)(F) ∩Rc|
∆∥F∥

.

We note that the score of a set F depends on the set of suspected parity checks R. However, we suppress this
dependence in the notation for readability. While the set R changes over the course of the algorithm, the score of
subsets of qubits F within the support of a generator z only changes if the set of parity checks in the local view
are added to R.

To illustrate, we use an example and corresponding Figure 6. First, F is chosen such that it is locally reduced.

FV

FC

{c1} × Γ(v2)

Γ
(c

1
)
×
{v

2
}

(c
1 , v

2)

Figure 6: The local view of a generator z ∼ (c1, v2). FV and FC form the reduced set F . The gray portions
correspond to Λ(u)(F). The hatched portion corresponds to Λ(m)(F).

If F is the only error in the code, the syndromes would correspond to the union of the gray rectangles.
In Algorithm 3, we present SSFind. Let E ⊆ Q be the error and UNSAT denote the set of unsatisfied parity

checks. Recall that we denote ϵ = max(ϵV , ϵC). The algorithm SSFind takes as input UNSAT. It outputs an
envelope L ⊂ Q that are suspected errors.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2496

D
ow

nl
oa

de
d

04
/1

8/
24

 to
 1

36
.1

52
.2

14
.8

9
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 3 SSFind

Input: UNSAT ⊆ X
Output: L ⊆ Q.

1: L ← ∅
2: R ← UNSAT
3: F ←M(Z)
4: while ∃F ∈M(Z) such that score(F) ≤ 2ϵ do
5: L ← L ∪ F .
6: R ← R∪ Λ(F)
7: for F ′ ∈M(Z) such that F ′ ∩ F ̸= ∅ do
8: M(Z)←M(Z) \ {F ′}
9: return L.

We remark that there exists an implementation of this algorithm that runs in time Θ(|E|), see Section 4.4.2
for more details.

4.2 Coverage In this section, we prove that SSFind produces an envelope L that covers the reduced error E .
To this end, we shall assume that it does not and arrive at a contradiction.

Without loss of generality, assume the error is already in its reduced form, i.e. E = E . Let B = L \ E be the
residual errors that are not covered by the envelope when SSFind terminates. For the sake of contradiction, we
assume B is not empty.

We begin with some high-level intuition and then build on it to arrive at the proof. The idea is to consider the
set Λ(u)(B), the unique neighbors of the residual errors. The key observation is that elements of the set Λ(u)(B)
must be in R.

Lemma 4.1. Let χ ∈ X such that χ ∼ (ν1, ζ2) is an element of Λ(u)(B). Then χ ∈ R.

Proof. If χ ∈ Λ(u)(B), then by definition, it is incident to exactly one qubit in B. This leaves two choices. If
this parity check is not connected to an element from L, then it must be connected only to a single error (as
E = (E ∩ L) ⊔ B), and therefore must be in UNSAT ⊆ R . On the other hand, if it is connected to an element
from L, then it must be in Λ(L) ⊂ R.

Intuitively, if Λ(u)(B) is large, then there are elements in B such that their neighborhood has a large overlap with
R. In particular, we will show that Λ(u)(B) has a large overlap with the neighborhood of a generator z ∈ Z.
This will imply that z contains a portion of B with a large score. In turn, this will lead to a contradiction of the
assumption that the SSFind algorithm terminated.

The following lemma closely resembles Lemma 7 in [18].

Lemma 4.2. The output L of SSFind covers the set E, i.e. E ⊆ L if |EV | ≤ αV n and |EC | ≤ αCm.

Proof. Assume without loss of generality that BV ̸= ∅. If BV = ∅, we can replace V with C and rows with
columns. Let B2V ⊂ V2 be the projection of B, as defined in Definition 3.7:

B2V = {v2 ∈ V2|∃(ν1, v2) ∈ B} .

Notice that the set B2V ⊂ V2, which is a set in the graph G2.
As |B2V | ≤ |B| ≤ |E| ≤ min(αV n, αCm) and the graph G2 is an (αV , ϵV) left vertex-expander,

|Γ(u)(B2V)| ≥ (1− 2ϵV)∆V |B2V | .(4.17)

This then implies that there exists a node v2 ∈ B2V such that it has a large overlap with the unique neighborhood:

|Γ(u)(B2V) ∩ Γ(v2)| ≥ (1− 2ϵV)∆V .(4.18)

We fix this node v2 for the rest of the proof.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2497

D
ow

nl
oa

de
d

04
/1

8/
24

 to
 1

36
.1

52
.2

14
.8

9
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Let B2C ⊂ C2 be as in Definition 3.7, i.e. B2C = {ζ2 ∈ C2|∃(c1, ζ2) ∈ B}. We divide into two cases.
Classical-like case: First, consider the simpler case where

Γ(u)(B2V) ∩ Γ(v2) ∩ B2C = ∅ .(4.19)

This is the setting where most parity checks adjacent to a qubit of the form (ν1, v2) ∈ BV are not simultaneously
adjacent to CC qubits. In this sense, the setting is like a classical decoding problem where we do not consider
interference from CC qubits.

