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Abstract
The growing global demands for agricultural goods will require accelerated crop
improvement. High-throughput genomic, phenomic, enviromic and other multi-omic
data collection methods have largely satisfied data acquisition bottlenecks that previ-
ously existed within crop breeding and management. Fully capitalizing on large,
high-dimensional datasets has now evolved as a new challenge. Artificial intelligence
(Al) is currently the foremost solution. Types of Al with the capacity to learn (machine
learning), such as neural networks, can better facilitate the translation of data into useful
predictions by bypassing the limitations of human expert-driven learning. The potential
for applying Al to major crop improvement methods has already been demonstrated
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with preliminary successes shown using deep learning for genomic selection, feature
selection for enviromics, ensembles and knowledge-based Al for crop growth model-
ing, computer vision and convolutional neural networks for phenomics, and
unsupervised machine learning for multi-omics. Other types of neural networks includ-
ing transformer, recurrent, encoding decoding, and generative networks as well as sym-
bolic (non-learning) Al such as robotic process automation, expert systems, and
inductive logic programming are also reviewed to contextualize the rapidly changing
Al field. Overall, Al has shown strong potential to leverage data for a variety of crop
improvement tasks.
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1. Introduction
1.1 Crop improvement

Producing agricultural goods at rates that meet the demands of growing
world populations has been and will continue to be a wvital issue.
Challenges to be faced in the coming years include not only increasing yields
but doing so despite decreases in quantity and quality of agricultural lands
and resources while also tolerating diverse and changing environmental con-
ditions worldwide. Equipping food production systems to grow with a
global population expected to reach 10 billion by 2050 while retaining
the capacity to handle these current and future challenges will require inno-
vative developments within crop improvement approaches.

Innovative methods have been previously adopted to address challenges
in crop breeding and management. In the transition away from traditional
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crop breeding systems that required labor intensive phenotyping to drive
selection in repetitious breeding cycles, plant breeding has taken advantage
of growing sources of -omic data including genomic, phenomic, and
enviromic data, among others. Next generation sequencing (NGS) and
reductions in genotyping costs have driven the integration of genomics into
breeding. First-generation genomics-enabled breeding strategies such as
marker assisted selection (MAS) which utilized GWAS and QTL study
results demonstrated increased gains were possible with genomics-aware
breeding. Subsequent expansion and development of additional strategies,
like genomic selection, showed further success could be achieved with
methods better suited to large-scale genetic data.

Improved strategies have also been concurrently developed in other crop
improvement domains. Major advances are being made in the areas of
(1) high throughput phenotyping (HTP) to capture data and extract infor-
mation from plants; (2) envirotyping to obtaine comprehensive meta-data
associated with the experiments and production fields with geographic
information systems (GIS) and remote sensing; (3) companion -omics tech-
nologies that quantifying the gene transcripts, metabolites, proteins, and
other molecules; (4) systematic design, application, and data collecting
of management practices and condition monitoring; and (5) scalable eco-
physiological crop growth models that integrate inputs for genetics, envi-
ronment, and management to generate crop performance through
process-based modeling.

Many prior issues facing crop improvement research revolved around
data accumulation. Those bottlenecks have been largely overcome with
higher levels of automation achieved through approaches like NGS technol-
ogies, HTP, GIS, and remote sensing. In this emerging era of high through-
put technologies, terabytes of data can be generated every growing season.
Modern crop improvement now has the advantage and challenge of
accessing large multi-omic data sets to inform breeding and management
decisions. Novel, efficient, and effective analytical methods will be needed
to continue bridging the gap between genotypes and phenotypes. Artificial
intelligence (Al) has the potential to provide diverse solutions to these ends.

1.2 Artificial intelligence

Al research and applications have evolved since the first instance of a neural
network in 1943 (Mcculloch et al., 1943) and the subsequent establishment
of the broader Al field in the 1950s. There have been several Al “seasons”
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where interest and efforts have risen, known as Al summers, and fallen,
known as Al winters (Ilkou and Koutraki, 2020). The first Al summer
spanned the years following the field’s initiation through the mid-1960s
(Kautz, 2022). This era was defined by knowledge representation, formal
logic, and heuristics. Interest waned as it became more obvious that making
computers learn (machine learning) was still a far-oft prospect (Crevier,
1993). A shifting of the dominant perspective from general understanding
to expert knowledge underlined the activity of the first winter and success
in knowledge representation initiated a second Al summer that extended
across the decade of 1980s (Crevier, 1993; Kautz, 2022). During the second
Al winter (1988-2011), despite diminished public interest, critical advances
were still made. Approaches to efficient probabilistic reasoning were
achieved and machine learning was revitalized. These efforts also sought
to overcome the knowledge acquisition bottleneck experience in previous
seasons (Kautz, 2022). The third Al summer is currently underway and deep
learning systems have defined the early years of this era. Reasoning and
learning techniques have also become more ubiquitous in this most recent
season with new and old types being developed and revisited.

2. Types of Al

Al is concerned with the process of designing computers that can
think and act humanly and rationally (Russell and Norvig, 2009). In recent
years, Al has been increasingly explored as a means to analyze big data, most
popularly through machine learning (ML) approaches. However in addition
to ML, Al encompasses a number of diverse sub-fields that can be generally
categorized as symbolic or sub-symbolic (Ilkou and Koutraki, 2020; Nilsson,
1998). Symbolic Al (Section 2.1) will herein include robotic process auto-
mation (Section 2.1.1), expert and fuzzy systems (Section 2.1.2), and induc-
tive logic programming (Section 2.1.3). While sub-symbolic Al sections will
focus on machine learning (Section 2.2 for non-neural network machine
learning and Section 2.3 for neural network machine learning), computer
vision (Section 2.4), and natural language processing (Section 2.5).

2.1 Symbolic Al

Al approaches that represent knowledge through symbols (Hoehndorf and
Queralt-Rosinach, 2017) are described using names like symbolic Al, logical
Al, or computationalism (Domingos et al., 2016; Hoehndorf and
Queralt-Roosinach, 2017). Symbolic Al applies logical operations to declarative
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knowledge represented by symbols. The goal of symbolic Al is to deduce the
consequences of the supplied knowledge through symbols and symbol manip-
ulation (Hoehndorfand Queralt-R osinach, 2017; Nilsson, 1998). For this rea-
son, many symbolic systems are often also categorized as rule-based or

s

logic-based systems. First order logic rules, like “if... then...” statements, are
a common form for symbols and highly explainable since this type of compu-
tational reasoning mimics human cognition (Hoehndorf and Queralt-
Rosinach, 2017; Ilkou and Koutraki, 2020; Nilsson, 1998). However, rules
in symbolic systems must be hard coded. Because of this, a functional symbolic
system must anticipate all situations and the appropriate corresponding actions
(in the form of rules) that lead from input to conclusion (Jordan and Mitchell,
2015). The rigidity of these systems and the extensive prior knowledge needed
to define rules are major drawbacks that limit the application of symbolic Al
systems in the modern age (Hayes-Roth, 1985; Ilkou and Koutraki, 2020;
Nilsson, 1998). But as sub-symbolic systems increase in complexity, symbolic
algorithms have been revisited for use as components within a larger
sub-symbolic system (d’Avila Garcez et al., 2002). For that reason, revisiting
applications of the most popular types of symbolic systems is still meaningful.

2.1.1 Robotic process automation

Robotic process automation (RPA) is the design of an Al agent that is capa-
ble of interacting with repetitive processes that have enough variability to
prevent the use of standard process automation. Tasks addressed by RPA
would otherwise require human interaction through an appropriate inter-
face to complete. An advantage of RPA is that instead of redesigning a sys-
tem capable of automation, an Al agent is designed to replace the human
user in the existing system (van der Aalst et al., 2018).

RPA can mimic actions taken by humans in a point and click interface by
deducing the underlying rule/action from input-response pairs. The ways an
Al agent in an RPA system comes to know what actions to take can vary. In
a system that doesn’t learn, intermediate actions must be specified by humans
during human interface training. This type of RPA has poor transferability
between applications since all steps must be explicitly defined. Some more
recent implementations of RPA systems can learn from examples
(input-response pairs) through supervised learning (Section 2.2). These sys-
tems are more flexible since intermediate actions are learned by the system.
RPAs have also begun to use reinforcement learning to eliminate the need
for human interfaced training (Chakraborti et al., 2020). These types of
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intelligent process automation can be implemented for more complex tasks
involving decision making and analysis.

2.1.2 Expert systems/fuzzy systems

Expert systems attempt to replicate the problem-solving capabilities of
human domain experts (Jackson, 1998). The components of an expert sys-
tem include a knowledge base and an inference engine. The knowledge base
contains knowledge described by domain experts and represented in the sys-
tem using formal language. The inference engine then interprets the pro-
vided information to solve problems (Luconi et al., 1986). Expert system
development can be broken down into four steps: knowledge acquisition,
knowledge representation, knowledge utilization, and reasoning explana-
tion (Jackson, 1998).

Where expert systems excel is interpretability. Since knowledge is rep-
resented (symbolized) using human-centric syntax rather than syntax opti-
mized for computation, the inference engine also reasons via interpretable
syntax. It becomes trivial to then provide a human-interpretable explanation
of how the problem was solved. For this reason, there is increased decision
acceptance by users despite expert systems sometimes being less accurate
than black-box types of Al

A drawback of knowledge-based expert systems is the knowledge acqui-
sition bottleneck, both in terms of knowledge quantity and, perhaps more
importantly, knowledge quality (Kautz, 2022). Expert systems are only as
good as the knowledge they contain. For simple problems, limited but accu-
rate knowledge can be sufficient. But for complex problems, encoding suf-
ficient knowledge while maintaining knowledge relevancy becomes less
feasible as problems grow more complex. Computational efficiency then
also becomes a concern.

Expert systems can vary in terms of the knowledge structure.
Rules-based expert systems have knowledge-bases consisting of formalized
situation-action rules, known as production rules. Frame-based expert sys-
tems, like decision trees (Section 2.2.1), also integrate the relationship
between pieces of knowledge as “meta-knowledge” to provide an explicit
structure to the knowledge base (Jackson, 1998).

All symbolic systems employ logic to form conclusions. Propositional
logic, first-order logic, inductive logic, and some expert systems can utilize
fuzzy logic to deal with imprecision of knowledge. Fuzzy logic is an exten-
sion of multi-valued logic (Zadeh, 1988). In a two-valued system, rules are
true or false. In a multi-valued system, rules can also be partially true or
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partially false. Quantifiers for multi-valued logic are all true or some true
(Zadeh, 1988), but degrees of partial true are indistinguishable. Fuzzy logic
can deal with degrees of approximated reasoning in ways multi-valued logic
cannot. Fuzzy truth-quantifiers like more or less true, rather true, not very true,
etc. can distinguish between continuous approximations of partial truth. To
be clear, fuzzy logic is not synonymous with probabilities. Fuzzy logic
describes an event with imprecision while probabilities describe likelihood
of an event occurring. Approximate reasoning can also use imprecise truth
tables or approximated inference rules for the same purpose (Zadeh, 1975).
In fuzzy systems, the functions that transform input into the appropriate
response may overlap creating instances where multiple rules are true. In this
situation, fuzzy approximation can be employed to determine the reasoning
or function applied to the input.

Let us illustrate this with a very simple example of classifying plant height.
Under this expert system, a plant can be considered tall, normal, or short in
height. Rules used to represent these conditions might be “if height=[2m,
13 m], then plant=tall”’; “if height=[0m, 1.2m], then plant = short”; and
“if height=[1m, 3 m], then plant=mnormal”. From 2 to 3 m, plants could be
considered both normal and tall in height. But plants at 2.1 and 2.9m are not
equally somewhat tall. A fuzzy approximation could be used to classify a 2.1m
plant as not very tall and a plant at 2.9m as more or less tall.

Decision rules are often interpreted directly from expert knowledge, but
some expert systems also derived rules from declarative knowledge via induc-
tion in a manner similar to inductive logic programming (Section 2.1.3).

2.1.3 Inductive logic programming
Induction describes the process of relating knowledge through declarative
rules. Many symbolic systems that utilize knowledge rules are drawing from
inductions already made by humans. A set of self-synthesized rules derived
from background knowledge is the basis for a logic program. Predictions of
new observations can be made using the rules within a logic program
(Cropper and Dumancic¢, 2022). The background knowledge in inductive
logic programming (ILP) is populated with atoms that classify data terms
using symbols. Rules are synthesized from the background knowledge by
formulating a declarative statement that maximizes the true atoms and min-
imizes the false atoms represented in the statement (Cropper and
Dumanci¢, 2022).

