
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

DeResistor: Toward Detection-Resistant Probing
for Evasion of Internet Censorship

Abderrahmen Amich and Birhanu Eshete, University of Michigan, Dearborn;
Vinod Yegneswaran, SRI International; Nguyen Phong Hoang, University of Chicago

https://www.usenix.org/conference/usenixsecurity23/presentation/amich

DeResistor: Toward Detection-Resistant Probing for

Evasion of Internet Censorship

Abderrahmen Amich*, Birhanu Eshete*, Vinod Yegneswaran
§
, and Nguyen Phong Hoang

†

*University of Michigan, Dearborn,
§
SRI International,

†
University of Chicago

Abstract
The arms race between Internet freedom advocates and cen-
sors has catalyzed the emergence of sophisticated blocking
techniques and directed significant research emphasis toward
the development of automated censorship measurement and
evasion tools based on packet manipulation. However, we ob-
serve that the probing process of censorship middleboxes us-
ing state-of-the-art evasion tools can be easily fingerprinted by
censors, necessitating detection-resilient probing techniques.

We validate our hypothesis by developing a real-time de-
tection approach that utilizes Machine Learning (ML) to de-
tect flow-level packet-manipulation and an algorithm for IP-
level detection based on Threshold Random Walk (TRW).
We then take the first steps toward detection-resilient cen-
sorship evasion by presenting DeResistor1, a system that fa-
cilitates detection-resilient probing for packet-manipulation-
based censorship-evasion. DeResistor aims to defuse detec-
tion logic employed by censors by performing detection-
guided pausing of censorship evasion attempts and interleav-
ing them with normal user-driven network activity.

We evaluate our techniques by leveraging Geneva, a
state-of-the-art evasion strategy generator, and validate them
against 11 simulated censors supplied by Geneva, while also
testing them against real-world censors (i.e., China’s Great
Firewall (GFW), India and Kazakhstan). From an adversar-
ial perspective, our proposed real-time detection method can
quickly detect clients that attempt to probe censorship mid-
dleboxes with manipulated packets after inspecting only two

probing flows. From a defense perspective, DeResistor is
effective at shielding Geneva training from detection while
enabling it to narrow the search space to produce less de-
tectable traffic. Importantly, censorship evasion strategies
generated using DeResistor can attain a high success rate
from different vantage points against the GFW (up to 98%)
and 100% in India and Kazakhstan. Finally, we discuss de-
tection countermeasures and extensibility of our approach to
other censor-probing-based tools.

1Could also be thought of as a system that delays and distributes censor-
ship probes similar to how a resistor regulates the flow of current.

1 Introduction

An increasing number of nation states are resorting to
widespread and draconian censorship of network traffic to sup-
press access to various forms of information (e.g., offensive
content, national-security threats, or politically uncomfort-
able literature). A popular and particularly egregious form of
censorship is blocking of forbidden keywords/domain names
(e.g., China [67], Pakistan [46], India [30]).

Through measurement studies and engagements with cen-
sorship middleboxes, researchers have observed that the state-
of-the-practice of such keyword-based censorship involves
the use of TCP Reset (RST) packets [40] or misguiding clients
(e.g., via DNS spoofing [7]). One way to confuse censors and
disarm them of their ability to tear down connections is to
perform evasive client-side packet manipulations. Early ef-
forts in censorship evasion involved manually crafting evasion
strategies [42, 63]. However, these countermeasures would be
easily thwarted by censors if widely deployed or integrated
into circumvention tools such as pluggable transports [4, 44].

With the continuing cat-and-mouse game between anti-
censorship researchers and censoring regimes, the quest for
reliable censorship circumvention solutions has given rise
to sophisticated and automated approaches such as Alem-
bic [45], SymTCP [64], and Geneva [13]. These approaches,
while having different strategies, are all designed to manip-
ulate IP packets at the transport layer with a goal to confuse
censorship middleboxes, thus enabling users to connect to
censored destinations.

Although these tools have been demonstrated to craft suc-
cessful evasion strategies against real-world censors, we ob-
serve that during their censor-probing phase, they produce ab-
normal network patterns that substantially differ from normal
flows. Such potential distinguishability of packet-manipulated
flows from ordinary ones leads to a practical concern: if these
tools are ubiquitously deployed, censors will leverage this vul-
nerability to detect them. The implication of such detection
depends on what the censor chooses to do but could involve:
(i) early blocking of clients that are running evasion tools to

USENIX Association 32nd USENIX Security Symposium 2617

prevent them from reaching a successful evasion strategy; (ii)
misleading clients into converging on wrong or ineffective
strategies; or (iii) even referral to law enforcement [3].

Our paper focuses on Geneva [13], a genetic algorithm-
based censorship evasion tool that automates the generation
of evasion strategies against a target censor. To investigate the
feasibility of detecting censorship evasion systems, we extend
our preliminary study [6] in which we systematically investi-
gate the behavior of Geneva on behalf of an adversary (e.g., a
censoring regime) that aims to detect Geneva flows and block
them. We mimic an intelligent censor by proposing a real-time
detection approach that accurately detects all clients running
Geneva after fewer than three observations (§4). We do so
by leveraging Machine Learning (ML) techniques for flow-
level detection (§4.1) and the Threshold Random Walk (TRW)

algorithm [39] for IP-level detection using sequential hypoth-
esis testing (§4.2). Our ML detectors detect Geneva flows
with ≈ 99% accuracy. To make a final detection decision on
Geneva clients, we extend the classification system by lever-
aging TRW —a hypothesis testing framework first developed
for port-scan detection. Our results reveal that Geneva clients
are easily detectable using ML detectors that enable TRW
to make fast and accurate rejection of Geneva sources, typi-
cally after approximately two flow-level observations. This
is achieved with a low false positive rate on diverse types of
publicly available traffic packet capture datasets (e.g., normal
traffic, network forensics, and malware infection) [6]. These
findings suggest that probing-based censorship evasion sys-
tems like Geneva need to be detection-resilient in the face
of dynamic and resourceful adversaries (e.g., state-sponsored
filtering middleboxes).

In light of our finding that evasion tools like Geneva are sus-
ceptible to adversarial detection, we explore the development
of a detection-resilient probing and circumvention strategy
generation system to effectively cope with the detect-block
arms race. We proceed by first framing the censorship prob-
lem as a two-player game, where a client in a censored regime
learns to improve its evasive packet manipulation strategy
generator through the feedback (e.g., censoring, detection)
returned from its opponent (i.e., the censor). Grounded in
this framing, we propose DeResistor, a system extension that
enables censorship evasion systems like Geneva to generate
detection-resilient packet-manipulation strategies to evade
censors. More precisely, we consider a censor that not only
performs censorship on the client’s connections to a forbidden
server, but also includes a detection module that captures any
packet manipulation attempt. Using the censor’s feedback,
the client automatically learns better strategies by optimizing
a two-objective fitness function to find a trade-off between a
strategy’s effectiveness and its detection-resilience. Further-
more, to avoid early rejection (i.e., IP blocking), we enhance
the client with a second module that offers a guided pausing
of the strategy generator training (probing phase) and switch-
ing to normal network traffic to confuse the censor’s detector.

This measure is crucial to delay the convergence of the TRW
algorithm into a detection decision until the censor probing
phase discovers a working evasion strategy.

We first evaluate DeResistor via in-situ experiments against
11 mock censors from the Geneva paper [13] and confirm its
detection-resilience across multiple runs. Our results suggest
that while a client running Geneva is detected and IP-blocked
after only two packet-manipulation attempts, DeResistor suc-
ceeds in avoiding IP-blocking until it finishes its training and
generates effective strategies. We then field-test DeResistor’s
censorship evasion effectiveness against China’s GFW, In-
dia and Kazakhstan. Specifically, we run DeResistor using
Geneva as a strategy generator from multiple vantage points
in Mainland China, one vantage point in India and one van-
tage point in Kazakhstan and evaluate its detection-resilience
against the ML and TRW-based detection approaches pro-
posed in §4. We show that DeResistor can make Geneva’s
training phase more resistant to detection while maintaining
a high censorship evasion success rate. To that end, this paper
makes the following contributions:

• We propose the first real-time detection approach of
clients probing a censor with manipulated packets for
censorship evasion.

• We develop and evaluate DeResistor, an approach that
protects the censor-probing phase of censorship evasion
tools from being detected.

• We show that DeResistor can guide Geneva into learn-
ing effective evasion strategies against real-world censors
with less detectable features.

• We discuss censor-side countermeasures and DeResistor’s
adaptability to different classes of probing-based censor-
ship evasion tools.

To foster future research, we have made our code publicly
available at: https://github.com/um-dsp/DeResistor.

2 Background and Related Work

We first review some background information and related
work on censorship measurement and evasion to facilitate the
explanation of our approaches in §4 and §5, as well as the
motivation behind the development of DeResistor.

2.1 Censorship Measurement

Early studies on Internet censorship focused on a small num-
ber of countries with stringent information control policies,
notably China [41, 43, 50, 66, 67] and Iran [9].

To better understand GFW’s operating mechanism, Xu et
al. [67] used probes with limited time-to-live (TTL) values
in TCP header to determine locations from which RST pack-
ets were injected. Crandall et al. [18] and Park et al. [50]
studied the effectiveness of keyword-based filtering in China.
Khattak et al. [40] studied limitations in the TCP and HTTP
inspections performed by GFW.