Let ν1 ∈ V1 be an element such that (ν1, v2) ∈ BV , there must be one since v2 ∈ B2V . Assuming Eq. (4.19), it
follows that for all c1 ∈ Γ(ν1),

Γ(u)(B2V) ∩ Γ(v2) ∩ B(c1) = ∅,(4.20)

where B(c1) is the projection of B on the row containing c1, see Definition 3.7. This is because, by definition,
B(c1) ⊆ B2C . Fix such c1 ∈ Γ(ν1) and let z be (c1, v2). Equation (4.20) means that the neighborhood of the
generator z ∈ Z is simple, as {c1} × Γ(u)(B2V) ∩ Γ(v2) contains no elements from B. See Figure 7.

(c
1 , v

2)

Γ
(c

1
)
×
{v

2
}

{c1} × Γ(v2)

(ν1, v2)

Γ(u)(B2V)

Figure 7: We find a generator z ∼ (c1, v2) such that (ν1, v2) ∈ EV is in its support and
[
{c1} × Γ(u)(B2V) ∩ Γ(v2)

]
∩

B = ∅. We prove that the gray line is in R, i.e. {ν1} × (Γ(u)(E2V) ∩ Γ(v2)) ⊂ R. We ignore the parity checks
corresponding to the yellow portions. We write Γ(u)(B2V) for Γ(u)(B2V) ∩ Γ(v2) for readability of the diagram.

Let χ = (ν1, ζ2) be a parity check, where ζ2 ∈ Γ(u)(B2V)∩Γ(v2). We claim that χ sees only a single qubit in B,
the qubit (ν1, v2). The parity check χ cannot be adjacent to other elements of BV because ζ2 ∈ Γ(u)(E2V)∩ Γ(v2).
Furthermore, it cannot be adjacent to other elements of BC because of (4.20).

From Lemma 4.1, χ is an element of R. This implies that |Λ(u)({ν1, v2}) ∩R| is lower bounded:

|Λ(u)({ν1, v2}) ∩R| ≥
∣∣∣{ν1} × Γ(u)(B2V) ∩ Γ(v2)

∣∣∣(4.21)

≥ (1− 2ϵV)∆V .(4.22)

In other words, the score is upper bounded:

score({ν1, v2}) =
|Λ(u)({ν1, v2}) ∩Rc|

∆V
≤ 2ϵ .(4.23)

This means that F = {(ν1, v2)} would have been added to L and the algorithm could not have terminated.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2498

D
ow

nl
oa

de
d

04
/1

8/
24

 to
 1

36
.1

52
.2

14
.8

9
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Quantum-like case: Suppose that the VV and CC portions of B interfere, i.e.

D2
C := Γ(u)(B2V) ∩ Γ(v2) ∩ B2C ̸= ∅ .(4.24)

We shall refer to D2
C ⊂ C2 as the induced set. If D2

C is not empty, then we can construct the set D1
C

D1
C =

{
c1 ∈ C1|∃ζ2 ∈ D2

C such that (c1, ζ2) ∈ BC
}

.(4.25)

The induced set, being a subset of B1C , must be small

|D1
C | ≤ |B1

C | ≤ |BC | ≤ |EC | ≤ min(αV n, αCm) .(4.26)

Therefore, it has a large unique neighborhood in G1, |Γ(u)(D1
C)| ≥ (1 − 2ϵC)∆C |D1

C |. Consequently, there must
be some c1 ∈ D1

C such that

|Γ(u)(D1
C) ∩ Γ(c1)| ≥ (1− 2ϵC)∆C .(4.27)

We identify the generator z = (c1, v2), and show that this generator has a large overlap with Γ(u)(B). See Figure 8.

(c
1 , v

2) FC

F
V

Γ
(u

)
(D

1 C
)

Γ(u)(B2V)

Figure 8: FV ,FV ⊂ E , and the parity checks in U = Γ(u)(B2V) × Γ(u)(D1
C) only interact with errors in S(z),

the support of z. We show that the parity checks in gray, Λ(u)(F) ∩ U , are in R. We ignore the parity checks
corresponding to the yellow portions. We write Γ(u)(B2V) for Γ(u)(B2V)∩Γ(v2) and Γ(u)(D1

C) for Γ
(u)(D1

C)∩Γ(c1)
for readibility of the diagram.

Consider the set F = FV ⊔ FC , where

FV :=
(
B(v2) ∩ Γ(u)(B1C) ∩ Γ(c1)

)
× {v2} , FC := {c1} ×

(
B(c1) ∩ Γ(u)(B2V) ∩ Γ(v2)

)
.(4.28)

Note that all elements in F are errors, from the definition of B(v2),B(c1), see Definition 3.7.
We claim that the set FC is not empty. By construction, c1 ∈ D1

C , and therefore, for some ζ2 ∈ D2
C , we must

have (c1, ζ2) ∈ BC . By the definition of D2
C , this means that ζ2 ∈ Γ(u)(B2V) ∩ Γ(v2).