For example, we may have a small dataset of plant characteristics
(Table 1) from which we want to make some predictions. Because ILP
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Table 1 Example of data used to synthesize rules in inductive logic programming.

Replicate Color Height Condition
A Green Tall Healthy
B Brown Short Diseased
C Brown Tall Diseased
D Green Short Diseased

generally uses closed world assumptions (Cropper and Dumanci¢, 2022), we
only need to declare one atom per class, and undeclared atoms are accepted
as false. True atoms are considered positive symbols, and false atoms are
considered negative symbols. We may pick “green,” “tall,” and “healthy”
as the positive atoms and represent the knowledge base as including
“green(A), green(D), tall(A), tall(C), and healthy(A)”. An inverse knowl-

LEINT3

edge base defining “brown,” “short,” and “diseased” could also be used

and is essentially equivalent in a two class system. Because in the defined

’ ’

knowledge base, the atom “brown(B)” is equivalent to “not_green(B)
or “green(B)=FALSE”. These pieces of knowledge are assumed if
“green(B)” is absent from the knowledge base and the same is true for
the other undeclared atoms.

Perhaps we want to predict “condition” from the future data. Using the
knowledge related to color to predict the healthy condition would yield a
rule that represents a false atom since replicate D is both green and diseased.
Using knowledge related to height would also yield a rule that represents a
false atom. The rule that maximizes true atoms and minimizes false atoms for
this example would be: For replicate x, if x is green and tall, then x is healthy
(i.e. Green(x) and Tall(x) =Healthy(x)). ILP is used to synthesize this or
other rules from the dataset/knowledge base without human inference.

Machine learning (Section 2.2) can be used in conjunction with ILP to
synthesize rules via learning. An advantage of ILP is data efficiency, because
rules can be induced from small datasets. Expert knowledge (rules formu-
lated by humans outside of the scope of a given dataset) can also be easily
integrated alongside the rules synthesized by an ILP system (Cropper and
Dumanci¢, 2022). The syntax of ILP makes transfer learning possible since
induced rules use notation identical to the rules in other symbolic systems
(Lin et al., 2014). The capacity of ILP for knowledge transfer is an advantage
over other ML algorithms that do not reuse knowledge between tasks
(Cropper and Dumanci¢, 2022). The syntax of ILP is also an advantage
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in terms of its similarity to natural language and makes induced rules readable
by humans.

While ILP can work with small amounts of data, the inclusion of inef-
fective or mistaken background data can limit the capability of an ILP.
Insufficient background knowledge may result in the exclusion of a plausible
rule, while too much background knowledge may introduce irrelevant
knowledge that adversely affects performance. ILP has historically required
user-curated background knowledge that limits ILP in comparison to ML
systems (Section 2.2) more robust to data inconsistencies.

Among the types of symbolic Al, ILP is the most likely to be considered a
type of Al that learns and according to some definitions may be a primitive
type of ML. However, ILP still differs in that it learns relations between
knowledge/data and can only induce general hypotheses from specific
knowledge, which can be complicated by quantity and quality of back-
ground knowledge. Sub-symbolic types of Al, by contrast, learn functions
rather than rules (Cropper and Dumancic¢, 2022).

2.2 Machine learning

Sub-symbolic Al shifts the focus from symbols and symbol manipulation
toward less interpretable patterns in the form of mathematical optimizations,
statistical classifiers, and neural networks (Nilsson, 1998). These functions
are established by the system to link input and response variables (Ilkou
and Koutraki, 2020). Sub-symbolic Al, also called connectionist Al,
includes all systems that can learn (Ilkou and Koutraki, 2020; Nilsson,
1998). A system that can improve through experience, or learn, yields flex-
ibility lacking in a symbolic system (Liakos et al., 2018; Libbrecht and Noble,
2015; Russell and Norvig, 2009).

At the core of modern sub-symbolic Al is machine learning (ML). ML
exists as a broad subfield and can include nearly any method that makes pre-
dictions (James et al., 2013). Because of the inclusivity of this definition,
many statistical models can also be considered ML. In the extreme case,
the difference between statistical and ML modeling is often characterized
as inference being the primary focus of statistical modeling while prediction
is the primary objective of ML modeling (Bzdok et al., 2018). Reealistically in
many use cases, both prediction and inference are often relevant (Breiman,
2001a). However, a trend may be noticed in Fig. 1 that most statistical
modeling methods are common to ML modeling methods, but ML includes
a number of additional methods with low interpretability. This may reflect a
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Interpretability

Fig. 1 Schematic diagram of methods and approaches in artificial intelligence, machine
learning, and statistics.

more practical difference, namely, that ML modeling is willing to sacrifice
inference for prediction, but statistical modeling requires some inference
capacity to be maintained.

ML approaches can be further subdivided according to feedback type.
ML can be supervised or unsupervised given the system’s access to feedback.
Supervised learning occurs in two phases, training and testing. During the
training phase, predetermined input-response pairs (labeled data) are used
as examples, and the learning algorithm attempts to formulate functions that
connect input data to respective labels (Liakos et al., 2018; Montesinos-
Lopez et al., 2022). During the testing phase of supervised learning, the
learned pattern (trained model) is used to generate predictions. The accuracy
of the predictions can then be evaluated against user-defined labels. In a
supervised learning system, the feedback is considered to be explicit. In
unsupervised learning, preassigned labels for the input data are absent.
This model can only evaluate patterns within the input and prevents the
evaluation of prediction accuracy since the desired answer was not specified.
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Therefore, this type of system has no feedback. Systems that utilize both
unsupervised learning to generate labels and then supervised learning to make
predictions also exist and are called semi-supervised. Supervised learning
includes both regression and classification-based methods which are
used with continuous and discreet data, respectively. Linear regression,
regression-based decision trees, and support vector machines are all types
of regression-based supervised learning. Unsupervised learning includes clus-
tering, dimensionality reduction, and association rules. K-means clustering
and hierarchical clustering, are clustering-based methods. Principal compo-
nent analysis, independent component analysis, linear discriminant analysis,
factor analysis, and LASSO (least absolute shrinkage and selection operator)
are dimensionality reduction focused methods. Finally, the apriori algorithm,
equivalence class transformation, and frequent pattern growth algorithm are
association rule methods. Some widely used statistical ML methods
referenced in Section 3 will not be covered in this section. Introductions
to linear regression (James et al., 2021a; Su et al., 2012), logistic regression
(James et al., 2021b; Peng et al., 2002), Bayesian methods (Hoft, 2009),
and types of non-parametric methods including K-nearest neighbors
(Taunk et al., 2019) are available in the literature.

2.2.1 Decision trees and random forests

Decision trees employ simple tests to classify data using sequential subdivi-
sion. These tests are often arranged in a branching structure where the test
responses of initial branches determine which tests are subsequently applied.
The points from which branches diverge are called nodes. Sub-symbolic
learning is currently the dominant approach used for decision trees.
However, decision trees had prior success in symbolic Al (Quinlan,
1986). Symbolic decision trees provide a simple introduction to
tree-based classification. Symbolic decision trees relied on user-defined log-
ical rules based on existing knowledge or inference related to the data being
classified (Section 2.1).

For example, if someone was trying to design a plant species classification
system, it would be logical to place the rule “if the plant has bark, then itis a
tree” before the rule “if the plant has needles, then it is a conifer tree” or else
a cactus may be classified as a conifer. However, often the hierarchy of rules
1s not so obvious to the user. In these cases, the test rules and their locations
in the decision tree can also be learned. Sub-symbolic decision trees, requir-
ing labeled data, attempt to generalize a pattern of tests resulting in accurate
classification (Kotsiantis, 2013).
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The process of partitioning the data at a given position during tree con-
struction is termed splitting. The process of tree splitting must balance both
accuracy and tree complexity. Increased accuracies can be achieved with
more complex trees, but compact decision trees are more likely to avoid
overfitting and maintain accuracy outside the training set. Tree complexity
is gauged by factors such as total number of nodes, total number of leaves,
tree depth, and number of attributes used (Kotsiantis, 2013). Tree complex-
ity factors are moderated through user-defined stopping criteria that set
maxima or minima for the factors to limit tree size. Branch pruning and fea-
ture selection methods can also be used to reduce decision tree complexity.

Decision trees have some flexibility with regard to input variables and
predictions. Decision trees can be univariate or multivariate. These trees dif-
fer in the number of attributes tested at a single node with univariate testing
one and multivariate testing more than one. In addition to the number of
attributes tested, the tests used at nodes can also differ. Non-linear model
tests can be more suitable for initial nodes where decision complexity is often
high, while linear models are more appropriate for less complex splitting
such as within lower levels (Yildiz and Alpaydin, 2001). Decision trees,
while most often used for general multi-class (exclusive, single output) clas-
sification, can also be used for ordinal classification and multi-label
(non-exclusive, multi-output) classification/regression (Kotsiantis, 2013).

Random forests are a variant of decision trees that use an ensemble
approach to mitigate the instability of recursive partitioning used by decision
trees (Breiman, 2001b; Kotsiantis, 2013). A random forest generates a pre-
diction by averaging the predictions from several decision trees. The deci-
sion trees within the ensemble are constructed using random subsets of the
complete data. The specific ensemble approach used by random forests is a
variant of bagging, but other ensemble approaches (Section 2.2.2) can also be
applied to decision trees. The bagging variant used here selects the best fea-
ture from a subset of features to split a decision tree node into branches.
Random forests are a popular type of ML. Their popularity can be attributed
to the method being both easy to use due to few tuning parameters and effi-
cient when processing large data sets due to the ease of parallelization (Biau
and Scornet, 2016).

2.2.2 Ensembles

Ensemble methods can utilize many types of learning algorithms. The general
feature of an ensemble is a collection of base models that are used together
for prediction. The use of multiple base models improves generalizability.
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Ifalearningalgorithm is most often able to achieve generalizability with a sin-
gle model, it is termed a “strong” learning algorithm. Likewise if a learning
algorithm does not reliably achieve generalizability with a single model, it
is called a “weak” learning algorithm. Weak learning algorithms may produce
predictions that are little better than random guesses (Schapire, 1990). If the
generalizability of the learning algorithm depends largely on successful model
tuning, both weak and strong configurations of the learning algorithm may
exist. Often ensembles are able to use simpler/weaker configurations for each
base modelinstead of the more complex configuration that would be required
in a single model approach. Strong learning algorithms can also be used in an
ensemble, but little is gained over using a single model when a single model
can achieve stable (though not necessarily highly accurate) predictions.
Among the most popular ensemble methods are bagging, boosting, and stac-
king, which all use collections of base models to make predictions.

Bagging, or Bootstrap AGGregatING, uses random sampling with
replacement to create sub-samples. Each base model is then trained sepa-
rately from other base models using a single data subset. The use of separate
base models trained on independently sampled data subsets is advantageous
because of the ability to parallelize training yielding increased training effi-
ciency. Predictions from individual base models in the ensemble are then
aggregated to produce the ensemble’s prediction. The most common aggre-
gation techniques are majority voting and averaging. For the sake of com-
parison, bagged decision tree ensembles differ from random forests because
bagged decision trees use all features for each tree splitting step instead of the
single best splitting feature from a subset of all features.

Boosting differs from bagging because base models are trained sequen-
tially with each base model influenced by the training of earlier base models
within the ensemble. Boosting supplements the performance of weak learn-
ing algorithms through stage-wise additive model fitting (Hastie et al., 2009;
Ogutu et al., 2011). The two main boosting approaches are Adaptive
Boosting (AdaBoost) and gradient boosting. AdaBoost weights the sampling
of data for subsequent base models using prediction accuracies achieved by a
prior base model. Data points inaccurately predicted or misclassified in the
previous iteration are weighted more strongly. The subsequent base model is
then trained on a sub-sample from the new distribution. The focus of sub-
sequent learners is shifted toward data points that are difficult to predict. The
weak models are finally combined into a composite model that better
explains data points otherwise misclassified in individual base models
(Freund and Schapire, 1996). Gradient boosting (Friedman, 2001) is a
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generalization of the approach introduced by AdaBoost. AdaBoost and gra-
dient boosting both use loss functions (Section 2.3). However while
AdaBoost relies on exponential loss making it sensitive to outliers, gradient
boosting 1s designed to use any loss function in conjunction with the gradi-
ent descent to minimize the loss value (Section 2.3) (Mayr et al., 2014).
Variants of gradient boosting include GBDT, XGBoost, LightGBM, and
CatBoost.

Bagging and boosting both generally use a single type of learning algo-
rithm for all base models. Multiple types of learning algorithms can also be
combined in an ensemble. In the simplest cases, the output from each
sub-model can be combined into final single prediction using majority vot-
ing (classification) or averaging (regression). In other cases, the contributions
of each based model may need to be weighted differently than the uniform
weighting of averaging. Stacking is an ensemble approach that varies the
contribution of each base-model through a subsequent meta-model that
receives base-model outputs as inputs. For example, a stacked ensemble
may use a linear regression, a support vector regression, and a decision tree
model as the base models. The base model predictions may then be aggre-
gated with a final linear regression meta-model.

