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Abstract

The growing global demands for agricultural goods will require accelerated crop
improvement. High-throughput genomic, phenomic, enviromic and other multi-omic
data collection methods have largely satisfied data acquisition bottlenecks that previ-
ously existed within crop breeding and management. Fully capitalizing on large,
high-dimensional datasets has now evolved as a new challenge. Artificial intelligence
(AI) is currently the foremost solution. Types of AI with the capacity to learn (machine
learning), such as neural networks, can better facilitate the translation of data into useful
predictions by bypassing the limitations of human expert-driven learning. The potential
for applying AI to major crop improvement methods has already been demonstrated
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with preliminary successes shown using deep learning for genomic selection, feature
selection for enviromics, ensembles and knowledge-based AI for crop growth model-
ing, computer vision and convolutional neural networks for phenomics, and
unsupervised machine learning for multi-omics. Other types of neural networks includ-
ing transformer, recurrent, encoding decoding, and generative networks as well as sym-
bolic (non-learning) AI such as robotic process automation, expert systems, and
inductive logic programming are also reviewed to contextualize the rapidly changing
AI field. Overall, AI has shown strong potential to leverage data for a variety of crop
improvement tasks.

Graphical abstract

1. Introduction

1.1 Crop improvement
Producing agricultural goods at rates that meet the demands of growing

world populations has been and will continue to be a vital issue.

Challenges to be faced in the coming years include not only increasing yields

but doing so despite decreases in quantity and quality of agricultural lands

and resources while also tolerating diverse and changing environmental con-

ditions worldwide. Equipping food production systems to grow with a

global population expected to reach 10 billion by 2050 while retaining

the capacity to handle these current and future challenges will require inno-

vative developments within crop improvement approaches.

Innovative methods have been previously adopted to address challenges

in crop breeding and management. In the transition away from traditional

2 Karlene L. Negus et al.



crop breeding systems that required labor intensive phenotyping to drive

selection in repetitious breeding cycles, plant breeding has taken advantage

of growing sources of -omic data including genomic, phenomic, and

enviromic data, among others. Next generation sequencing (NGS) and

reductions in genotyping costs have driven the integration of genomics into

breeding. First-generation genomics-enabled breeding strategies such as

marker assisted selection (MAS) which utilized GWAS and QTL study

results demonstrated increased gains were possible with genomics-aware

breeding. Subsequent expansion and development of additional strategies,

like genomic selection, showed further success could be achieved with

methods better suited to large-scale genetic data.

Improved strategies have also been concurrently developed in other crop

improvement domains. Major advances are being made in the areas of

(1) high throughput phenotyping (HTP) to capture data and extract infor-

mation from plants; (2) envirotyping to obtaine comprehensive meta-data

associated with the experiments and production fields with geographic

information systems (GIS) and remote sensing; (3) companion -omics tech-

nologies that quantifying the gene transcripts, metabolites, proteins, and

other molecules; (4) systematic design, application, and data collecting

of management practices and condition monitoring; and (5) scalable eco-

physiological crop growth models that integrate inputs for genetics, envi-

ronment, and management to generate crop performance through

process-based modeling.

Many prior issues facing crop improvement research revolved around

data accumulation. Those bottlenecks have been largely overcome with

higher levels of automation achieved through approaches like NGS technol-

ogies, HTP, GIS, and remote sensing. In this emerging era of high through-

put technologies, terabytes of data can be generated every growing season.

Modern crop improvement now has the advantage and challenge of

accessing large multi-omic data sets to inform breeding and management

decisions. Novel, efficient, and effective analytical methods will be needed

to continue bridging the gap between genotypes and phenotypes. Artificial

intelligence (AI) has the potential to provide diverse solutions to these ends.

1.2 Artificial intelligence
AI research and applications have evolved since the first instance of a neural

network in 1943 (Mcculloch et al., 1943) and the subsequent establishment

of the broader AI field in the 1950s. There have been several AI “seasons”
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where interest and efforts have risen, known as AI summers, and fallen,

known as AI winters (Ilkou and Koutraki, 2020). The first AI summer

spanned the years following the field’s initiation through the mid-1960s

(Kautz, 2022). This era was defined by knowledge representation, formal

logic, and heuristics. Interest waned as it became more obvious that making

computers learn (machine learning) was still a far-off prospect (Crevier,

1993). A shifting of the dominant perspective from general understanding

to expert knowledge underlined the activity of the first winter and success

in knowledge representation initiated a second AI summer that extended

across the decade of 1980s (Crevier, 1993; Kautz, 2022). During the second

AI winter (1988–2011), despite diminished public interest, critical advances

were still made. Approaches to efficient probabilistic reasoning were

achieved and machine learning was revitalized. These efforts also sought

to overcome the knowledge acquisition bottleneck experience in previous

seasons (Kautz, 2022). The third AI summer is currently underway and deep

learning systems have defined the early years of this era. Reasoning and

learning techniques have also become more ubiquitous in this most recent

season with new and old types being developed and revisited.

2. Types of AI

AI is concerned with the process of designing computers that can

think and act humanly and rationally (Russell and Norvig, 2009). In recent

years, AI has been increasingly explored as a means to analyze big data, most

popularly through machine learning (ML) approaches. However in addition

to ML, AI encompasses a number of diverse sub-fields that can be generally

categorized as symbolic or sub-symbolic (Ilkou and Koutraki, 2020; Nilsson,

1998). Symbolic AI (Section 2.1) will herein include robotic process auto-

mation (Section 2.1.1), expert and fuzzy systems (Section 2.1.2), and induc-

tive logic programming (Section 2.1.3).While sub-symbolic AI sections will

focus on machine learning (Section 2.2 for non-neural network machine

learning and Section 2.3 for neural network machine learning), computer

vision (Section 2.4), and natural language processing (Section 2.5).

2.1 Symbolic AI
AI approaches that represent knowledge through symbols (Hoehndorf and

Queralt-Rosinach, 2017) are described using names like symbolic AI, logical

AI, or computationalism (Domingos et al., 2016; Hoehndorf and

Queralt-Rosinach, 2017). SymbolicAI applies logical operations todeclarative
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knowledge represented by symbols. The goal of symbolic AI is to deduce the

consequences of the supplied knowledge through symbols and symbolmanip-

ulation (Hoehndorf andQueralt-Rosinach, 2017;Nilsson, 1998). For this rea-

son, many symbolic systems are often also categorized as rule-based or

logic-based systems. First order logic rules, like “if… then…” statements, are

a common form for symbols and highly explainable since this type of compu-

tational reasoning mimics human cognition (Hoehndorf and Queralt-

Rosinach, 2017; Ilkou and Koutraki, 2020; Nilsson, 1998). However, rules

in symbolic systemsmust be hard coded. Because of this, a functional symbolic

systemmust anticipate all situations and the appropriate corresponding actions

(in the form of rules) that lead from input to conclusion ( Jordan andMitchell,

2015). The rigidity of these systems and the extensive prior knowledge needed

to define rules are major drawbacks that limit the application of symbolic AI

systems in the modern age (Hayes-Roth, 1985; Ilkou and Koutraki, 2020;

Nilsson, 1998). But as sub-symbolic systems increase in complexity, symbolic

algorithms have been revisited for use as components within a larger

sub-symbolic system (d’Avila Garcez et al., 2002). For that reason, revisiting

applications of the most popular types of symbolic systems is still meaningful.

2.1.1 Robotic process automation
Robotic process automation (RPA) is the design of an AI agent that is capa-

ble of interacting with repetitive processes that have enough variability to

prevent the use of standard process automation. Tasks addressed by RPA

would otherwise require human interaction through an appropriate inter-

face to complete. An advantage of RPA is that instead of redesigning a sys-

tem capable of automation, an AI agent is designed to replace the human

user in the existing system (van der Aalst et al., 2018).

RPA canmimic actions taken by humans in a point and click interface by

deducing the underlying rule/action from input-response pairs. The ways an

AI agent in an RPA system comes to know what actions to take can vary. In

a system that doesn’t learn, intermediate actions must be specified by humans

during human interface training. This type of RPA has poor transferability

between applications since all steps must be explicitly defined. Some more

recent implementations of RPA systems can learn from examples

(input-response pairs) through supervised learning (Section 2.2). These sys-

tems are more flexible since intermediate actions are learned by the system.

RPAs have also begun to use reinforcement learning to eliminate the need

for human interfaced training (Chakraborti et al., 2020). These types of
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intelligent process automation can be implemented for more complex tasks

involving decision making and analysis.

2.1.2 Expert systems/fuzzy systems
Expert systems attempt to replicate the problem-solving capabilities of

human domain experts ( Jackson, 1998). The components of an expert sys-

tem include a knowledge base and an inference engine. The knowledge base

contains knowledge described by domain experts and represented in the sys-

tem using formal language. The inference engine then interprets the pro-

vided information to solve problems (Luconi et al., 1986). Expert system

development can be broken down into four steps: knowledge acquisition,

knowledge representation, knowledge utilization, and reasoning explana-

tion ( Jackson, 1998).

Where expert systems excel is interpretability. Since knowledge is rep-

resented (symbolized) using human-centric syntax rather than syntax opti-

mized for computation, the inference engine also reasons via interpretable

syntax. It becomes trivial to then provide a human-interpretable explanation

of how the problem was solved. For this reason, there is increased decision

acceptance by users despite expert systems sometimes being less accurate

than black-box types of AI.

A drawback of knowledge-based expert systems is the knowledge acqui-

sition bottleneck, both in terms of knowledge quantity and, perhaps more

importantly, knowledge quality (Kautz, 2022). Expert systems are only as

good as the knowledge they contain. For simple problems, limited but accu-

rate knowledge can be sufficient. But for complex problems, encoding suf-

ficient knowledge while maintaining knowledge relevancy becomes less

feasible as problems grow more complex. Computational efficiency then

also becomes a concern.

Expert systems can vary in terms of the knowledge structure.

Rules-based expert systems have knowledge-bases consisting of formalized

situation-action rules, known as production rules. Frame-based expert sys-

tems, like decision trees (Section 2.2.1), also integrate the relationship

between pieces of knowledge as “meta-knowledge” to provide an explicit

structure to the knowledge base ( Jackson, 1998).

All symbolic systems employ logic to form conclusions. Propositional

logic, first-order logic, inductive logic, and some expert systems can utilize

fuzzy logic to deal with imprecision of knowledge. Fuzzy logic is an exten-

sion of multi-valued logic (Zadeh, 1988). In a two-valued system, rules are

true or false. In a multi-valued system, rules can also be partially true or
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partially false. Quantifiers for multi-valued logic are all true or some true

(Zadeh, 1988), but degrees of partial true are indistinguishable. Fuzzy logic

can deal with degrees of approximated reasoning in ways multi-valued logic

cannot. Fuzzy truth-quantifiers like more or less true, rather true, not very true,

etc. can distinguish between continuous approximations of partial truth. To

be clear, fuzzy logic is not synonymous with probabilities. Fuzzy logic

describes an event with imprecision while probabilities describe likelihood

of an event occurring. Approximate reasoning can also use imprecise truth

tables or approximated inference rules for the same purpose (Zadeh, 1975).

In fuzzy systems, the functions that transform input into the appropriate

response may overlap creating instances where multiple rules are true. In this

situation, fuzzy approximation can be employed to determine the reasoning

or function applied to the input.

Let us illustrate this with a very simple example of classifying plant height.

Under this expert system, a plant can be considered tall, normal, or short in

height. Rules used to represent these conditions might be “if height¼ [2m,

13m], then plant¼ tall”; “if height¼ [0m, 1.2m], then plant ¼ short”; and

“if height¼ [1m, 3m], then plant¼normal”. From 2 to 3m, plants could be

considered both normal and tall in height. But plants at 2.1 and 2.9m are not

equally somewhat tall. A fuzzy approximation could be used to classify a 2.1m

plant as not very tall and a plant at 2.9m as more or less tall.

Decision rules are often interpreted directly from expert knowledge, but

some expert systems also derived rules fromdeclarative knowledge via induc-

tion in a manner similar to inductive logic programming (Section 2.1.3).

2.1.3 Inductive logic programming
Induction describes the process of relating knowledge through declarative

rules. Many symbolic systems that utilize knowledge rules are drawing from

inductions already made by humans. A set of self-synthesized rules derived

from background knowledge is the basis for a logic program. Predictions of

new observations can be made using the rules within a logic program

(Cropper and Duman�ci�c, 2022). The background knowledge in inductive

logic programming (ILP) is populated with atoms that classify data terms

using symbols. Rules are synthesized from the background knowledge by

formulating a declarative statement that maximizes the true atoms and min-

imizes the false atoms represented in the statement (Cropper and

Duman�ci�c, 2022).
For example, we may have a small dataset of plant characteristics

(Table 1) from which we want to make some predictions. Because ILP
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generally uses closed world assumptions (Cropper and Duman�ci�c, 2022), we
only need to declare one atom per class, and undeclared atoms are accepted

as false. True atoms are considered positive symbols, and false atoms are

considered negative symbols. We may pick “green,” “tall,” and “healthy”

as the positive atoms and represent the knowledge base as including

“green(A), green(D), tall(A), tall(C), and healthy(A)”. An inverse knowl-

edge base defining “brown,” “short,” and “diseased” could also be used

and is essentially equivalent in a two class system. Because in the defined

knowledge base, the atom “brown(B)” is equivalent to “not_green(B)”

or “green(B)¼FALSE”. These pieces of knowledge are assumed if

“green(B)” is absent from the knowledge base and the same is true for

the other undeclared atoms.

Perhaps we want to predict “condition” from the future data. Using the

knowledge related to color to predict the healthy condition would yield a

rule that represents a false atom since replicate D is both green and diseased.

Using knowledge related to height would also yield a rule that represents a

false atom. The rule that maximizes true atoms and minimizes false atoms for

this example would be: For replicate x, if x is green and tall, then x is healthy

(i.e. Green(x) and Tall(x)¼Healthy(x)). ILP is used to synthesize this or

other rules from the dataset/knowledge base without human inference.

Machine learning (Section 2.2) can be used in conjunction with ILP to

synthesize rules via learning. An advantage of ILP is data efficiency, because

rules can be induced from small datasets. Expert knowledge (rules formu-

lated by humans outside of the scope of a given dataset) can also be easily

integrated alongside the rules synthesized by an ILP system (Cropper and

Duman�ci�c, 2022). The syntax of ILP makes transfer learning possible since

induced rules use notation identical to the rules in other symbolic systems

(Lin et al., 2014). The capacity of ILP for knowledge transfer is an advantage

over other ML algorithms that do not reuse knowledge between tasks

(Cropper and Duman�ci�c, 2022). The syntax of ILP is also an advantage

Table 1 Example of data used to synthesize rules in inductive logic programming.
Replicate Color Height Condition

A Green Tall Healthy

B Brown Short Diseased

C Brown Tall Diseased

D Green Short Diseased
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in terms of its similarity to natural language andmakes induced rules readable

by humans.

While ILP can work with small amounts of data, the inclusion of inef-

fective or mistaken background data can limit the capability of an ILP.

Insufficient background knowledge may result in the exclusion of a plausible

rule, while too much background knowledge may introduce irrelevant

knowledge that adversely affects performance. ILP has historically required

user-curated background knowledge that limits ILP in comparison to ML

systems (Section 2.2) more robust to data inconsistencies.

Among the types of symbolic AI, ILP is the most likely to be considered a

type of AI that learns and according to some definitions may be a primitive

type of ML. However, ILP still differs in that it learns relations between

knowledge/data and can only induce general hypotheses from specific

knowledge, which can be complicated by quantity and quality of back-

ground knowledge. Sub-symbolic types of AI, by contrast, learn functions

rather than rules (Cropper and Duman�ci�c, 2022).

2.2 Machine learning
Sub-symbolic AI shifts the focus from symbols and symbol manipulation

toward less interpretable patterns in the form of mathematical optimizations,

statistical classifiers, and neural networks (Nilsson, 1998). These functions

are established by the system to link input and response variables (Ilkou

and Koutraki, 2020). Sub-symbolic AI, also called connectionist AI,

includes all systems that can learn (Ilkou and Koutraki, 2020; Nilsson,

1998). A system that can improve through experience, or learn, yields flex-

ibility lacking in a symbolic system (Liakos et al., 2018; Libbrecht andNoble,

2015; Russell and Norvig, 2009).