Over the last decade, with the prevalence of authoritarian

2618 32nd USENIX Security Symposium USENIX Association

https://github.com/um-dsp/DeResistor

governments making use of different network interference
technologies for censorship purposes, the literature has wit-
nessed more in-depth studies in different regions of the world,
including India [58, 69], Pakistan [5, 46], Russia [54, 68],
Syria [15], Thailand [27], and Turkmenistan [49]. This new
wave of censorship around the world has also led to the de-
velopment of global censorship monitoring platforms such
as OONI [26], CensoredPlanet [52], and ICLab [47]. De-
spite the difference in scale of these measurement studies,
most of them are designed to discover network interference
techniques widely used by state-sponsored censors via DNS
tampering [7, 8, 36, 51, 55], TCP packet injection [34, 61, 65],
and IP-based blocking [35, 37] (e.g., via null routing [60]).

2.2 Censorship Evasion

Prior research on bypassing censorship middleboxes have
broadly adopted one of two approaches. The first ap-
proach involves tunneling censored traffic, e.g., via domain
fronting [25], VPNs [48], or anonymity network relays such
as Tor [23] or I2P [35]. The second approach, which is also the
focus of our study, relies on confusing filtering middleboxes
with crafted packets [13, 42, 45, 49, 63, 64, 66] or ignoring
packets injected by censors [24, 36].

Some earlier works, including INTANG [63],
Lib•erate [42], and brdgrd [66], relied on semi-automated
efforts to discover packet-manipulation strategies through
characterization and reverse engineering of a targeted
censor’s blocking mechanism. Nevertheless, censors do adapt
and may change their blocking behaviors over time [8,36,49].
As a result, more sophisticated methods have been introduced
with new capabilities to automate the process of strategy
generation through Genetic algorithms (Geneva [13]) or
symbolic execution (e.g., SymTCP [64], Alembic [45]).

Of these tools, Geneva distinguishes itself with demon-
strated capabilities for not only re-deriving strategies de-
scribed in prior manual efforts but also generating new (pre-
viously unknown) evasion strategies against multiple cen-
sorship regimes, including China [14], India [10], Iran [11],
Kazakhstan [33], and Turkmenistan [49]. We therefore choose
Geneva as a foundational building block for DeResistor.

2.3 Geneva as a Motivation

Geneva implements a genetic algorithm that automatically
derives packet-manipulation-based evasion strategies against
a censor. Geneva’s strategies stem from four basic manipula-
tion primitives: drop, tamper headers, duplicate, and fragment
packets.

Strategies in Geneva comprise a set of (trigger, action tree)
pairs. Packets that match a given trigger (for instance, all
TCP packets with the ACK flag set) are modified using the
corresponding sequence of actions in an action tree. Triggers
represent TCP/IP fields in a packet header that, when matched,
cause packet manipulation actions to be applied. Actions are
the aforementioned permitted packet manipulations.

Geneva automatically derives censorship evasion strategies
through evolution of a series of generations. Each generation
comprises multiple individuals. The evolution is achieved
by random mutation that can occur at the level of actions,
triggers or entire individuals. Geneva also performs crossover
between a pair of individuals in the same generation. At the
final step of a generation, it runs a selection tournament. Some
individuals are drawn at random (with replacement) from
the population; the highest-fitness individual among them
is added to the offspring pool. This process repeats until
the offspring pool is the same size as the population pool.
The offspring pool then becomes the population for the next
generation. During its training, Geneva evaluates fitness by
running each strategy directly against the censor, resulting in
multiple probing attempts.

Due to the design choice of Geneva during the training
phase in which a censor is triggered repetitively, we are inter-
ested in investigating whether a censor can detect this probing
traffic to hinder the automated process of discovering eva-
sion strategies. In §4 we show that Geneva-generated probing
traffic can be easily and quickly detected. This pitfall is the
primary motivation for the creation of DeResistor (§5). We do
not introduce DeResistor as another strategy generation tool
to evade censorship, but we build it to offer other evasion tools
the protection from being detected by making their repetitive
censor-probing phase more resilient to detection.

3 Problem Formulation

As the arms-race between censored users and state-sponsored
censors continues, our goal is to build a detection-resilient
probing and evasion system that provides users with real-time
protection against censor-side detection. Anti-censorship tech-
nology deployers and censorship middleboxes can be consid-
ered as two contending agents engaging in a two-player game.
The instance of the game is that the censored user, whose in-
tention is to evade censorship, generates a strategy to bypass
the censor’s filtering middlebox. The user strives to maximize
their odds of bypassing the censor’s detection and/or block-
ing, whereas the censor aims to minimize the chance that the
user could evade it via its evasive maneuvers. We explore two
designs to model the game, generative adversarial models

and genetic algorithms.

3.1 Generative Adversarial Models

Generative Adversarial Networks (GANs) [29]) offer a nat-
ural formalism of the aforementioned two-player game as a
Minimax game [57]. In particular, an Internet user can be
modeled as a Generator G and the censor as a Discrimina-
tor D. In such a setup, while D learns to discern legitimate
connections from the censored ones (e.g., connection to a cen-
sored server), G learns more advanced packet manipulation
strategies that can overcome D’s censorship techniques.

At a high-level, the GAN setup seems suitable to our prob-
lem. Yet upon deeper examination, we find that such a setup

USENIX Association 32nd USENIX Security Symposium 2619

is subject to data embedding-related constraints, especially if
we aim to evade real-world censors. Suppose an Internet user
inside a censorship regime attempts to connect to a censored
server. As per the GAN setup, G can be trained to take as an in-
put a normal network flow (i.e., without packet manipulations)
and generates a manipulated counterpart flow that is tested
against D. In this case, a flow has to be embedded to a vector
representation x. Next, G performs manipulations to produce
x̃. Previous work proposed multiple byte embedding methods
(e.g., AttackGAN [17], PacketCGAN [62], PAC-GAN [16],
and Flow-WGAN [31]). Unfortunately, these byte embedding
methods are not lossless. Hence, the embedding function is
neither invertible nor differentiable. Consequently, mapping
back x̃ to construct a unique network flow amenable to being
tested against the censor is practically challenging. More-
over, even if it is possible to map x̃ to multiple estimations
of packets, there is no guarantee that the constructed manipu-
lated packets, if found, preserve the same functionality/goal
of the desired traffic. In light of these practical limitations
of the GAN setup, next we explore genetic algorithm-based
modeling of detection-resilient censorship evasion.

3.2 Genetic Algorithms

We shift our focus to another generative modeling technique
that is suitable to the problem at hand and avoids the limita-
tions of the GAN alternative. In particular, we model the
generator G by a genetic algorithm that aims to fool the
censor (playing the role of the discriminator D). The cen-
sor’s response is (1) whether or not the generator’s con-
nection attempt is to be censored and (2) whether a prob-
ing/measurement tool is detected. The training of the genera-
tor is governed by the maximization of a fitness function that
considers the feedback of the censor.

Fortunately, Geneva’s genetic algorithm [13], explained in
§2.3, is a natural fit to play the Generator role. By leveraging
Geneva, we generate packet manipulation strategies as a set
of (trigger, action tree) pairs. For instance, if a packet matches
a given trigger (e.g., SYN flag), it is modified using the cor-
responding sequence of actions in an action tree. As a result,
we avoid the data-embedding problem of the GAN-based for-
mulation. The key challenge here is, if the censor detects and
blocks connections from the generative model (e.g., Geneva),
then how can we train the generator to make seamless packet
manipulation? In §4, we show that automated censorship eva-
sion tools like Geneva can be detected easily by the censor in
real-time. In §5, we then propose a detection-resilient design
that operates on top of existing strategy generators. Given
Geneva’s suitability to our problem and its reported effective-
ness, in the remainder of this paper, we use Geneva’s genetic
algorithm to illustrate strategy generation to better explain
our detection-resilient probing and censorship evasion ap-
proach. We also discuss in §7 DeResistor’s adaptability to
other censor-probing based strategy generation tools (e.g.,
SymTCP [64], INTANG [63], Lib•erate [42] and others).

4 Real-Time Censorship Evasion Detection

To demonstrate how probing traffic of automated evasion tools
can be easily detected, we introduce a two-step approach to
detect Geneva clients on the censor side with high confidence.

4.1 Flow-Level ML-Based Detection

By running Geneva against the censor, middlebox operators
can collect Geneva traces and train a ML model fCensor that
distinguishes Geneva traffic from normal traffic. Figure 1
shows feature analysis of Geneva flows. From the density
plots, we notice that Geneva TCP packets have several cor-
rupt data-offset fields and tend to have smaller size compared
to normal traffic. Furthermore, Geneva may tamper with other
TCP header fields like checksum or TTL, as part of its probing
design to locate filtering middleboxes. We also notice that
overlapping TCP segments are more likely to occur in Geneva
traffic due to the tampering of packet payloads. Using these
distinctive features, a fairly simple ML model (e.g., Deci-
sion Trees, Random Forests) is able to accurately distinguish
Geneva flows from normal flows. Figure 2 shows that all four
models (Decision Trees (DT), Random Forests (RF), Logistic
Regression (LR) and Support Vector Machines (SVM)) can
detect almost all Geneva flows in the test set, with negligible
false positives (AUC > 0.99).