As in the classical-like case, we want to show that most neighbors of F are unique neighbors of B and therefore
in R. We study this generator using the set of parity checks U = Γ(u)(D1

C) × Γ(u)(B2V), the product of unique
neighborhoods.

Claim 4.1. Let χ ∼ (ν1, ζ2) be a parity check in Λ(u)(F) within the set U , then χ ∈ R.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2499

D
ow

nl
oa

de
d

04
/1

8/
24

 to
 1

36
.1

52
.2

14
.8

9
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Proof. As χ ∈ Λ(u)(F), it can only be adjacent to FV or FC but not to both. Without loss of generality, suppose
it is adjacent to FC . This implies that ζ2 ∈ Γ(u)(B2V) ∩ Γ(v2) and ν1 ∈ Γ(u)(D1

C) ∩ Γ(c1) \ B(v2).
The parity check χ cannot be adjacent to other elements of BC . This is because ν1 ∈ Γ(u)(D1

C) ∩ Γ(c1). If,
for the sake of contradiction, there was a c′1 ∈ C1 such that c′1 ∈ Γ(ν1) and (c′1, ζ2) ∈ BC . Then c′1 would also be
in D1

C and ν1 would no longer be a unique neighbor of D1
C .

The parity check χ cannot be adjacent to other elements of BV . This is because ζ2 ∈ Γ(u)(B2V) ∩ Γ(v2), and
v2 ∈ B2V .

Therefore, χ ∈ Γ(u)(B) and by Lemma 4.1, χ ∈ R.

This claim implies that

Λ(u)(F) ∩ U ⊂ R .(4.29)

As the unique neighborhood has a large footprint within the generator z, only an ϵ fraction of parity checks
remain outside the overlap with Γ(u)(D1

C)× Γ(u)(B2V), i.e.∣∣∣Λ(u)(F) \ U
∣∣∣ ≤ 2ϵC∆C |FC |+ 2ϵV ∆V |FV | .(4.30)

Together, Eq. (4.29) and Eq. (4.30) imply

|Λ(u)(F) ∩R| ≥ |Λ(u)(F) ∩ U| ≥ |Λ(u)(F)| − 2ϵV ∆V |FV | − 2ϵC∆C |FV | ,(4.31)

which implies that

score(F) = |Λ
(u)(F) ∩Rc|
∆∥F∥

≤ 2ϵ .(4.32)

This completes the proof.

4.3 Bounding the size of the envelope In the previous section, we have shown that the envelope L will
cover the error. However, this does not guarantee that the envelope will stay small: if it ends up, say, covering all
the qubits, then our algorithm will not be very useful. In this section, we show that the envelope L stops growing
such that its total size is bounded.

Following the high-level outline of the proof in the classical case (see Appendix A), we bound the size of L
by lower and upper bounding |Λ(L)|. The lower bound comes from the graph expansion. For the upper bound,
we note that in each iteration, the set F that is added to L must have a large intersection with R. The set R
contains unsatisfied parity checks and Λ(L). Once all the unsatisfied parity checks are covered by L, every new set
F we add to L has a large overlap with L. Therefore, this reduces the expansion of the set Λ(L) (or equivalently,
the ratio |Λ(L)|/|L| can only reduce once all UNSAT have been added).

4.3.1 Lower bounding the expansion The lower bound on |Λ(L)| comes from the expansion of the base
graph G.

Lemma 4.3. Let A ⊂ Q be a set such that |AV | ≤ αV n and |AC | ≤ αCm. Then

|Λ(A)| ≥ 1

2
(1− ϵ)∆∥A∥ .(4.33)

Proof. The proof uses the fact that the input graph G is an expander and that G is the product of G. Every row
indexed by ν1 in GX is a copy of G. Therefore, if we restrict GX to a row, we can inherit the expansion of G.
Similarly, every column indexed by ζ2 in G is also a copy of G.

Recall that for every ν1 ∈ V1, A(ν1) is the projection of A on the line indexed by ν1:

A(ν1) = {v2 ∈ V2|(ν1, v2) ∈ A} .