Ensemble methods can be a good approach for handling big data.
Ensembles use a different subset of data to train each base model. This
can increase the speed and parallelization achieved by ensemble training
compared to single model training. Subset selection depends on sampling
parameters such as sub-sample size, number of base models, and
sub-sampling method. While individual base models may be simplified
compared to an appropriate single model for the same data, the overall
ensemble does, however, becomes less interpretable.

2.2.3 Support vector machines and regression

Support vector machines (SVMs) and support vector regression (SVR) are
non-parametric machine learning approaches useful for classification and
regression analysis (Wang et al., 2018b). SVMs can classify data points in
high-dimensional space through hyperplane separation. A hyperplane is
the high-dimensional equivalent of a straight line. Hyperplane selection
in SVMs is approached by maximizing the margin separating the classifica-
tions (Noble, 2006). Hyperplane selection deals with data inconsistencies by
using soft margins that accept some anomalous data points to be located on
the opposite side of the hyperplane from the correct classification. Users
must specify how stringent to be with hyperplane violations (Noble,
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2006). When SVMs are used for regression, they are termed SVR. In SVR,
data points are regressed to the hyperplane and the margin is used for loss
evaluation. Weights are not assigned to data located within the margin.
Rather, the distance of outliers from the hyperplane is used for loss optimi-
zation. Because of this, SVR can be sensitive to outliers. Other parameters
that must be user selected (hyperparameters) include the kernel function.
SVMs and SVR can handle both linear and non-linear relationships by
changing their kernel function. Common kernel functions include linear
kernel, Gaussian radial bias function kernel, and polynomial kernel.
Overall, SVM/SVR hyperparameter tuning is simpler than for neural net-
works (Zhao et al., 2020).

2.3 Neural networks

Neural networks (NNs) are a distinct machine learning approach that can
include supervised and unsupervised algorithms. Most can be characterized
according to some core architectural components. These core components
include learned parameters like weights and biases, as well as hyper-
parameters that must be chosen during network design. Some such hyper-
parameters for NNs include number of layers, number of nodes per layer,
activation function, loss function, and optimization algorithm (Fig. 2).
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Fig. 2 Essential structures of a shallow, feedforward neural network (NN) with one hid-
den layer (A) and a deep NN (B) with feedforward, self (B-1), intralayer (B-2) and sup-
ralayer (B-3) recurrent/feedback connections as well as components of a single node
(C) and activation functions (D).
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NNs are made up of nodes that can constitute the parts of an input, out-
put, or hidden layer. Nodes in hidden layers generally receive values from
other nodes and not the input data directly. In fully connected layers, each
node in the current layer receives the values resulting from the output of
every node in the previous layer. Sparse layers have fewer connections than
fully connected layers and can have as few as one connection between a node
in the current and previous layer. Layers can vary both in number and type of
connections. Different connection types are able to pass values in both the
teedforward (Fig. 2A) and feedback (Fig. 2B) direction. In networks with
feedback connections, information can also be recirculated back to nodes
in previous layers, i.e. the output to input direction. Feedforward connec-
tions exist between different layers (interlayer), while feedback connection
transmit values either back to the node of origin (self; Fig. 2B-1), within a
layer (intralayer; Fig. 2B-2), or back to a nonadjacent, previous layer (sup-
ralayer; Fig. 2B-3). A deep neural network, also called a deep learning (DL)
model, is distinguished from other NN types by the presence of multiple
hidden layers (depth). A shallow neural network may contain only 1-2 hid-
den layers (Fig. 2A), while DL models feature many (more than two) hidden
layers (Fig. 2B) (Bengio, 2009; Emmert-Streib et al., 2020). Difterent hyper-
parameter configurations are better suited to different problems. One hurdle
of implementing a NN is hyperparameter selection. Learned parameters
depend on hyperparameter selections. With increasing data dimensionality,
finding quality hyperparameter values through user expertise and trial and
error testing becomes impossible (Victoria and Maragatham, 2021).
Therefore, an additional optimization stage, specifically for hyperparameters
is required. Optimization strategies for NN hyperparameters include
model-free methods as well as sequential search methods (Bergstra et al.,
2011; Feurer and Hutter, 2019). Model-free methods include random
search, grid search, and population-based methods like genetic algorithms,
evolutionary algorithms, evolutionary strategies, and particle swarm optimi-
zation (Feurer and Hutter, 2019). A popular population-based optimization
method for NN hyperparameters is the covariance matrix adaption evolu-
tionary strategy (Hansen, 2016). Many model-free approaches can be readily
parallelized, but each tested hyperparameter combination is selected
independent of the performance of other combinations. Sequential search
methods include sequential model-based optimization (SMBO), sequential
model-based algorithm configuration (SMAC), and Bayesian optimization.
Sequential search methods make subsequent hyperparameter selections
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based on the performance of past selections. Other parameters of the system,
such as weights and biases, are learned during NN training.

The relative importance of an input and its hidden layer derived values
can be scaled using the connection weight. A bias value is also added to the
weighted sum of the inputs to further adjust the value before the activation
function is applied (Montesinos-Lopez et al., 2021b). Activation functions
apply a transformation to the sum of the weighted values and bias (Fig. 2C).
Popularly used activation functions include rectified linear activation unit
(ReLU), leaky ReLU, sigmoid, hyperbolic tangent, and softmax functions
(Fig. 2D). All of which allow non-linearity to be introduced into the net-
work model (Montesinos-Lopez et al., 2021b; Patterson and Gibson, 2017).
Linear activation functions can also be used but are generally only used
within input layers since they act as an identity function (Patterson and
Gibson, 2017).

During model training, prediction accuracy of the current version of a
model is evaluated with a loss function, which provides an error metric rep-
resenting the difference between the predicted output and the observed
response provided in the training dataset. Examples of loss functions include
squared loss, logistic loss, hinge loss, and negative log likelihood. To
improve the model, weights and biases are updated in a manner that reduces
the result of the loss function. The direction and magnitude of that change is
determined using a search method referred to as an optimization algorithm
(Patterson and Gibson, 2017). Optimization algorithms for NN training can
be similar to those used for hyperparameter optimization and can include
global optimizers such as genetic algorithms, differential evolution, or par-
ticle swarm optimization, but are more often based on gradient descent.

Gradient descent attempts to find the minimum error value of all possible
weight and bias values. However, gradient descent does not evaluate the entire
space of all possible weight and bias configurations. Instead during optimiza-
tion, a gradient descent algorithm uses the partial derivative of the loss function
with respect to an initial weight and bias to determine whether the weight/bias
value should be increased or decreased. Gradient descent proceeds in this fash-
ion until it converges on an error minimum or when a specified number of
epochs have elapsed. A popular variation called stochastic gradient descent
speeds up the process by evaluating the loss function from randomly chosen
mini-batches of the training data instead of the complete set.

The step size with which the optimization algorithm searches is termed
the learning rate. The success of an optimization algorithm can depend on
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the appropriateness of the learning rate. Learning rates can be a fixed value, a
value scaled progressively smaller by a fixed amount as the number of steps
taken increases, or be adaptive, with step size changing based on the training
progress (Daniel et al., 2016; Takase et al., 2018). Learning rates relying on
fixed scaling or fixed values can be difficult to tune. Adaptive learning rates
are therefore attractive for improved rate identification.

The approach by which the error gradient is calculated across the layers
of learned parameters during optimization is termed the learning algorithm.
The term learning algorithm has also been used herein to describe different
ML approaches. This is because the NN learning algorithm introduced here
is simply a specific instance of a learning algorithm that describes how a NIN
attempts to learn appropriate weights and biases. Backpropagation is cur-
rently the dominant type of NN learning algorithm and updates weights first
in the layer closest to the output and last in the layer leading to the input. The
learning algorithm and optimization algorithm work in tandem but are
unique processes. For example, gradient descent determines the weights
and biases that are tested next during training and relies on an error gradient
to inform that decision. Backpropagation is the approach by which the error
gradient is calculated.

The set of “best” weights identified through learning and optimization
simply minimizes the error of prediction in the training dataset. A network
built on these weights still has the potential to be underfit or overfit.
Opverfitting can be addressed using regularization. Regularization imposes
smoothness constraints on the function approximation of neural network
(Girosi et al., 1995), thereby influencing the final weights and biases selected
during training. L1 regularization, L2 regularization, dropout, and early
stopping are among the dominant methods used to prevent overfitting in
neural networks. L1 and L2 regularization are also used by other types of
ML. L1 and L2 regularization are particularly common in linear regression,
and these implementations are also known, respectively, by the names of
LASSO (least absolute shrinkage and selection operator) regression and ridge
regression. L2 (ridge) regularization applies a shrinkage penalty to shrink
weights toward zero. This reduces weights, but none are set precisely to
zero. It also preserves all input as features rather than eliminating
unimportant features. L1 (LASSO) regularization places preference on
low weight values to reduce model complexity which results in the prefer-
ence of a zero weight. Unimportant features are then absent from the pre-
diction. Dropout is similar to L1 regularization in the sense that unimportant
features are not represented. However, dropout determines feature
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importance by testing a series of “thinned” versions of the network where
some nodes have been randomly dropped (Srivastava et al., 2014). The
dropping of nodes and their associated connections promotes the indepen-
dent learning of weights and biases. Each thinned network is trained with
extensive weight sharing. This means that each thinned model is initialized
with the weights learned by the previous thinned model to reduce the com-
putation. An averaging method is then used to produce a final single model
from the collection of thinned models (Srivastava et al., 2014). Dropout reg-
ularization is conceptually similar to ensemble methods where many
“weak”/thinned versions of the network are used to generate one more
robust prediction. Early stopping is another approach to regularization.
However, early stopping only alters the training process with regards to
when training is ended. As the name suggests, early stopping stops training
during the approach to the loss minimum when the validation error rate
starts to increase (Svozil et al., 1997).

The initiation and completion of these processes associated with mini-
mizing the loss function defines the training stage. Because weights and
biases are updated during training, they are considered to be learned param-
eters. Architectural principles remain largely the same between DL and
other NN types. Popular DL topologies can be characterized according
to their respective hyperparameters. Given the information provided herein
on the application of NN, it is also important to touch on the underlying
theory that has driven the success of NNs. That theory is that NNs are capa-
ble of functioning as universal approximators. Given an unspecified (poten-
tially approaching infinite) number of nodes, a feedforward NIN with one or
more hidden layer(s) is expected to be able to approximate any function
(Hornik et al., 1989; Irie and Miyake, 1988. Given this theorem, poor
approximations are then attributed to suboptimal hyperparameter selection
and model training rather than a limitation of the ability of NNG.

2.3.1 Feedforward networks and multilayer perceptrons

Feedforward networks can feature a variety of characteristics in addition to
feedforward connections. Multilayer perceptrons (MLPs) are distinguished
from other feedforward networks by standardly using fully connected layers.
Another special case of a feedforward network is a radial bias function net-
work which uses a radial bias function as the activation function. MLPs are
among the most basic of NN types and one of the most widely used. The
name multilayer perceptron is in reference to the most basic type of neural
network: the single layer perceptron, often abbreviated as simply the
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perceptron. A perceptron is made up of a single hidden node with associated
connections, weights, and activation function (Fig. 2B). The multilayer per-
ceptron is built as a collection of these perceptrons (Fig. 3). Additionally,
other NN types are often described based on how the architecture differs

Input 1 Input 2 Input n
i

Output
Legend O Input Node o Activation Function
® Hidden Node + Weight
@ Output Node = Bias
— Connection

Fig. 3 A deep, feedforward, fully connected neural network. This configuration defines
a multilayer perceptron.
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from MLPs. Therefore, generalized descriptions of NN (as in Section 2.3)
are often framed in the context appropriate for MLPs.

2.3.2 Convolutional neural networks

Convolutional neural networks (CNNs) are an extension of deep NNs and
they are characterized by having three distinct types of layers: convolutional,
pooling, and fully connected layers.