At the core of modern sub-symbolic AI is machine learning (ML). ML

exists as a broad subfield and can include nearly any method that makes pre-

dictions ( James et al., 2013). Because of the inclusivity of this definition,

many statistical models can also be considered ML. In the extreme case,

the difference between statistical and ML modeling is often characterized

as inference being the primary focus of statistical modeling while prediction

is the primary objective ofMLmodeling (Bzdok et al., 2018). Realistically in

many use cases, both prediction and inference are often relevant (Breiman,

2001a). However, a trend may be noticed in Fig. 1 that most statistical

modeling methods are common toMLmodeling methods, but ML includes

a number of additional methods with low interpretability. This may reflect a
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more practical difference, namely, that ML modeling is willing to sacrifice

inference for prediction, but statistical modeling requires some inference

capacity to be maintained.

ML approaches can be further subdivided according to feedback type.

ML can be supervised or unsupervised given the system’s access to feedback.

Supervised learning occurs in two phases, training and testing. During the

training phase, predetermined input-response pairs (labeled data) are used

as examples, and the learning algorithm attempts to formulate functions that

connect input data to respective labels (Liakos et al., 2018; Montesinos-

López et al., 2022). During the testing phase of supervised learning, the

learned pattern (trained model) is used to generate predictions. The accuracy

of the predictions can then be evaluated against user-defined labels. In a

supervised learning system, the feedback is considered to be explicit. In

unsupervised learning, preassigned labels for the input data are absent.

This model can only evaluate patterns within the input and prevents the

evaluation of prediction accuracy since the desired answer was not specified.

Fig. 1 Schematic diagram of methods and approaches in artificial intelligence, machine
learning, and statistics.
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Therefore, this type of system has no feedback. Systems that utilize both

unsupervised learning to generate labels and then supervised learning tomake

predictions also exist and are called semi-supervised. Supervised learning

includes both regression and classification-based methods which are

used with continuous and discreet data, respectively. Linear regression,

regression-based decision trees, and support vector machines are all types

of regression-based supervised learning.Unsupervised learning includes clus-

tering, dimensionality reduction, and association rules. K-means clustering

and hierarchical clustering, are clustering-based methods. Principal compo-

nent analysis, independent component analysis, linear discriminant analysis,

factor analysis, and LASSO (least absolute shrinkage and selection operator)

are dimensionality reduction focusedmethods. Finally, the apriori algorithm,

equivalence class transformation, and frequent pattern growth algorithm are

association rule methods. Some widely used statistical ML methods

referenced in Section 3 will not be covered in this section. Introductions

to linear regression ( James et al., 2021a; Su et al., 2012), logistic regression

( James et al., 2021b; Peng et al., 2002), Bayesian methods (Hoff, 2009),

and types of non-parametric methods including K-nearest neighbors

(Taunk et al., 2019) are available in the literature.

2.2.1 Decision trees and random forests
Decision trees employ simple tests to classify data using sequential subdivi-

sion. These tests are often arranged in a branching structure where the test

responses of initial branches determine which tests are subsequently applied.

The points from which branches diverge are called nodes. Sub-symbolic

learning is currently the dominant approach used for decision trees.

However, decision trees had prior success in symbolic AI (Quinlan,

1986). Symbolic decision trees provide a simple introduction to

tree-based classification. Symbolic decision trees relied on user-defined log-

ical rules based on existing knowledge or inference related to the data being

classified (Section 2.1).

For example, if someone was trying to design a plant species classification

system, it would be logical to place the rule “if the plant has bark, then it is a

tree” before the rule “if the plant has needles, then it is a conifer tree” or else

a cactus may be classified as a conifer. However, often the hierarchy of rules

is not so obvious to the user. In these cases, the test rules and their locations

in the decision tree can also be learned. Sub-symbolic decision trees, requir-

ing labeled data, attempt to generalize a pattern of tests resulting in accurate

classification (Kotsiantis, 2013).
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The process of partitioning the data at a given position during tree con-

struction is termed splitting. The process of tree splitting must balance both

accuracy and tree complexity. Increased accuracies can be achieved with

more complex trees, but compact decision trees are more likely to avoid

overfitting and maintain accuracy outside the training set. Tree complexity

is gauged by factors such as total number of nodes, total number of leaves,

tree depth, and number of attributes used (Kotsiantis, 2013). Tree complex-

ity factors are moderated through user-defined stopping criteria that set

maxima or minima for the factors to limit tree size. Branch pruning and fea-

ture selection methods can also be used to reduce decision tree complexity.

Decision trees have some flexibility with regard to input variables and

predictions. Decision trees can be univariate or multivariate. These trees dif-

fer in the number of attributes tested at a single node with univariate testing

one and multivariate testing more than one. In addition to the number of

attributes tested, the tests used at nodes can also differ. Non-linear model

tests can bemore suitable for initial nodes where decision complexity is often

high, while linear models are more appropriate for less complex splitting

such as within lower levels (Yıldız and Alpaydın, 2001). Decision trees,

while most often used for general multi-class (exclusive, single output) clas-

sification, can also be used for ordinal classification and multi-label

(non-exclusive, multi-output) classification/regression (Kotsiantis, 2013).

Random forests are a variant of decision trees that use an ensemble

approach to mitigate the instability of recursive partitioning used by decision

trees (Breiman, 2001b; Kotsiantis, 2013). A random forest generates a pre-

diction by averaging the predictions from several decision trees. The deci-

sion trees within the ensemble are constructed using random subsets of the

complete data. The specific ensemble approach used by random forests is a

variant of bagging, but other ensemble approaches (Section 2.2.2) can also be

applied to decision trees. The bagging variant used here selects the best fea-

ture from a subset of features to split a decision tree node into branches.

Random forests are a popular type ofML. Their popularity can be attributed

to the method being both easy to use due to few tuning parameters and effi-

cient when processing large data sets due to the ease of parallelization (Biau

and Scornet, 2016).

2.2.2 Ensembles
Ensemblemethods can utilizemany types of learning algorithms.The general

feature of an ensemble is a collection of base models that are used together

for prediction. The use of multiple base models improves generalizability.
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If a learning algorithm ismost often able to achieve generalizabilitywith a sin-

gle model, it is termed a “strong” learning algorithm. Likewise if a learning

algorithm does not reliably achieve generalizability with a single model, it

is called a “weak” learning algorithm.Weak learning algorithmsmayproduce

predictions that are little better than random guesses (Schapire, 1990). If the

generalizability of the learning algorithm depends largely on successfulmodel

tuning, both weak and strong configurations of the learning algorithm may

exist.Often ensembles are able to use simpler/weaker configurations for each

basemodel insteadof themore complex configuration thatwouldbe required

in a single model approach. Strong learning algorithms can also be used in an

ensemble, but little is gained over using a single model when a single model

can achieve stable (though not necessarily highly accurate) predictions.

Among the most popular ensemble methods are bagging, boosting, and stac-

king, which all use collections of base models to make predictions.

Bagging, or Bootstrap AGGregatING, uses random sampling with

replacement to create sub-samples. Each base model is then trained sepa-

rately from other base models using a single data subset. The use of separate

base models trained on independently sampled data subsets is advantageous

because of the ability to parallelize training yielding increased training effi-

ciency. Predictions from individual base models in the ensemble are then

aggregated to produce the ensemble’s prediction. The most common aggre-

gation techniques are majority voting and averaging. For the sake of com-

parison, bagged decision tree ensembles differ from random forests because

bagged decision trees use all features for each tree splitting step instead of the

single best splitting feature from a subset of all features.

Boosting differs from bagging because base models are trained sequen-

tially with each base model influenced by the training of earlier base models

within the ensemble. Boosting supplements the performance of weak learn-

ing algorithms through stage-wise additive model fitting (Hastie et al., 2009;

Ogutu et al., 2011). The two main boosting approaches are Adaptive

Boosting (AdaBoost) and gradient boosting. AdaBoost weights the sampling

of data for subsequent base models using prediction accuracies achieved by a

prior base model. Data points inaccurately predicted or misclassified in the

previous iteration are weightedmore strongly. The subsequent base model is

then trained on a sub-sample from the new distribution. The focus of sub-

sequent learners is shifted toward data points that are difficult to predict. The

weak models are finally combined into a composite model that better

explains data points otherwise misclassified in individual base models

(Freund and Schapire, 1996). Gradient boosting (Friedman, 2001) is a
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generalization of the approach introduced by AdaBoost. AdaBoost and gra-

dient boosting both use loss functions (Section 2.3). However while

AdaBoost relies on exponential loss making it sensitive to outliers, gradient

boosting is designed to use any loss function in conjunction with the gradi-

ent descent to minimize the loss value (Section 2.3) (Mayr et al., 2014).

Variants of gradient boosting include GBDT, XGBoost, LightGBM, and

CatBoost.

Bagging and boosting both generally use a single type of learning algo-

rithm for all base models. Multiple types of learning algorithms can also be

combined in an ensemble. In the simplest cases, the output from each

sub-model can be combined into final single prediction using majority vot-

ing (classification) or averaging (regression). In other cases, the contributions

of each based model may need to be weighted differently than the uniform

weighting of averaging. Stacking is an ensemble approach that varies the

contribution of each base-model through a subsequent meta-model that

receives base-model outputs as inputs. For example, a stacked ensemble

may use a linear regression, a support vector regression, and a decision tree

model as the base models. The base model predictions may then be aggre-

gated with a final linear regression meta-model.

Ensemble methods can be a good approach for handling big data.

Ensembles use a different subset of data to train each base model. This

can increase the speed and parallelization achieved by ensemble training

compared to single model training. Subset selection depends on sampling

parameters such as sub-sample size, number of base models, and

sub-sampling method. While individual base models may be simplified

compared to an appropriate single model for the same data, the overall

ensemble does, however, becomes less interpretable.

2.2.3 Support vector machines and regression
Support vector machines (SVMs) and support vector regression (SVR) are

non-parametric machine learning approaches useful for classification and

regression analysis (Wang et al., 2018b). SVMs can classify data points in

high-dimensional space through hyperplane separation. A hyperplane is

the high-dimensional equivalent of a straight line. Hyperplane selection

in SVMs is approached by maximizing the margin separating the classifica-

tions (Noble, 2006). Hyperplane selection deals with data inconsistencies by

using soft margins that accept some anomalous data points to be located on

the opposite side of the hyperplane from the correct classification. Users

must specify how stringent to be with hyperplane violations (Noble,
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2006). When SVMs are used for regression, they are termed SVR. In SVR,

data points are regressed to the hyperplane and the margin is used for loss

evaluation. Weights are not assigned to data located within the margin.

Rather, the distance of outliers from the hyperplane is used for loss optimi-

zation. Because of this, SVR can be sensitive to outliers. Other parameters

that must be user selected (hyperparameters) include the kernel function.

SVMs and SVR can handle both linear and non-linear relationships by

changing their kernel function. Common kernel functions include linear

kernel, Gaussian radial bias function kernel, and polynomial kernel.

Overall, SVM/SVR hyperparameter tuning is simpler than for neural net-

works (Zhao et al., 2020).

2.3 Neural networks
Neural networks (NNs) are a distinct machine learning approach that can

include supervised and unsupervised algorithms. Most can be characterized

according to some core architectural components. These core components

include learned parameters like weights and biases, as well as hyper-

parameters that must be chosen during network design. Some such hyper-

parameters for NNs include number of layers, number of nodes per layer,

activation function, loss function, and optimization algorithm (Fig. 2).

Fig. 2 Essential structures of a shallow, feedforward neural network (NN) with one hid-
den layer (A) and a deep NN (B) with feedforward, self (B-1), intralayer (B-2) and sup-
ralayer (B-3) recurrent/feedback connections as well as components of a single node
(C) and activation functions (D).
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NNs are made up of nodes that can constitute the parts of an input, out-

put, or hidden layer. Nodes in hidden layers generally receive values from

other nodes and not the input data directly. In fully connected layers, each

node in the current layer receives the values resulting from the output of

every node in the previous layer. Sparse layers have fewer connections than

fully connected layers and can have as few as one connection between a node

in the current and previous layer. Layers can vary both in number and type of

connections. Different connection types are able to pass values in both the

feedforward (Fig. 2A) and feedback (Fig. 2B) direction. In networks with

feedback connections, information can also be recirculated back to nodes

in previous layers, i.e. the output to input direction. Feedforward connec-

tions exist between different layers (interlayer), while feedback connection

transmit values either back to the node of origin (self; Fig. 2B-1), within a

layer (intralayer; Fig. 2B-2), or back to a nonadjacent, previous layer (sup-

ralayer; Fig. 2B-3). A deep neural network, also called a deep learning (DL)

model, is distinguished from other NN types by the presence of multiple

hidden layers (depth). A shallow neural network may contain only 1–2 hid-
den layers (Fig. 2A), while DLmodels feature many (more than two) hidden

layers (Fig. 2B) (Bengio, 2009; Emmert-Streib et al., 2020). Different hyper-

parameter configurations are better suited to different problems. One hurdle

of implementing a NN is hyperparameter selection. Learned parameters

depend on hyperparameter selections. With increasing data dimensionality,

finding quality hyperparameter values through user expertise and trial and

error testing becomes impossible (Victoria and Maragatham, 2021).

Therefore, an additional optimization stage, specifically for hyperparameters

is required. Optimization strategies for NN hyperparameters include

model-free methods as well as sequential search methods (Bergstra et al.,

2011; Feurer and Hutter, 2019). Model-free methods include random

search, grid search, and population-based methods like genetic algorithms,

evolutionary algorithms, evolutionary strategies, and particle swarm optimi-

zation (Feurer and Hutter, 2019). A popular population-based optimization

method for NN hyperparameters is the covariance matrix adaption evolu-

tionary strategy (Hansen, 2016). Many model-free approaches can be readily

parallelized, but each tested hyperparameter combination is selected

independent of the performance of other combinations. Sequential search

methods include sequential model-based optimization (SMBO), sequential

model-based algorithm configuration (SMAC), and Bayesian optimization.

Sequential search methods make subsequent hyperparameter selections
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based on the performance of past selections. Other parameters of the system,

such as weights and biases, are learned during NN training.

The relative importance of an input and its hidden layer derived values

can be scaled using the connection weight. A bias value is also added to the

weighted sum of the inputs to further adjust the value before the activation

function is applied (Montesinos-López et al., 2021b). Activation functions

apply a transformation to the sum of the weighted values and bias (Fig. 2C).

Popularly used activation functions include rectified linear activation unit

(ReLU), leaky ReLU, sigmoid, hyperbolic tangent, and softmax functions

(Fig. 2D). All of which allow non-linearity to be introduced into the net-

work model (Montesinos-López et al., 2021b; Patterson and Gibson, 2017).

Linear activation functions can also be used but are generally only used

within input layers since they act as an identity function (Patterson and

Gibson, 2017).

During model training, prediction accuracy of the current version of a

model is evaluated with a loss function, which provides an error metric rep-

resenting the difference between the predicted output and the observed

response provided in the training dataset. Examples of loss functions include

squared loss, logistic loss, hinge loss, and negative log likelihood. To

improve the model, weights and biases are updated in a manner that reduces

the result of the loss function. The direction and magnitude of that change is

determined using a search method referred to as an optimization algorithm

(Patterson and Gibson, 2017). Optimization algorithms for NN training can

be similar to those used for hyperparameter optimization and can include

global optimizers such as genetic algorithms, differential evolution, or par-

ticle swarm optimization, but are more often based on gradient descent.

Gradient descent attempts to find the minimum error value of all possible

weight and bias values.However, gradient descent does not evaluate the entire

space of all possible weight and bias configurations. Instead during optimiza-

tion, a gradient descent algorithmuses the partial derivative of the loss function

with respect to an initial weight and bias to determinewhether theweight/bias

value should be increased or decreased. Gradient descent proceeds in this fash-

ion until it converges on an error minimum or when a specified number of

epochs have elapsed. A popular variation called stochastic gradient descent

speeds up the process by evaluating the loss function from randomly chosen

mini-batches of the training data instead of the complete set.

The step size with which the optimization algorithm searches is termed

the learning rate. The success of an optimization algorithm can depend on
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the appropriateness of the learning rate. Learning rates can be a fixed value, a

value scaled progressively smaller by a fixed amount as the number of steps

taken increases, or be adaptive, with step size changing based on the training

progress (Daniel et al., 2016; Takase et al., 2018). Learning rates relying on

fixed scaling or fixed values can be difficult to tune. Adaptive learning rates

are therefore attractive for improved rate identification.