However, we notice that some Geneva flows might resem-
ble normal flows, which could confuse fCensor and result in
an incorrect decision based on observing only one flow. Con-
sequently, a one-flow detection algorithm is ineffective to be
deployed for real-time blocking. To address this limitation,
we develop a sequential hypothesis-testing approach based on
the popular TRW algorithm [39] used in port-scan detection.
TRW enables a censor to make more confident multi-flow
decisions (block or pending) at the IP level.

4.2 IP-Level TRW-Based Detection

For a given source IP address (IP), let Yi be a random variable
that represents the outcome of the ith flow started by (IP). In
our case, the outcome of an observation is the prediction made
by fCensor. Formally, Yi = fCensor(xi). If fCensor classifies xi as
Geneva flow,Yi = 0. Otherwise,Yi = 1. As outcomes Y1,Y2, ...,

are observed, we wish to determine, with high probability of
correctness, whether (IP) is a Geneva client. Additionally,
we would like to make the decision as quickly as possible
before Geneva successfully evades the censor. Specifically,
we consider two hypotheses H0 and H1, where H0 is the
hypothesis that source (IP) is running Geneva and H1 is the
hypothesis that it is a benign source. The TRW algorithm
assumes that conditional on the hypothesis H j, the random
variables Yi|H j, i = 1,2, ... are independent. Then, we express
the distribution of the Bernoulli random variable Yi as:

Pr[Yi = 0|H0] = θ0, Pr[Yi = 1|H0] = 1−θ0

Pr[Yi = 0|H1] = θ1, Pr[Yi = 1|H1] = 1−θ1
(1)

2620 32nd USENIX Security Symposium USENIX Association

Figure 1: Geneva training feature analysis. Scatter plots show data-points of Geneva vs. normal traffic. Curves show data
distribution density of each traffic type.

Figure 2: ML model performance for flow-level detection.

Since fCensor is trained to make mostly correct predictions,
if (IP) makes a Geneva attempt xi, then Yi = fCensor(xi) = 0
is the most likely observation. Consequently, θ0 > θ1. With
respect to Equation 1, θ0 and θ1 can be set as: θ0 =

T P
T P+FN

and θ1 =
FP

T N+FP , where T P and FP denote respectively the
number of true positives and false positives that fCensor makes
on a test set. The algorithm makes a correct detection when it
selects H0 while H0 is in fact true, and it makes a false positive
when it selects H0 while H1 is the correct hypothesis. To
ensure that TRW converges to a decision with high precision,
we use the detection probability PD and the false positive
probability PF to specify performance conditions with respect
to user-selected values α and β. We desire that PF ≤ α and
PD ≥ β, where typical values are α = 0.01 and β = 0.99.

As shown in Figure 3, given a new observation Yn, we
compute the likelihood ratio Λ of the n events observed so far

Block Source IP

Flow xn

Event Yn = f(xn)

Update Y=(Y1 ,...,Yn)
and

Output H0
(Geneva)

Yes

No

Update H1
(Benign)

Yes

Continue with more observations

No History-Aware Reset of

Figure 3: Flow diagram of TRW for real-time Geneva detection.

The blue box represents an extension to the original TRW algorithm.

as Y = (Y1, ...,Yn), where,

Λ(Y) =
Pr[Y |H1]

Pr[Y |H0]
=

n

∏
i=1

Pr[Yi|H1]

Pr[Yi|H0]
(2)

After n events, if Λ(Y) ≤ η0, then TRW stops observing
flows coming from (IP) and decides to block it. If Λ(Y)≥ η1

then TRW converges to the decision that (IP) is currently
benign. In this case, we add a new step to the original TRW
(i.e., blue box in Figure 3). More precisely, although it is
currently benign, we perform a history-aware reset of the
ratio to keep observing for possible Geneva attempts. For
instance, if (IP) had previous history of Geneva detection

Tu
e
Po

si
tiv
e
Ra

te

U
0

ee @ ©

co co

Receiver operating charactenstic curves
10 Flow x

08 Event

06

04

02

Update Y=(V7Yn)
and A(Y)

No

aa
a

04 06

RF (area = 1.00)
SVM (area = 0.99)
OT (area = 1.00)
LR (area = 0.99)

A(Y) < no
(Geneva) Block Source IP

a
0.0

00 02 08 10
False Positive Rate

A(Y) =m Ye Update H;
(Benign)

History-Aware Reset of A(Y)No

Continue with more observations

USENIX Association 32nd USENIX Security Symposium 2621

(i.e., hist > 0), then Λ(Y) is reset to a value that considers
the number of previous detections (hist) and the number of
previous benign observations (n− hist). Formally, Λ(Y)←−
hist
n .η0 +(1− hist

n).η1, otherwise (if hist = 0) we reset it to
its initial value and continue observing future flows of (IP) to
detect potential future Geneva traffic. Finally, if η0 < Λ(Y)<
η1, then a decision cannot be made yet. Thus, we wait for
the next observation and update Λ(Y). The thresholds η1 and
η0 should be chosen such that the false alarm and detection
probability conditions are satisfied. As explained in the TRW

paper [39], we can choose η1 =
β
α and η0 =

1−β
1−α .

Using the proposed ML-TRW-based detection approach
we were able to detect Geneva probes (training) after it tests
only 2 strategies of the first generation. This result is consis-
tent across all simulated censors and China’s Great Firewall.
Considering that Geneva can derive previous manipulation
strategies proposed in other censor probing-based tools (e.g.
INTANG, liberate) [13], we believe that our detection ap-
proach is adaptable to be performed against them. In particu-
lar, the ML model used for flow-level detection can be trained
on the network traces of any other probing-based tool.

5 DeResistor System Design

We now expand on the problem formulation described in §3
and describe the components of both players engaged in the
two-opponent arms-race. As illustrated in Figure 4, Player 1
is an Internet user in a censored regime that aims to gener-
ate censorship evasion strategies by running a strategy gen-
erator. Player 2 is composed of a real-word censor and a
ML model fDeResistor that we locally train to detect Player 1
probes. fDeResistor is intended to expose Player 1 to real-time
detection threat to enable more detection-resilient strategy
generation through adversarial training. It can be trained sim-
ilarly to what was illustrated earlier in §4. We continue to
adopt Geneva’s genetic algorithm to play the role of strategy
generation within our design. We design DeResistor with the
following goals/requirements in mind:
• Detection-Resilience: DeResistor has to remain stealthy

against a censor-side evasion detection.
• Balance Strategy Fitness and Detection-Resilience:

DeResistor has to find an optimal trade-off between evasion
strategy fitness and vulnerability to censor-side detection.
• Leverage Background Traffic on Demand: DeResistor

has to avoid early detection and blocking by utilizing normal
background traffic as a cover.

5.1 Two-Objective Fitness Function

DeResistor improves the genetic training using a two-
objective fitness function to encourage detection-resilience
(Figure 4). Formally, we define it as:

f itness(s) = a ·G(s)−b ·P(s), (3)

where s denotes a manipulation strategy. The first term of
the fitness function G(s) computes the evasion strategy’s ef-

fectiveness based on the censor feedback from running s,
while the second term P(s) computes the probability that s

is detectable, returned by fDeResistor. The fitness function is
composed of two conflicting objectives, hence, the negative
sign to the second term since we aim to maximize the strategy
effectiveness while minimizing detectability. DeResistor aims
to find an optimum trade-off between both objectives guided
by two parameters a and b, where a+b = 1. Each parameter
represents the weight of each objective in the fitness function,
according to the user preferences. For instance, if a user is
not interested in hiding its packet manipulation attempts (e.g.,
if the detection threat is minor), the parameters can be tuned
accordingly (i.e., a > b). On the other hand, using a very
large value of b compared to a is not recommended as it may
not lead to any working strategies. Given a set of strategies
{s1, ...,sn}, DeResistor runs each one against the censor to
compute their fitness G(si), it allows only some of the fittest
to survive, and mutates or crosses over the surviving ones to
generate new individuals for the next generation. In the set-
ting where the genetic algorithm is Geneva, we keep the same
genetic building blocks (i.e., s = (trigger,actiontree)), the
same mutation and crossover functions, and the same strategy
selection approach as defined in the original work.

5.2 Normal Background Traffic

Due to the two-objective fitness function, DeResistor can
eventually learn to produce detection-resilient strategies.
However, early in the training (e.g., generation 0), the gener-
ated strategies are expected to be very similar to Geneva’s,
which makes them likely to be detected by the censor-side
detector fCensor. Furthermore, our IP-level detection approach
(i.e., ML+TRW) is able to block a source IP running Geneva,
with high confidence, as soon as it evaluates 2 strategies
against the censor, including the canary (i.e., empty) strat-
egy, which is not enough to produce fitter future generations.
In order to avoid early IP-blocking by the TRW due to early
detection, DeResistor takes advantage of the seamless back-
ground benign traffic naturally produced by the client while
surfing the Internet to connect to uncensored URLs (e.g., using
a browser). Particularly, if s is detected (i.e., P(s)> 0.5), then
DeResistor pauses the censor probing (in this case Geneva
training) and switches to normal traffic (Figure 4). Until ex-
actly J normal network flows have been produced, the genetic
algorithm remains on standby. Otherwise, if s was not de-
tected, then DeResistor allows Geneva to continue its genetic
evolution normally (i.e., without pausing). We recall that the
TRW ratio Λ(Y) gets closer to the threshold η1 if a benign
flow xn is observed, while it gets closer to η0 (i.e., closer to
block the IP source) if a Geneva flow is observed. Thus, a
number J of benign observations received from the same IP
address would increase Λ(Y) and make it farther from η0,
which would delay detection and give more room to attempt
other strategies. We note that, for automation and experimen-
tal purposes, DeResistor can be configured to automatically

2622 32nd USENIX Security Symposium USENIX Association

Figure 4: DeResistor System Overview. s: a manipulation strategy, P(s): Probability that s is an evasion strategy.