Convolutional layers are a type of sparse, locally connected layer that
reuses shared weights across each node in the subsequent layer (Fig. 4)
(Emmert-Streib et al., 2020). The use of a uniform filter across the input
results in all nodes in the subsequent layer having the same number of con-
nections. Convolutional networks, which contain convolutional layers,
often receive data matrices, like photos, as input. In this situation the filter
would likely also take on a two-dimensional structure and the output of the
convolutional layer would be a two-dimensional feature map (also called an
activation map). The use of shared weights via a filter, instead of indepen-
dent connections weights like in a MLP, serves as a spatial feature extractor
with different filter values able to extract different features (Emmert-Streib
et al., 2020). Some important convolutional layer hyperparameters that
differ from the hyperparameters of other neural network types include
the size of the filter, stride, and amount of zero-padding (Emmert-Streib
et al., 2020). The size of the filter (i.e. the number of connections) deter-
mines the dimensions of the region (think number of pixels in the case of
an image input) that will be used to generate a new value on the feature
map. The stride size determines how many units to move the filter between
calculating adjacent values in the feature map. The size of the filter and the
stride determine how much overlapping information is used to generate
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Fig. 4 A convolutional neural network containing representative convolutional,
pooling, and feedforward layers. In this example, a 3 x 3 filter is applied in the con-
volutional layer. The max pooling method is applied in the pooling layer.
Convolutional and pooling layers can be repeated and precede a layer with feedforward
connections.
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each feature map value. Zero-padding refers to the use of a border of zero
values around the border of the convolutional layer input. Without
zero-padding, values on the edge of the matrix are considered in the calcu-
lation of fewer feature map values and the feature map dimensions will be
reduced from input.

Pooling layers are used to further reduce the dimensions of the layer’s
input, which is usually a feature map as shown in Fig. 4. The mechanics
of a pooling layer share some similarities with convolutional layers. The
hyperparameters of this layer type include pooling window size, stride,
and zero padding. Pooling window size is similar to the filter size. It deter-
mines how many units of the feature map are surveyed to generate the
pooling layer output. However instead of applying weights, a pooling
method is applied to the considered units. As the most common method,
max-pooling simply preserves the maximum value from within the window
size to the pooling output. Some other pooling methods include
averaging-pooling, min-pooling, fractional max-pooling, and stochastic
pooling (Emmert-Streib et al., 2020). The stride and zero-padding in the
pooling layer are conceptually identical to the convolutional layer.

In CNNs, convolutional layers are generally followed by pooling layers.
These two layers can be stacked a number of times to generate a deep net-
work. Fully connected layers are often used as the last hidden layer(s) and
output layer in CNNs (Emmert-Streib et al., 2020; Krizhevsky et al.,
2017). This layer type is used to help capture the relationships between
features extracted in the convolutional and pooling layers and the network
output.

2.3.3 Recurrent neural networks

Recurrent neural networks (RINNs) have both feedforward and recurrent
(feedback) connections. Recurrent connections function as cyclic connec-
tions that preserve values obtained during the process of making initial pre-
dictions to inform subsequent predictions (Fig. 5). This process gives RINNs
“memory”” and makes RINNs well suited for sequential data. RNNs can take
on a variety of forms. But even when featuring simple architectures with
few nodes, RNNs are considered as DL because learning occurs over many
cycles of the RNN in place of the many layers of a deep feedforward
NN (Schmidhuber, 2015). Fig. 5 shows a RNN that has been unrolled
across time; however not all RINNs can be unrolled in this manner
(Emmert-Streib et al., 2020). RNNs include Hopfield networks,
Boltzmann machines, and long short-term memory (LSTM) networks.
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Fig. 5 A recurrent neural network (RNN) with a single hidden node (A) and the same
RNN that has had the recurrent connection unrolled across time (B).

Hopfield networks (HNs) are fully connected recurrent networks. HNs
differ from MLPs because they are fully connected in the recurrent sense
rather than the feedforward sense, meaning that every node is connected
to every other node in the network. This also means that nodes cannot
be organized into layers. HNs also do not distinguish layer types (input, hid-
den, and output). Instead, each node serves all three functions in sequence
(Emmert-Streib et al., 2020). Boltzmann machines are a variant of HNs
that use a special type of probabilistic activation function (see Hinton and
Sejnowski (1983) for more details). Boltzmann machines are still fully
connected networks, but nodes are split into a visible layer (input/output)
and a hidden layer between which values can move bidirectionally
(Emmert-Streib et al., 2020).

Long short-term memory (LSTM) networks are an increasingly used
type of RNN that were designed to address drawbacks of earlier RINN types.
With standard RINNs, memories or patterns learned from prior data points in
a sequence are often only preserved in the short term. When attempting to
train a standard RNN that stores information over the long term, bac-
kpropagation becomes a time-consuming process because loss functions
must also be evaluated through time (Hochreiter and Schmidhuber,
1997). LSTM solves this problem by truncating the error gradient calculation
through time where possible (Gers et al., 2002; Hochreiter and
Schmidhuber, 1997). The capability of a LSTM to store information for
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longer periods gave it access to more learned features than prior RINNs.
However, the original LSTM configuration led to the indefinite accumula-
tion of information until eventually the network would break. A method of
resetting a network’s memory called a “forget gate” was developed to address
this problem (Gers et al., 2000). The modern LSTM network is composed of
memory blocks that are made up of one or more memory cells, an input gate,
an output gate, and a forget gate (Gers et al., 2002). The memory blocks can
then be chained together in the same manner as traditional NN nodes. The
learning algorithm used by LSTM is a variant of backpropagation fused with
components of an earlier RNN learning algorithm called real-time recurrent
learning (RTRL) (Williams and Zipser, 1995). Variant architectures have
also been developed. One of which is called Gated Recurrent Unit
(GRU). GRU also relies on the gate structure introduced by LSTM (Dey
and Salem, 2017). Where a LSTM has three gates within each memory
block, a GRU uses only two gates to control the use of current input and
values from prior memory (Dey and Salem, 2017). Further in the RNN suc-
cession, there are also GRU variants that use other configurations of gates to
generate NNs with memory. Broadly speaking, the memory block used by
LSTM and the other single units used by GRU and variants can be called
RNN cells.

2.3.4 Encoding decoding networks

Encoding decoding type networks rely on reducing variable length inputs to
a fixed length bottleneck (encoding) then reconstructing the output to a
similar length as the input (decoding). The bottleneck forces the network
to distill a compact feature set that is representative of the input data. In
autoencoders, encoding layers feature progressively reduced node numbers
toward a bottleneck layer. The bottleneck layer is followed by decoding
layers that reconstruct input data points using increasing node numbers
(Kramer, 1991). Autoencoders are a type of unsupervised ML that attempt
to reconstruct the input data from the features learned through the bottle-
neck, so labeling of input data is unnecessary and the decoder output is
compared to the input for optimization (Hinton and Zemel, 1993).
Autoencoder subtypes include denoising autoencoders and variational
autoencoders. Autoencoders can also be combined with other NN struc-
tures to produce adversarial autoencoders, convolutional autoencoders,
and sparse autoencoders. Encoder-decoder recurrent networks (also referred
to as sequence-to-sequence learning) utilize RNN cells from LSTM or
GRU to form a similar variable input to bottleneck to variable output
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structure. However, the bottleneck is accomplished through time or
sequence and the important features are those that are preserved through
rounds of recurrent connections.

2.3.5 Generative networks
Generative neural networks are a class concerned with generating new
examples that resemble the training data. Generative models more broadly
are approaches that attempt to learn the probability distributions that under-
lie the training examples they are provided (Goodfellow et al., 2020). An
example of a simple ML generative model 1s maximum likelihood estima-
tion. Generative models use the learned probability distribution estimate to
formulate the model output. This class of models exists in contrast to dis-
criminative models that learn boundaries to separate different classes of
labeled data. Examples of discriminative models include logistic regression,
support vector machines (SVMs) (Section 2.2.3), and decision trees
(Section 2.2.1). Generative adversarial networks (GANs) are currently the
most popular type of generative neural network, but variational
autoencoders (Section 2.3.4), autoregressive NN, fully-visible belief net-
works, and transformers are also types of generative networks.

GAN:Ss rely on two models, one of which is a generator while the other is
a discriminator. The job of the discriminator is to determine if the values
provided to it are real (sampled from the training data) or fake (created
by the generator) (Goodfellow et al., 2020). Both the generator and the dis-
criminator are optimized during training. However, these models are at odds
with one another. As the generator model improves, it becomes more dif-
ficult for the discriminator to determine whether values were observed (real)
or created (fake) (Goodfellow et al., 2020). Until eventually, the generator is
capable of producing realistic outputs that the discriminator cannot distin-
guish from observed data points. Variational autoencoders are a type of gen-
erative autoencoder that preserves the encoding decoding structure of
autoencoders but learns in a probabilistic manner similar to other types of
generative networks (Patterson and Gibson, 2017). Autoregressive NN
are a type of feedforward network that also structures the network into
encoding and decoding components (described in Section 2.3.4).
However, the key feature is that this network uses the output of previous
time step as input for subsequent time steps. This allows the network to gen-
erate output indefinitely (or until a stopping mechanism deploys) since new
input is also continuously available.
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2.3.6 Transformers

Transformers are neural networks that differ from other types because of the
attention mechanism that they rely on. Attention is the learning of represen-
tations of input in a context dependent manner (Vaswani et al., 2017). In
other words, attention can learn interactions between values in an input vec-
tor (Cheng et al., 2021). The attention mechanism identifies critical context
information for encoding each input and decoding each output. This con-
text information is represented in a context vector made up of the sums of
the weighted annotation values. Different context vectors can then be used
to decode different outputs in conjunction with the encoded feature vector.
Attention therefore produces predictions that are more representative of the
complete input vector (Bahdanau et al., 2014).

Transformers are also capable of parallelization of sequential/time series
data because of positional encoding. Essentially, transformers are provided
with an additional input vector that specifies order numerically (positional
encoding) separately from the input vector that specifies input values (input
embedding). Many types of transformers exist, including variants that use
only the encoding (BERT, RoBERT) or decoding (GPT-4) transformer
subunit. In addition to the natural language applications of the original trans-
former (Vaswani et al., 2017), transformer variants have been adapted to
audio (Wave2Vec, HUuBERT), image (ViT), video (BEiT, Maskformer),
multi-modal  (VisualBERT, DALL-E 3), and protein sequence
(AlphaFold2, ESMFold) applications (Betker et al., 2023; Jumper et al.,
2021; Lin et al., 2022b; Lin et al., 2023; OpenAl, 2023).

Even though the attention mechanism is well known for its role in
transformers (Vaswani et al., 2017), it was originally developed to improve
RNNs. The memory mechanism in RNNs has a recency bias. Information
learned from more distant values in the input sequence has more oppor-
tunities to be forgotten than recently evaluated values in each hidden state.
For example, in a dataset containing a 24 h time-series experiment when
evaluating the hidden state for the hour 23 input, an RNN has had many
more opportunities to forget important features from hour 1 than from
hour 22. Particularly in encoder-decoder RNNs where memory is used
to encode the input into a fixed length feature vector, it can be difficult
to preserve relevant learning dependencies between distant values
(Bahdanau et al., 2014). The attention mechanism grew out of this
context.
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2.3.7 Multi-modal neural networks

The task of fusing multiple types or modes of data has been approached a
number of ways. These approaches can generally be divided into early, late,
and intermediate fusion (Ramachandram and Taylor, 2017). Early and late
fusion refers to the time when data sources are integrated. Early fusion occurs
prior to feeding the data into a model and is accomplished through some
method of dimensionality reduction (like PCA), while late fusion instead
integrates the information sources after already passing data through separate
models in a manner similar to an ensemble using average aggregation
(Ramachandram and Taylor, 2017). Multi-modal neural networks represent
an intermediate fusion of learned representations (Ramachandram and
Taylor, 2017).

Multi-modal neural networks (m-NNs) combine sub-networks where
each can accept a different type or mode of data (Fig. 6). Sub-networks
in a m-NN can feature architectures identical to other single network archi-
tectures, such as GANs, LSTMs, CNNs, and MLPs. Similar to ensembles,
m-NNs can have sub-networks of the same type or difterent network archi-
tectures. Sub-networks are connected and interact through a multi-modal
layer, similar to the meta-model of stacked ensembles (Section 2.2.2). An
advantage of using a m-NN over feeding outputs from single networks to
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Fig. 6 A multi-modal neural network accepting three input data types. A separate
sub-network receives each data type. The intermediate values resulting from the
sub-networks are propagated through a joint, multi-modal sub-network to make the
final prediction.
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another subsequent single NN for the final prediction is that all m-NN
sub-models can be trained collectively, instead of independently.

2.4 Computer vision

Computer vision is the field of artificial intelligence associated with deriving
meaning from images. A computer vision system comprehends its environ-
ment in two stages: image acquisition and image processing (Narendra and
Hareesh, 2010; Patricio and Rieder, 2018). Images can be acquired using
cameras and other imaging technologies many times in combination with
a mobility system. Image acquisition systems are often mono-RGB (red,
green, blue) vision systems, but may also include stereo vision, multi/hyper-
spectral cameras, time-of-flight cameras, LIDAR technology, thermography
imaging, fluorescence imaging, and tomography imaging (Perez-Sanz et al.,
2017). These various types of sensors may also be accompanied by mobility
components such as conveyors, ground vehicles, unmanned aerial vehicles
(UAVs), and motorized gantries (Mochida et al., 2019).