The approach by which the error gradient is calculated across the layers

of learned parameters during optimization is termed the learning algorithm.

The term learning algorithm has also been used herein to describe different

ML approaches. This is because the NN learning algorithm introduced here

is simply a specific instance of a learning algorithm that describes how a NN

attempts to learn appropriate weights and biases. Backpropagation is cur-

rently the dominant type of NN learning algorithm and updates weights first

in the layer closest to the output and last in the layer leading to the input. The

learning algorithm and optimization algorithm work in tandem but are

unique processes. For example, gradient descent determines the weights

and biases that are tested next during training and relies on an error gradient

to inform that decision. Backpropagation is the approach by which the error

gradient is calculated.

The set of “best” weights identified through learning and optimization

simply minimizes the error of prediction in the training dataset. A network

built on these weights still has the potential to be underfit or overfit.

Overfitting can be addressed using regularization. Regularization imposes

smoothness constraints on the function approximation of neural network

(Girosi et al., 1995), thereby influencing the final weights and biases selected

during training. L1 regularization, L2 regularization, dropout, and early

stopping are among the dominant methods used to prevent overfitting in

neural networks. L1 and L2 regularization are also used by other types of

ML. L1 and L2 regularization are particularly common in linear regression,

and these implementations are also known, respectively, by the names of

LASSO (least absolute shrinkage and selection operator) regression and ridge

regression. L2 (ridge) regularization applies a shrinkage penalty to shrink

weights toward zero. This reduces weights, but none are set precisely to

zero. It also preserves all input as features rather than eliminating

unimportant features. L1 (LASSO) regularization places preference on

low weight values to reduce model complexity which results in the prefer-

ence of a zero weight. Unimportant features are then absent from the pre-

diction. Dropout is similar to L1 regularization in the sense that unimportant

features are not represented. However, dropout determines feature
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importance by testing a series of “thinned” versions of the network where

some nodes have been randomly dropped (Srivastava et al., 2014). The

dropping of nodes and their associated connections promotes the indepen-

dent learning of weights and biases. Each thinned network is trained with

extensive weight sharing. This means that each thinned model is initialized

with the weights learned by the previous thinned model to reduce the com-

putation. An averaging method is then used to produce a final single model

from the collection of thinned models (Srivastava et al., 2014). Dropout reg-

ularization is conceptually similar to ensemble methods where many

“weak”/thinned versions of the network are used to generate one more

robust prediction. Early stopping is another approach to regularization.

However, early stopping only alters the training process with regards to

when training is ended. As the name suggests, early stopping stops training

during the approach to the loss minimum when the validation error rate

starts to increase (Svozil et al., 1997).

The initiation and completion of these processes associated with mini-

mizing the loss function defines the training stage. Because weights and

biases are updated during training, they are considered to be learned param-

eters. Architectural principles remain largely the same between DL and

other NN types. Popular DL topologies can be characterized according

to their respective hyperparameters. Given the information provided herein

on the application of NNs, it is also important to touch on the underlying

theory that has driven the success of NNs. That theory is that NNs are capa-

ble of functioning as universal approximators. Given an unspecified (poten-

tially approaching infinite) number of nodes, a feedforward NNwith one or

more hidden layer(s) is expected to be able to approximate any function

(Hornik et al., 1989; Irie and Miyake, 1988. Given this theorem, poor

approximations are then attributed to suboptimal hyperparameter selection

and model training rather than a limitation of the ability of NNs.

2.3.1 Feedforward networks and multilayer perceptrons
Feedforward networks can feature a variety of characteristics in addition to

feedforward connections. Multilayer perceptrons (MLPs) are distinguished

from other feedforward networks by standardly using fully connected layers.

Another special case of a feedforward network is a radial bias function net-

work which uses a radial bias function as the activation function. MLPs are

among the most basic of NN types and one of the most widely used. The

name multilayer perceptron is in reference to the most basic type of neural

network: the single layer perceptron, often abbreviated as simply the
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perceptron. A perceptron is made up of a single hidden node with associated

connections, weights, and activation function (Fig. 2B). The multilayer per-

ceptron is built as a collection of these perceptrons (Fig. 3). Additionally,

other NN types are often described based on how the architecture differs

Fig. 3 A deep, feedforward, fully connected neural network. This configuration defines
a multilayer perceptron.
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from MLPs. Therefore, generalized descriptions of NNs (as in Section 2.3)

are often framed in the context appropriate for MLPs.

2.3.2 Convolutional neural networks
Convolutional neural networks (CNNs) are an extension of deep NNs and

they are characterized by having three distinct types of layers: convolutional,

pooling, and fully connected layers.

Convolutional layers are a type of sparse, locally connected layer that

reuses shared weights across each node in the subsequent layer (Fig. 4)

(Emmert-Streib et al., 2020). The use of a uniform filter across the input

results in all nodes in the subsequent layer having the same number of con-

nections. Convolutional networks, which contain convolutional layers,

often receive data matrices, like photos, as input. In this situation the filter

would likely also take on a two-dimensional structure and the output of the

convolutional layer would be a two-dimensional feature map (also called an

activation map). The use of shared weights via a filter, instead of indepen-

dent connections weights like in a MLP, serves as a spatial feature extractor

with different filter values able to extract different features (Emmert-Streib

et al., 2020). Some important convolutional layer hyperparameters that

differ from the hyperparameters of other neural network types include

the size of the filter, stride, and amount of zero-padding (Emmert-Streib

et al., 2020). The size of the filter (i.e. the number of connections) deter-

mines the dimensions of the region (think number of pixels in the case of

an image input) that will be used to generate a new value on the feature

map. The stride size determines how many units to move the filter between

calculating adjacent values in the feature map. The size of the filter and the

stride determine how much overlapping information is used to generate

Fig. 4 A convolutional neural network containing representative convolutional,
pooling, and feedforward layers. In this example, a 3�3 filter is applied in the con-
volutional layer. The max pooling method is applied in the pooling layer.
Convolutional and pooling layers can be repeated and precede a layer with feedforward
connections.
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each feature map value. Zero-padding refers to the use of a border of zero

values around the border of the convolutional layer input. Without

zero-padding, values on the edge of the matrix are considered in the calcu-

lation of fewer feature map values and the feature map dimensions will be

reduced from input.

Pooling layers are used to further reduce the dimensions of the layer’s

input, which is usually a feature map as shown in Fig. 4. The mechanics

of a pooling layer share some similarities with convolutional layers. The

hyperparameters of this layer type include pooling window size, stride,

and zero padding. Pooling window size is similar to the filter size. It deter-

mines how many units of the feature map are surveyed to generate the

pooling layer output. However instead of applying weights, a pooling

method is applied to the considered units. As the most common method,

max-pooling simply preserves the maximum value from within the window

size to the pooling output. Some other pooling methods include

averaging-pooling, min-pooling, fractional max-pooling, and stochastic

pooling (Emmert-Streib et al., 2020). The stride and zero-padding in the

pooling layer are conceptually identical to the convolutional layer.

In CNNs, convolutional layers are generally followed by pooling layers.

These two layers can be stacked a number of times to generate a deep net-

work. Fully connected layers are often used as the last hidden layer(s) and

output layer in CNNs (Emmert-Streib et al., 2020; Krizhevsky et al.,

2017). This layer type is used to help capture the relationships between

features extracted in the convolutional and pooling layers and the network

output.

2.3.3 Recurrent neural networks
Recurrent neural networks (RNNs) have both feedforward and recurrent

(feedback) connections. Recurrent connections function as cyclic connec-

tions that preserve values obtained during the process of making initial pre-

dictions to inform subsequent predictions (Fig. 5). This process gives RNNs

“memory” andmakes RNNswell suited for sequential data. RNNs can take

on a variety of forms. But even when featuring simple architectures with

few nodes, RNNs are considered as DL because learning occurs over many

cycles of the RNN in place of the many layers of a deep feedforward

NN (Schmidhuber, 2015). Fig. 5 shows a RNN that has been unrolled

across time; however not all RNNs can be unrolled in this manner

(Emmert-Streib et al., 2020). RNNs include Hopfield networks,

Boltzmann machines, and long short-term memory (LSTM) networks.
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Hopfield networks (HNs) are fully connected recurrent networks. HNs

differ from MLPs because they are fully connected in the recurrent sense

rather than the feedforward sense, meaning that every node is connected

to every other node in the network. This also means that nodes cannot

be organized into layers. HNs also do not distinguish layer types (input, hid-

den, and output). Instead, each node serves all three functions in sequence

(Emmert-Streib et al., 2020). Boltzmann machines are a variant of HNs

that use a special type of probabilistic activation function (see Hinton and

Sejnowski (1983) for more details). Boltzmann machines are still fully

connected networks, but nodes are split into a visible layer (input/output)

and a hidden layer between which values can move bidirectionally

(Emmert-Streib et al., 2020).

Long short-term memory (LSTM) networks are an increasingly used

type of RNN that were designed to address drawbacks of earlier RNN types.

With standardRNNs,memories or patterns learned from prior data points in

a sequence are often only preserved in the short term. When attempting to

train a standard RNN that stores information over the long term, bac-

kpropagation becomes a time-consuming process because loss functions

must also be evaluated through time (Hochreiter and Schmidhuber,

1997). LSTM solves this problem by truncating the error gradient calculation

through time where possible (Gers et al., 2002; Hochreiter and

Schmidhuber, 1997). The capability of a LSTM to store information for

Fig. 5 A recurrent neural network (RNN) with a single hidden node (A) and the same
RNN that has had the recurrent connection unrolled across time (B).
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longer periods gave it access to more learned features than prior RNNs.

However, the original LSTM configuration led to the indefinite accumula-

tion of information until eventually the network would break. A method of

resetting a network’s memory called a “forget gate”was developed to address

this problem (Gers et al., 2000). Themodern LSTMnetwork is composed of

memory blocks that are made up of one or morememory cells, an input gate,

an output gate, and a forget gate (Gers et al., 2002). The memory blocks can

then be chained together in the same manner as traditional NN nodes. The

learning algorithm used by LSTM is a variant of backpropagation fused with

components of an earlier RNN learning algorithm called real-time recurrent

learning (RTRL) (Williams and Zipser, 1995). Variant architectures have

also been developed. One of which is called Gated Recurrent Unit

(GRU). GRU also relies on the gate structure introduced by LSTM (Dey

and Salem, 2017). Where a LSTM has three gates within each memory

block, a GRU uses only two gates to control the use of current input and

values from prior memory (Dey and Salem, 2017). Further in the RNN suc-

cession, there are also GRU variants that use other configurations of gates to

generate NNs with memory. Broadly speaking, the memory block used by

LSTM and the other single units used by GRU and variants can be called

RNN cells.

2.3.4 Encoding decoding networks
Encoding decoding type networks rely on reducing variable length inputs to

a fixed length bottleneck (encoding) then reconstructing the output to a

similar length as the input (decoding). The bottleneck forces the network

to distill a compact feature set that is representative of the input data. In

autoencoders, encoding layers feature progressively reduced node numbers

toward a bottleneck layer. The bottleneck layer is followed by decoding

layers that reconstruct input data points using increasing node numbers

(Kramer, 1991). Autoencoders are a type of unsupervised ML that attempt

to reconstruct the input data from the features learned through the bottle-

neck, so labeling of input data is unnecessary and the decoder output is

compared to the input for optimization (Hinton and Zemel, 1993).

Autoencoder subtypes include denoising autoencoders and variational

autoencoders. Autoencoders can also be combined with other NN struc-

tures to produce adversarial autoencoders, convolutional autoencoders,

and sparse autoencoders. Encoder-decoder recurrent networks (also referred

to as sequence-to-sequence learning) utilize RNN cells from LSTM or

GRU to form a similar variable input to bottleneck to variable output
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structure. However, the bottleneck is accomplished through time or

sequence and the important features are those that are preserved through

rounds of recurrent connections.

2.3.5 Generative networks
Generative neural networks are a class concerned with generating new

examples that resemble the training data. Generative models more broadly

are approaches that attempt to learn the probability distributions that under-

lie the training examples they are provided (Goodfellow et al., 2020). An

example of a simple ML generative model is maximum likelihood estima-

tion. Generative models use the learned probability distribution estimate to

formulate the model output. This class of models exists in contrast to dis-

criminative models that learn boundaries to separate different classes of

labeled data. Examples of discriminative models include logistic regression,

support vector machines (SVMs) (Section 2.2.3), and decision trees

(Section 2.2.1). Generative adversarial networks (GANs) are currently the

most popular type of generative neural network, but variational

autoencoders (Section 2.3.4), autoregressive NNs, fully-visible belief net-

works, and transformers are also types of generative networks.

GANs rely on two models, one of which is a generator while the other is

a discriminator. The job of the discriminator is to determine if the values

provided to it are real (sampled from the training data) or fake (created

by the generator) (Goodfellow et al., 2020). Both the generator and the dis-

criminator are optimized during training. However, these models are at odds

with one another. As the generator model improves, it becomes more dif-

ficult for the discriminator to determine whether values were observed (real)

or created (fake) (Goodfellow et al., 2020). Until eventually, the generator is

capable of producing realistic outputs that the discriminator cannot distin-

guish from observed data points. Variational autoencoders are a type of gen-

erative autoencoder that preserves the encoding decoding structure of

autoencoders but learns in a probabilistic manner similar to other types of

generative networks (Patterson and Gibson, 2017). Autoregressive NNs

are a type of feedforward network that also structures the network into

encoding and decoding components (described in Section 2.3.4).

However, the key feature is that this network uses the output of previous

time step as input for subsequent time steps. This allows the network to gen-

erate output indefinitely (or until a stopping mechanism deploys) since new

input is also continuously available.
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2.3.6 Transformers
Transformers are neural networks that differ from other types because of the

attention mechanism that they rely on. Attention is the learning of represen-

tations of input in a context dependent manner (Vaswani et al., 2017). In

other words, attention can learn interactions between values in an input vec-

tor (Cheng et al., 2021). The attention mechanism identifies critical context

information for encoding each input and decoding each output. This con-

text information is represented in a context vector made up of the sums of

the weighted annotation values. Different context vectors can then be used

to decode different outputs in conjunction with the encoded feature vector.

Attention therefore produces predictions that are more representative of the

complete input vector (Bahdanau et al., 2014).

Transformers are also capable of parallelization of sequential/time series

data because of positional encoding. Essentially, transformers are provided

with an additional input vector that specifies order numerically (positional

encoding) separately from the input vector that specifies input values (input

embedding). Many types of transformers exist, including variants that use

only the encoding (BERT, RoBERT) or decoding (GPT-4) transformer

subunit. In addition to the natural language applications of the original trans-

former (Vaswani et al., 2017), transformer variants have been adapted to

audio (Wave2Vec, HuBERT), image (ViT), video (BEiT, Maskformer),

multi-modal (VisualBERT, DALL-E 3), and protein sequence

(AlphaFold2, ESMFold) applications (Betker et al., 2023; Jumper et al.,

2021; Lin et al., 2022b; Lin et al., 2023; OpenAI, 2023).

Even though the attention mechanism is well known for its role in

transformers (Vaswani et al., 2017), it was originally developed to improve

RNNs. The memory mechanism in RNNs has a recency bias. Information

learned from more distant values in the input sequence has more oppor-

tunities to be forgotten than recently evaluated values in each hidden state.

For example, in a dataset containing a 24h time-series experiment when

evaluating the hidden state for the hour 23 input, an RNN has had many

more opportunities to forget important features from hour 1 than from

hour 22. Particularly in encoder-decoder RNNs where memory is used

to encode the input into a fixed length feature vector, it can be difficult

to preserve relevant learning dependencies between distant values

(Bahdanau et al., 2014). The attention mechanism grew out of this

context.
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2.3.7 Multi-modal neural networks
The task of fusing multiple types or modes of data has been approached a

number of ways. These approaches can generally be divided into early, late,

and intermediate fusion (Ramachandram and Taylor, 2017). Early and late

fusion refers to the timewhen data sources are integrated. Early fusion occurs

prior to feeding the data into a model and is accomplished through some

method of dimensionality reduction (like PCA), while late fusion instead

integrates the information sources after already passing data through separate

models in a manner similar to an ensemble using average aggregation

(Ramachandram and Taylor, 2017). Multi-modal neural networks represent

an intermediate fusion of learned representations (Ramachandram and

Taylor, 2017).