Figure 5: An illustration of Geneva genetic evolution traces when

trained with DeResistor design vs. standalone training.

generate normal traffic on-demand through automated GET
requests (e.g., baidu.com for GFW experiments) or using
traffic generation tools, instead of relying on real traffic. For
instance, for in-situ experiments against mock censors we
leverage Harpoon [59], a flow-level traffic generator. In par-
ticular, when the censor-probing stops after a flow-level detec-
tion, Harpoon generates normal-like traffic between the client
and a local uncensored server. While automating the back-
ground normal traffic is convenient to accelerate experiments,
it is not recommended to use against a real-world censor since
tools like harpoon can be tracked and detected.

In Figure 5, we illustrate an example that shows how guided
pausing and blending with normal traffic in DeResistor traces
can help avoid TRW detection. In particular, DeResistor runs
the first strategy against the censor, that is likely to be detected
(white boxes); if that is the case, then it pauses the probing
and it returns after a jump (green box) of J normal flows is
produced (J = 1 in this case). Next, it continues to alternate
between detectable Geneva flows and normal flows until it
reaches future generations, where the optimization algorithm
gets closer to converging to a trade-off between the two ob-
jectives. This is shown using gray boxes for Generations 4
and 5 where DeResistor produces undetectable strategies.

Does the switch to normal traffic affect DeResistor

training? As shown in Figure 4, Geneva and the background
normal traffic modules are two separate processes. Conse-
quently, no fitness calculation is performed during the jump J

of normal traffic. As a result, it has no impact on the training
process of Geneva. Furthermore, the normal traffic is pro-
duced through normal network activity performed by the user

when Geneva is paused.

How to set the jump size J? Intuitively, if J is high, more
normal traffic will be observed from the source IP running
DeResistor, which would further confuse the ML-based eva-
sion strategy detector. However, sending multiple consec-
utive benign flows might trigger a ratio reset in the TRW
algorithm. We recall that, if Λ(Y) surpasses the threshold η1,
then an automatic history-aware reset is performed (Figure 3,
Λ(Y)←− hist

n .η0 +(1− hist
n).η1). As DeResistor deployers, it

is in our interest to avoid triggering these resets. Given that
the reset considers the history of flow-level detection, if hist is
very high, then we might risk a ratio reset that is much closer
to η0 than to η1. Consequently, switching back to Geneva’s
evasion attempts might further decrease the ratio to make it
less than η0, which will cause an IP-level detection, hence, IP
blocking. In conclusion, our operational observations suggest
starting with J = 1 and then progressively consider increasing
it based on detection results. In §7, we further discuss the
impact of J parameter tuning when the TRW is set to perform
more aggressive detection.

6 System Evaluation

Our evaluation of DeResistor is guided by these questions:
RQ1: Is DeResistor effective at making Geneva’s probing
traffic more resilient to detection?
RQ2: Are strategies generated by DeResistor effective at
evading real-world censors?
RQ3: How effective is our approach in mitigating the de-
tectability of packet manipulation features?

6.1 Experimental Setup

For a fair comparison, we run DeResistor and Geneva in the
same experimental environment. To the extent possible, we
make our setup as close as possible to what was proposed
in the Geneva paper [13]. For our real-world evaluation, we
thus specifically focus on GFW’s HTTP censorship, India
and Kazakhstan. We run our experiments from three van-
tage points in China (Qingdao, Beijing, and Shanghai), one
vantage point in India (Bangalore) and one vantage point in
Kazakhstan (Oral) to evaluate DeResistor effectiveness in

fitness (s)

Evasion Strategy Censorship G(s)Generator Middlebox
(e.g., Geneva) (e.g., GFW)

No
P(s) > thresholdYes P08)

Evasion StrategyBackground DetectorTraffic Generator P(s) Detection
{e.g., browser) {e.g., ML-based) Strategy Resilience

Fitness Fitness

S

fitness(s)=(a. G(s)

Player 1: Evasion Strategy Player 2: Censorship and
Generation Detection

TRW
Rejection

Generhtion 0 Generation 5

Geneva Training: 7 1 C C

DeResistor Training :

Detected Geneva flow
DeResistor Undetected flow
Normal Traffic flow

USENIX Association 32nd USENIX Security Symposium 2623

generating successful evasion strategies compared to Geneva.
In each vantage point we run Geneva and DeResistor three
times independently and collect the fittest strategies. We run
each training session with a starting population pool of 500 in-
dividuals, capped at 20 generations. Our experiments showed
that the adopted parameter-tuning is sufficient to successfully
train both tools against all the studied censors. Additionally,
we evaluate their detection-resilience against the real-time
detection system proposed in §4.

Deployment Alternatives: We envision three usage mod-
els for DeResistor: (1) One-shot Strategy Generation where
each client uses DeResistor to generate a set of strategies and
use them to access censored sites. When all strategies are
exhausted due to censor adaptation, users re-run DeResistor

to generate new strategies. (2) Strategy-as-a-Service where
DeResistor probes are performed by distributed nodes owned
by a centralized service. Users then query this service on de-
mand to obtain new strategies. This has the disadvantage that
access to the service itself could be blocked. (3) P2P Strategy

Generation where DeResistor nodes that are in-country (on
one side of the firewall) coordinate to explore, generate, and
share working Geneva strategies. In our experiments, we use
(1) where multiple effective strategies are generated in the
censor-probing phase that are then used to connect to multiple
censored websites.

In-Situ Validation: Like Geneva validation experiments
adopted in [13], we first perform a Dockerized evaluation
for DeResistor to train against 11 mock censors proposed by
Geneva authors. We run each strategy in an isolated environ-
ment with four containers (a client, a mock censor, a forbidden
server, and a legitimate server). The legitimate server con-
tainer is added to be engaged in a simulation of background
normal traffic created by Harpoon [59] (defined in §5) to be
used by DeResistor when the training is triggered to pause.
Harpoon is set to continuously send TCP packets from the
client container to the legitimate server container using the
same source IP engaged in the training-time evaluation of the
generated strategies against the censor. Despite the reality that
the mock censors are a bit outdated, we found them still rele-
vant to compare DeResistor results with Geneva, especially
for the detection resilience experiments. Furthermore, they
are designed to mimic some specific aspects of nation-state
censor behavior (e.g., China, India) [13].

Real-World Evaluation: Against the arguably most ad-
vanced Internet censorship apparatus, the Great Firewall
(GFW) of China, we perform a post-training evaluation on
the collected strategies by testing each strategy 30 times in
each vantage point (Table 2). The GFW injects RST pack-
ets if a censored word is included in the URL of an HTTP
GET request. Additionally, it performs residual censorship
where it forbids new connections between client’s IP ad-
dress and the website’s IP:port pair for approximately 90
seconds [63]. To avoid residual censorship, we use a different
destination port after each test of the same censored website.

Some websites are also censored by DNS (e.g., google.com,
wikipedia.org). In particular, the GFW performs DNS poi-
soning to point clients that attempt to connect to these web-
sites to a fake IP [36], which makes the intended destinations
unreachable. One way to circumvent DNS poisoning is to
first figure out the correct IP of the destination website, and
then point the domain to its correct hosting IP (e.g., editing
/etc/host in Linux). After sidestepping DNS poisoning,
we are able to run Geneva and DeResistor to connect to web-
sites like wikipedia.org and human rights watch (hrw.org).
Websites like google.com that are additionally censored by
null-routing in China are excluded from our experiments. Par-
ticularly, even if we figure out the correct hosting IP addresses
of sites such as google.com, GFW drops any connection at-
tempts to them. Therefore, packet-manipulation-based circum-
vention tools like Geneva cannot try evasion strategies since
no response is received to the First SYN packet. Additionally,
we run the same experiments in India using censored URLs
like bannedthought.net, xnxx.com, vidwatch.me and
Kazakhstan (e.g., youporn.com).

Detection Resilience: Our experiments also focus on eval-
uating the detection-resilience of DeResistor. For each run
against GFW, India, Kazakhstan or the mock censors we also
run the proposed real-time Geneva detection system (i.e.,
ML+TRW with history-aware reset) in parallel to monitor
the entire training process and block the client if detected
running censor-probing with 99% confidence. Particularly,
we use α = 0.99 as detection confidence and β = 0.01 as
allowed detection error. We balance between the strategy
success and the detection resilience objectives by running
DeResistor with a = 0.5, b = 0.5. As for the jump-size we
start with J = 1. An IP-level detection-resilience is observed if
DeResistor finishes its training without getting IP-blocked by
the TRW-based detector. A flow-level detection-resilience is
observed if the detection rate returned by fCensor decreases as
DeResistor reaches fitter strategies with respect to the adopted
two-objective fitness function in Equation 3.

6.2 Detection-Resilience Results

A strategy evaluation against the censor is tracked by a net-
work flow between the client and the server. We recall that,
our detection approach uses a ML model that performs a pre-
liminary flow-level detection (fCensor). Each flow detection
is marked as another observation for the TRW algorithm to
make a more confident IP-level detection. Figure 6 shows
generations (x-axis) vs. flow-level detection rate trend (y-axis)
during Geneva and DeResistor training against GFW. Fur-
thermore, in Table 1, we report the IP-level detection results
recorded by the TRW on Geneva and DeResistor when trained
against different censors.