Image processing can be further divided into pre-processing operations,
segmentation, feature extraction, feature selection, and classification
(Fig. 7A) (Jayas et al., 2008; Perez-Sanz et al., 2017). To facilitate other
image processing steps, images may be preprocessed to crop the field of view,
improve contrast, eliminate noise, reduce dimensionality, and apply filters,
among other more task specific goals (Perez-Sanz et al., 2017).

2.4.1 Image segmentation

Image segmentation is important for background and object differentiation
and 1is critical for downstream recognition and classification tasks. Some
common image segmentation methods include those that are threshold
based, edge based, color-index based, region based, clustering based, or
based on deep learning. Threshold based segmentation separates a greyscale
image into groups based on pixel intensity (L1 et al., 2020). Edge based seg-
mentation also relies on pixel intensity but recognizes large changes in inten-
sities of adjacent pixels as edge boundaries (Kuruvilla et al., 2016). Edges can
be further refined through edge thinning and edge linking. Threshold and
edge based segmentation methods are simple and efficient, but can be ill
suited for complex images. Both segmentation methods rely on difference
in intensity or greyscale color space which can fail when an image has little
intensity variation. Across an RGB image, color index-based segmentation
may be a better approach since it can preserve differences in RBG color
space rather than greyscale space. Color indices convert RGB space into



Methods
mono-RGB, stereovision,

LIDAR, fluorescence

cropping, contrast change,
filtering, noise reduction

threshold, edge,
clustering, learning

color, texture, shape
filter, wrapper, embedded

k-nn, logistic regression,
SVM, neural netowork

Pipeline

Image Acquisition

Preprocessing

Segmentation

Manua

Image

Annotation

Feature Extraction

Feature Selection

Classification

Evaluation

(@)

Fig. 7 Steps and different methods used in (A) conventional and (B) neural network-based image processing.

Methods

mono-RGB, stereovision,

LIDAR, fluorescence | Image Acquisition

CNN,
Autoencode

Pipeline

Deep Neural
Network

Preprocessing

Segmentation

Manual Image
r Annotation

Classification

(b)




30 Karlene L. Negus et al.

alternative one-dimensional color spaces. For example, a green index would
preserve differences in green color (Hamuda etal., 2016). Region based seg-
mentation divides an image into regions of alike pixels. Region based seg-
mentation works well in noisy images where borders may be more difficult
to detect (Kuruvilla et al., 2016). Region based segmentation starts with
individual pixels or pixel groups and processively adds similar pixels to
the initial region or splits dissimilar pixels from the region (Kaur and
Kaur, 2014). Clustering based segmentation also groups alike pixels
together. However, clustering based segmentation strategies use clustering
algorithms, such as hierarchical or partition based methods, to identify
regions with pixel similarity. Clustering can be either hard or soft. Hard clus-
tering assigns only one group per pixel. Soft clustering uses fuzzy logic to
assign partial membership of a pixel to multiple groups (Kaur and Kaur,
2014). Region based and clustering based methods may more successfully
segment complex images but are more complicated algorithms that require
additional parameter tuning and heavier computation than edge and thresh-
old based segmentation methods (Li et al., 2020). Deep learning methods
can be highly accurate but are also the most computationally intensive
and require large amounts of training data compared to the other segmen-
tation methods. A variety of deep neural networks, such as convolutional,
encoder-decoder, or recurrent networks, can be used as a backbone for seg-
mentation (Minaee et al., 2021). General details on various neural network
types are addressed in Section 2.3. For a more thorough review of the uses of
NN for image segmentation see Minaee et al. (2021).

2.4.2 Feature extraction and selection

Feature extraction and feature selection are other mid-level image
processing steps that generally follow segmentation and can be used together
or individually. A segmented image may contain points of redundant data.
Feature extraction summarizes the segmented image into a new feature set of
the smallest possible size while preserving the characteristics of the complete
image. Feature extraction methods differ by feature type with separate
approaches existing for color, texture, and shape features. A few examples
include color histograms, color moments, color correlograms, spatial texture
methods, and spectral texture methods (Tian, 2013). Feature selection can
then be used to identify the features that are interesting and the features that
are irrelevant to the computer vision task (Zebari et al., 2020). Proceeding
with the subset of relevant features identified by either feature extraction or
feature selection rather than the segmented image further reduces
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dimensionality, which can reduce training time and improve accuracy of
classification (Zebari et al., 2020).

The dominant feature selection methods include filter, embedded, wrap-
per, hybrid, or ensemble. Filtering i1s one of the earliest developed methods
and operates by comparing features to the characteristics inherent to the
computer vision task. With filtering, feature selection and any subsequent
learning tasks, which would include classification in computer vision,
remain separate processes. Filtering generally has good performance and is
highly efficient computationally, which allows scaling to large datasets
(Zebari et al., 2020). The wrapper method wraps feature selection around
the classification task so that features minimizing estimation error are
selected (Zebari et al., 2020). The wrapper methods can achieve better per-
formance than filter methods, but at the risk of overfitting and increased
computational complexity. The embedded method also integrates feature
selection with the classification task but avoids repeating classification (once
for feature selection and once for classification) by embedding feature selec-
tion within the classification task (Zebari et al., 2020). This design results in a
method with similar accuracy, but improved efficiency and reduced com-
plexity compared to the wrapper method (Zebari et al., 2020). Hybrid
methods combine two feature selection methods. One of the most common
combinations is a hybrid filter-wrapper method. Hybrid methods seek to
combine complementary suitabilities of two methods by using evaluation
criteria of different methods at different search stages (Liu and Yu, 2005).
Ensemble methods for feature selection operate similarly to ensemble
methods described in Section 2.2.2. Generally, ensemble feature selection
builds feature sets on a variety of subsamples and then aggregates the subsam-
ple feature sets into a single feature set (Zebari et al., 2020). Ensemble feature
selection preserves the advantages of the ensemble approach, reducing over
fitting and maintaining robustness to unstable data.

2.4.3 Image classification

Image classification, also termed image recognition, is tasked with com-
prehending the objects contained within an image or, more specifically,
comprehending the features contained within the previously identified fea-
ture set. Image classification is most often accomplished using supervised
learning algorithms that are also common to other classification tasks and
relies on manually labeled images for training. Image classification can be
accomplished using decision trees or random forests (Section 2.2.1), logistic
regression, support vector machines (Section 2.2.3), Bayesian networks,
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K-nearest neighbor classifiers, and various types of neural networks
(Section 2.3).

Recent improvements in computer vision have almost exclusively relied
on neural networks. The performance of deep-learning based computer
vision pipelines has been shown to far exceed other approaches that dom-
inated the field prior to the renewed interest in neural networks, which has
defined the third Al summer (2012—present). This success in the field of
computer vision can be attributed to neural networks being capable of
jointly processing feature selection/extraction and image recognition
steps (Fig. 7B) (Deng, 2014; Guo et al., 2016). Successful neural
network-based computer vision methods have been largely derived from
a few major types of neural networks including convolutional neural net-
works, restricted Boltzmann machines, autoencoders, and other sparse cod-
ing networks (Guo et al., 2016). Among those, CNN-based computer
vision has been the most widely deployed for a variety of computer vision
tasks (Guo et al., 2016).

As the scale of training data available for tasks like computer vision has
increased, the use of foundation models has become appealing in place of
separately training every task-specific computer vision model. Foundation
models are models that are trained on broad data usually without a very spe-
cific classification or prediction objective. Foundation models can then be
adapted to a variety of more specific tasks through additional training, usu-
ally fine-tuning (Bommasani et al., 2021). Current foundation models in
computer vision include CLIP (Radford et al., 2021), ALIGN (Jia et al.,
2021), and Florence (Lu et al., 2021) for visual-language representation
learning; the Segment Anything Model (SAM) (Kirillov et al., 2023) for
image segmentation; and DALL-E (Ramesh et al.,, 2021) for image
generation.

2.5 Natural language processing

Natural language processing (NLP) is a type of Al concerned with learning
from language similar to the human task of reading. To solve this problem,
NLP can employ other types of Al within processing steps. Modern NLP
generally takes the form of statistical NLP or neural NLP that use statistical
learning and neural network learning methods respectively. Previous, less
successful iterations of NLP did, however, use symbolic Al. NLP is primarily
concerned with text and speech processing, morphological analysis, syntac-
tic analysis, lexical semantics, relational semantics, and discourse. These NLP
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processes can be used to accomplish tasks like machine translation, speech
recognition, and speech synthesis.

Much like computer vision, modern NLP is largely accomplished with
NN-based approaches. These NN types have been largely covered in pre-
vious sections and, due to the low implementation frequency of NLP within
various crop improvement methods, we will not revisit them here in NLP
specific context. However, the NLP field has yielded many interesting
developments in NNs. For example, ChatGPT (OpenAl, 2022), a recently
popularized feat in NLP, is derived from an innovative lineage of NN called
generative pre-trained transformer (GPT) networks (Brown et al., 2020;
Radford et al., 2018, 2019) that are themselves variants of transformer
networks (Section 2.3.6) (Vaswani et al., 2017). GPT networks are NLP
foundation models that combine generative pre-training and discriminative
fine-tuning of a transformer model. Outside of NLP, transformers have been
explored for computer vision (Khan et al., 2022; Yuan et al., 2021), time
series forecasting (Li et al., 2019; Lim et al., 2021), and protein structure pre-
diction (Jumper et al., 2021; Lin et al., 2023). AlphaFold1 (Senior et al.,
2020) 1s an example of an Al accomplishment that is widely recognized
within the scientific community, but AlphaFold2 underwent a complete
redesign based around the transformer (Fig. 8) to achieve even greater pro-
tein structure accuracy (Jumper et al., 2021). The NLP field has and will
continue to be an area to watch for novel Al and NN approaches that
may be suited to alternative uses.

ChatGPT

GPT v.3.5 - 4.0

\GPT v.2.0 - 3.0
AlphaFold1 AlphaFold2

Fig. 8 Transformers connect natural language processing with protein structure predic-
tion through the shared use of this neural network architecture by Chat-GTP and
AlphaFold2.
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3. Al applications in crop improvement
3.1 Genomic selection

Across the last several decades increasing focus has been placed on genetics as
a means to accelerate crop breeding. First generation genomics-enhanced
breeding methods like marker-assisted selection, relied on identifying indi-
vidual loci that affected a phenotype. Given that many agronomically
important traits, including flowering time, yield, and disease tolerance,
are polygenic in nature, a more comprehensive method of selection based
on genetics was needed (Buckler et al., 2009; de los Campos et al., 2013;
Varshney et al., 2017). Genomic selection (GS) was designed to address this
issue (Bernardo and Yu, 2007; Heftner et al., 2009; Meuwissen et al., 2001).
Genomic selection uses genome-wide DNA markers and observed pheno-
types in a training population to produce a model, which predict phenotypes
of an untested population from its DNA marker data for selection
(Montesinos-Lopez et al., 2021b; Varshney et al., 2017). While both GS
and genomic prediction (GP) were often used interchangeably, GS is a gen-
eral term that stresses the entire process with an actual selection step within a
breeding program and GP stresses the model development and prediction as
objectives.

Many conventional GS approaches generally employ linear parametric
regression. Such conventional GS approaches include best linear unbiased
prediction (BLUP) based methods like genomic BLUP (GBLUP) and ridge
regression BLUP (rrBLUP) as well as Bayesian models such as BayesA,
BayesB, BayesC, BayesR, and Bayesian LASSO. Currently, conventional
parametric regression-based approaches remain popular as they are more
computationally efficient than many non-linear, non-regression, and/or
non-parametric-based approaches and also often perform as well as or better
than other Al-based methods (Ogutu et al., 2011). However, linear para-
metric models have some limitations such as capturing only additive effects
and assuming phenotypes are normally distributed and continuous
(Gonzalez-Camacho et al., 2018). Despite the pervasiveness of conventional
methods, any prediction method that expresses the relationship between the
training set’s input (genotypes) and output (phenotypes) can be used for GS
(Montesinos-Lopez et al., 2021b). Alternative GS approaches that can main-
tain or improve prediction accuracies, capture complex genetic interactions,
and balance computational efficiency continue to be investigated, and
many types of Al-based GS methods remain promising. Conventional GS
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approaches have been thoroughly reviewed elsewhere (Crossa et al., 2017;
Jannink etal., 2010; Meuwissen et al., 2016) and so here we will focus on the
other types of statistical ML; including ensemble learning such as random
forests (RF), support vector machines (SVM), and neural networks (NNs)
for GS.