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2500

D
ow

nl
oa

de
d

04
/1

8/
24

 to
 1

36
.1

52
.2

14
.8

9
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

By assumption, |AV | ≤ αV n and |AC | ≤ αCm. Therefore, each row A(ν1) and each column A(ζ2) is
expanding. We can write

|Λ(AV)| =
∑
ν1

|{ν1} × Γ(A(ν1))|(4.34)

≥
∑
ν1

(1− ϵV)∆V |A(ν1)|(4.35)

≥ (1− ϵV)∆V |AV | .(4.36)

An identical argument works for AC : |Λ(AC)| ≥ (1− ϵC)∆C |AC |.
There might be an overlap between Λ(AV) and Λ(AC), therefore we lower bound Λ(A) by its maximum

value,

|Λ(A)| ≥max {|Λ(AV)|, |Λ(AC)|}(4.37)

≥max {(1− ϵV)∆V |AV |, (1− ϵC)∆C |AC |} .(4.38)

By definition, ∆∥A∥ = ∆V |AV | + ∆C |AC |. Therefore max(∆V |AV |,∆C |AC |) ≥ 1
2∆∥A∥. Using the fact that

ϵ = max(ϵV , ϵC), we finish the proof.

As an aside, we give an example of a set of qubits A such that |Λ(A)| ≤ 1
2∆∥A∥, showing that the bound in

the lemma above is tight up to the ϵ factor. In particular, the factor of 1/2 is unavoidable.

Example. We define a set A ⊂ Q by first choosing arbitrary sets C ′
1 ⊂ C1 and V ′

2 ⊆ V2 such that |A1
C | ≤ αCm

and |A2
V | ≤ αV n.

Define A = AV ∪ AC when AV = Γ(C ′
1)× V ′

2 and AC = C ′
1 × Γ(V ′

2). Then we have that

Λ(AV) = Γ(C ′
1)× Γ(V ′

2) = Λ(AC) .(4.39)

This means that |Λ(A)| ≤ ∆V |AV | and also |Λ(A)| ≤ ∆C |AC |. Using the fact that ∆∥A∥ = ∆V |AV | +
∆C |AC | we find |Λ(A)| ≤ 1

2∆∥A∥.

We remark that the algorithm might output an envelope L with expansion as in the example above. Suppose that
the error E is exactly half of the support of the generator. Then when the algorithm terminates, the envelope will
contain its entire support, as in the example.

4.3.2 Upper bounding the expansion

Lemma 4.4. Let L ⊂ Q be an envelope during the run of Algorithm 3. Then

|Λ(L)| ≤ |UNSAT|+
(
1

4
+ 2ϵ

)
∆∥L∥

Proof. Let L be an envelope, and suppose that in some iteration, the SSFind algorithm adds F to L.
By definition, we only add sets F if score(F) ≤ 2ϵ. Noting that |Λ(F)∩R| ≥ |Λ(u)(F)∩R| and recalling the

definition of score, we see that this is satisfied provided that

|Λ(F) ∩R| ≥ |Λ(u)(F)| − 2ϵ∆∥F∥ ,(4.40)

The set R is the set of parity checks defined by R = Λ(L)∪UNSAT. It will be convenient to write R as a disjoint
union,

R = Λ(L) ⊔ (UNSAT \ Λ(L)) .(4.41)

Using this partition of R we can write

|Λ(F) ∩R| = |Λ(F) ∩ Λ(L)|+ |Λ(F) ∩ (UNSAT \ Λ(L))| .(4.42)

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2501

D
ow

nl
oa

de
d

04
/1

8/
24

 to
 1

36
.1

52
.2

14
.8

9
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

We can use Eq. (4.42) to bound the number of new neighbors F adds to L,

|Λ(F) \ Λ(L)| = |Λ(F)| − |Λ(F) ∩ Λ(L)|(4.43)

= |Λ(F)| − |Λ(F) ∩R|+ |Λ(F) ∩ (UNSAT \ Λ(L))|(4.44)

≤
∣∣∣Λ(m)(F)

∣∣∣+ 2ϵ∆∥F∥+ |Λ(F) ∩ (UNSAT \ Λ(L))| .(4.45)

The last inequality uses (4.40) to bound |Λ(F)| − |Λ(F)∩R|. As Algorithm 3 only adds reduced sets Fj , i.e. sets
Fj ⊂ S(z) for some generator z, such that |Fi| ≤ ∆C+∆V

2 . We can therefore use Lemma 3.1 to bound |Λ(m)(F)|:

|Λ(F) \ Λ(L)| ≤
(
1

4
+ 2ϵ

)
∆∥F∥+ |Λ(F) ∩ (UNSAT \ Λ(L))| .(4.46)

Suppose the algorithm works for i rounds, and let Li be the envelope in the ith iteration. Denote by Fi the
set that we add in the ith round, i.e. Li = Li−1 ∪ Fi, when Fi satisfies the condition in the claim. Then we have

|Λ(Li)| ≤
∑
j≤i

|Λ(Fj \ Lj−1)|(4.47)

≤
∑
j≤i

[(
1

4
+ 2ϵ

)
∆∥Fj∥+ |Λ(Fj) ∩ (UNSAT \ Λ(Lj−1))|

]
(4.48)

≤
(
1

4
+ 2ϵ

)
∆∥Li∥+ |UNSAT| .(4.49)

We use the fact that the sets Fj are disjoint, so ∥Li∥ =
∑

j≤i∥Fi∥.
This completes the proof.