Multi-modal neural networks (m-NNs) combine sub-networks where

each can accept a different type or mode of data (Fig. 6). Sub-networks

in a m-NN can feature architectures identical to other single network archi-

tectures, such as GANs, LSTMs, CNNs, and MLPs. Similar to ensembles,

m-NNs can have sub-networks of the same type or different network archi-

tectures. Sub-networks are connected and interact through a multi-modal

layer, similar to the meta-model of stacked ensembles (Section 2.2.2). An

advantage of using a m-NN over feeding outputs from single networks to

Fig. 6 A multi-modal neural network accepting three input data types. A separate
sub-network receives each data type. The intermediate values resulting from the
sub-networks are propagated through a joint, multi-modal sub-network to make the
final prediction.
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another subsequent single NN for the final prediction is that all m-NN

sub-models can be trained collectively, instead of independently.

2.4 Computer vision
Computer vision is the field of artificial intelligence associated with deriving

meaning from images. A computer vision system comprehends its environ-

ment in two stages: image acquisition and image processing (Narendra and

Hareesh, 2010; Patrı́cio and Rieder, 2018). Images can be acquired using

cameras and other imaging technologies many times in combination with

a mobility system. Image acquisition systems are often mono-RGB (red,

green, blue) vision systems, but may also include stereo vision, multi/hyper-

spectral cameras, time-of-flight cameras, LiDAR technology, thermography

imaging, fluorescence imaging, and tomography imaging (Perez-Sanz et al.,

2017). These various types of sensors may also be accompanied by mobility

components such as conveyors, ground vehicles, unmanned aerial vehicles

(UAVs), and motorized gantries (Mochida et al., 2019).

Image processing can be further divided into pre-processing operations,

segmentation, feature extraction, feature selection, and classification

(Fig. 7A) ( Jayas et al., 2008; Perez-Sanz et al., 2017). To facilitate other

image processing steps, images may be preprocessed to crop the field of view,

improve contrast, eliminate noise, reduce dimensionality, and apply filters,

among other more task specific goals (Perez-Sanz et al., 2017).

2.4.1 Image segmentation
Image segmentation is important for background and object differentiation

and is critical for downstream recognition and classification tasks. Some

common image segmentation methods include those that are threshold

based, edge based, color-index based, region based, clustering based, or

based on deep learning. Threshold based segmentation separates a greyscale

image into groups based on pixel intensity (Li et al., 2020). Edge based seg-

mentation also relies on pixel intensity but recognizes large changes in inten-

sities of adjacent pixels as edge boundaries (Kuruvilla et al., 2016). Edges can

be further refined through edge thinning and edge linking. Threshold and

edge based segmentation methods are simple and efficient, but can be ill

suited for complex images. Both segmentation methods rely on difference

in intensity or greyscale color space which can fail when an image has little

intensity variation. Across an RGB image, color index-based segmentation

may be a better approach since it can preserve differences in RBG color

space rather than greyscale space. Color indices convert RGB space into
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Fig. 7 Steps and different methods used in (A) conventional and (B) neural network-based image processing.



alternative one-dimensional color spaces. For example, a green index would

preserve differences in green color (Hamuda et al., 2016). Region based seg-

mentation divides an image into regions of alike pixels. Region based seg-

mentation works well in noisy images where borders may be more difficult

to detect (Kuruvilla et al., 2016). Region based segmentation starts with

individual pixels or pixel groups and processively adds similar pixels to

the initial region or splits dissimilar pixels from the region (Kaur and

Kaur, 2014). Clustering based segmentation also groups alike pixels

together. However, clustering based segmentation strategies use clustering

algorithms, such as hierarchical or partition based methods, to identify

regions with pixel similarity. Clustering can be either hard or soft. Hard clus-

tering assigns only one group per pixel. Soft clustering uses fuzzy logic to

assign partial membership of a pixel to multiple groups (Kaur and Kaur,

2014). Region based and clustering based methods may more successfully

segment complex images but are more complicated algorithms that require

additional parameter tuning and heavier computation than edge and thresh-

old based segmentation methods (Li et al., 2020). Deep learning methods

can be highly accurate but are also the most computationally intensive

and require large amounts of training data compared to the other segmen-

tation methods. A variety of deep neural networks, such as convolutional,

encoder-decoder, or recurrent networks, can be used as a backbone for seg-

mentation (Minaee et al., 2021). General details on various neural network

types are addressed in Section 2.3. For a more thorough review of the uses of

NNs for image segmentation see Minaee et al. (2021).

2.4.2 Feature extraction and selection
Feature extraction and feature selection are other mid-level image

processing steps that generally follow segmentation and can be used together

or individually. A segmented image may contain points of redundant data.

Feature extraction summarizes the segmented image into a new feature set of

the smallest possible size while preserving the characteristics of the complete

image. Feature extraction methods differ by feature type with separate

approaches existing for color, texture, and shape features. A few examples

include color histograms, color moments, color correlograms, spatial texture

methods, and spectral texture methods (Tian, 2013). Feature selection can

then be used to identify the features that are interesting and the features that

are irrelevant to the computer vision task (Zebari et al., 2020). Proceeding

with the subset of relevant features identified by either feature extraction or

feature selection rather than the segmented image further reduces
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dimensionality, which can reduce training time and improve accuracy of

classification (Zebari et al., 2020).

The dominant feature selectionmethods include filter, embedded, wrap-

per, hybrid, or ensemble. Filtering is one of the earliest developed methods

and operates by comparing features to the characteristics inherent to the

computer vision task. With filtering, feature selection and any subsequent

learning tasks, which would include classification in computer vision,

remain separate processes. Filtering generally has good performance and is

highly efficient computationally, which allows scaling to large datasets

(Zebari et al., 2020). The wrapper method wraps feature selection around

the classification task so that features minimizing estimation error are

selected (Zebari et al., 2020). The wrapper methods can achieve better per-

formance than filter methods, but at the risk of overfitting and increased

computational complexity. The embedded method also integrates feature

selection with the classification task but avoids repeating classification (once

for feature selection and once for classification) by embedding feature selec-

tion within the classification task (Zebari et al., 2020). This design results in a

method with similar accuracy, but improved efficiency and reduced com-

plexity compared to the wrapper method (Zebari et al., 2020). Hybrid

methods combine two feature selection methods. One of the most common

combinations is a hybrid filter-wrapper method. Hybrid methods seek to

combine complementary suitabilities of two methods by using evaluation

criteria of different methods at different search stages (Liu and Yu, 2005).

Ensemble methods for feature selection operate similarly to ensemble

methods described in Section 2.2.2. Generally, ensemble feature selection

builds feature sets on a variety of subsamples and then aggregates the subsam-

ple feature sets into a single feature set (Zebari et al., 2020). Ensemble feature

selection preserves the advantages of the ensemble approach, reducing over

fitting and maintaining robustness to unstable data.

2.4.3 Image classification
Image classification, also termed image recognition, is tasked with com-

prehending the objects contained within an image or, more specifically,

comprehending the features contained within the previously identified fea-

ture set. Image classification is most often accomplished using supervised

learning algorithms that are also common to other classification tasks and

relies on manually labeled images for training. Image classification can be

accomplished using decision trees or random forests (Section 2.2.1), logistic

regression, support vector machines (Section 2.2.3), Bayesian networks,
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K-nearest neighbor classifiers, and various types of neural networks

(Section 2.3).

Recent improvements in computer vision have almost exclusively relied

on neural networks. The performance of deep-learning based computer

vision pipelines has been shown to far exceed other approaches that dom-

inated the field prior to the renewed interest in neural networks, which has

defined the third AI summer (2012–present). This success in the field of

computer vision can be attributed to neural networks being capable of

jointly processing feature selection/extraction and image recognition

steps (Fig. 7B) (Deng, 2014; Guo et al., 2016). Successful neural

network-based computer vision methods have been largely derived from

a few major types of neural networks including convolutional neural net-

works, restricted Boltzmann machines, autoencoders, and other sparse cod-

ing networks (Guo et al., 2016). Among those, CNN-based computer

vision has been the most widely deployed for a variety of computer vision

tasks (Guo et al., 2016).

As the scale of training data available for tasks like computer vision has

increased, the use of foundation models has become appealing in place of

separately training every task-specific computer vision model. Foundation

models are models that are trained on broad data usually without a very spe-

cific classification or prediction objective. Foundation models can then be

adapted to a variety of more specific tasks through additional training, usu-

ally fine-tuning (Bommasani et al., 2021). Current foundation models in

computer vision include CLIP (Radford et al., 2021), ALIGN ( Jia et al.,

2021), and Florence (Lu et al., 2021) for visual-language representation

learning; the Segment Anything Model (SAM) (Kirillov et al., 2023) for

image segmentation; and DALL�E (Ramesh et al., 2021) for image

generation.

2.5 Natural language processing
Natural language processing (NLP) is a type of AI concerned with learning

from language similar to the human task of reading. To solve this problem,

NLP can employ other types of AI within processing steps. Modern NLP

generally takes the form of statistical NLP or neural NLP that use statistical

learning and neural network learning methods respectively. Previous, less

successful iterations of NLP did, however, use symbolic AI. NLP is primarily

concerned with text and speech processing, morphological analysis, syntac-

tic analysis, lexical semantics, relational semantics, and discourse. These NLP
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processes can be used to accomplish tasks like machine translation, speech

recognition, and speech synthesis.

Much like computer vision, modern NLP is largely accomplished with

NN-based approaches. These NN types have been largely covered in pre-

vious sections and, due to the low implementation frequency of NLPwithin

various crop improvement methods, we will not revisit them here in NLP

specific context. However, the NLP field has yielded many interesting

developments in NNs. For example, ChatGPT (OpenAI, 2022), a recently

popularized feat in NLP, is derived from an innovative lineage of NNs called

generative pre-trained transformer (GPT) networks (Brown et al., 2020;

Radford et al., 2018, 2019) that are themselves variants of transformer

networks (Section 2.3.6) (Vaswani et al., 2017). GPT networks are NLP

foundation models that combine generative pre-training and discriminative

fine-tuning of a transformer model. Outside of NLP, transformers have been

explored for computer vision (Khan et al., 2022; Yuan et al., 2021), time

series forecasting (Li et al., 2019; Lim et al., 2021), and protein structure pre-

diction ( Jumper et al., 2021; Lin et al., 2023). AlphaFold1 (Senior et al.,

2020) is an example of an AI accomplishment that is widely recognized

within the scientific community, but AlphaFold2 underwent a complete

redesign based around the transformer (Fig. 8) to achieve even greater pro-

tein structure accuracy ( Jumper et al., 2021). The NLP field has and will

continue to be an area to watch for novel AI and NN approaches that

may be suited to alternative uses.

Fig. 8 Transformers connect natural language processing with protein structure predic-
tion through the shared use of this neural network architecture by Chat-GTP and
AlphaFold2.
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3. AI applications in crop improvement

3.1 Genomic selection
Across the last several decades increasing focus has been placed on genetics as

a means to accelerate crop breeding. First generation genomics-enhanced

breeding methods like marker-assisted selection, relied on identifying indi-

vidual loci that affected a phenotype. Given that many agronomically

important traits, including flowering time, yield, and disease tolerance,

are polygenic in nature, a more comprehensive method of selection based

on genetics was needed (Buckler et al., 2009; de los Campos et al., 2013;

Varshney et al., 2017). Genomic selection (GS) was designed to address this

issue (Bernardo and Yu, 2007; Heffner et al., 2009; Meuwissen et al., 2001).

Genomic selection uses genome-wide DNA markers and observed pheno-

types in a training population to produce a model, which predict phenotypes

of an untested population from its DNA marker data for selection

(Montesinos-López et al., 2021b; Varshney et al., 2017). While both GS

and genomic prediction (GP) were often used interchangeably, GS is a gen-

eral term that stresses the entire process with an actual selection step within a

breeding program and GP stresses the model development and prediction as

objectives.

Many conventional GS approaches generally employ linear parametric

regression. Such conventional GS approaches include best linear unbiased

prediction (BLUP) based methods like genomic BLUP (GBLUP) and ridge

regression BLUP (rrBLUP) as well as Bayesian models such as BayesA,

BayesB, BayesC, BayesR, and Bayesian LASSO. Currently, conventional

parametric regression-based approaches remain popular as they are more

computationally efficient than many non-linear, non-regression, and/or

non-parametric-based approaches and also often perform as well as or better

than other AI-based methods (Ogutu et al., 2011). However, linear para-

metric models have some limitations such as capturing only additive effects

and assuming phenotypes are normally distributed and continuous

(González-Camacho et al., 2018). Despite the pervasiveness of conventional

methods, any prediction method that expresses the relationship between the

training set’s input (genotypes) and output (phenotypes) can be used for GS

(Montesinos-López et al., 2021b). Alternative GS approaches that can main-

tain or improve prediction accuracies, capture complex genetic interactions,

and balance computational efficiency continue to be investigated, and

many types of AI-based GS methods remain promising. Conventional GS
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approaches have been thoroughly reviewed elsewhere (Crossa et al., 2017;

Jannink et al., 2010;Meuwissen et al., 2016) and so here we will focus on the

other types of statistical ML; including ensemble learning such as random

forests (RF), support vector machines (SVM), and neural networks (NNs)

for GS.

3.1.1 Ensembles
Some ensemble ML methods include RF, bagging, Adaboost, and gradient

boosting. RFs overcome some of the limitations of other types of

regression-based methods. RFs can handle instances where the number of

markers exceeds the number of observations and when highly correlated

and interacting markers affect the model fit. RFs are non-parametric and

so do not make assumptions regarding predictor variable distribution

(Breiman, 2001b; Ogutu et al., 2011). GS using RF regression on simulated

data has found that while RFs are capable of capturing epistatic effects, the

sub-sampling approach used can cause under-sampling of SNPs near QTL

(Ogutu et al., 2011). RF GS was used for disease count prediction in spring

wheat and outperformed a generalized Poisson ridge regression model

(Montesinos-López et al., 2021a). Adaboost, because of the way it increases

the weights of previously incorrectly classified data points, may not be robust

to outliers, missing data, and correlated data which is a disadvantage for its

use in GS (Freund and Schapire, 1996). In contrast, gradient boosted GS

models can handle interactions, outliers, missing data, correlated variables,

and irrelevant variables while also automating variable selection. The vari-

able weighting for a gradient boosted model is accomplished in the same

manner as RF (Hastie et al., 2009; Ogutu et al., 2011). Boosting also

employs sub-sampling and can therefore exhibit some of the same limita-

tions as RFs when it comes to undersampling of SNPs near QTL.

However, boosting has been shown in some instances to perform slightly

better than RFs (Ogutu et al., 2011).

3.1.2 Support vector machines
Support vector machines (SVMs) are well suited for GS on categorical phe-

notypes (Noble, 2006; Zhao et al., 2020). However, performance varies by

the suitability of kernel function for a given data set and so kernel testing is a

required step in developing a SVM GS model (Zhao et al., 2020). This also

means that SVMs are highly adaptable to different data types.

Similar to linear models, linear kernels have an advantage in speed over

non-linear kernels. Using a radial bias function (non-linear) kernel has been
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shown to increase prediction accuracy in datasets with linear inseparability

over linear kernels (Zhao et al., 2020). The use of SVMs for GS does require

the testing of suitable kernels and hyperparameters whichmay be a drawback

for these methods. Additionally in practice, SVMs have been observed to

perform similarly to linear GS methods (Montesinos-López et al., 2019;

Zhao et al., 2020).

3.1.3 Deep neural networks
Deep learning (DL) methods are nonparametric and can capture patterns

with unknown structure, which is an advantage in terms of flexibility over

parametric models like GBLUP, rrBLUP, and Bayesian methods.