Flow-Level Detection Resilience: Figure 6 confirms that
DeResistor traces are way less detectable compared to Geneva.
In particular, as DeResistor training advances, the detection
rate continues to drop until it reaches 45.06% after 5 genera-

2624 32nd USENIX Security Symposium USENIX Association

Figure 6: Flow-level detection rate evolution during Geneva
and DeResistor training against China’s GFW. We consider
the 5 first generations.

tions while it stays very high (96.27%) during Geneva train-
ing. The immediate drop observed at the beginning of genera-
tion 1 (i.e., 1−→ 0.5) is caused by the guided pausing of the
genetic algorithm training when a flow is detected that permits
the client to engage with a number J of normal benign flows.
The same drop is observed when we run Geneva with guided
pauses for normal traffic injection (without multi-objective
optimization). However, due to the proposed two-objective
fitness function, the observed decrease in the detection rate
from generation 0 to generation 5 shows that DeResistor is
learning to generate less detectable strategies as it advances
to higher generations, compared to "Geneva+normal traffic".

To further explain our findings, we investigate the features
of DeResistor traces compared to Geneva traces and normal
traffic in Figure 7. Overall, we observe that the feature values
density of DeResistor (green curve) are closer to Normal traf-
fic (blue curve) compared to Geneva (red curve). Furthermore,
looking into the data-points of each traffic type (gray scatter
plots), it seems that DeResistor traces exhibit less overlap-
ping TCP segments, less corrupt data-offset fields, and less
corrupt SYN packets compared to Geneva. We conclude that
DeResistor is able to tone down detectable features exhibited
by Geneva, which leads to lower flow-level detection rate
(answers RQ3). However, we acknowledge that DeResistor

traces are still different from normal traces, which is natural
considering that its main objective is still to manipulate pack-
ets and evade censorship. It is noteworthy that DeResistor

can be even less detectable if the user chooses to give ad-
vantage to the detection-resilience objective at the expense
of the strategy success objective (e.g., a = 0.3, b = 0.7). In-
line with the GFW results, Table 1 (3rd column) shows that
DeResistor was able to reduce the flow-level detection rate
(99.5% −→ 34.93% and 49.22%) respectively against India
and Kazakhstan. Additionally, we observe similar decrease
(99.4%−→≈ 32%) when trained against the 11 mock censors.

IP-Level Detection Resilience: As reported before, us-
ing the proposed detection approach we were able to detect
with high confidence a source IP address running Geneva

Censors IP-Level Detection
(Geneva−→DeResistor)

Flow-Level Detection
(Geneva−→DeResistor)

Jump
Size
J

China’s
GFW

Detected after 2 flows
−→ Undetected

96.27% −→ 45.06% 1

India Detected after 2 flows
−→ Undetected

99.50% −→ 34.93% 1

Kazakhstan Detected after 2 flows
−→ Undetected

99.50% −→ 49.22% 1

Censor
1-4,7,9

Detected after 2 flows
−→ Undetected

99.4% −→ 32.46% 1

Censor
5,10.

Detected after 2 flows
−→ Undetected

99.4% −→ 31.21% 1

Censor 6 Detected after 2 flows
−→ Undetected

99.4% −→ 34.05 1

Censor 8 Detected after 2 flows
−→ Undetected

99.4%−→ 30.93% 1

Censor 11 Detected after 2 flows
−→ Undetected

99.4%−→ 29.91% 1

Table 1: Geneva vs. DeResistor detection results using history-

aware TRW. Details about mock censors can be found in [13].

after the TRW receives only 2 observations (i.e., 2 Geneva
flows/probes). According to results reported in Table 1, we
observe that, against all the studied censors, DeResistor was
able to complete its training without being rejected by TRW
(2nd column), which answers RQ1. A jump size J = 1 was
sufficient to reach these results (4th column). Particularly, as
we illustrated in Figure 5, after each flow-level detection of
a strategy test, the injected normal flow restores the likeli-
hood ratio Λ(Y) of the TRW to its initial value. This pattern
encapsulates the Λ(Y) between η0 and η1, which makes it
longer for the TRW to converge to a decision. Setting the
jump size to J = 1 is not only sufficient to avoid detection,
but also recommended to avoid triggering TRW resets. We
recall that, our implementation of TRW algorithm is powered
by a history-aware reset of the likelihood ratio in case the
TRW is converging to a decision that the source IP is benign.
Thus, it is in favor of the client to avoid pushing the TRW to
make a reset that considers all previous detection of packet
manipulations. More precisely, if we use higher jump size
J > 1, DeResistor would pause Geneva training until the client
has engaged in normal traffic of J > 1 flows, which might
cause an undesired reset that might lead to IP-level detection.
Yet, we note that our observations reveal that clients running
DeResistor are safe to use even higher values of J.

6.3 Censorship Evasion Results

To explore whether Geneva can still generate evasion strate-
gies with high success rate when trained within the DeResistor

design, we report in Table 2 the success rate of representative
strategies generated by Geneva and DeResistor. Furthermore,
we manually analyze composed strategies that have multiple
actions. In particular, we removed individual actions and veri-
fied whether the strategy is no longer successful. Additionally,
we ensure that a strategy success (i.e., offers access to a cen-
sored website) is not by accident or due to a malfunction of
the censor-side. Hence, for each highly successful strategy,
we manually examine the resulting network traces, to verify

USENIX Association 32nd USENIX Security Symposium 2625

Figure 7: DeResistor training feature analysis. The scatter plot displays data points for Geneva, DeResistor, and normal traffic. The curves

show the data distribution density of each traffic type.

Description Strategy Genetic Code
Generated By China India Kazakhstan

Geneva DeResistor Qingdao Shanghai Beijing Overall Bangalore Oral

Corrupt timestamp

and fake HTTP Re-

quest

[TCP:dataofs:8]-tamper{TCP:options-

timestamp:corrupt} (tamper{

TCP:load:replace:__HTTP_REQUEST__},)-|

! 95.83% 100% 100% 98.61% 0% 0%

Fake HTTP request. [TCP:dport:80]-tamper

{TCP:load:replace:__HTTP_REQUEST__}-|

! ! 100% 100% 84.21% 94.74% 0% 0%

TCB Desync. with

invalid dataofs and

corrupt checksum.

[TCP:flags:PA]-duplicate (tam-

per{TCP:dataofs:replace:10}

(tamper{TCP:chksum:corrupt},),)-|

! 90% 100% 86.67% 92.23% 0% 100%

Fake DNS request

and incorrect Ack.

[TCP:dport:80:4]-

tamper{TCP:load:replace:__DNS_REQUEST__}

(tamper{TCP:ack:replace:1621145327},)-|

! 50% 75% 47.61% 57.54% 0% 100%

Invalid Payload and

corrupt options.

[TCP:reserved:0]-tamper{TCP:load:corrupt}

(tamper{TCP:options-sack:corrupt},)-|

! 38.09% 52.38% 77.78% 56.08% 0% 63.33%

Invalid Payload and

corrupt options.

[TCP:reserved:0]-
tamper{TCP:load:corrupt}(tamper{TCP:options-
altchksum:replace:131},)-|

! ! 36.36% 56% 50% 47.45% 0% 63.33%

Invalid Payload and

corrupt urgptr.

[TCP:options-mss:]-tamper{TCP:load:corrupt}

(tamper{TCP:urgptr:corrupt},)-|

! 52.17% 48% 42.11% 47.43% 45% 56.67%

Invalid Payload. [TCP:flags:PA]-tamper{TCP:load:corrupt}-| ! ! 52.17% 39.1% 47.8% 46.36% 0% 66.67%

Invalid Payload and

incorrect reserved.

[TCP:reserved:0]-tamper{TCP:load:corrupt}

(tamper{TCP:reserved:replace:7},)-|

! 52.63% 41.67% 41.66% 45.32% 30% 63.33%

Incorrect dataofs

and segmentation.

[TCP:reserved:0:3]-

tamper{TCP:dataofs:replace:10}(fragment{tcp:-

1:False},)-|

! 80% 31.03% 24.13% 45.05% 0% 100%

Segmentation [TCP:flags:PA]-fragment{ip:20:False:6}-| ! 0% 0% 0% 0% 100% 0%

TCB Desync. with

stutter Req.

[TCP:flags:PA]-duplicate(tamper{IP:len:replace:64},)-

|

! ! 0% 0% 0% 0% 100% 0%

Segmentation and

corrupt dataofs

[TCP:options-wscale::3]-fragment{ip:-1:True:5}

(fragment{ip:4:True:43},

tamper{TCP:dataofs:replace:14})-| ! 0% 0% 0% 0% 100% 100%

Table 2: A summary of top strategies ([Trigger](actions)) generated by Geneva and DeResistor and their post-training success
rates. We run every strategy 30 times from each vantage point (VP). Strategies in rows 1-10 are produced in China’s VPs, rows
11-12 are produced in India and the final row is produced in Kazakhstan.

that every action of the strategy is actually performed on trig-
gered packets. We emphasize that these manual efforts are
performed only for the sake of conveying accurate results in
the paper and it is not a main component of DeResistor.