4.3.3 Combining the bounds Using the upper bound and lower bound on |Λ(L)| from Lemma 4.3 and
Lemma 4.4, we arrive at a bound on ∥L∥.

Lemma 4.5. Let L be the output of Algorithm 3 on a reduced error E such that ∆(∥E∥ + 1) 4
1−10ϵ ≤

min(αV ∆V n, αC∆Cm). Then

∥L∥ ≤ ∥E∥ 4

(1− 10ϵ)
.

Proof. Assume towards a contradiction that the SSFind algorithm outputs an envelope L that is too large, i.e.

∥L∥ > ∥E∥ 4

(1− 10ϵ)
.(4.50)

Let Lj be the envelope after the jth iteration of the algorithm. Let Li, the envelope in the ith iteration, be the
largest envelope such that it still obeys ∆∥Li∥ ≤ min(αV ∆V n, αC∆Cm).

This implies that

|Li ∩QV | ≤ αV n , |Li ∩QC | ≤ αCm .(4.51)

From Lemma 4.3, this set expands:

|Λ(Li)| ≥
1

2
(1− ϵ)∆∥Li∥ .(4.52)

From Lemma 4.4, its size is bounded from above:

|Λ(Li)| ≤ |UNSAT|+
(
1

4
+ 2ϵ

)
∆∥Li∥ .(4.53)

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2502

D
ow

nl
oa

de
d

04
/1

8/
24

 to
 1

36
.1

52
.2

14
.8

9
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Together this implies that

∆∥Li∥ ≤ |UNSAT|
4

(1− 10ϵ)
.(4.54)

Each unsatisfied parity check has to be adjacent to some error, |UNSAT| ≤ ∆∥E∥. The above bound in Eq. (4.54)
translates to

∥Li∥ ≤ ∥E∥
4

(1− 10ϵ)
.(4.55)

The set Li is chosen to be the maximal set such that ∆∥Li∥ ≤ min(αV ∆V n, αC∆Cm). Therefore,
∆∥Li+1∥ > min(αV ∆V n, αC∆Cm). The set Li+1 is created by adding to Li a reduced set Fi+1, which means
that ∆∥Li+1∥ ≤ ∆(∥Li∥+ 1).

Using (4.55) and the bound on ∥E∥ from the lemma statement we get

∆∥Li+1∥ ≤ ∆(∥Li∥+ 1)(4.56)

≤ ∆(∥E∥+ 1)
4

(1− 10ϵ)
(4.57)

≤ min(αV ∆V n, αC∆Cm) ,(4.58)

which is a contradiction. Therefore the set L must satisfy ∥L∥ ≤ 4∥E∥/(1− 10ϵ).

Corollary 4.1. Let L be the output of Algorithm 3 on a reduced error E such that

|E| ≤ (1− 10ϵ)

4
· ∆V

∆C
·min(αV n, αCm)−∆V .(4.59)

Then the size of the envelope is bounded:

|L| ≤ |E| · 4

(1− 10ϵ)

∆C

∆V
.

Proof. Consider an error E ⊆ Q such that

|E| ≤ (1− 10ϵ)

4
· ∆V

∆C
min(αV n, αCm)−∆V .(4.60)

This implies that

∆∥E∥ = |EV |∆V + |EC |∆C(4.61)

≤ |E|∆C(4.62)

≤ (1− 10ϵ)

4
min (αV ∆V n, αC∆Cm)−∆ .(4.63)

Equivalently, ∆(∥E∥+ 1)(4/(1− 10ϵ)) ≤ min(αV ∆V n, αC∆Cm). Lemma 4.5 guarantees that

∥L∥ ≤ ∥E∥ 4

(1− 10ϵ)
.(4.64)

We convert the weighted norm to a standard one using the fact that ∆C ≥ ∆V . As ∥L∥ = |LV |
∆C

+ |LC |
∆V

, it implies

|L| ≤ ∆C∥L∥. Similarly, ∥E∥ = |EV |
∆C

+ |EC |
∆V

, which implies ∆V ∥E∥ ≥ |E|.
Together, we get

|L| ≤ ∆C∥L∥ ≤
∆C

∆V
|E| 4

(1− 10ϵ)
.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2503

D
ow

nl
oa

de
d

04
/1

8/
24

 to
 1

36
.1

52
.2

14
.8

9
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

4.4 Proof of Theorem 1.1 The main result, Theorem 1.1, makes two claims. Informally, these can be stated
as follows:

1. Correctness: For sufficiently small error E , SSFind produces an envelope L that contains the error E and
simultaneously, L is not much larger than E .

2. Time Complexity: SSFind terminates in time O(|E|).

We formally establish each of these claims below.

4.4.1 Correctness For the error E to be entirely covered by the envelope L, Lemma 4.2 requires

|EV | ≤ αV n , |EC | ≤ αCm .