Feedforward NNs like MLPs have been more widely implemented than

other deep learning networks for GS. MLPs are the simplest deep NN to

train but can suffer from overfitting. Feedforward NNs often perform sim-

ilarly (Azodi et al., 2019; González-Camacho et al., 2012; Montesinos-

López et al., 2018a) or better than conventional methods (Gianola et al.,

2011; Khaki and Wang, 2019). There are additional instances where model

choice has depended on modeled effects (Mcdowell, 2016; Montesinos-

López et al., 2018b; Sandhu et al., 2021; Zingaretti et al., 2020). MLPs

do not necessarily outperform other network architectures. CNNs have also

been experimentally tested for yield prediction in soybeans (Liu and Wang,

2017), stem height in loblolly pine (Liu and Wang, 2017), grain traits in

wheat (Ma et al., 2018), and several traits including height, flowering time,

yield in six species (maize, rice, sorghum, soy, spruce, switchgrass (Azodi

et al., 2019). The biological relevance of network architectures may need

to be considered. Pook et al. (2020) raised concerns regarding the appropri-

ateness applying CNN filters, which search for structural features, to SNP

data since adjacent SNP markers are not expected to have direct functional

relations. CNNs with local filters were proposed as an alternative and did

outperform traditional CNNs and MLPs using Arabidopsis and simulated

maize data (Pook et al., 2020). Overall, the uses of RNNs and other NN

architectures for GS have been limited.

High dimensionality is a major concern for predictive breeding (Crossa

et al., 2017; Ramstein et al., 2019). One that also extends to DLGSmethods

(Washburn et al., 2020). Appropriate dimensionality reduction therefore

remains a concern for improved DL GS. Another reason that deep neural

networks may fail in practice is that, given the focus on loss optimization,

systems may learn unintended shortcuts that exploit superficial correlation

to arrive at simpler solutions (Geirhos et al., 2020; Wen et al., 2022).

36 Karlene L. Negus et al.



This leads to good predictions in the training set but poor predictions when

the superficial correlations are absent in the novel data (Geirhos et al., 2020).

Within GS, one wayNNs have been observed to take shortcuts is by making

predictions based on relatedness of individuals, or the correlation of molec-

ular markers, and ignoring the epistatic interactions that neural networks

appear well suited to incorporate into the prediction (Ubbens et al.,

2021). Often similar prediction accuracies between NNs and linear regres-

sion GS is hypothesized to be explained by a phenotype being largely addi-

tively controlled. A failure of NNs to estimate epistatic interactions may

provide an alternative explanation as to why NN-based GP fails to out-

perform linear approaches. Incorporating logic-based programming, the

same approach used in many symbolic AI systems, is an approach currently

being investigated to allow NNs to be right for the right reasons. Examples

include PrimeNet which exploits domain knowledge to prime a NN by

explicitly identifying task relevant information to the NN (Wen

et al., 2022).

3.2 Enviromics
Envirotyping has emerged as the environmental complement of other

“typing” techniques like genotyping and phenotyping (Xu, 2016). It

encompasses the process of collecting, processing, and associating environ-

mental data (Costa-Neto and Fritsche-Neto, 2021). Similar to genomics and

phenomics, enviromics differs from conventional environmental character-

ization largely in its scope. The aim for enviromics is to capture all environ-

mental factors, both major and minor, at site, plot, or even plant-specific

levels (Xu, 2016). The collection of these envirotypes is what makes up

an enviromic dataset. While environment has always been considered in

crop breeding, the rise of predictive breeding has driven interest in charac-

terizing genotype-by-environment interactions (GEI). Developing crop

cultivars with performance less affected by GEI is a major breeding objective

because it is desirable to have a stable crop performance across a target pop-

ulation of environments (TPEs). Achieving this objective often requires

multi-environment trials to capture performance across a TPE. However,

the entirety of a TPE cannot be tested. Crop performance prediction for

unobserved locations/seasons within a TPE may be improved by character-

izing the environmental factors driving GEIs and integrating these predictors

into a genomic prediction model. Historically, most environmental data was

available only at low resolutions. More recently, data with high levels of
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granularity has become accessible due to GIS, remote sensing, and wireless

sensing networks becoming more prevalent and has allowed the observation

of environmental differences within a TPE. Environmental factors which

may be envirotyped include climate factors like light, temperature, or pre-

cipitation; soil factors like soil type, soil fertility, or soil pH; biotic factors like

the presence of insects, viruses, or weeds; and cropping system factors like

intercropping or crop rotation (Xu, 2016). Enviromics may be assisted in

a number of ways by AI. Data collection methods for GIS and other remote

sensing systems are largely image-based and subsequent image processing is

fundamentally similar to the use of AI for image-based phenotyping. More

detailed overviews of these types of enviromic data pre-processing are

described elsewhere (Costa-Neto and Fritsche-Neto, 2021; Xu, 2016).

Once pre-processed, enviromic data has many applications which may also

benefit fromAI. Those covered here will include environment classification,

and genomic prediction integration.

Environmental classification is the identification of mega- or

micro-environments within the TPE. Mega-environments are contiguous

or dis-contiguous areas of broadly similar environmental factors, consumer

preferences, and scales of production (Rajaram et al., 1994). Within the

scope of plant breeding, it is generally not necessary to use all environmental

factors for environmental classification, but rather focusing on environmen-

tal factors that limit or are otherwise particularly relevant to the GEI response

for trait(s) being selected upon. When a TPE consists of multiple mega- or

micro-environments, a range of GEI responses are possible. METs attempt

to capture the possible phenotypic responses of cultivars to the wide range of

environmental variation that may occur in actual crop production.

Environment classification can be informative in the MET design stage

for site selection (B€anziger et al., 2006; Crespo-Herrera et al., 2022; Xu,

2016). Environment classification has been approached using a number of

different methods such as factor analysis (Rogers et al., 2021), hierarchical

cluster analysis (Crespo-Herrera et al., 2022), principal component analysis,

enviromic assemblies (Costa-Neto et al., 2021). Other unsupervised ML

algorithms for cluster analysis, pattern discovery, or data reduction may also

be relevant for environmental classification.

In the enviromic assembly approaches to environmental classification of

Costa-Neto et al. (2021), environmental similarity was assessed using

enviromic markers. Costa-Neto et al. (2021) constructed discrete markers

that assessed stress and non-stress conditions directly from raw envirotyping

data based on prior knowledge of the environment factor thresholds for plant
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stress. In this case enviromic markers accomplished the dimensionality

reduction task that is often necessary for -omic data.

Environmental classification is not essential for enviromic-integrated

genomic prediction (GP). Following METs, characterization of environ-

ments into continuous environmental indices can assist in performance pre-

diction with GP under GEI. Critical environmental regressor through

informed search (CERIS) was developed to generate an environmental

index to quantitatively connect all tested environments (Guo et al., 2020;

Li et al., 2018; Li et al., 2021; Li et al., 2022; Mu et al., 2022). The envi-

ronmental index was chosen from combinations of environmental variables

and growth periods to be statistically correlated with the overall performance

of tested genotypes across environments, biologically relevant based on

physiology, and estimable for new environments. With the environmental

index from CERIS, joint genomic regression analysis (JGRA, so

CERIS-JGRA) has been shown to be promising for performance prediction

in multiple traits andmultiple crops (Guo et al., 2020; Li et al., 2018; Li et al.,

2021; Mu et al., 2022). Within the CERIS-JGRA frame, different GP

models can be used. Resende et al. (2021) used a random forest procedure

to interpolate yield prediction across an environmental gradient of observed

test sites and neighboring unobserved TPE regions. It was proposed that any

type of powerful kriging approach could be appropriate for this method of

environmental indexing (Resende et al., 2021). Kriging is common method

for spatiotemporal interpolating of GIS data, but other ML and NN

approaches have also been demonstrated to be successful for broad spatio-

temporal interpolation tasks (Amato et al., 2020; Wu et al., 2021).

The advantage of building or selecting an environmental index is the

simplicity with which genetic effects and environmental factors can be inte-

grated into a genomic prediction model. This approach focuses on identi-

fying major patterns across environments and between environmental

variables during a critical crop growth stage and modeling the associated

effect on crop performance. This approach is different from both other

approaches where either all values of many environmental variable through-

out the season were used in constructing an environmental relationship

matrix and approaches where crop growth models were used to identify

the significant environmental variables to be fitted as a covariate in the geno-

mic prediction model (Cooper et al., 2016; Heslot et al., 2014; Jarquı́n et al.,

2014) An environmental index can be used as the explanatory variable in a

linear regression to generate reaction norms predicting trait performance

across the TPE (Li et al., 2018; Li et al., 2021; Resende et al., 2021).
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This format for integrating the environmental dimension separates feature

selection from prediction. Alternative AI approaches that integrate feature

selection into model training are increasing in relevance as the amount of

envirotyping data increases and may complement NN based GP approaches.

It is expected that AI approaches can be designed to outperform current

methods such as CERIS-JGRA when a single environmental index does

not capture an adequate amount of variation in data or when feature selec-

tion and model building should be integrated in the combined space of

genotype and environment for performance prediction. Due to the inclu-

sivity of these approaches for integrating other types of data into a GPmodel,

these approaches are covered in Section 3.4.2.

3.3 Crop growth modeling and management
Crop growthmodels (CGMs) use quantitative descriptions of ecophysiolog-

ical processes to model plant growth and development as influenced by envi-

ronmental conditions and crop management, which are specified for the

model as input data (Hodson and White, 2010). Another term used inter-

changeably with CGMs is Ecophysiological Crop Models (ECMs). The

basic notion underlying CGMs is to use systems of differential equations

to represent the temporal dynamics of plant physiological processes, mor-

phological variables, and selected environmental variables to model plant

growth, dry matter production, and grain yield. Crop modeling has signif-

icantly expanded in recent years and CGMs have been established for all

major crops, many minor crops, and a number of weed species. More

importantly, CGMs have become an important decision-making tool for

crop management and is now used in breeding programs to connect with

molecular biology (Cooper et al., 2014). More importantly, crop modeling

has become a major tool for tackling challenges in climate change, global

food security, and bioenergy ( J€agermeyr et al., 2021; Lobell et al., 2013).

Like many other crop model platforms (e.g., DSSAT, EPIC, STICS,

WOFOST, ORYZA, CROPSYST, RZWQM, TOA, IMPACT,

SWAP, and GTAP), the Agricultural Production Systems sIMulator

(APSIM) contains a suite of modules that enable the simulation of systems

that cover a range of plant, soil, climate and management interactions

(Holzworth et al., 2014). APSIM is an open-source, advanced simulator

of farming systems with many crop models for different species, soil water,

nitrogen, temperature and environmental models together with advanced

management capabilities in a modular design. Realizing the needs to
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advance CGM research to address challenges from climate change, the

Agricultural Model Intercomparison and Improvement Project (AgMIP)

was established (Rosenzweig et al., 2013; R€otter et al., 2011) and has over

1000 members (https://agmip.org).

Within the CGM paradigm, different crop species and varieties within a

species are represented by differing numeric values within vectors of con-

stants embeddedwithin the differential equations. Some example parameters

are radiation use efficiency; flowering time when expressed in photothermal

units; maximum leaf area; phyllochron intervals measured in degree-days,

etc. Because such constants often encode environmental sensitivities, the

premise is that they will have higher heritabilities than the more complex

traits encoded by interwoven processes within the bulk of the CGM. A pre-

diction scheme for interrelating crop phenotypes and genotypes assumes that

these constants are genetically determined and, therefore, predictable from

allelic and/or marker data via any of the genomic methods described above

(Hammer et al., 2006; Reymond et al., 2003; Technow et al., 2015; White

and Hoogenboom, 1996; Yin et al., 1999). To predict the trait behaviors of

novel genotypes in untested environments, one would (1) use genomic pre-

diction to estimate the constants for the line and then (2) use the CGM, as

driven by time series of environmental data characterizing any location-year

of interest to predict the resulting phenotype.

While individual studies have been conducted to integrate AI and CGM,

the overall fusing of knowledge-driven CGM with data-driven AI was ter-

med as Knowledge- and Data-Driven Modeling (KDDM) (Zhang et al.,

2023b). There are many points where AI can enhance CGM, including

(1) relating easily taken sensor data to needed but hard-to-measure CGM

inputs, (2) phenotyping for model calibration or in-season state variable cor-

rection, and (3) improving computational efficiency by AI. For example, a

random forest model was used to compute a developmental stage dependent

harvest index of wheat in APSIM (Feng et al., 2019), and radial bias function

network was leveraged within a CGM to study tomato growth (Fan et al.,

2015). More interestingly, when ML methods such as random forest,

XGBoost and other ensembles were coupled with CGM for yield prediction

in maize, accuracy was much increased (Shahhosseini et al., 2021).

In addition, ML methods can replace the traditional genomic prediction

approach within the CGM framework. In a recent study, CNN was found

to perform similarly or better than standard genomic prediction methods

when sufficient genetic, environmental, and management data were pro-

vided (Washburn et al., 2021). In this case, CGM outputs were used as
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additional inputs to the ML prediction models, highlighting the value of

integration in KDDM. In a follow-up study, different optimization strate-

gies (consecutive optimization and simultaneous optimization) for creating a

multi-modal deep neural network were investigated and these deep learning

models were compared against a set of classic ML and statistical methods

(Kick et al., 2023). The consecutively optimized deep CNN model was

found to have a slightly higher average error than the best BLUP model,

but to be more consistent in its performance across model replicates.

3.4 Phenomics and other multi-omics
3.4.1 Image-based phenotyping
3.4.1.1 Image acquisition
Phenotyping has been revolutionized by high-throughput methods, partic-

ularly image-based phenotyping. With traditional plant phenotyping, we

were often limited to characteristics identifiable to the human eye.

Today, images can be acquired for studying crop phenotypes with a diversity

of sensors, external conditions, and traits. These image-based methods are

fast and non-destructive and can be used to capture complex trait

information.

The methods selected for image-based phenotyping will depend on the

crop, trait, developmental stages, and resources available (Chawade et al.,

2019). However, the most common type of sensors used to collect pheno-

type data include red, green, blue (RGB) cameras, RGB-depth cameras,

hyperspectral cameras, thermal infrared cameras, near-infrared cameras, light

detection and ranging (LiDAR) devices, and computed tomography (CT)

scanners (Li et al., 2020).

RGB cameras image the visible spectral range (380–800nm) and are

capable of capturing many phenotypes that are otherwise visually phe-

notyped. Two dimensional RGB images have been used for measuring bio-

mass, leaf area, root architecture, leaf diseases and yield (Li et al., 2014). RGB

cameras can also aid in more precisely quantifying traits that are difficult or

time-consuming to score by the human eye. Stereo vision systems employ

two mono-vision cameras like an RGB camera to generate 3D images.

Stereo vision has an advantage over mono vision when it comes to structural

features. This can be especially important in field conditions where plants

cannot be staged in trait relevant positions.

Hyperspectral imaging captures one dimension of spectral information

within visible plus non-visible range (380–2500nm) and two dimensions

of spatial information via point spectroscopy to generate a 3D matrix
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(Liu et al., 2020). Hyperspectral imaging has had more limited use in UAV

and ground-based vehicle systems compared to the more RGB cameras,

largely due to the increased cost. Hyperspectral UAV systems have been

used to measure chlorophyll in barley (Aasen et al., 2015) and to estimate

biomass in wheat (Honkavaara et al., 2013). Hyperspectral images have been

more widely collected using satellites or high-altitude aircraft. Satellite

hyperspectral images have been used to predict yield and biomass in wheat

(Tattaris et al., 2016). Hyperspectral imaging is relevant for measuring

changes in growth dynamics through vegetative indices, water contents,

and pigment composition (Li et al., 2014). The near-infrared (NIR)

spectrum (800–2500nm) is another commonly imaged range. NIR imag-

ing is often done in conjunction with RGB or as a part of hyperspectral

imaging. The NIR range is important for the calculation of vegetative indi-

ces like NDVI (normalized difference vegetative index).

Thermal infrared (TIR) imaging is able to detect radiation in the thermal

range or far infrared (15–1000μm) range. TIR image pixels represent tem-

perature values and after correcting for environmental factors, these images

can be indicative of plant stress (Pineda et al., 2020). TIR is useful for eval-

uating differences in stomatal conductance which is related to water status

response and abiotic stress transpiration rate adaptation (Li et al., 2014).

LiDARmeasures the time by taken by a light pulse to be reflected off an

object of interest and back to the sensor (Perez-Sanz et al., 2017). LiDAR is

another sensor type that generates a 3D image structure and is effective at

large and small distances from several centimeters to thousands of kilometers.

LiDAR has been used for phenotyping plant height, biomass, and leaf traits,

among others (Panjvani et al., 2019; Sun et al., 2018).