Strategies and Success Rates: Table 2 shows that DeRe-

sistor is able to automatically produce strategies with high suc-
cess rate in China (i.e., up to 98.61% in 1st row), India (100%
in rows 11-12) and Kazakhstan (100% in final row) (addresses

0.005 - Geneva Geneva Geneva

0.004 -

DeResistor
0.003 -

2

0.001 - - Geneva

0.000 -

0 20000 40000 60000
size (bytes)

a5-

30-

25-
- DeResistor

20-
& is - Normal

10-
- Geneva

os -

0.0
of corrupt dataofs

2.5 5.0 75 10.0

0.008 -

0.006 - + DeResistor

é

0.002 - - Geneva

0.000 -

0 2000 4000 6000 8000

to Max_pckt_size
Geneva
DeResistor

08- Normal

06 - -DeResistor

o4- - Normal

a2- Geneva

@ datapoints
o0-

-0.04 -0.02 0.00 0.02 0.04
ttl variance

DeResistor

Normal

- Geneva

DeResistor
Normal

datapoints

DeResistor
Normal

@ datapoints

oe

© datapoints

12

co co
10 -

08-

& & 0.004 - - Normal0.002 - Normal

02-

0 20 40 60
overlapping TCP segments

40-
35 -

- DeResistor

- Normal

Geneva

Normal
Geneva
DeResistor

datapoints

Normal
05 Geneva

DeResistor

e

@ datapoints

30-

2.0-

15

10-

0.0- 00-
0 2 4 6

Non_zero_SYN
8

2626 32nd USENIX Security Symposium USENIX Association

RQ2). Although DeResistor’s search space is narrowed to
balance strategy effectiveness with detection-resilience, we
observe that the genetic algorithm is still successful in finding
multiple optimum solutions that satisfy the trade-off. Hence,
in addition to its detection resilience, DeResistor does not
sacrifice the success rate. However, we note that DeResistor

takes longer to find strategies with high fitness values. Since
Geneva does not punish detectability, it can start producing fit
strategies within the 4th generation, while DeResistor starts
to effectively find the evasion/detection-resilience trade-off
after at least 8 generations. Additionally, by design, Geneva
should be able to produce a higher number of fit strategies
given the difference in the fitness complexity.

Difference Between Geneva and DeResistor Strategies:
We examine DeResistor’s fit strategies to understand why
they are more resilient to detection. We find that most of
them do not include actions like tampering with dataofs, TCP
segments, or tampering with the TTL. Furthermore, unlike
Geneva, DeResistor strategies do not utilize invalid flags (e.g.,
FRAPUEN, FRAPUEN) for connection’s state tear-down (Ta-
ble 2), which confirms our previous observations in Figure
7. As explained before, DeResistor exhibits less detectable
features than Geneva. These findings validate our intuition
that DeResistor enables Geneva to learn from the detection
feedback of fDeResistor to produce more detection-resilient
strategies.

Success Rate Across Different Vantage Points: Over 30
runs, Table 2 shows that a strategy success rate against GFW
can slightly differ if performed from different vantage points
from within China. In some cases, we observe that an effective
strategy in one vantage point might not be effective in another
one. For instance, row 10 in Table 2 includes a strategy that is
highly effective in Qingdao (80%) but has a poor evasion per-
formance in Shanghai (31.03%) and Beijing (24.13%). This
is also observable in row 5 (77.78% in Beijing and 38.09%
in Qingdao). Although prior works have shown that GFW is
managed in a centralized manner [20, 28, 36, 56, 71], it is a
distributed system consisting of many filtering middleboxes
located across different autonomous systems. The difference
in successful evasion rates therefore could have been caused
by several reasons, including different filtering middleboxes
being under/over-loaded [70], or additional filtering policies
applied by regional ISPs [18, 67]. Our findings underscore
the importance of training and validating the effectiveness of
censorship evasion strategies across different network loca-
tions to obtain a non-biased overall view of their performance.
From Table 2, we confirm that strategies that work in China
do not necessarily work in India and vice versa. Some strate-
gies that are generated in China can also evade censorship in
Kazakhstan (rows 3-10).

7 Discussion

We next discuss how adaptive censors may attempt to detect
DeResistor-generated strategies. We also further explain how

our work can be adapted to numerous Geneva-like systems.

7.1 Adaptive Censors and Countermeasures

Training the censor-side model on DeResistor traces: In §4,
we described a real-time detection approach that includes
training ML models on Geneva traces. One way for the cen-
sor to turn around DeResistor detection-resilience is to train
fCensor on DeResistor traces instead, after excluding possi-
ble normal flows injected by DeResistor. As a result, fCensor

might be able to detect DeResistor flows and guide the TRW
algorithm to a confident IP-level detection.

On the user’s side, DeResistor can also be trained with a
local ML detector fDeResistor that is retrained on the previous
cycle of DeResistor traces. Hence, this will further improve
the flow-level detection resilience of newly generated strate-
gies. To explore to what extent DeResistor can stand against
an improved censor-side ML detector, we perform multiple
cycles of the game DeResistor vs. Censor. Results are dis-

played in Table 3. In the first cycle of the game 1 , the censor
trains a flow-level ML detector fCensor on Geneva traces to be
used for TRW’s IP-level detection and DeResistor is trained
using a local flow-level detector fDeResistor also trained on
Geneva traces. As we revealed in §6, DeResistor wins cycle

1 . In 2 , the censor updates its fCensor by extending its
training data with DeResistor traces in addition to Geneva’s.
We assume that no changes are made on DeResistor training.
As a result, fCensor becomes more accurate than fDeResistor

which leads to a less accurate detection feedback for DeResis-

tor. Thus, the censor wins cycle 2 (DeResistor is detected

"!"). In 3 , DeResistor allows normal background traffic
after every censor-probing flow even if it is not detected by

fDeResistor. This is intended to mitigate the impact of the flow-
level detection gap between fDeResistor and fCensor observed

in 2 by introducing periodic pauses independently from
fDeResistor feedback. Furthermore, fDeResistor can also be up-
dated to detect previous DeResistor traces and better simulate
fCensor for more accurate detection-resilience feedback. The
third row in Table 3 shows that DeResistor regains the upper

hand and avoids detection on the censor-side. Finally, in 4 ,
we assume that the censor performs a new update on its model

fCensor while DeResistor keeps the configuration of 3 . We
observe that DeResistor is still able to avoid IP-level detection
in 4 . Two explanations stand out: first, this time around,
fCensor and fDeResistor have comparable flow-level detection
rates (38.97% ≈ 39.45%), despite the additional update of
fCensor. Second, the regular pauses after every censor-probing

flow introduced in 3 mitigates the impact of any possible
discrepancy between fDeResistor detection feedback and the
real flow-level detection recorded by fCensor. We note that our
findings show that the introduced updates on DeResistor in

3 do not sacrifice its ability to generate highly fit strategies
for censorship evasion against GFW.

Filtering out the background normal traffic: We assume

O O

USENIX Association 32nd USENIX Security Symposium 2627

Flow-Level Detection
(J = 1)

IP-Level Detection
(TRW)

fDeResistor fCensor J = 1 J = 2 J = 3

1 45.01% 45.06% ✕ ✕ ✕

2 45.01% 48.84% ! ! !

3 38.95% 39.05% ✕ ✕ ✕

4 38.97% 39.45% ✕ ✕ ✕

5
J̃max < Jmax J̃max > Jmax J̃max = Jmax

38.97% 39.45% 0/3 0/3 0/3

LSTM IP-Level Detection Accuracy

6
J < L

J = L
= 10)

J = 15
(J > L)

J = 25
(J > L) J >> L

99.63% 71.24% 37.89% 19.93% acc−→ 0%

Table 3: Future cycles of the DeResistor vs Censor game.
! denotes detected, ✕ denotes undetected. 1 and 3 are DeRe-

sistor’s moves, while 2 and 4 are censor’s moves. In 5, (*/3)

denotes the number of detections within 3 runs. In 6, L=10.

that the censor deploys a TRW that tries to filter out the back-
ground normal traffic to enable an IP-level detection of DeRe-

sistor. However, TRW is not designed to ignore all normal
traffic. Otherwise, it will be biased against normal users. Par-
ticularly, all its flow-level observations Y = {y1, ..,yn} defined
in 4.2 would only include flows that are detected as malicious.
Hence, on the IP-level, the TRW would block innocent users
based on potential erroneous detection of normal flows. In-
stead, the censor can attempt to approximate the jump size
(J̃ ≈ J), based on previous traces of DeResistor. In DeRe-

sistor’s side, we can make J more difficult to estimate by
randomly changing its value after each censor-probing flow
(J ∈ {1, ..,Jmax}). For a fair game, we assume that the cen-
sor also actively changes its approximation (J̃ ∈ {1, .., J̃max}),
where J̃max can be the maximum jump recorded by the pre-

vious cycles of DeResistor. In experiment 5 , We consider

three cases: when the censor’s approximation J̃max is lower
than the actual value Jmax, when it is higher and when they
are equal. To reduce the impact of the added randomness on
results, we perform each experiment 3 times. Table 3 shows
that for all runs DeResistor was able to complete its training
across multiple runs across the different experiments.