On the other hand, to guarantee that L is bounded, Corollary 4.1 requires

|E| ≤ (1− 10ϵ)

4
· ∆V

∆C
·min(αV n, αCm)−∆V .

The latter is the stronger of the two.

4.4.2 Time complexity The algorithm is divided into two phases. In the Setup Phase, we compute the score
of each reduced set F ∈M(Z). This involves computing the score of each generator z ∈ Z. The output is stored
in a data structure lookup table lookup table, a dictionary with two keys ‘≤ 2ϵ’ and ‘> 2ϵ’. Corresponding
to each key, lookup table[key] is an unsorted array. The Setup Phase therefore takes time proportional to the
number of generators which is Θ(N). For each generator, we compute the score for every reduced set F ∈ S(z)
and there are at most 2∆V +∆C such sets. Therefore, the time complexity scales exponentially in the degree ∆V

and ∆C of the input graph G. However, these are independent of N for the family of LDPC codes. In fact, this
can be made considerably better. We only need to compute the score of generators that are adjacent to UNSAT.
The total number of generators that are adjacent to UNSAT is at most O(|UNSAT|) = O(

√
N).

In the Main Phase, we add the set F to L if score(F) ≤ 2ϵ. This takes constant time as F is itself a constant-
sized set. After adding F to L we only need to update the score of reduced sets in generators that are adjacent
to F . There are only a constant number of such generators. To be precise, there are at most ∆∥F∥ generators
that are incident to F . We then need to update whether these generators belong to lookup table[≤ 2ϵ] or
lookup table[> 2ϵ]. As these are unsorted arrays, insertion takes constant time. Hence the time complexity of
each iteration is constant.

In each iteration, the size of the envelope increases by at least one. Therefore, the total number of iterations
is at most |L|. From Corollary 4.1, this is a function of the size of the error which in turn obeys |E| = O(

√
N).

The time required to complete the Main Phase is the product of the time required for each iteration and the total
number of iterations. It is thus O(|E|) = O(

√
N).

This completes the proof of Theorem 1.1 (and our paper).

References

[1] Nikolas P Breuckmann and Jens N Eberhardt. Balanced product quantum codes. IEEE Transactions on Information
Theory, 67(10):6653–6674, 2021.

[2] Xue Chen, Kuan Cheng, Xin Li, and Minghui Ouyang. Improved decoding of expander codes. arXiv preprint
arXiv:2111.07629, 2021.

[3] Nicholas Connolly, Vivien Londe, Anthony Leverrier, and Nicolas Delfosse. Fast erasure decoder for a class of quantum
LDPC codes. arXiv preprint arXiv:2208.01002, 2022.

[4] Nicolas Delfosse and Matthew B Hastings. Union-find decoders for homological product codes. Quantum, 5:406,
2021.

[5] Nicolas Delfosse, Vivien Londe, and Michael E Beverland. Toward a union-find decoder for quantum LDPC codes.
IEEE Transactions on Information Theory, 68(5):3187–3199, 2022.

[6] Nicolas Delfosse and Naomi H Nickerson. Almost-linear time decoding algorithm for topological codes. Quantum,
5:595, 2021.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2504

D
ow

nl
oa

de
d

04
/1

8/
24

 to
 1

36
.1

52
.2

14
.8

9
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

[7] Nicolas Delfosse and Gilles Zémor. Linear-time maximum likelihood decoding of surface codes over the quantum
erasure channel. Physical Review Research, 2(3):033042, 2020.

[8] Irit Dinur, Min-Hsiu Hsieh, Ting-Chun Lin, and Thomas Vidick. Good quantum LDPC codes with linear time
decoders. arXiv preprint arXiv:2206.07750, 2022.

[9] Shai Evra, Tali Kaufman, and Gilles Zémor. Decodable quantum LDPC codes beyond the
√
n distance barrier using

high-dimensional expanders. SIAM Journal on Computing, 0(0):FOCS20–276, 2022.
[10] Omar Fawzi, Antoine Grospellier, and Anthony Leverrier. Efficient decoding of random errors for quantum expander

codes. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages 521–534, 2018.
[11] Omar Fawzi, Antoine Grospellier, and Anthony Leverrier. Constant overhead quantum fault tolerance with quantum

expander codes. Communications of the ACM, 64(1):106–114, 2020.
[12] Jon Feldman, Tal Malkin, Rocco A Servedio, Cliff Stein, and Martin J Wainwright. LP decoding corrects a constant

fraction of errors. IEEE Transactions on Information Theory, 53(1):82–89, 2006.
[13] Robert Gallager. Low-density parity-check codes. IRE Transactions on information theory, 8(1):21–28, 1962.
[14] Antoine Grospellier. Décodage des codes expanseurs quantiques et application au calcul quantique tolérant aux fautes.