Tomographic imaging methods like CT, magnetic resonance imaging

(MRI), positron emission tomography (PET) or ultrawideband radar scan-

ning (URS) are other types of sensors that can be used for the take of plant

phenotyping via computer vision. These approaches have lagged behind

other imaging systems for phenotyping tasks as they have not increased in

throughput capabilities as rapidly. Examples of phenotyping with tomo-

graphic imaging methods include using MRI for water diffusion and trans-

port evaluation (Windt et al., 2006), CT for root system architecture

evaluation (Hargreaves et al., 2009; Windt et al., 2006), and URS for exam-

ining the interiors of dense canopies closed to direct vision (Gomez-Garcia

et al., 2022).

In addition to the sensors used, the image acquisition system can vary

depending on the environmental conditions. Plants may be located in a field,
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greenhouse, or laboratory depending on the trait and tissue being studied. In

many situations for large-scale field imaging, a sensor is often mounted on

remotely controlled equipment, like a satellite, UAV, or ground-based vehi-

cle, while imaging in a greenhouse or laboratory, may also include stationary

or handheld systems. Satellite imaging generally relies on images captured by

existing satellite systems that are either freely or commercially distributed.

Satellite imaging has an advantage over other systems for large plot sizes

and dispersed multi-environment trials. Given the scale at which satellite

imagery is taken, environmental variability and necessary travel can be min-

imized with satellite image acquisition (Chawade et al., 2019). However,

satellite imaging is limited by revisit frequency, image precision, and cloud

cover interfering with image capture (Chawade et al., 2019). UAVs also

need to contend with environmental considerations when collecting images

but have increased flexibility of the timing and repetition of flights. UAVs

include both rotocopter systems like octocopters and hexacopters, and also

parachutes, blimps, and fixed wing systems (Sankaran et al., 2015).

Rotocopters are flown at altitudes between 10 and 200m, verse 700km

for satellites. This means UAVs collect images at a higher spatial resolution

than satellites. Quality orthomosaics are necessary for downstream research

tasks. However, generating high-quality orthomosaics can be a hurdle for

use of UAVs. Inaccuracies can be induced by lens distortion, ground sample

distance (physical distance represented by the span of one image pixel),

degree of image overlap, and position estimating equipment (Chawade

et al., 2019). Such inaccuracies would need to be corrected during ort-

homosaic building.

Proximal phenotyping through ground-based sensing approaches can be

stationary mounted, handheld, and ground-based vehicle mounted systems

(Deery et al., 2014). Stationary and handheld systems can reduce costs com-

pared to vehicle systems, but time and labor associated with these methods

increase as the number of plants increase. Ground-vehicle systems can

reduce labor and time inputs for a large number of plots and also provide

further increased spatial resolution over UAV systems. However, ground

vehicles still generally require more time over UAV systems for imaging

an equivalently sized plot which can increase the amount of temporal var-

iation (Chawade et al., 2019).

3.4.1.2 Data processing
In addition to the imaging system used, image processing and data

processing are critical steps for image-based phenotyping. The computer
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vision approaches discussed in the previous computer vision section

(Section 2.4) remain true for plant phenotype. Additionally, prior reviews

specific to several topics within computer vision for plant phenotyping

such as ML and DL approaches for plant stress phenotyping (Gill et al.,

2022; Singh et al., 2016; Singh et al., 2018); DL approaches for leaf

classification, disease detection, plant recognition, and fruit counting

(Kamilaris and Prenafeta-Boldú, 2018); and CNNs for plant phenotyping

( Jiang and Li, 2020) are also available. Rather, recent applications devel-

oped specifically for phenotyping will be detailed here with particular con-

sideration for NN-based applications.

Several categories of traits represent the most studied crop phenotypes,

those include root morphology, leaf characteristics, biomass, yield-related

traits, photosynthetic efficiency, and biotic and abiotic stress response

( Jiang and Li, 2020; Li et al., 2014; Yang et al., 2013).

Root phenotyping has remained among phenotyping methods with

high labor costs. In the field, roots cannot be imaged non-destructively with

a UAV or ground-based vehicle fitted with an RGB camera as many above

ground traits can be. Approaches that are root phenotyping specific have

needed to be developed. One approach is to grow seedlings in the lab using

containers that can be opened for imaging such as agar plates or germination

paper. Falk et al. (2020) introduced a root phenotyping approach that uti-

lized a fixed position RGB camera to image plants growing on germination

paper. Growth pouch units were manually transferred to and from the imag-

ing platform yielding a throughput of approximately 60–100 seedlings per

hour. Image processing relied on the self-developed software ARIA 2.0 that

was built on top of the original ARIA (Automatic Root Image Analysis) tool

(Pace et al., 2014). ARIA 2.0 relied on a convolutional autoencoder NN

architecture that eliminated the need for separate preprocessing and feature

extraction steps.

Lube et al. (2022) developed a system that images up to 18 Petri dish

plates simultaneously and processed up to 100 images per hour using an

RGB camera fitted with a visible bandwidth pass filter. Petri dishes were

mounted in a carousel that allowed for automated image acquisition making

the system suited to time-lapse captures. This system, called MultipleXLab,

also used an image analysis pipeline built on self-developed NNs called

SeedNet and RootNet for seed and root pixel identification. Both networks

are based on the U-Net architecture, a fully convolutional encoder-decoder

network, that was developed for image segmentation (Ronneberger

et al., 2015).
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ChronoRoot, as described by Gaggion et al. (2021), utilized time series

RGB images of agar plated seedlings and developed an automated image

processing pipeline that used NN-based segmentation. Two image

processing models were developed. The first was a modified ResUNet

model. ResUNet is a derivative of the U-Net architecture that uses residual

blocks in place of convolutional layers (He et al., 2015). Residual blocks are

characterized by skip connections (feedforward, supra-connections) that

provide memory without the use of gates like those used by RNNs. The

residual block is made up of both skip connections and the conventional

feedforward type connections that are bypassed by the skip connections.

ChronoRoot used ResUNet as the base of a DSResUNet model. The

DSResUNet model uses the ResUNet to generate intermediate feature

maps that are then further processed with two convolutional layers. This

introduces an additional loss term for both the initial segmentation map

generated by the ResUNet framework and for final output succeeding

the convolutional layers. The second segmentation method used by the

ChronoRoot system was an ensemble method that combined five popular

models: U-Net, ResUNet, DSResUNet, SegNet, and DeepLab v3. SegNet

is another type of fully convolutional encoder-decoder neural network

(Badrinarayanan et al., 2017). SegNet differs fromU-Net in the information

that is transferred between encoding and decoding sections of the network.

U-Net transfers the whole feature map, while SegNet only transfers pooled

indices. DeepLab v3 uses atrous (dilated) convolutions for feature extraction

(Chen et al., 2018). Traditional convolutions apply filters to neighboring

values in the input. Atrous convolutions skip some values per a defined spac-

ing to obtain a wider field of view with the same size kernel. For example, a

2�2 filter might be used on a 3�3 field of view where only the corners and

center values are applied to the filter. The NN output was considered a

soft-segmentation and was further refined in post-processing stages to skel-

etonize the root images and accommodate temporal tracking.

Thesma and Mohammadpour Velni (2022) used the same root image

dataset generated by Gaggion et al. (2021) but approached segmentation

through a conditional generative adversarial network (cGAN). One can

think of cGANs as a GAN where the generator and discriminator are con-

ditioned on supplementary information (Mirza and Osindero, 2014). Since

GANs are a type of unsupervised learning, the use of supplementary infor-

mation (like class labels or numerical values) also allows cGANs to be

considered a type of multi-modal NN. In the case of this root imaging

approach, a Pix2PixHD (Wang et al., 2018a) cGAN architecture derivative
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(Isola et al., 2017) and the root annotations, used as labels for supervised

methods, became the supplementary, conditional information. The

cGAN approach was used to generate additional root images that were seg-

mented using SegNet. The accuracy of the cGAN + SegNet system used

here was similar, but slightly lower than the UNet and DSResUNet models.

However, mean IOU (intersection over union) and dice score were higher

for the SegNet approach. Mean IOU represents the ratio of area of intersec-

tion of the predicted and observed bounding boxes over their union. Dice

score represents a similar metric as mean IOU but uses the formula of 2 times

the area of overlap over the area of the predicted bounding box plus the area

of the observed bounding box.

Root phenotyping has successfully adopted approaches from broader

computer vision processing techniques but is still bottlenecked by the need

for increased staging of the roots. Automated field root imaging remains an

inaccessible task. As aboveground plant components, leaf, shoot and growth

traits (i.e. height, biomass, leaf diseases, and leaf angle) have been more likely

to achieve the throughput expected to justify more complicated imaging

systems.

Nguyen et al. (2023) used a swarm of UAVs with each fitted with dif-

ferent sensors. The first UAV used a hyperspectral sensor (capturing the vis-

ible to NIR spectra), thermal sensor, and a GPS (global positioning system).

The second UAV included a LiDAR sensor and an RGB camera. The third

UAV consisted of a thermal camera, an RGB camera, and a multispectral

camera. Images taken by these UAVs were used to estimate cob biomass,

dry grain yield, dry stalk biomass, harvest index, grain density, grain nitrogen

content, grain nitrogen utilization efficiency, and plant nitrogen content.

Image processing included generating orthomosaics from thermal and

hyperspectral imagery and generating density maps from the LiDAR data.

After image processing, three approaches were used to process data for phe-

notype prediction: normalized difference spectral index (NDSI), ML, and

DL approaches. The NDSI approach combined all data modalities from

all the different sensors and used the combined values to investigate corre-

lations with the trait data. The ML approach used a handcrafted feature set

representing a fusion of vegetation, structural, and thermal indices. The fea-

ture set was used with the ML approaches (support vector regression and

RF). In the third, DL was used for single-modality and multi-modality pre-

diction. The DL models were CNNs designed for 2D and 3D data. For the

multi-modal CNN, the three CNNs, one for each of the hyperspectral,

LiDAR, and thermal single-modalities, were joined with a block of
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feedforward prediction layers. There was variable contribution of different

data modalities to different traits with hyperspectral data being nearer to a

primary contributor than others. Automated feature extraction via DL

proved feasible with similar prediction success compared to handcrafted fea-

ture sets. Multi-modal DL was shown to provide a computational advantage

over single modal approach with less time and resources required for gen-

erating predictions.

Xiang et al. (2023) used a ground-based vehicle (PhenoBot3.0) equipped

with multiple tiers of stereo RGB cameras to investigate leaf angle architec-

ture. These authors developed an image processing pipeline, AngleNet, that

was built on a CNN for key point detection followed by bounding

box detection. A disparity map and the 2D color images were used to gen-

erate the 3D leaf model. Keypoints could be mapped onto the 3D leaf model

and the leaf angle evaluated. The generation of a 3D model made the

AngleNet system robust to diverse leaf orientations that are possible for a

camera to capture in field conditions. This automated imaging pipeline

demonstrates the increase in throughput possible with computer vision

techniques with a 20 plant plot captured in 3–4s verse 8–10min required

for manually measuring the same quantity.

3.4.2 Multi-omic characterization
Multi-omic studies may better represent biological processes than

single-omic analysis and can bridge the gap between sequenced genotypes

and observed phenotypes by capturing additional genome-level variation.

Compared to genomic data, intermediate -omic data can be resource and

cost intensive, which makes it difficult to capture on a large scale.

Westhues et al. (2019) has shown that -omics data can be successfully

imputed from a subset of inbred lines and the result can be used for trait pre-

dictions. In terms of imputation, DL is a very capable method because it can

utilize correlations among different -omic datasets for multi-omic imputa-

tion (Song et al., 2020). Autoencoders have been successfully used on

single-omic imputation (Chen and Shi, 2019). DL has also been investigated

as a part of a multi-modal structure for integrating multi-omic data with

other heterogeneous sets of features (Li et al., 2016). Multi-modal structures

have the advantage allowing different NN architectures to be selected which

best fit a given data modality within an integrative system (Song et al., 2020).

DL and other types of ML also have other more specific multi-omic appli-

cations in addition to the integration of multi-omic data into a GS model.
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3.4.2.1 Single cell RNAseq
Pluripotent stem cells in meristems give rise to all the above- and below-

ground organs. Profile transcriptomes of a large population of single cells

is a state-of-the-art approach to study how the stem-cell niches are

maintained and organized through the data-driven discovery approach

(Liu et al., 2021; Xu et al., 2021; Zhang et al., 2021). Unsupervised ML

methods, t-Stochastic Neighborhood Embedding (t-SNE) (Van Der

Maaten and Hinton, 2008) and Uniform Manifold Approximation and

Projection (UMAP) (McInnes et al., 2018), are widely applied to extract

critical information from single-cell transcriptomes (Xu et al., 2021;

Zhang et al., 2021). These unsupervised learning algorithms represent

state-of-the-art dimensionality reduction algorithms to reveal prominent

patterns from high dimension data. In combination with unique experimen-

tal designs, these algorithms are powerful to unveil biological insights.

Sequencing transcriptomes of 327 cells sampled from maize shoot apical

meristem showed that cells in the tip tend to have high activities in

maintaining the genome integrity and that the divergent molecular mech-

anisms of stem cell regulation exist between Arabidopsis and maize (Satterlee

et al., 2020). The regulatory programs associated with cell types at the root

tip are highly conserved in rice cultivars, while some programs are divergent

between rice and Arabidopsis (Zhang et al., 2021). By analyzing allele spe-

cific transcriptomes from single pollen precursors from a maize hybrid along

the developmental stages, novel discoveries of diploid-derived transcripts

persist long into the haploid phase and a rapid transition to monoallelic

expression around pollen mitosis I were reported (Nelms and

Walbot, 2022).

3.4.2.2 Regulatory genomics
Selection of gene expression pattern change is a major mechanism in domes-

ticating and improving crops (Chen et al., 2021). However, at the

genome-wide level, understanding of how gene expression is determined

by the linear (and non-linear) combinations of nucleotides remains limited.

Sequencing technologies have the capacity to assemble gapless genomes, and

accurately and efficiently measure expressions for tens of thousands of genes

across many conditions of the same organism. Therefore, compiling large

training datasets (labeled with gene expressions) is feasible. This opens the

possibility of systemically investigating learning from data by designing

and training ML and DL algorithms (Avsec et al., 2021; Novakovsky

et al., 2023). Using frequencies of mononucleotides and dinucleotides from
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six regions of each gene as features, random forests were trained to predict

the transcriptional response to cold stress across plants (Meng et al., 2021).

Given the frequent genome duplication events in crops, it was rec-

ommended that evolutionary relatedness be incorporated into CNNs

designed for transcription activities (Washburn et al., 2019). Similarly, deep

CNNs have also been expanded into other critical genomic features, or

molecular phenotypes, such as DNA accessibility and chromatin, chromo-

some interaction, and 3D organization (Kelley et al., 2016).

3.4.2.3 Population genomics
A major frontier of applying ML and DL for genomics is identifying and

cataloging polymorphisms beyond SNPs. Deep NN algorithms have been

trained to call small variants from short resequencing reads aligned to a single

reference genome (Luo et al., 2019; Poplin et al., 2018; Torracinta and

Campagne, 2016). Multiple high-quality genome assemblies build the foun-

dation to unveil the full spectrum of DNA polymorphisms of small and large

size, but the complexity of DNA polymorphisms across pan-genomes

requires innovative analytic strategies. Unsupervised ML algorithms have

been tested to streamline the identification of large structural variations

for genes of interest across assemblies (Zhang et al., 2023a). To leverage

state-of-the-art computer vision DL frameworks, strategies such as

SVision via the sequence-to-image schema have been tested to resolve com-

plex structure (Lin et al., 2022a). ML algorithms also demonstrated prom-

ising potential for inferring evolutionary signatures from DNA

polymorphisms (Schrider and Kern, 2018). With available pan-genomes

from accessions representing the genetic global diversity in different crops,

novel ML and DL algorithms may be used to combine assemblies and short

reads to gain a comprehensive understanding of population genomics.