DeResistor vs. IP-level ML Detector: Apart from TRW,
we explore whether DeResistor can confuse another IP-level
detection approach. To that end, we train an LSTM [38] model
to map a sequence of flow-level observations with length L to
an IP-level label. LSTM (§B) is trained on different sequences
of DeResistor traces that include a random number of jumps
J < L (more about how to fix L is provided in §B). Each
sequence contains flow-level detection probabilities returned
by fCensor (i.e., Y = {P1, ..,Pn}). Similarly to the TRW, the
goal is to reach a confident IP-level decision that a user is truly

probing the censor. In experiment 6 (Table 3), our findings
show that LSTM can detect Geneva and DeResistor sequences
with 99.63% accuracy. The accuracy drops to 37.89% when
we use J > L and it continues to decrease closer to 0% if
DeResistor further allows more background traffic between

Geneva attempts. To improve the accuracy, the censor can try
to increase L to make it higher than J again. However, this
will always delay the IP-level decision until exactly L flow-
level decisions are observed even if all of them are coming
from Geneva (unlike TRW that automatically converges after
a minimum of Geneva flows). Additionally, we noticed that a
sequence with L−1 normal flows and only 1 flow of Geneva
is always labeled by LSTM as malicious. This might result
in blocking innocent users based on 1 potentially mistaken
flow-level detection. To summarize, although LSTM is more
capable to detect DeResistor, TRW is more suitable to reach
a high confidence decision of IP-level blocking, since it does
not rely on a fixed length of observations (i.e., L for LSTM).
It automatically stops observing flow-level detection as soon
as a high confidence decision is made.

Aggressive Detection: Another possible countermeasure
is to tune the TRW algorithm to make more aggressive IP-
level detection. This could be done either by decreasing the
TRW’s detection confidence (e.g., α = 0.8, instead of α =
0.99) or by performing detection-oriented ratio resets instead
of history-aware resets (refer to Figure 3). We recall that the
TRW automatically resets the likelihood ratio Λ(Y) if a source
IP is found to be benign (i.e., Λ(Y) > η1). If we reset Λ(Y)
to a value that is very close to η0 (e.g., Λ(Y)←− η0 + 0.1),
it will make the TRW biased toward making less confident
decisions. The natural side-effect here is that aggressive resets
are triggered after observing a sequence of normal network
flows. Consequently, this countermeasure will affect many
innocuous clients (i.e., IP addresses).

Misleading Detection Feedback: It is known that Geneva
might fall short if the censor detects its probing phase. In
particular, the censor could poison Geneva training by mak-
ing strategies appear to (not) work [13]. For DeResistor the
detection feedback is received from the local model fDeResistor

(̸= fCensor). Hence, while the censor can mislead censorship
feedback it cannot do the same for detection feedback.

7.2 Extending DeResistor Beyond Geneva

Playing the role of a strategy generation module, Geneva is
used as a foundational building block for DeResistor through-
out this paper.

Our success in adopting a genetic algorithm like Geneva to
the whole training process of DeResistor shows its potential
adaptability to other similar evasion tools.

Genetic Algorithms: A genetic algorithm designed to
generate evasion strategies by probing the censor is ideally
suited for deployment within DeResistor to enhance detec-
tion resilience. Geneva is equipped with a server-side deploy-
ment [12], allowing censored clients to connect to a Geneva-
supported server without having to discover client-side strat-
egy. Instead, Geneva can be trained on the censored server
using an external client (in a censored regime) that regularly
attempts connections to the server during the training phase.
As a probing-based method, the censor can implement our

2628 32nd USENIX Security Symposium USENIX Association

ML+TRW approach to detect abnormal network behaviors
from a censored server that is running server-side packet
manipulations. Even when running on the server-side, DeRe-

sistor is still fit to protect Geneva training from detection. In
particular, the two-objective fitness function can guide the
training into punishing detection. Furthermore, DeResistor

can perform guided pausing on Geneva training at the server-
side. As a result, no server-side strategy is tested against the
censor and the client connection attempts will be censored un-
til J number of flows (normally censored flows) is performed.

Geneva has also been extended to generate application-
layer evasion strategies [33]. Despite training on a different
network layer, such strategies also involve repetitively prob-
ing a censor, thus being susceptible to detection. DeResistor

therefore is also suitable to protect the training phase of such
strategies regardless of what network layer is being targeted.

Symbolic Execution: SymTCP [64] is another packet-
manipulation tool that automatically discovers censorship
evasion strategies, which also involve repetitively probing a
censor to check evasion effectiveness. In a similar fashion,
SymTCP probing can be protected when being integrated
with DeResistor. In particular, the symbolic execution can be
guided to explore execution paths that are detection-resilient
using the output of fDeResistor trained to detect SymTCP
probes. The feedback of fDeResistor can either be embedded to
the whole automatic process, or it might be useful for manual
selections of the best input packet sequences. Additionally,
the background traffic module can serve the same purpose
of avoiding early detection by performing detection-guided
pauses over the probing phase.

Guided Fuzz-Testing Tools: In addition to learning-based
tools, other approaches (e.g., CenTrace [53], INTANG [63],
and Lib•erate [42]) rely on fuzzing (brute force or guided
fuzzing) to perform censorship measurement or reveal defects
of middleboxes. These tools are also vulnerable to detection
as the ML+TRW approach proposed in §4 can be used to
detect network traces from these tools instead of Geneva.
DeResistor can aid in the probing phase of these tools by
making them more resilient to detection. In particular, the
background normal traffic module can be leveraged for guided
pausing of the probing phase while fDeResistor feedback can
be used to thwart highly detectable probing strategies.

8 Ethical Considerations

Internet censorship, especially when it comes to state-
sponsored network interference, is often motivated by po-
litical reasons [19, 21, 22, 32, 36]. Studies in this sensitive
domain thus have to be performed in a responsible manner.

Human Subject Risk: Our work does not involve human
subjects. Hence, there was no need to receive Institutional
Review Board (IRB) approval. For both the mock censors
and real-world experiments, we conducted all training and
post-training evaluations from vantage points under our con-
trol. We made sure that our probing interactions with censors

(mock or real-world) have no security and/or privacy impact
on other users. We do so by running all experiments with
devices isolated from real users/services and using special
credentials that are not associated with any real individuals.
The nodes under our control were operated in data centers
at different locations inside China, India and Kazakhstan but
not residential networks owned by any users. This setup is a
common practice within the censorship measurement com-
munity. Our experiments therefore do not impose any risk on
real users since we did not recruit or involve any human users.

On the surface, releasing DeResistor seems favorable
for censors. However, the overall consensus from the anti-
censorship community is that the evaders benefit more, out-
weighing what censors can gain. This is evident by numerous
prior studies [13, 25, 42, 63] that have been released and in-
corporated into popular circumvention tools [1, 2, 44]. On
balance, we believe DeResistor benefits anti-censorship ef-
forts by equipping them with detection-resilient censor prob-
ing capabilities while also evolving their strategy generation
schemes based on the detectability feedback from censors.

9 Conclusion

We have demonstrated that packet manipulation-based censor-
ship evasion tools such as Geneva can be detected and blocked
by censorship middleboxes. To enable resilient censorship
evasion in the face of sophisticated censor-side detection,
we designed DeResistor, as a detection-resilience extension
for automated packet-manipulation-based strategy generation
tools, such as Geneva. DeResistor factors in the likelihood of
detectability of censorship strategies when it generates eva-
sion strategies and guides Geneva’s strategy generator to rely
on less-detectable features. By doing so, it not only enables
the generation of a successful censorship evasion strategy, but
also shields Geneva from being detected by the censor. We
evaluated DeResistor first using 11 mock censors and then
against real-world censors, China’s GFW, India and Kaza-
khstan. Our evaluations from multiple vantage points from
within China, one vantage point in India and Kazakhstan sug-
gest that DeResistor can evade censors with high success
rate while remaining undetected. We also broadly discuss the
prospect of potential countermeasures from the censor and ap-
plicability of DeResistor to other packet manipulation-based
censorship evasion systems. DeResistor demonstrates a new
frontier in making censorship evasion work for billions of
users worldwide while minimizing the risk of being detected
and blocked by a nation-state censor.

Acknowledgments

We thank the anonymous reviewers and our anonymous shep-
herd for their insightful feedback. We are grateful to Sadia
Nourin, Kevin Bock, Dave Levin, activists at GreatFire.org,
and others who preferred to remain anonymous for helpful
discussions and suggestions. This work was supported in part
by National Science Foundation (NSF) award CNS-2238084

USENIX Association 32nd USENIX Security Symposium 2629

and Defense Advanced Research Projects Agency (DARPA)
under Agreement No. HR00112190126. Approved for public
release; distribution is unlimited.

References

[1] GoodbyeDPI - Deep Packet Inspection circumvention utility. https:
//github.com/ValdikSS/GoodbyeDPI.

[2] Psiphon VPN Packetman Library. https://pkg.go.dev/github.

com/Psiphon-Labs/psiphon-tunnel-core/psiphon/common/p

acketman.

[3] Uyghur university student serving 13-year sentence for using VPN.
https://www.rfa.org/english/news/uyghur/student-sente

nced-06082023154805.html.

[4] Egypt keeps trying to block Signal, inadvertently blocking all of Google,
and having to stop as a result. We’ll also expand domain fronts., 2017.
http://twitter.com/signalapp/status/817062093094604800.

[5] Giuseppe Aceto, Alessio Botta, Antonio Pescapè, M. Faheem Awan,
Tahir Ahmad, and Saad Qaisar. Analyzing Internet censorship in Pak-
istan. In Research and Technologies for Society and Industry, 2016.