3.1.1 Ensembles

Some ensemble ML methods include RF, bagging, Adaboost, and gradient
boosting. RFs overcome some of the limitations of other types of
regression-based methods. RFs can handle instances where the number of
markers exceeds the number of observations and when highly correlated
and interacting markers affect the model fit. RFs are non-parametric and
so do not make assumptions regarding predictor variable distribution
(Breiman, 2001b; Ogutu et al., 2011). GS using RF regression on simulated
data has found that while RFs are capable of capturing epistatic effects, the
sub-sampling approach used can cause under-sampling of SNPs near QTL
(Ogutu et al., 2011). RF GS was used for disease count prediction in spring
wheat and outperformed a generalized Poisson ridge regression model
(Montesinos-Lopez et al., 2021a). Adaboost, because of the way it increases
the weights of previously incorrectly classified data points, may not be robust
to outliers, missing data, and correlated data which is a disadvantage for its
use in GS (Freund and Schapire, 1996). In contrast, gradient boosted GS
models can handle interactions, outliers, missing data, correlated variables,
and irrelevant variables while also automating variable selection. The vari-
able weighting for a gradient boosted model is accomplished in the same
manner as RF (Hastie et al., 2009; Ogutu et al., 2011). Boosting also
employs sub-sampling and can therefore exhibit some of the same limita-
tions as RFs when it comes to undersampling of SNPs near QTL.
However, boosting has been shown in some instances to perform slightly
better than RFs (Ogutu et al., 2011).

3.1.2 Support vector machines
Support vector machines (SVMs) are well suited for GS on categorical phe-
notypes (Noble, 2006; Zhao et al., 2020). However, performance varies by
the suitability of kernel function for a given data set and so kernel testing is a
required step in developing a SVM GS model (Zhao et al., 2020). This also
means that SVMs are highly adaptable to different data types.

Similar to linear models, linear kernels have an advantage in speed over
non-linear kernels. Using a radial bias function (non-linear) kernel has been
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shown to increase prediction accuracy in datasets with linear inseparability
over linear kernels (Zhao et al., 2020). The use of SVMs for GS does require
the testing of suitable kernels and hyperparameters which may be a drawback
for these methods. Additionally in practice, SVMs have been observed to
perform similarly to linear GS methods (Montesinos-Lopez et al., 2019;
Zhao et al., 2020).

3.1.3 Deep neural networks

Deep learning (DL) methods are nonparametric and can capture patterns
with unknown structure, which is an advantage in terms of flexibility over
parametric models like GBLUP, rrBLUP, and Bayesian methods.
Feedforward NNs like MLPs have been more widely implemented than
other deep learning networks for GS. MLPs are the simplest deep NN to
train but can suffer from overfitting. Feedforward NN often perform sim-
ilarly (Azodi et al., 2019; Gonzilez-Camacho et al., 2012; Montesinos-
Lopez et al., 2018a) or better than conventional methods (Gianola et al.,
2011; Khaki and Wang, 2019). There are additional instances where model
choice has depended on modeled effects (Mcdowell, 2016; Montesinos-
Lopez et al., 2018b; Sandhu et al., 2021; Zingaretti et al., 2020). MLPs
do not necessarily outperform other network architectures. CNNs have also
been experimentally tested for yield prediction in soybeans (Liu and Wang,
2017), stem height in loblolly pine (Liu and Wang, 2017), grain traits in
wheat (Ma et al., 2018), and several traits including height, flowering time,
yield in six species (maize, rice, sorghum, soy, spruce, switchgrass (Azodi
et al., 2019). The biological relevance of network architectures may need
to be considered. Pook et al. (2020) raised concerns regarding the appropri-
ateness applying CNN filters, which search for structural features, to SNP
data since adjacent SNP markers are not expected to have direct functional
relations. CNNs with local filters were proposed as an alternative and did
outperform traditional CNNs and MLPs using Arabidopsis and simulated
maize data (Pook et al., 2020). Overall, the uses of RNNs and other NN
architectures for GS have been limited.

High dimensionality is a major concern for predictive breeding (Crossa
etal., 2017; Ramstein etal., 2019). One that also extends to DL GS methods
(Washburn et al., 2020). Appropriate dimensionality reduction therefore
remains a concern for improved DL GS. Another reason that deep neural
networks may fail in practice is that, given the focus on loss optimization,
systems may learn unintended shortcuts that exploit superficial correlation
to arrive at simpler solutions (Geirhos et al., 2020; Wen et al., 2022).
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This leads to good predictions in the training set but poor predictions when
the superficial correlations are absent in the novel data (Geirhos et al., 2020).
Within GS, one way NNs have been observed to take shortcuts is by making
predictions based on relatedness of individuals, or the correlation of molec-
ular markers, and ignoring the epistatic interactions that neural networks
appear well suited to incorporate into the prediction (Ubbens et al.,
2021). Often similar prediction accuracies between NNs and linear regres-
sion GS is hypothesized to be explained by a phenotype being largely addi-
tively controlled. A failure of NNs to estimate epistatic interactions may
provide an alternative explanation as to why NN-based GP fails to out-
perform linear approaches. Incorporating logic-based programming, the
same approach used in many symbolic Al systems, is an approach currently
being investigated to allow NN to be right for the right reasons. Examples
include PrimeNet which exploits domain knowledge to prime a NN by
explicitly identifying task relevant information to the NN (Wen
et al., 2022).

3.2 Enviromics

Envirotyping has emerged as the environmental complement of other
“typing” techniques like genotyping and phenotyping (Xu, 2016). It
encompasses the process of collecting, processing, and associating environ-
mental data (Costa-Neto and Fritsche-Neto, 2021). Similar to genomics and
phenomics, enviromics differs from conventional environmental character-
ization largely in its scope. The aim for enviromics is to capture all environ-
mental factors, both major and minor, at site, plot, or even plant-specific
levels (Xu, 2016). The collection of these envirotypes is what makes up
an enviromic dataset. While environment has always been considered in
crop breeding, the rise of predictive breeding has driven interest in charac-
terizing genotype-by-environment interactions (GEI). Developing crop
cultivars with performance less affected by GEI 1s a major breeding objective
because it is desirable to have a stable crop performance across a target pop-
ulation of environments (TPEs). Achieving this objective often requires
multi-environment trials to capture performance across a TPE. However,
the entirety of a TPE cannot be tested. Crop performance prediction for
unobserved locations/seasons within a TPE may be improved by character-
izing the environmental factors driving GEIs and integrating these predictors
into a genomic prediction model. Historically, most environmental data was
available only at low resolutions. More recently, data with high levels of
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granularity has become accessible due to GIS, remote sensing, and wireless
sensing networks becoming more prevalent and has allowed the observation
of environmental differences within a TPE. Environmental factors which
may be envirotyped include climate factors like light, temperature, or pre-
cipitation; soil factors like soil type, soil fertility, or soil pH; biotic factors like
the presence of insects, viruses, or weeds; and cropping system factors like
intercropping or crop rotation (Xu, 2016). Enviromics may be assisted in
a number of ways by Al. Data collection methods for GIS and other remote
sensing systems are largely image-based and subsequent image processing is
fundamentally similar to the use of Al for image-based phenotyping. More
detailed overviews of these types of enviromic data pre-processing are
described elsewhere (Costa-Neto and Fritsche-Neto, 2021; Xu, 2016).
Once pre-processed, enviromic data has many applications which may also
benefit from Al. Those covered here will include environment classification,
and genomic prediction integration.

Environmental classification is the identification of mega- or
micro-environments within the TPE. Mega-environments are contiguous
or dis-contiguous areas of broadly similar environmental factors, consumer
preferences, and scales of production (Rajaram et al., 1994). Within the
scope of plant breeding, it is generally not necessary to use all environmental
factors for environmental classification, but rather focusing on environmen-
tal factors that limit or are otherwise particularly relevant to the GEI response
for trait(s) being selected upon. When a TPE consists of multiple mega- or
micro-environments, a range of GEI responses are possible. METSs attempt
to capture the possible phenotypic responses of cultivars to the wide range of
environmental variation that may occur in actual crop production.
Environment classification can be informative in the MET design stage
for site selection (Banziger et al., 2006; Crespo-Herrera et al., 2022; Xu,
2016). Environment classification has been approached using a number of
different methods such as factor analysis (Rogers et al., 2021), hierarchical
cluster analysis (Crespo-Herrera et al., 2022), principal component analysis,
enviromic assemblies (Costa-Neto et al., 2021). Other unsupervised ML
algorithms for cluster analysis, pattern discovery, or data reduction may also
be relevant for environmental classification.

In the enviromic assembly approaches to environmental classification of
Costa-Neto et al. (2021), environmental similarity was assessed using
enviromic markers. Costa-Neto et al. (2021) constructed discrete markers
that assessed stress and non-stress conditions directly from raw envirotyping
data based on prior knowledge of the environment factor thresholds for plant
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stress. In this case enviromic markers accomplished the dimensionality
reduction task that is often necessary for -omic data.

Environmental classification i1s not essential for enviromic-integrated
genomic prediction (GP). Following METs, characterization of environ-
ments into continuous environmental indices can assist in performance pre-
diction with GP under GEI. Critical environmental regressor through
informed search (CERIS) was developed to generate an environmental
index to quantitatively connect all tested environments (Guo et al., 2020;
Li et al., 2018; Li et al., 2021; Li et al., 2022; Mu et al., 2022). The envi-
ronmental index was chosen from combinations of environmental variables
and growth periods to be statistically correlated with the overall performance
of tested genotypes across environments, biologically relevant based on
physiology, and estimable for new environments. With the environmental
index from CERIS, joint genomic regression analysis (JGRA, so
CERIS-JGRA) has been shown to be promising for performance prediction
in multiple traits and multiple crops (Guo etal., 2020; Lietal., 2018; Li et al.,
2021; Mu et al., 2022). Within the CERIS-JGRA frame, different GP
models can be used. Resende et al. (2021) used a random forest procedure
to interpolate yield prediction across an environmental gradient of observed
test sites and neighboring unobserved TPE regions. It was proposed that any
type of powerful kriging approach could be appropriate for this method of
environmental indexing (Resende et al., 2021). Kriging is common method
for spatiotemporal interpolating of GIS data, but other ML and NN
approaches have also been demonstrated to be successful for broad spatio-
temporal interpolation tasks (Amato et al., 2020; Wu et al., 2021).

The advantage of building or selecting an environmental index is the
simplicity with which genetic effects and environmental factors can be inte-
grated into a genomic prediction model. This approach focuses on identi-
fying major patterns across environments and between environmental
variables during a critical crop growth stage and modeling the associated
effect on crop performance. This approach is different from both other
approaches where either all values of many environmental variable through-
out the season were used in constructing an environmental relationship
matrix and approaches where crop growth models were used to identify
the significant environmental variables to be fitted as a covariate in the geno-
mic prediction model (Cooper et al., 2016; Heslot et al., 2014; Jarquin et al.,
2014) An environmental index can be used as the explanatory variable in a
linear regression to generate reaction norms predicting trait performance
across the TPE (Li et al., 2018; Li et al., 2021; Resende et al., 2021).
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This format for integrating the environmental dimension separates feature
selection from prediction. Alternative Al approaches that integrate feature
selection into model training are increasing in relevance as the amount of
envirotyping data increases and may complement NN based GP approaches.
It 1s expected that Al approaches can be designed to outperform current
methods such as CERIS-JGRA when a single environmental index does
not capture an adequate amount of variation in data or when feature selec-
tion and model building should be integrated in the combined space of
genotype and environment for performance prediction. Due to the inclu-
sivity of these approaches for integrating other types of data into a GP model,
these approaches are covered in Section 3.4.2.

3.3 Crop growth modeling and management

Crop growth models (CGMs) use quantitative descriptions of ecophysiolog-
ical processes to model plant growth and development as influenced by envi-
ronmental conditions and crop management, which are specified for the
model as input data (Hodson and White, 2010). Another term used inter-
changeably with CGMs is Ecophysiological Crop Models (ECMs). The
basic notion underlying CGMs is to use systems of differential equations
to represent the temporal dynamics of plant physiological processes, mor-
phological variables, and selected environmental variables to model plant
growth, dry matter production, and grain yield. Crop modeling has signif-
icantly expanded in recent years and CGMs have been established for all
major crops, many minor crops, and a number of weed species. More
importantly, CGMs have become an important decision-making tool for
crop management and is now used in breeding programs to connect with
molecular biology (Cooper et al., 2014). More importantly, crop modeling
has become a major tool for tackling challenges in climate change, global
food security, and bioenergy (Jagermeyr et al., 2021; Lobell et al., 2013).