4. Future of AI for crop improvement

Artificial intelligence is a diverse field, as are the tasks associated with

crop improvement. AI applications can appear in individual components of a

system or as the overall system structure in different aspects of crop improve-

ment. Together, these joint applications have been revolutionizing agricul-

tural practices in the field, greenhouse, and laboratory. Just as genomic

selection has been enhancing our capacity beyond the traditional breeding

and marker-assisted breeding approaches, so may neural network-based
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genomic selection as we continue to generate big data and novel

high-throughput approaches. With increased focus on the multiple dimen-

sions affecting phenotypes, new methods must be capable of considering

diverse genomic, enviromic, and multi-omic datasets that are collected with

rapidly changing technologies. A challenge that those involved in crop

improvement are familiar with is keeping up. For the last century that chal-

lenge has been framed around keeping up with the demand of a growing

world population, and this continues to be the major concern. Now, how-

ever, that challenge is further complicated by climate change. Going forward

into an era that may become dominated by AI approaches toward all types of

problems, the need to educate both scientists and the public about AI is

becoming clear.

For individual researchers in crop improvement to adopt AI methods, it

is desirable to know the potential advantages of AI methods over traditional

methods when data size is relatively small and how to assess the signal-noise

ratio before integrating diverse data sources. It is also desirable to compare

the efficiency of applying new AI methods to observational studies to the

efficiency of designed cropping experiments that have and will continue

to be a major data source for many aspects of crop improvement. For

producers, it is desirable to leverage AI to achieve sustainable production

via enhanced on-farm production management. The improved capacity

to monitor and forecast crop growth and health under different

genetic � environment � management combinations would greatly facili-

tate the decision-making process. At a larger space and a longer time scale,

how to leverage AI to generate guidelines and action plans for crop

improvement should be examined.

J.B.S. Haldane spent his life operating at the intersection of genetics, evo-

lutionary biology, physiology, and mathematical statistics. Indeed, in 1929

he advanced foundational notions relevant to later theories on the chemical

origin of life. He also once famously said (as frequently paraphrased by

others), “The universe is not only stranger than we imagine; it is stranger

than we can imagine.” Given the twin advancing/adverse drumbeats of

population growth and climate change, it might well be that our ability

to imagine what is possible at the intersection of breeding, genetics, crop

management, and AI/ML is the existential challenge of our time.

However, if the prior success achieved leveraging innovative technologies

for crop improvement is any indication, the future of AI-assisted crop

improvement is bright.
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Avsec, Ž., Agarwal, V., Visentin, D., Ledsam, J.R., Grabska-Barwinska, A., Taylor, K.R.,
Assael, Y., Jumper, J., Kohli, P., Kelley, D.R., 2021. Effective gene expression predic-
tion from sequence by integrating long-range interactions. Nat. Methods 18,
1196–1203. https://doi.org/10.1038/s41592-021-01252-x.

Azodi, C.B., Bolger, E., McCarren, A., Roantree, M., de los Campos, G., Shiu, S.-H., 2019.
Benchmarking parametric and machine learning models for genomic prediction of com-
plex traits. G3 Genes Genomes Genetics 9, 3691–3702. https://doi.org/10.1534/g3.119.
400498.

Badrinarayanan, V., Kendall, A., Cipolla, R., 2017. SegNet: a deep convolutional
encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal.
Mach. Intell. 39, 2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615.

Bahdanau, D., Cho, K., Bengio, Y., 2014. Neural machine translation by jointly learning to
align and translate. In: 3rd International Conference on Learning Representations, ICLR
2015—Conference Track Proceedings, pp. 1–15.

B€anziger, M., Setimela, P.S., Hodson, D., Vivek, B., 2006. Breeding for improved abiotic
stress tolerance in maize adapted to southern Africa. Agric. Water Manag. 80,
212–224. https://doi.org/10.1016/j.agwat.2005.07.014.

Bengio, Y., 2009. Learning Deep Architectures for AI. vol. 2 Foundations and Trends in
Machine Learning, pp. 1–127, https://doi.org/10.1561/2200000006.

Bergstra, J., Bardenet, R., Bengio, Y., K�egl, B., 2011. Algorithms for hyper-parameter opti-
mization. In: Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger, K.Q.
(Eds.), Advances in Neural Information Processing Systems. Curran Associates, Inc,
pp. 1–9.

Bernardo, R., Yu, J., 2007. Prospects for genomewide selection for quantitative traits in
maize. Crop Sci. 47, 1082–1090. https://doi.org/10.2135/cropsci2006.11.0690.

Betker, J., Goh, G., Jing, L., Brooks, T., Wang, J., Li, L., Ouyang, L., Zhuang, J., Lee, J.,
Guo, Y., Manassra, W., Improving image generation with better captions. Preprint.
https://openai.com/dall-e-3.

Biau, G., Scornet, E., 2016. A random forest guided tour. TEST 25, 197–227. https://doi.
org/10.1007/s11749-016-0481-7.

Bommasani,R.,Hudson,D.A., Adeli, E., Altman,R., Arora, S., vonArx, S., Bernstein,M.S.,
Bohg, J., Bosselut, A., Brunskill, E., Brynjolfsson, E., Buch, S., Card, D., Castellon, R.,
Chatterji, N., Chen, A., Creel, K., Davis, J.Q., Demszky, D., Donahue, C.,
Doumbouya, M., Durmus, E., Ermon, S., Etchemendy, J., Ethayarajh, K., Fei-Fei, L.,

52 Karlene L. Negus et al.

https://doi.org/10.1016/j.isprsjprs.2015.08.002
https://doi.org/10.1016/j.isprsjprs.2015.08.002
https://doi.org/10.1038/s41598-020-79148-7
https://doi.org/10.1038/s41598-020-79148-7
https://doi.org/10.1038/s41592-021-01252-x
https://doi.org/10.1038/s41592-021-01252-x
https://doi.org/10.1534/g3.119.400498
https://doi.org/10.1534/g3.119.400498
https://doi.org/10.1534/g3.119.400498
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1109/TPAMI.2016.2644615
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0035
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0035
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0035
https://doi.org/10.1016/j.agwat.2005.07.014
https://doi.org/10.1016/j.agwat.2005.07.014
https://doi.org/10.1561/2200000006
https://doi.org/10.1561/2200000006
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0050
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0050
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0050
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0050
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0050
https://doi.org/10.2135/cropsci2006.11.0690
https://doi.org/10.2135/cropsci2006.11.0690
https://openai.com/dall-e-3
https://openai.com/dall-e-3
https://doi.org/10.1007/s11749-016-0481-7
https://doi.org/10.1007/s11749-016-0481-7
https://doi.org/10.1007/s11749-016-0481-7
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0065
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0065
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0065
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0065


Finn, C., Gale, T., Gillespie, L., Goel, K., Goodman, N., Grossman, S., Guha, N.,
Hashimoto, T., Henderson, P., Hewitt, J., Ho, D.E., Hong, J., Hsu, K., Huang, J.,
Icard, T., Jain, S., Jurafsky, D., Kalluri, P., Karamcheti, S., Keeling, G., Khani, F.,
Khattab, O., Koh, P.W., Krass, M., Krishna, R., Kuditipudi, R., Kumar, A.,
Ladhak, F., Lee, M., Lee, T., Leskovec, J., Levent, I., Li, X.L., Li, X., Ma, T.,
Malik, A., Manning, C.D., Mirchandani, S., Mitchell, E., Munyikwa, Z., Nair, S.,
Narayan, A., Narayanan, D., Newman, B., Nie, A., Niebles, J.C., Nilforoshan, H.,
Nyarko, J., Ogut, G., Orr, L., Papadimitriou, I., Park, J.S., Piech, C., Portelance, E.,
Potts, C., Raghunathan, A., Reich, R., Ren, H., Rong, F., Roohani, Y., Ruiz, C.,
Ryan, J., R�e, C., Sadigh, D., Sagawa, S., Santhanam, K., Shih, A., Srinivasan, K.,
Tamkin, A., Taori, R., Thomas, A.W., Tramèr, F., Wang, R.E., Wang, W., Wu, B.,
Wu, J., Wu, Y., Xie, S.M., Yasunaga, M., You, J., Zaharia, M., Zhang, M.,
Zhang, T., Zhang, X., Zhang, Y., Zheng, L., Zhou, K., Liang, P., 2021. On the oppor-
tunities and risks of foundation models. arXiv.2108.07258v3.

Breiman, L., 2001a. Statistical modeling: the two cultures. Stat. Sci. 16, 199–231.
Breiman, L., 2001b. Random forests. Machine learning 45, 5–32.
Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A.,

Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D.M., Wu, J., Winter, C., Hesse, C.,
Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C.,
McCandlish, S., Radford, A., Sutskever, I., Amodei, D., 2020. Language models are
few-shot learners. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F.,
Lin, H. (Eds.), Advances in Neural Information Processing Systems. Curran
Associates, Inc, pp. 1877–1901. https://proceedings.neurips.cc/paper_files/paper/
2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Buckler, E.S., Holland, J.B., Bradbury, P.J., Acharya, C.B., Brown, P.J., Browne, C.,
Ersoz, E., Flint-Garcia, S., Garcia, A., Glaubitz, J.C., Goodman, M.M., Harjes, C.,
Guill, K., Kroon, D.E., Larsson, S., Lepak, N.K., Li, H., Mitchell, S.E., Pressoir, G.,
Peiffer, J.A., Rosas, M.O., Rocheford, T.R., Romay, M.C., Romero, S., Salvo, S.,
Villeda, H.S., Sofia da Silva, H., Sun, Q., Tian, F., Upadyayula, N., Ware, D.,
Yates, H., Yu, J., Zhang, Z., Kresovich, S., McMullen, M.D., 2009. The genetic archi-
tecture of maize flowering time. Science 325, 714–718. https://doi.org/10.1126/sci-
ence.1174276.

Bzdok, D., Altman, N., Krzywinski, M., 2018. Statistics versus machine learning. Nat.
Methods 15, 233–234. https://doi.org/10.1038/nmeth.4642.

Chakraborti, T., Isahagian, V., Khalaf, R., Khazaeni, Y., Muthusamy, V., Rizk, Y.,
Unuvar, M., 2020. From robotic process automation to intelligent process automation:
emerging trends. In: Lecture Notes in Business Information Processing 393 LNBIP,
pp. 215–228.

Chawade, A., van Ham, J., Blomquist, H., Bagge, O., Alexandersson, E., Ortiz, R., 2019.
High-throughput field-phenotyping tools for plant breeding and precision agriculture.
Agronomy 9, 258. https://doi.org/10.3390/agronomy9050258.

Chen, J., Shi, X., 2019. Sparse convolutional denoising autoencoders for genotype imputa-
tion. Gene 10, 652. https://doi.org/10.3390/genes10090652.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L., 2018. DeepLab:
semantic image segmentation with deep convolutional nets, Atrous convolution, and
fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40, 834–848. https://
doi.org/10.1109/TPAMI.2017.2699184.

Chen, Q., Li, W., Tan, L., Tian, F., 2021. Harnessing knowledge from maize and rice
domestication for new crop breeding. Mol. Plant 14, 9–26. https://doi.org/10.1016/
j.molp.2020.12.006.

53The role of artificial intelligence in crop improvement

http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0065
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0065
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0065
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0065
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0065
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0065
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0065
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0065
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0065
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0065
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0065
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0065
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0065
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0065
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0065
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0070
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0075
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1126/science.1174276
https://doi.org/10.1126/science.1174276
https://doi.org/10.1126/science.1174276
https://doi.org/10.1038/nmeth.4642
https://doi.org/10.1038/nmeth.4642
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0095
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0095
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0095
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0095
https://doi.org/10.3390/agronomy9050258
https://doi.org/10.3390/agronomy9050258
https://doi.org/10.3390/genes10090652
https://doi.org/10.3390/genes10090652
https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.1016/j.molp.2020.12.006
https://doi.org/10.1016/j.molp.2020.12.006
https://doi.org/10.1016/j.molp.2020.12.006


Cheng, J., Bendjama, K., Rittner, K., Malone, B., 2021. BERTMHC: improved
MHC–peptide class II interactionpredictionwith transformer andmultiple instance learn-
ing. Bioinformatics 37, 4172–4179. https://doi.org/10.1093/bioinformatics/btab422.

Cooper, M., Messina, C.D., Podlich, D., Totir, L.R., Baumgarten, A., Hausmann, N.J.,
Wright, D., Graham, G., 2014. Predicting the future of plant breeding: complementing
empirical evaluation with genetic prediction. Crop Past. Sci. 65, 311. https://doi.org/10.
1071/CP14007.

Cooper, M., Technow, F., Messina, C., Gho, C., Totir, L.R., 2016. Use of crop growth
models with whole-genome prediction: application to a maize multienvironment trial.
Crop Sci. 56, 2141–2156. https://doi.org/10.2135/cropsci2015.08.0512.

Costa-Neto, G., Fritsche-Neto, R., 2021. Enviromics: bridging different sources of data,
building one framework. Crop Breed. Appl. Biotechnol. 21, 393521–393533. https://
doi.org/10.1590/1984-70332021V21SA25.

Costa-Neto, G., Crossa, J., Fritsche-Neto, R., 2021. Enviromic assembly increases accuracy
and reduces costs of the genomic prediction for yield plasticity in maize. Front. Plant Sci.
12. https://doi.org/10.3389/fpls.2021.717552.

Crespo-Herrera, L.A., Crossa, J., Vargas, M., Braun, H.-J., 2022. Defining target wheat
breeding environments. In: Reynolds, M.P., Braun, H.-J. (Eds.), Wheat
Improvement. Springer International Publishing, Cham, pp. 31–45, https://doi.org/
10.1007/978-3-030-90673-3_3.

Crevier, D., 1993. AI: The Tumultuous History of the Search for Artificial Intelligence. Basic
Books, Inc.

Cropper, A., Duman�ci�c, S., 2022. Inductive logic programming at 30: a new introduction.
J. Artif. Intell. Res. 74, 765–850. https://doi.org/10.1613/jair.1.13507.

Crossa, J., P�erez-Rodrı́guez, P., Cuevas, J., Montesinos-López, O., Jarquı́n, D., de los
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González-Camacho, J.M., de los Campos, G., P�erez, P., Gianola, D., Cairns, J.E.,
Mahuku, G., Babu, R., Crossa, J., 2012. Genome-enabled prediction of genetic values
using radial basis function neural networks. Theor. Appl. Genet. 125, 759–771. https://
doi.org/10.1007/s00122-012-1868-9.

55The role of artificial intelligence in crop improvement

https://doi.org/10.3389/frai.2020.00004
https://doi.org/10.3389/frai.2020.00004
https://doi.org/10.1186/s13007-019-0550-5
https://doi.org/10.1186/s13007-019-0550-5
https://doi.org/10.1186/s13007-019-0550-5
https://doi.org/10.1016/j.ecolmodel.2015.06.006
https://doi.org/10.1016/j.ecolmodel.2015.06.006
https://doi.org/10.1016/j.agrformet.2019.05.018
https://doi.org/10.1016/j.agrformet.2019.05.018
https://doi.org/10.1016/j.agrformet.2019.05.018
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.1007/978-3-030-05318-5_1
http://dl.acm.org/citation.cfm?id=3091696.3091715
http://dl.acm.org/citation.cfm?id=3091696.3091715
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0230
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0230
https://doi.org/10.1093/gigascience/giab052
https://doi.org/10.1093/gigascience/giab052
https://doi.org/10.1093/gigascience/giab052
https://doi.org/10.1038/s42256-020-00257-z
https://doi.org/10.1038/s42256-020-00257-z
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1162/089976600300015015
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0250
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0250
https://doi.org/10.1186/1471-2156-12-87
https://doi.org/10.1186/1471-2156-12-87
https://doi.org/10.1007/s43657-022-00048-z
https://doi.org/10.1007/s43657-022-00048-z
https://doi.org/10.1162/neco.1995.7.2.219
https://doi.org/10.1162/neco.1995.7.2.219
https://doi.org/10.1109/LGRS.2020.3039179
https://doi.org/10.1109/LGRS.2020.3039179
https://doi.org/10.1109/LGRS.2020.3039179
https://doi.org/10.1007/s00122-012-1868-9
https://doi.org/10.1007/s00122-012-1868-9
https://doi.org/10.1007/s00122-012-1868-9
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Kamilaris, A., Prenafeta-Boldú, F.X., 2018. Deep learning in agriculture: a survey. Comput.
Electron. Agric. 147, 70–90. https://doi.org/10.1016/j.compag.2018.02.016.

Kaur, D., Kaur, Y., 2014. Various image segmentation techniques: a review. Int. J. Comput.
Sci. Mob. Comput. 3, 809–814.

Kautz, H.A., 2022. The third AI summer: AAAI Robert S. Engelmore memorial lecture. AI
Mag. 43, 105–125. https://doi.org/10.1002/aaai.12036.