PhD thesis, Sorbonne université, 2019.
[15] Shouzhen Gu, Christopher A Pattison, and Eugene Tang. An efficient decoder for a linear distance quantum LDPC

code. arXiv preprint arXiv:2206.06557, 2022.
[16] Matthew B Hastings, Jeongwan Haah, and Ryan O’Donnell. Fiber bundle codes: breaking the n1/2poly log(n) barrier

for quantum LDPC codes. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
pages 1276–1288, 2021.

[17] Tali Kaufman and Ran J Tessler. New cosystolic expanders from tensors imply explicit quantum LDPC codes with
ω(

√
n logk(n)) distance. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,

pages 1317–1329, 2021.
[18] Anthony Leverrier, Jean-Pierre Tillich, and Gilles Zémor. Quantum expander codes. In 2015 IEEE 56th Annual

Symposium on Foundations of Computer Science, pages 810–824. IEEE, 2015.
[19] Anthony Leverrier and Gilles Zémor. Quantum tanner codes. In 2022 IEEE 63rd Annual Symposium on Foundations

of Computer Science (FOCS), pages 872–883. IEEE, 2022.
[20] Anthony Leverrier and Gilles Zémor. Decoding quantum Tanner codes. IEEE Transactions on Information Theory,

2023.
[21] Anthony Leverrier and Gilles Zémor. Efficient decoding up to a constant fraction of the code length for asymptotically

good quantum codes. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1216–1244. SIAM, 2023.

[22] Ting-Chun Lin and Min-Hsiu Hsieh. Good quantum LDPC codes with linear time decoder from lossless expanders.
arXiv preprint arXiv:2203.03581, 2022.

[23] Pavel Panteleev and Gleb Kalachev. Asymptotically good quantum and locally testable classical LDPC codes. In
Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pages 375–388, 2022.

[24] M Amin Shokrollahi. New sequences of linear time erasure codes approaching the channel capacity. In Applied
Algebra, Algebraic Algorithms and Error-Correcting Codes: 13th International Symposium, AAECC-13 Honolulu,
Hawaii, USA, November 15–19, 1999 Proceedings 13, pages 65–76. Springer, 1999.

[25] Michael Sipser and Daniel A Spielman. Expander codes. IEEE transactions on Information Theory, 42(6):1710–1722,
1996.

[26] Jean-Pierre Tillich and Gilles Zémor. Quantum LDPC codes with positive rate and minimum distance proportional
to the square root of the blocklength. IEEE Transactions on Information Theory, 60(2):1193–1202, 2013.

[27] Michael Viderman. Linear-time decoding of regular expander codes. ACM Transactions on Computation Theory
(TOCT), 5(3):1–25, 2013.

[28] Michael Viderman. LP decoding of codes with expansion parameter above 2/3. Information Processing Letters,
113(7):225–228, 2013.

[29] Gilles Zémor. On expander codes. IEEE Transactions on Information Theory, 47(2):835–837, 2001.

A Viderman’s algorithm

In this section, we present a proof of Viderman’s algorithm for decoding errors on (classical) expander codes [27].
This is a simpler proof that in the original paper, that achieves slightly worse parameters.

Claim A.1. The Find algorithm, when receiving a set UNSAT which are the unsatisfied parity checks of a word
w̃ ∈ {0, 1}n, such that w̃ = w+ e for w ∈ C and an error e such that | {i|ei = 1} | ≤ (1− 3ϵV)(αV n− 1), outputs
an envelope L such that {i|ei = 1} ⊂ L.

We begin with an intuitive description of the decoding algorithm. Denote by E = {i|ei = 1} the set of vertices

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2505

D
ow

nl
oa

de
d

04
/1

8/
24

 to
 1

36
.1

52
.2

14
.8

9
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

that has an error. We refer to L as the envelope and R = Γ(L)∪UNSAT as the set of untrustworthy parity checks.
In each iteration, Find searches for bits that are adjacent to too many untrustworthy parity checks. If it finds
such a bit v ∈ V , it marks it as suspicious and marks all its neighbors Γ(v) as untrustworthy. When the algorithm
terminates, it returns an envelope L which is guaranteed to contain the error E . By erasing all bits in the support
of L and running an appropriate erasure decoding algorithm, we can recover the transmitted message.

The proof that Find works correctly proceeds in two phases. First, they show that E ⊆ L, i.e. that the
envelope L covers the error E . Next, they show that the algorithm will terminate such that L does not encompass
the entire set of bits.

Claim A.2. Assuming |E| ≤ αV n, the Find algorithm returns a set L such that E ⊂ L.

Proof. Let L be the set after Find algorithm finished running, and assume towards a contradiction that E ̸⊆ L.
Let B = E \ L, the parts of the error that are not covered by L.