Like many other crop model platforms (e.g., DSSAT, EPIC, STICS,
WOFOST, ORYZA, CROPSYST, RZWQM, TOA, IMPACT,
SWAP, and GTAP), the Agricultural Production Systems sIMulator
(APSIM) contains a suite of modules that enable the simulation of systems
that cover a range of plant, soil, climate and management interactions
(Holzworth et al., 2014). APSIM is an open-source, advanced simulator
of farming systems with many crop models for different species, soil water,
nitrogen, temperature and environmental models together with advanced
management capabilities in a modular design. Realizing the needs to
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advance CGM research to address challenges from climate change, the
Agricultural Model Intercomparison and Improvement Project (AgMIP)
was established (Rosenzweig et al., 2013; Rotter et al., 2011) and has over
1000 members (https://agmip.org).

Within the CGM paradigm, different crop species and varieties within a
species are represented by differing numeric values within vectors of con-
stants embedded within the differential equations. Some example parameters
are radiation use efficiency; flowering time when expressed in photothermal
units; maximum leaf area; phyllochron intervals measured in degree-days,
etc. Because such constants often encode environmental sensitivities, the
premise is that they will have higher heritabilities than the more complex
traits encoded by interwoven processes within the bulk of the CGM. A pre-
diction scheme for interrelating crop phenotypes and genotypes assumes that
these constants are genetically determined and, therefore, predictable from
allelic and/or marker data via any of the genomic methods described above
(Hammer et al., 2006; Reymond et al., 2003; Technow et al., 2015; White
and Hoogenboom, 1996; Yin et al., 1999). To predict the trait behaviors of
novel genotypes in untested environments, one would (1) use genomic pre-
diction to estimate the constants for the line and then (2) use the CGM, as
driven by time series of environmental data characterizing any location-year
of interest to predict the resulting phenotype.

While individual studies have been conducted to integrate Al and CGM,
the overall fusing of knowledge-driven CGM with data-driven Al was ter-
med as Knowledge- and Data-Driven Modeling (KDDM) (Zhang et al.,
2023b). There are many points where Al can enhance CGM, including
(1) relating easily taken sensor data to needed but hard-to-measure CGM
inputs, (2) phenotyping for model calibration or in-season state variable cor-
rection, and (3) improving computational efficiency by Al. For example, a
random forest model was used to compute a developmental stage dependent
harvest index of wheat in APSIM (Feng et al., 2019), and radial bias function
network was leveraged within a CGM to study tomato growth (Fan et al.,
2015). More interestingly, when ML methods such as random forest,
XGBoost and other ensembles were coupled with CGM for yield prediction
in maize, accuracy was much increased (Shahhosseini et al., 2021).

In addition, ML methods can replace the traditional genomic prediction
approach within the CGM framework. In a recent study, CNN was found
to perform similarly or better than standard genomic prediction methods
when sufficient genetic, environmental, and management data were pro-
vided (Washburn et al., 2021). In this case, CGM outputs were used as
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additional inputs to the ML prediction models, highlighting the value of
integration in KDDM. In a follow-up study, different optimization strate-
gles (consecutive optimization and simultaneous optimization) for creating a
multi-modal deep neural network were investigated and these deep learning
models were compared against a set of classic ML and statistical methods
(Kick et al., 2023). The consecutively optimized deep CNN model was
found to have a slightly higher average error than the best BLUP model,
but to be more consistent in its performance across model replicates.

3.4 Phenomics and other multi-omics

3.4.1 Image-based phenotyping

3.4.1.1 Image acquisition

Phenotyping has been revolutionized by high-throughput methods, partic-
ularly image-based phenotyping. With traditional plant phenotyping, we
were often limited to characteristics identifiable to the human eye.
Today, images can be acquired for studying crop phenotypes with a diversity
of sensors, external conditions, and traits. These image-based methods are
fast and non-destructive and can be used to capture complex trait
information.

The methods selected for image-based phenotyping will depend on the
crop, trait, developmental stages, and resources available (Chawade et al.,
2019). However, the most common type of sensors used to collect pheno-
type data include red, green, blue (RGB) cameras, RGB-depth cameras,
hyperspectral cameras, thermal infrared cameras, near-infrared cameras, light
detection and ranging (LiIDAR) devices, and computed tomography (CT)
scanners (Li et al., 2020).

RGB cameras image the visible spectral range (380—-800nm) and are
capable of capturing many phenotypes that are otherwise visually phe-
notyped. Two dimensional RGB images have been used for measuring bio-
mass, leaf area, root architecture, leaf diseases and yield (Li et al., 2014). RGB
cameras can also aid in more precisely quantifying traits that are difficult or
time-consuming to score by the human eye. Stereo vision systems employ
two mono-vision cameras like an RGB camera to generate 3D images.
Stereo vision has an advantage over mono vision when it comes to structural
features. This can be especially important in field conditions where plants
cannot be staged in trait relevant positions.

Hyperspectral imaging captures one dimension of spectral information
within visible plus non-visible range (380-2500nm) and two dimensions
of spatial information via point spectroscopy to generate a 3D matrix
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(Liu et al., 2020). Hyperspectral imaging has had more limited use in UAV
and ground-based vehicle systems compared to the more RGB cameras,
largely due to the increased cost. Hyperspectral UAV systems have been
used to measure chlorophyll in barley (Aasen et al., 2015) and to estimate
biomass in wheat (Honkavaara et al., 2013). Hyperspectral images have been
more widely collected using satellites or high-altitude aircraft. Satellite
hyperspectral images have been used to predict yield and biomass in wheat
(Tattaris et al., 2016). Hyperspectral imaging is relevant for measuring
changes in growth dynamics through vegetative indices, water contents,
and pigment composition (Li et al., 2014). The near-infrared (NIR)
spectrum (800—2500nm) is another commonly imaged range. NIR imag-
ing is often done in conjunction with RGB or as a part of hyperspectral
imaging. The NIR range is important for the calculation of vegetative indi-
ces like NDVI (normalized difference vegetative index).

Thermal infrared (TIR) imaging is able to detect radiation in the thermal
range or far infrared (15—1000 pm) range. TIR image pixels represent tem-
perature values and after correcting for environmental factors, these images
can be indicative of plant stress (Pineda et al., 2020). TIR is useful for eval-
uating differences in stomatal conductance which is related to water status
response and abiotic stress transpiration rate adaptation (Li et al., 2014).

LiDAR measures the time by taken by a light pulse to be reflected off an
object of interest and back to the sensor (Perez-Sanz et al., 2017). LIDAR is
another sensor type that generates a 3D image structure and is effective at
large and small distances from several centimeters to thousands of kilometers.
LiDAR has been used for phenotyping plant height, biomass, and leaf traits,
among others (Panjvani et al., 2019; Sun et al., 2018).

Tomographic imaging methods like CT, magnetic resonance imaging
(MRI), positron emission tomography (PET) or ultrawideband radar scan-
ning (URS) are other types of sensors that can be used for the take of plant
phenotyping via computer vision. These approaches have lagged behind
other imaging systems for phenotyping tasks as they have not increased in
throughput capabilities as rapidly. Examples of phenotyping with tomo-
graphic imaging methods include using MRI for water diftusion and trans-
port evaluation (Windt et al., 2006), CT for root system architecture
evaluation (Hargreaves et al., 2009; Windt et al., 2006), and URS for exam-
ining the interiors of dense canopies closed to direct vision (Gomez-Garcia
et al., 2022).

In addition to the sensors used, the image acquisition system can vary
depending on the environmental conditions. Plants may be located in a field,
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greenhouse, or laboratory depending on the trait and tissue being studied. In
many situations for large-scale field imaging, a sensor 1s often mounted on
remotely controlled equipment, like a satellite, UAV, or ground-based vehi-
cle, while imaging in a greenhouse or laboratory, may also include stationary
or handheld systems. Satellite imaging generally relies on images captured by
existing satellite systems that are either freely or commercially distributed.
Satellite imaging has an advantage over other systems for large plot sizes
and dispersed multi-environment trials. Given the scale at which satellite
imagery is taken, environmental variability and necessary travel can be min-
imized with satellite image acquisition (Chawade et al., 2019). However,
satellite imaging is limited by revisit frequency, image precision, and cloud
cover interfering with image capture (Chawade et al., 2019). UAVs also
need to contend with environmental considerations when collecting images
but have increased flexibility of the timing and repetition of flights. UAVs
include both rotocopter systems like octocopters and hexacopters, and also
parachutes, blimps, and fixed wing systems (Sankaran et al., 2015).
Rotocopters are flown at altitudes between 10 and 200m, verse 700km
for satellites. This means UAVs collect images at a higher spatial resolution
than satellites. Quality orthomosaics are necessary for downstream research
tasks. However, generating high-quality orthomosaics can be a hurdle for
use of UAVs. Inaccuracies can be induced by lens distortion, ground sample
distance (physical distance represented by the span of one image pixel),
degree of image overlap, and position estimating equipment (Chawade
et al.,, 2019). Such inaccuracies would need to be corrected during ort-
homosaic building.

Proximal phenotyping through ground-based sensing approaches can be
stationary mounted, handheld, and ground-based vehicle mounted systems
(Deery et al., 2014). Stationary and handheld systems can reduce costs com-
pared to vehicle systems, but time and labor associated with these methods
increase as the number of plants increase. Ground-vehicle systems can
reduce labor and time inputs for a large number of plots and also provide
further increased spatial resolution over UAV systems. However, ground
vehicles still generally require more time over UAV systems for imaging
an equivalently sized plot which can increase the amount of temporal var-
iation (Chawade et al., 2019).

3.4.1.2 Data processing
In addition to the imaging system used, image processing and data
processing are critical steps for image-based phenotyping. The computer
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vision approaches discussed in the previous computer vision section
(Section 2.4) remain true for plant phenotype. Additionally, prior reviews
specific to several topics within computer vision for plant phenotyping
such as ML and DL approaches for plant stress phenotyping (Gill et al.,
2022; Singh et al., 2016; Singh et al., 2018); DL approaches for leaf
classification, disease detection, plant recognition, and fruit counting
(Kamilaris and Prenafeta-Boldu, 2018); and CNNs for plant phenotyping
(Jiang and Li, 2020) are also available. Rather, recent applications devel-
oped specifically for phenotyping will be detailed here with particular con-
sideration for NN-based applications.

Several categories of traits represent the most studied crop phenotypes,
those include root morphology, leaf characteristics, biomass, yield-related
traits, photosynthetic efficiency, and biotic and abiotic stress response
(Jiang and Li, 2020; Li et al., 2014; Yang et al., 2013).

Root phenotyping has remained among phenotyping methods with
high labor costs. In the field, roots cannot be imaged non-destructively with
a UAV or ground-based vehicle fitted with an RGB camera as many above
ground traits can be. Approaches that are root phenotyping specific have
needed to be developed. One approach is to grow seedlings in the lab using
containers that can be opened for imaging such as agar plates or germination
paper. Falk et al. (2020) introduced a root phenotyping approach that uti-
lized a fixed position RGB camera to image plants growing on germination
paper. Growth pouch units were manually transferred to and from the imag-
ing platform yielding a throughput of approximately 60—100 seedlings per
hour. Image processing relied on the self-developed software ARIA 2.0 that
was built on top of the original ARTA (Automatic Root Image Analysis) tool
(Pace et al., 2014). ARIA 2.0 relied on a convolutional autoencoder NN
architecture that eliminated the need for separate preprocessing and feature
extraction steps.