Kelley, D.R., Snoek, J., Rinn, J.L., 2016. Basset: learning the regulatory code of the acces-
sible genome with deep convolutional neural networks. Genome Res. 26,
990–999. https://doi.org/10.1101/gr.200535.115.

Khaki, S., Wang, L., 2019. Crop yield prediction using deep neural networks. Front. Plant
Sci. 10, 621. https://doi.org/10.3389/fpls.2019.00621.

Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M., 2022. Transformers in
vision: a survey. ACM Comput. Surv. 54, 1–41. https://doi.org/10.1145/3505244.

Kick, D.R., Wallace, J.G., Schnable, J.C., Kolkman, J.M., Alaca, B., Beissinger, T.M.,
Edwards, J., Ertl, D., Flint-Garcia, S., Gage, J.L., Hirsch, C.N., Knoll, J.E., de
Leon, N., Lima, D.C., Moreta, D.E., Singh, M.P., Thompson, A., Weldekidan, T.,
Washburn, J.D., 2023. Yield prediction through integration of genetic, environment,
and management data through deep learning. G3 Genes Genomes Genetics 13,
6. https://doi.org/10.1093/g3journal/jkad006.

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.-Y., Dollár, P., Girshick, R., 2023. Segment any-
thing. arXiv:2304.02643v1.

Kotsiantis, S.B., 2013. Decision trees: a recent overview. Artif. Intell. Rev. 39,
261–283. https://doi.org/10.1007/s10462-011-9272-4.

Kramer, M.A., 1991. Nonlinear principal component analysis using autoassociative neural
networks. AIChE J. 37, 233–243. https://doi.org/10.1002/aic.690370209.

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2017. ImageNet classification with deep con-
volutional neural networks. Commun. ACM 60, 84–90. https://doi.org/10.
1145/3065386.

Kuruvilla, J., Sukumaran, D., Sankar, A., Joy, S.P., 2016. A review on image processing and
image segmentation. In: 2016 International Conference on Data Mining and Advanced

58 Karlene L. Negus et al.

https://doi.org/10.1016/B978-012373642-0.50018-1
https://doi.org/10.1016/B978-012373642-0.50018-1
https://proceedings.mlr.press/v139/jia21b.html
https://proceedings.mlr.press/v139/jia21b.html
https://proceedings.mlr.press/v139/jia21b.html
https://doi.org/10.34133/2020/4152816
https://doi.org/10.34133/2020/4152816
https://doi.org/10.34133/2020/4152816
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1016/j.compag.2018.02.016
https://doi.org/10.1016/j.compag.2018.02.016
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0465
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0465
https://doi.org/10.1002/aaai.12036
https://doi.org/10.1002/aaai.12036
https://doi.org/10.1101/gr.200535.115
https://doi.org/10.1101/gr.200535.115
https://doi.org/10.3389/fpls.2019.00621
https://doi.org/10.3389/fpls.2019.00621
https://doi.org/10.1145/3505244
https://doi.org/10.1145/3505244
https://doi.org/10.1093/g3journal/jkad006
https://doi.org/10.1093/g3journal/jkad006
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0495
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0495
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0495
https://doi.org/10.1007/s10462-011-9272-4
https://doi.org/10.1007/s10462-011-9272-4
https://doi.org/10.1002/aic.690370209
https://doi.org/10.1002/aic.690370209
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386


Computing (SAPIENCE), pp. 198–203, https://doi.org/10.1109/SAPIENCE.2016.
7684170.

Li, L., Zhang, Q., Huang, D., 2014. A review of imaging techniques for plant phenotyping.
Sensors 14, 20078–20111. https://doi.org/10.3390/s141120078.

Li, Y., Wu, F.-X., Ngom, A., 2016. A review on machine learning principles for multi-view
biological data integration. Brief. Bioinform. 19, 113. https://doi.org/10.1093/bib/
bbw113.

Li, X., Guo, T., Mu, Q., Li, X., Yu, J., 2018. Genomic and environmental determinants and
their interplay underlying phenotypic plasticity. Proc. Natl. Acad. Sci. 115,
6679–6684. https://doi.org/10.1073/pnas.1718326115.

Li, S., Jin, X., Xuan, Y., Zhou, X., Chen, W., Wang, Y.-X., Yan, X., 2019. Enhancing the
locality and breaking the memory bottleneck of transformer on time series forecasting.
In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alch�e-Buc, F., Fox, E.,
Garnett, R. (Eds.), Advances in Neural Information Processing Systems. Curran
Associates, Inc, ISBN: 9781713807933, p. 32.

Li, Z., Guo, R., Li, M., Chen, Y., Li, G., 2020. A review of computer vision technologies for
plant phenotyping. Comput. Electron. Agric. 176, 105672. https://doi.org/10.1016/j.
compag.2020.105672.

Li, X., Guo, T., Wang, J., Bekele, W.A., Sukumaran, S., Vanous, A.E., McNellie, J.P.,
Tibbs-Cortes, L.E., Lopes, M.S., Lamkey, K.R., Westgate, M.E., McKay, J.K.,
Archontoulis, S.V., Reynolds,M.P., Tinker, N.A., Schnable, P.S., Yu, J., 2021. An inte-
grated framework reinstating the environmental dimension for GWAS and genomic
selection in crops.Mol. Plant 14, 874–887. https://doi.org/10.1016/j.molp.2021.03.010.

Li, X., Guo, T., Bai, G., Zhang, Z., See, D., Marshall, J., Garland-Campbell, K.A., Yu, J.,
2022. Genetics-inspired data-driven approaches explain and predict crop performance
fluctuations attributed to changing climatic conditions. Mol. Plant 15,
203–206. https://doi.org/10.1016/j.molp.2022.01.001.

Liakos, K., Busato, P., Moshou, D., Pearson, S., Bochtis, D., 2018. Machine learning in agri-
culture: a review. Sensors 18, 2674. https://doi.org/10.3390/s18082674.

Libbrecht, M.W., Noble, W.S., 2015. Machine learning applications in genetics and geno-
mics. Nat. Rev. Genet. 16, 321–332. https://doi.org/10.1038/nrg3920.

Lim, B., Arık, S., Loeff, N., Pfister, T., 2021. Temporal fusion transformers for interpretable
multi-horizon time series forecasting. Int. J. Forecast. 37, 1748–1764. https://doi.org/
10.1016/J.IJFORECAST.2021.03.012.

Lin, D., Dechter, E., Ellis, K., Tenenbaum, J., Muggleton, S., 2014. Bias reformulation for
one-shot function induction. Front. Artif. Intell. Appl., 525–530. https://doi.org/10.
3233/978-1-61499-419-0-525.

Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu,W., Smetanin, N., Verkuil, R., Kabeli, O.,
Shmueli, Y., dos Santos Costa, A., Fazel-Zarandi, M., Sercu, T., Candido, S., Rives, A.,
2023. Evolutionary-scale prediction of atomic-level protein structure with a language
model. Science 379, 1123–1130. https://doi.org/10.1126/science.ade2574.

Liu, Y., Wang, D., 2017. Application of deep learning in genomic selection. In: 2017 IEEE
international conference on bioinformatics and biomedicine (BIBM).
IEEE, p. 2280, https://doi.org/10.1109/BIBM.2017.8218025.

Liu, H., Yu, L., 2005. Toward integrating feature selection algorithms for classification and
clustering. IEEE Trans. Knowl. Data Eng. 17, 491–502.

Lin, J., Wang, S., Audano, P.A., Meng, D., Flores, J.I., Kosters, W., Yang, X., Jia, P.,
Marschall, T., Beck, C.R., Ye, K., 2022a. SVision: a deep learning approach to resolve
complex structural variants. Nat. Methods 19, 1230–1233. https://doi.org/10.1038/
s41592-022-01609-w.

Lin, T., Wang, Y., Liu, X., Qui, X., 2022b. A survey of transformers. AI Open, https://doi.
org/10.1016/j.aiopen.2022.10.001.

59The role of artificial intelligence in crop improvement

https://doi.org/10.1109/SAPIENCE.2016.7684170
https://doi.org/10.1109/SAPIENCE.2016.7684170
https://doi.org/10.1109/SAPIENCE.2016.7684170
https://doi.org/10.3390/s141120078
https://doi.org/10.3390/s141120078
https://doi.org/10.1093/bib/bbw113
https://doi.org/10.1093/bib/bbw113
https://doi.org/10.1093/bib/bbw113
https://doi.org/10.1073/pnas.1718326115
https://doi.org/10.1073/pnas.1718326115
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0535
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0535
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0535
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0535
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0535
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0535
https://doi.org/10.1016/j.compag.2020.105672
https://doi.org/10.1016/j.compag.2020.105672
https://doi.org/10.1016/j.compag.2020.105672
https://doi.org/10.1016/j.molp.2021.03.010
https://doi.org/10.1016/j.molp.2021.03.010
https://doi.org/10.1016/j.molp.2022.01.001
https://doi.org/10.1016/j.molp.2022.01.001
https://doi.org/10.3390/s18082674
https://doi.org/10.3390/s18082674
https://doi.org/10.1038/nrg3920
https://doi.org/10.1038/nrg3920
https://doi.org/10.1016/J.IJFORECAST.2021.03.012
https://doi.org/10.1016/J.IJFORECAST.2021.03.012
https://doi.org/10.1016/J.IJFORECAST.2021.03.012
https://doi.org/10.3233/978-1-61499-419-0-525
https://doi.org/10.3233/978-1-61499-419-0-525
https://doi.org/10.3233/978-1-61499-419-0-525
https://doi.org/10.1126/science.ade2574
https://doi.org/10.1126/science.ade2574
https://doi.org/10.1109/BIBM.2017.8218025
https://doi.org/10.1109/BIBM.2017.8218025
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0590
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0590
https://doi.org/10.1038/s41592-022-01609-w
https://doi.org/10.1038/s41592-022-01609-w
https://doi.org/10.1038/s41592-022-01609-w
https://doi.org/10.1016/j.aiopen.2022.10.001
https://doi.org/10.1016/j.aiopen.2022.10.001
https://doi.org/10.1016/j.aiopen.2022.10.001


Liu, H., Bruning, B., Garnett, T., Berger, B., 2020. Hyperspectral imaging and 3D technol-
ogies for plant phenotyping: from satellite to close-range sensing. Comput. Electron.
Agric. 175, 105621. https://doi.org/10.1016/j.compag.2020.105621.

Liu, Q., Liang, Z., Feng, D., Jiang, S., Wang, Y., Du, Z., Li, R., Hu, G., Zhang, P., Ma, Y.,
Lohmann, J.U., Gu, X., 2021. Transcriptional landscape of rice roots at the single-cell
resolution. Mol. Plant 14, 384–394. https://doi.org/10.1016/j.molp.2020.12.014.

Lobell, D.B., Hammer, G.L., McLean, G., Messina, C., Roberts, M.J., Schlenker, W., 2013.
The critical role of extreme heat for maize production in the United States. Nat. Clim.
Chang. 3, 497–501. https://doi.org/10.1038/nclimate1832.

Lu, Y., Chen, D., Chen, Y.-L., Codella, N., Dai, X., Gao, J., Hu, H., Huang, X., Li, B.,
Li, C., Liu, C., Liu, M., Liu, Z., Lu, Y., Shi, Y., Wang, L., Wang, J., Xiao, B., Xiao, Z.,
Yang, J., Zeng, M., Zhou, L., Zhang, P., 2021. Florence: a new foundation model for
computer vision. arXiv:2111.11432v1.

Lube, V., Noyan, M.A., Przybysz, A., Salama, K., Blilou, I., 2022. MultipleXLab: a
high-throughput portable live-imaging root phenotyping platform using deep learning
and computer vision. Plant Methods 18, 38. https://doi.org/10.1186/s13007-022-
00864-4.

Luconi, F.L., Malone, T.W., Morton, M.S.S., 1986. Expert systems: the next challenge for
managers. Sloan Manag. Rev. 1986-1998 (27), 3–14.

Luo, R., Sedlazeck, F.J., Lam, T.-W., Schatz, M.C., 2019. A multi-task convolutional deep
neural network for variant calling in single molecule sequencing. Nat. Commun. 10,
998. https://doi.org/10.1038/s41467-019-09025-z.

Ma, W., Qiu, Z., Song, J., Li, J., Cheng, Q., Zhai, J., Ma, C., 2018. A deep convolutional
neural network approach for predicting phenotypes from genotypes. Planta 248,
1307–1318. https://doi.org/10.1007/s00425-018-2976-9.

Mayr, A., Binder, H., Gefeller, O., Schmid, M., 2014. The evolution of boosting algorithms.
Methods Inf. Med. 53, 419–427. https://doi.org/10.3414/ME13-01-0122.

Mcculloch, W.S., Pitts, W., Lrerr, W., Pitts, H., 1943. A logical calculus of the ideas imma-
nent in nervous activity. Bull. Math. Biophys. 5, 115–133.

Mcdowell, R.M., 2016. Genomic Selection with DeepNeural Networks. (PhD thesis). Iowa
State University, Digital Repository, Ames, https://doi.org/10.31274/etd-180810-
5600.

McInnes, L., Healy, J., Melville, J., 2018. UMAP: uniformmanifold approximation and pro-
jection for dimension reduction. J. Open Source Softw. 3, 861. https://doi.org/10.
21105/joss.00861.

Meng, X., Liang, Z., Dai, X., Zhang, Y., Mahboub, S., Ngu, D.W., Roston, R.L.,
Schnable, J.C., 2021. Predicting transcriptional responses to cold stress across plant spe-
cies. Proc. Natl. Acad. Sci. 118, e2026330118. https://doi.org/10.1073/pnas.
2026330118.

Meuwissen, T.H.E., Hayes, B.J., Goddard, M.E., 2001. Prediction of total genetic value
using genome-wide dense marker maps. Genetics 157, 1819–1829. https://doi.org/
10.1093/genetics/157.4.1819.

Meuwissen, T., Hayes, B., Goddard, M., 2016. Genomic selection: a paradigm shift in animal
breeding. Anim. Front. 6, 6–14. https://doi.org/10.2527/af.2016-0002.

Minaee, S., Boykov, Y.Y., Porikli, F., Plaza, A.J., Kehtarnavaz, N., Terzopoulos, D., 2021.
Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach.
Intell. 44, 3523–3542. https://doi.org/10.1109/TPAMI.2021.3059968.

Mirza, M., Osindero, S., 2014. Conditional generative adversarial nets. arXiv:1411.1784v1.
Mochida, K., Koda, S., Inoue, K., Hirayama, T., Tanaka, S., Nishii, R., Melgani, F., 2019.

Computer vision-based phenotyping for improvement of plant productivity: a machine
learning perspective. GigaScience 8, 1–12. https://doi.org/10.1093/gigascience/giy153.

60 Karlene L. Negus et al.

https://doi.org/10.1016/j.compag.2020.105621
https://doi.org/10.1016/j.compag.2020.105621
https://doi.org/10.1016/j.molp.2020.12.014
https://doi.org/10.1016/j.molp.2020.12.014
https://doi.org/10.1038/nclimate1832
https://doi.org/10.1038/nclimate1832
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0610
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0610
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0610
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0610
https://doi.org/10.1186/s13007-022-00864-4
https://doi.org/10.1186/s13007-022-00864-4
https://doi.org/10.1186/s13007-022-00864-4
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0620
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0620
https://doi.org/10.1038/s41467-019-09025-z
https://doi.org/10.1038/s41467-019-09025-z
https://doi.org/10.1007/s00425-018-2976-9
https://doi.org/10.1007/s00425-018-2976-9
https://doi.org/10.3414/ME13-01-0122
https://doi.org/10.3414/ME13-01-0122
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0640
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0640
https://doi.org/10.31274/etd-180810-5600
https://doi.org/10.31274/etd-180810-5600
https://doi.org/10.31274/etd-180810-5600
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://doi.org/10.1073/pnas.2026330118
https://doi.org/10.1073/pnas.2026330118
https://doi.org/10.1073/pnas.2026330118
https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.2527/af.2016-0002
https://doi.org/10.2527/af.2016-0002
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1109/TPAMI.2021.3059968
http://refhub.elsevier.com/S0065-2113(23)00114-1/rf0675
https://doi.org/10.1093/gigascience/giy153
https://doi.org/10.1093/gigascience/giy153
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