From our assumption |B| ≤ |E| ≤ αV n, therefore we have that

|Γ(B)| ≥ |B|(1− ϵV)∆V .(A.1)

This implies a lower bound on the unique expansion of B:

|Γ(u)(B)| ≥ |B|(1− 2ϵV)∆V .(A.2)

Let v ∈ B be a vertex with |Γ(u)(B)∩Γ(v)| ≥ (1−2ϵV)∆V . Then every parity check c ∈ Γ(u)(B)∩Γ(v) is adjacent
to v that is an error, and not to any other vertices in B. If it is adjacent to some v′ ∈ L then by definition c ∈ R.
If it is not adjacent to L, then it is adjacent to exactly one error, and therefore in c ∈ UNSAT ⊂ R.

Therefore, |Γ(v) ∩R| ≥ (1− 2ϵ)∆V and v should have been added to L.

We now give a simple proof that the above algorithm stops. In Viderman’s paper [27] there is also a more
complicated proof that achieves better parameters. We present the simpler proof to demonstrate the main idea
of the stopping condition.

Claim A.3. Assume that |E| ≤ (1− 3ϵV)(αV n− 1). Then the Find algorithm (Algorithm 1) returns a set L such

that |L| ≤ |E|
(1−3ϵV) .

Proof. Let L0 = ∅, L1, . . . , Lt be the envelopes during the run of the algorithm, and let v1, v2 . . . , vt be the
vertices added, i.e. Li = {vi} ∪ Li−1. Assume towards a contradiction that the claim does not hold, i.e. that

|Lt| > |E|
(1−3ϵV) , and let i be the latest iteration such that |Li| ≤ αV n.

The proof uses a lower bound and an upper bound on |Γ(Li)|. The lower bound is given from the graph
expansion. Since G is an (αV , ϵV) left vertex-expander,

|Γ(Li)| ≥ (1− ϵV)∆V |Li| .(A.3)

We now show an upper bound on |Γ(Li)|. From the algorithm, a vertex vj is added to Lj−1 only if
|Γ(vj) ∩R| ≥ (1− 2ϵV)∆V . Observe that R = Γ(L) ⊔ (UNSAT \ Γ(L)), so we can write for every j ∈ [t]

|Γ(vj) ∩ Γ(Lj−1)| =|Γ(vj) ∩R| − |Γ(vj) ∩ (UNSAT \ Γ(Lj−1))|(A.4)

≥(1− 2ϵV)∆V − |Γ(vj) ∩ (UNSAT \ Γ(Lj−1))| .(A.5)

Using this inequality we can bound the expansion of Li,

|Γ(Li)| =
i∑

j=1

|Γ(Lj) \ Γ(Lj−1)|(A.6)

=

i∑
j=1

(|Γ(vj)| − |Γ(vj) ∩ Γ(Lj−1)|)(A.7)

≤
i∑

j=1

(∆V − (1− 2ϵV)∆V + |Γ(vj) ∩ (UNSAT \ Γ(Lj−1))|)(A.8)

≤2ϵV ∆V i+ |UNSAT| .(A.9)

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2506

D
ow

nl
oa

de
d

04
/1

8/
24

 to
 1

36
.1

52
.2

14
.8

9
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

We use the two bounds on |Γ(Li)| to get a bound on |Li|. We note that |Li| = i, as we add a single vertex
on each round. We get

(1− ϵV)∆V |Li| ≤ 2ϵV ∆V |Li|+ |UNSAT| .(A.10)

This implies a bound on Lt,

|Li| ≤
|UNSAT|

(1− 3ϵV)∆V
≤ |E|

1− 3ϵV
,(A.11)

using the fact that |UNSAT| ≤ ∆V |E|. According to our assumption, |Li+1| = |Li|+1 > αV n, i.e. |Li| > αV n−1,
meaning that |E| > (1− 3ϵV)(αV n− 1), which is a contradiction.

As was already highlighted in Viderman’s original paper [27], this algorithm asks less of G when compared
to Flip—it is sufficient that ϵV < 1/3 rather than ϵV < 1/4 [25].

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2507

D
ow

nl
oa

de
d

04
/1

8/
24

 to
 1

36
.1

52
.2

14
.8

9
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

	Introduction.
	Our Results
	Main Result: Viderman's algorithm for hypergraph product codes

	Related Work
	Open Problems and Future Directions
	Organization
	Acknowledgements

	Technical Overview
	Classical Viderman's Algorithm
	Quantum Viderman's Algorithm for Hypergraph Product Codes
	Comparison with UnionFind

	Background and Definitions
	Expander graphs
	Classical expander codes
	Quantum codes
	Hypergraph Product Codes
	Projections of sets
	Properties of reduced sets

	Viderman's algorithm for Hypergraph Product Codes
	ssfind
	Coverage
	Bounding the size of the envelope
	Lower bounding the expansion
	Upper bounding the expansion
	Combining the bounds

	Proof of Theorem 1.1
	Bound on E
	Time complexity

	Viderman's algorithm