Lube et al. (2022) developed a system that images up to 18 Petri dish
plates simultaneously and processed up to 100 images per hour using an
RGB camera fitted with a visible bandwidth pass filter. Petri dishes were
mounted in a carousel that allowed for automated image acquisition making
the system suited to time-lapse captures. This system, called MultipleXLab,
also used an image analysis pipeline built on self-developed NNs called
SeedNet and RootNet for seed and root pixel identification. Both networks
are based on the U-Net architecture, a fully convolutional encoder-decoder
network, that was developed for image segmentation (Ronneberger
et al., 2015).
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ChronoRoot, as described by Gaggion et al. (2021), utilized time series
R GB images of agar plated seedlings and developed an automated image
processing pipeline that used NN-based segmentation. Two image
processing models were developed. The first was a modified ResUNet
model. ResUNet is a derivative of the U-Net architecture that uses residual
blocks in place of convolutional layers (He et al., 2015). Residual blocks are
characterized by skip connections (feedforward, supra-connections) that
provide memory without the use of gates like those used by RNNs. The
residual block is made up of both skip connections and the conventional
feedforward type connections that are bypassed by the skip connections.
ChronoRoot used ResUNet as the base of a DSResUNet model. The
DSResUNet model uses the ResUNet to generate intermediate feature
maps that are then further processed with two convolutional layers. This
introduces an additional loss term for both the initial segmentation map
generated by the ResUNet framework and for final output succeeding
the convolutional layers. The second segmentation method used by the
ChronoR oot system was an ensemble method that combined five popular
models: U-Net, ResUNet, DSR esUNet, SegNet, and DeepLab v3. SegNet
is another type of fully convolutional encoder-decoder neural network
(Badrinarayanan et al., 2017). SegNet difters from U-Net in the information
that is transferred between encoding and decoding sections of the network.
U-Net transfers the whole feature map, while SegNet only transfers pooled
indices. DeepLab v3 uses atrous (dilated) convolutions for feature extraction
(Chen et al., 2018). Traditional convolutions apply filters to neighboring
values in the input. Atrous convolutions skip some values per a defined spac-
ing to obtain a wider field of view with the same size kernel. For example, a
2 x 2 filter might be used on a 3 X 3 field of view where only the corners and
center values are applied to the filter. The NN output was considered a
soft-segmentation and was further refined in post-processing stages to skel-
etonize the root images and accommodate temporal tracking.

Thesma and Mohammadpour Velni (2022) used the same root image
dataset generated by Gaggion et al. (2021) but approached segmentation
through a conditional generative adversarial network (cGAN). One can
think of cGANs as a GAN where the generator and discriminator are con-
ditioned on supplementary information (Mirza and Osindero, 2014). Since
GAN:Ss are a type of unsupervised learning, the use of supplementary infor-
mation (like class labels or numerical values) also allows cGANs to be
considered a type of multi-modal NN. In the case of this root imaging
approach, a Pix2PixHD (Wang et al., 20182) cGAN architecture derivative
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(Isola et al., 2017) and the root annotations, used as labels for supervised
methods, became the supplementary, conditional information. The
cGAN approach was used to generate additional root images that were seg-
mented using SegNet. The accuracy of the cGAN + SegNet system used
here was similar, but slightly lower than the UNet and DSR esUNet models.
However, mean IOU (intersection over union) and dice score were higher
for the SegNet approach. Mean IOU represents the ratio of area of intersec-
tion of the predicted and observed bounding boxes over their union. Dice
score represents a similar metric as mean IOU but uses the formula of 2 times
the area of overlap over the area of the predicted bounding box plus the area
of the observed bounding box.

Root phenotyping has successfully adopted approaches from broader
computer vision processing techniques but is still bottlenecked by the need
for increased staging of the roots. Automated field root imaging remains an
inaccessible task. As aboveground plant components, leaf, shoot and growth
traits (i.e. height, biomass, leaf diseases, and leaf angle) have been more likely
to achieve the throughput expected to justify more complicated imaging
systems.

Nguyen et al. (2023) used a swarm of UAVs with each fitted with dif-
ferent sensors. The first UAV used a hyperspectral sensor (capturing the vis-
ible to NIR spectra), thermal sensor, and a GPS (global positioning system).
The second UAV included a LIDAR sensor and an RGB camera. The third
UAV consisted of a thermal camera, an RGB camera, and a multispectral
camera. Images taken by these UAVs were used to estimate cob biomass,
dry grain yield, dry stalk biomass, harvest index, grain density, grain nitrogen
content, grain nitrogen utilization efficiency, and plant nitrogen content.
Image processing included generating orthomosaics from thermal and
hyperspectral imagery and generating density maps from the LIDAR data.
After image processing, three approaches were used to process data for phe-
notype prediction: normalized difference spectral index (NDSI), ML, and
DL approaches. The NDSI approach combined all data modalities from
all the different sensors and used the combined values to investigate corre-
lations with the trait data. The ML approach used a handcrafted feature set
representing a fusion of vegetation, structural, and thermal indices. The fea-
ture set was used with the ML approaches (support vector regression and
REF). In the third, DL was used for single-modality and multi-modality pre-
diction. The DL models were CNNs designed for 2D and 3D data. For the
multi-modal CNN, the three CNNs, one for each of the hyperspectral,
LiDAR, and thermal single-modalities, were joined with a block of



48 Karlene L. Negus et al.

feedforward prediction layers. There was variable contribution of different
data modalities to different traits with hyperspectral data being nearer to a
primary contributor than others. Automated feature extraction via DL
proved feasible with similar prediction success compared to handcrafted fea-
ture sets. Multi-modal DL was shown to provide a computational advantage
over single modal approach with less time and resources required for gen-
erating predictions.

Xiang et al. (2023) used a ground-based vehicle (PhenoBot3.0) equipped
with multiple tiers of stereo R GB cameras to investigate leaf angle architec-
ture. These authors developed an image processing pipeline, AngleNet, that
was built on a CNN for key point detection followed by bounding
box detection. A disparity map and the 2D color images were used to gen-
erate the 3D leaf model. Keypoints could be mapped onto the 3D leaf model
and the leaf angle evaluated. The generation of a 3D model made the
AngleNet system robust to diverse leaf orientations that are possible for a
camera to capture in field conditions. This automated imaging pipeline
demonstrates the increase in throughput possible with computer vision
techniques with a 20 plant plot captured in 3—4s verse 8—10min required
for manually measuring the same quantity.

3.4.2 Multi-omic characterization

Multi-omic studies may better represent biological processes than
single-omic analysis and can bridge the gap between sequenced genotypes
and observed phenotypes by capturing additional genome-level variation.
Compared to genomic data, intermediate -omic data can be resource and
cost intensive, which makes it difficult to capture on a large scale.
Westhues et al. (2019) has shown that -omics data can be successfully
imputed from a subset of inbred lines and the result can be used for trait pre-
dictions. In terms of imputation, DL is a very capable method because it can
utilize correlations among different ~omic datasets for multi-omic imputa-
tion (Song et al., 2020). Autoencoders have been successfully used on
single-omic imputation (Chen and Shi, 2019). DL has also been investigated
as a part of a multi-modal structure for integrating multi-omic data with
other heterogeneous sets of features (Li et al., 2016). Multi-modal structures
have the advantage allowing different NN architectures to be selected which
best fit a given data modality within an integrative system (Song et al., 2020).
DL and other types of ML also have other more specific multi-omic appli-
cations in addition to the integration of multi-omic data into a GS model.
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3.4.2.1 Single cell RNAseq

Pluripotent stem cells in meristems give rise to all the above- and below-
ground organs. Profile transcriptomes of a large population of single cells
is a state-of-the-art approach to study how the stem-cell niches are
maintained and organized through the data-driven discovery approach
(Liu et al., 2021; Xu et al., 2021; Zhang et al., 2021). Unsupervised ML
methods, t-Stochastic Neighborhood Embedding (t-SNE) (Van Der
Maaten and Hinton, 2008) and Uniform Manifold Approximation and
Projection (UMAP) (Mclnnes et al., 2018), are widely applied to extract
critical information from single-cell transcriptomes (Xu et al., 2021;
Zhang et al., 2021). These unsupervised learning algorithms represent
state-of-the-art dimensionality reduction algorithms to reveal prominent
patterns from high dimension data. In combination with unique experimen-
tal designs, these algorithms are powerful to unveil biological insights.
Sequencing transcriptomes of 327 cells sampled from maize shoot apical
meristem showed that cells in the tip tend to have high activities in
maintaining the genome integrity and that the divergent molecular mech-
anisms of stem cell regulation exist between Arabidopsis and maize (Satterlee
et al., 2020). The regulatory programs associated with cell types at the root
tip are highly conserved in rice cultivars, while some programs are divergent
between rice and Arabidopsis (Zhang et al., 2021). By analyzing allele spe-
cific transcriptomes from single pollen precursors from a maize hybrid along
the developmental stages, novel discoveries of diploid-derived transcripts
persist long into the haploid phase and a rapid transition to monoallelic
expression around pollen mitosis I were reported (Nelms and
Walbot, 2022).

3.4.2.2 Regulatory genomics

Selection of gene expression pattern change is a major mechanism in domes-
ticating and improving crops (Chen et al.,, 2021). However, at the
genome-wide level, understanding of how gene expression is determined
by the linear (and non-linear) combinations of nucleotides remains limited.
Sequencing technologies have the capacity to assemble gapless genomes, and
accurately and efficiently measure expressions for tens of thousands of genes
across many conditions of the same organism. Therefore, compiling large
training datasets (labeled with gene expressions) is feasible. This opens the
possibility of systemically investigating learning from data by designing
and training ML and DL algorithms (Avsec et al., 2021; Novakovsky
et al., 2023). Using frequencies of mononucleotides and dinucleotides from
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six regions of each gene as features, random forests were trained to predict
the transcriptional response to cold stress across plants (Meng et al., 2021).
Given the frequent genome duplication events in crops, it was rec-
ommended that evolutionary relatedness be incorporated into CNNs
designed for transcription activities (Washburn et al., 2019). Similarly, deep
CNNs have also been expanded into other critical genomic features, or
molecular phenotypes, such as DNA accessibility and chromatin, chromo-
some interaction, and 3D organization (Kelley et al., 2016).

3.4.2.3 Population genomics

A major frontier of applying ML and DL for genomics is identifying and
cataloging polymorphisms beyond SNPs. Deep NN algorithms have been
trained to call small variants from short resequencing reads aligned to a single
reference genome (Luo et al., 2019; Poplin et al., 2018; Torracinta and
Campagne, 2016). Multiple high-quality genome assemblies build the foun-
dation to unveil the full spectrum of DNA polymorphisms of small and large
size, but the complexity of DNA polymorphisms across pan-genomes
requires innovative analytic strategies. Unsupervised ML algorithms have
been tested to streamline the identification of large structural variations
for genes of interest across assemblies (Zhang et al., 2023a). To leverage
state-of-the-art computer vision DL frameworks, strategies such as
SVision via the sequence-to-image schema have been tested to resolve com-
plex structure (Lin et al., 2022a). ML algorithms also demonstrated prom-
ising potential for inferring evolutionary signatures from DNA
polymorphisms (Schrider and Kern, 2018). With available pan-genomes
from accessions representing the genetic global diversity in different crops,
novel ML and DL algorithms may be used to combine assemblies and short
reads to gain a comprehensive understanding of population genomics.

4. Future of Al for crop improvement

Artificial intelligence is a diverse field, as are the tasks associated with
crop improvement. Al applications can appear in individual components of a
system or as the overall system structure in different aspects of crop improve-
ment. Together, these joint applications have been revolutionizing agricul-
tural practices in the field, greenhouse, and laboratory. Just as genomic
selection has been enhancing our capacity beyond the traditional breeding
and marker-assisted breeding approaches, so may neural network-based
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genomic selection as we continue to generate big data and novel
high-throughput approaches. With increased focus on the multiple dimen-
sions affecting phenotypes, new methods must be capable of considering
diverse genomic, enviromic, and multi-omic datasets that are collected with
rapidly changing technologies. A challenge that those involved in crop
improvement are familiar with is keeping up. For the last century that chal-
lenge has been framed around keeping up with the demand of a growing
world population, and this continues to be the major concern. Now, how-
ever, that challenge is further complicated by climate change. Going forward
into an era that may become dominated by Al approaches toward all types of
problems, the need to educate both scientists and the public about Al is
becoming clear.

For individual researchers in crop improvement to adopt Al methods, it
is desirable to know the potential advantages of Al methods over traditional
methods when data size is relatively small and how to assess the signal-noise
ratio before integrating diverse data sources. It is also desirable to compare
the efficiency of applying new Al methods to observational studies to the
efficiency of designed cropping experiments that have and will continue
to be a major data source for many aspects of crop improvement. For
producers, it is desirable to leverage Al to achieve sustainable production
via enhanced on-farm production management. The improved capacity
to monitor and forecast crop growth and health under different
genetic X environment X management combinations would greatly facili-
tate the decision-making process. At a larger space and a longer time scale,
how to leverage Al to generate guidelines and action plans for crop
improvement should be examined.

J.B.S. Haldane spent his life operating at the intersection of genetics, evo-
lutionary biology, physiology, and mathematical statistics. Indeed, in 1929
he advanced foundational notions relevant to later theories on the chemical
origin of life. He also once famously said (as frequently paraphrased by
others), “The universe is not only stranger than we imagine; it is stranger
than we can imagine.” Given the twin advancing/adverse drumbeats of
population growth and climate change, it might well be that our ability
to imagine what is possible at the intersection of breeding, genetics, crop
management, and AI/ML is the existential challenge of our time.
However, if the prior success achieved leveraging innovative technologies
for crop improvement is any indication, the future of Al-assisted crop
improvement is bright.
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