[6] Abderrahmen Amich, Birhanu Eshete, and Vinod Yegneswaran. Ad-
versarial detection of censorship measurements. In Proceedings of the
21st Workshop on Privacy in the Electronic Society, WPES’22, page
139–143, New York, NY, USA, 2022.

[7] Anonymous. The collateral damage of internet censorship by DNS
injection. Comput. Commun. Rev., 42(3):21–27, 2012.

[8] Anonymous, Arian Akhavan Niaki, Nguyen Phong Hoang, Phillipa
Gill, and Amir Houmansadr. Triplet censors: Demystifying great fire-
wall’s DNS censorship behavior. In Proceedings of the 10th USENIX
Workshop on Free and Open Communications on the Internet, FOCI
’20. 2020.

[9] Simurgh Aryan, Homa Aryan, and J. Alex Halderman. Internet censor-
ship in Iran: A first look. In Free and Open Communications on the
Internet. USENIX, 2013.

[10] Kevin Bock, Yair Fax, and Dave Levin. Evading SNI Filtering in India
with Geneva, 2021.

[11] Kevin Bock, Yair Fax, Kyle Reese, Jasraj Singh, and Dave Levin. De-
tecting and Evading Censorship-in-Depth: A Case Study of Iran’s
Protocol Filter. In USENIX FOCI, 2020.

[12] Kevin Bock, George Hughey, Louis-Henri Merino, Tania Arya, Daniel
Liscinsky, Regina Pogosian, and Dave Levin. Come as you are: Helping
unmodified clients bypass censorship with server-side evasion. In Pro-
ceedings of the Annual Conference of the ACM Special Interest Group
on Data Communication on the Applications, Technologies, Architec-
tures, and Protocols for Computer Communication, SIGCOMM ’20,
page 586–598, New York, NY, USA, 2020. Association for Computing
Machinery.

[13] Kevin Bock, George Hughey, Xiao Qiang, and Dave Levin. Geneva:
Evolving Censorship Evasion. In CCS, 2019.

[14] Kevin Bock, Gabriel Naval, Kyle Reese, and Dave Levin. Even Cen-
sors Have a Backup: Examining China’s Double HTTPS Censorship
Middleboxes. ACM FOCI, 2021.

[15] Abdelberi Chaabane, Terence Chen, Mathieu Cunche, Emiliano De
Cristofaro, Arik Friedman, and Mohamed Ali Kaafar. Censorship in
the wild: Analyzing Internet filtering in Syria. In Internet Measurement
Conference. ACM, 2014.

[16] Adriel Cheng. Pac-gan: Packet generation of network traffic using
generative adversarial networks. 2019 IEEE 10th Annual Informa-
tion Technology, Electronics and Mobile Communication Conference
(IEMCON), pages 0728–0734, 2019.

[17] Qiumei Cheng, Shiying Zhou, Yi Shen, Dezhang Kong, and Chunming
Wu. Packet-level adversarial network traffic crafting using sequence
generative adversarial networks, 2021.

[18] Jedidiah R. Crandall, Daniel Zinn, Michael Byrd, Earl Barr, and Rich
East. ConceptDoppler: A Weather Tracker for Internet Censorship. In
ACM CCS ’07.

[19] M. Crete-Nishihata, R. Deibert, and A. Senft. Not by Technical Means
Alone: The Multidisciplinary Challenge of Studying Information Con-
trols. IEEE Internet Computing, 17(3):34–41, May 2013.

[20] Ronald Deibert. China’s Cyberspace Control Strategy: An Overview
and Consideration of Issues for Canadian Policy, 2010.

[21] Ronald Deibert. Reset: Reclaiming The Internet for Civil Society,
2020.

[22] Ronald J. Deibert. Dark Guests and Great Firewalls: The Internet and
Chinese Security Policy. Journal of Social Issues, 58:143–159, 2002.

[23] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The Second-
Generation Onion Router. In Proceedings of the 13th USENIX Security
Symposium, pages 303–319, August 2004.

[24] H. Duan, N. Weaver, Z. Zhao, M. Hu, J. Liang, J. Jiang, K. Li, and
V. Paxson. Hold-On: Protecting Against On-Path DNS Poisoning. In
Securing and Trusting Internet Names, 2012.

[25] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and Vern Pax-
son. Blocking-resistant communication through domain fronting. Pro-
ceedings on Privacy Enhancing Technologies, 2015(2):46–64, 2015.

[26] Arturo Filastò and Jacob Appelbaum. OONI: Open observatory of net-
work interference. In Free and Open Communications on the Internet.
USENIX, 2012.

[27] Genevieve Gebhart, Anonymous Author, and Tadayoshi Kohno. In-
ternet censorship in Thailand: User practices and potential threats. In
European Symposium on Security & Privacy. IEEE, 2017.

[28] Geremie R. Barme And Sang Ye. The Great Firewall of China, 1997-
06-01. https://www.wired.com/1997/06/china-3/.

[29] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In Advances in Neural Information Processing
Systems, volume 27. Curran Associates, Inc., 2014.

[30] Devashish Gosain, Anshika Agarwal, Sambuddho Chakravarty, and
H. B. Acharya. The devil’s in the details: Placing decoy routers in the
Internet. In ACSAC. ACM, 2017.

[31] Luchao Han, Yiqiang Sheng, and Xuewen Zeng. A packet-length-
adjustable attention model based on bytes embedding using flow-wgan
for smart cybersecurity. IEEE Access, 7:82913–82926, 2019.

[32] Seth Hardy, Masashi Crete-Nishihata, Katharine Kleemola, Adam Senft,
Byron Sonne, Greg Wiseman, Phillipa Gill, and Ronald J. Deibert.
Targeted Threat Index: Characterizing and Quantifying Politically-
Motivated Targeted Malware. In 23rd USENIX Security Symposium,
pages 527–541. USENIX, 2014.

[33] Michael Harrity, Kevin Bock, Frederick Sell, and Dave Levin. GET
/out: Automated discovery of Application-Layer censorship evasion
strategies. In 31st USENIX Security Symposium (USENIX Security 22),
pages 465–483, Boston, MA, August 2022. USENIX Association.

[34] Nguyen Phong Hoang, Sadie Doreen, and Michalis Polychronakis.
Measuring I2P Censorship at a Global Scale. In 9th USENIX Workshop
on Free and Open Communications on the Internet (FOCI 19), Santa
Clara, CA, 2019. USENIX Association.

[35] Nguyen Phong Hoang, Panagiotis Kintis, Manos Antonakakis, and
M. Polychronakis. An Empirical Study of the I2P Anonymity Network
and its Censorship Resistance. In ACM IMC ’18.

[36] Nguyen Phong Hoang, Arian Akhavan Niaki, Jakub Dalek, Jeffrey
Knockel, Pellaeon Lin, Bill Marczak, Masashi Crete-Nishihata, Phillipa
Gill, and Michalis Polychronakis. How Great is the Great Firewall?
Measuring China’s DNS Censorship. In USENIX Security Symposium,
2021.

2630 32nd USENIX Security Symposium USENIX Association

https://github.com/ValdikSS/GoodbyeDPI
https://github.com/ValdikSS/GoodbyeDPI
https://pkg.go.dev/github.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/common/packetman
https://pkg.go.dev/github.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/common/packetman
https://pkg.go.dev/github.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/common/packetman
https://www.rfa.org/english/news/uyghur/student-sentenced-06082023154805.html
https://www.rfa.org/english/news/uyghur/student-sentenced-06082023154805.html
http://twitter.com/signalapp/status/817062093094604800
https://www.wired.com/1997/06/china-3/

[37] Nguyen Phong Hoang, Arian Akhavan Niaki, Phillipa Gill, and
Michalis Polychronakis. Domain Name Encryption Is Not Enough:
Privacy Leakage via IP-based Website Fingerprinting. In Proceedings
of the 21st Privacy Enhancing Technologies Symposium, PoPETs ’21,
2021.

[38] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory.
Neural Computation, 9(8):1735–1780, 11 1997.

[39] Jaeyeon Jung, V. Paxson, A.W. Berger, and H. Balakrishnan. Fast
portscan detection using sequential hypothesis testing. In IEEE Sympo-
sium on Security and Privacy, 2004. Proceedings. 2004, pages 211–225,
2004.

[40] Sheharbano Khattak, Mobin Javed, Philip D. Anderson, and Vern Pax-
son. Towards illuminating a censorship monitor’s model to facilitate
evasion. In Free and Open Communications on the Internet. USENIX,
2013.

[41] Gary King, Jennifer Pan, and Margaret E. Roberts. Reverse-engineering
censorship in China: Randomized experimentation and participant
observation. Science, 345(6199), 2014.

[42] Fangfan Li, Abbas Razaghpanah, Arash Molavi Kakhki, Arian Akhavan
Niaki, David Choffnes, Phillipa Gill, and Alan Mislove. Lib•erate, (n):
A library for exposing (traffic-classification) rules and avoiding them
efficiently. In Proceedings of the 2017 Internet Measurement Confer-
ence, IMC ’17, page 128–141, New York, NY, USA, 2017. Association
for Computing Machinery.

[43] Graham Lowe, Patrick Winters, and Michael L. Marcus. The great
DNS wall of China. Technical report, New York University, 2007.

[44] M. Marlinspike. Doodles, stickers, and censorship circumvention for
Signal Android., 2017. https://signal.org/blog/doodles-sti
ckers-censorship.

[45] Soo-Jin Moon, Jeffrey Helt, Yifei Yuan, Yves Bieri, Sujata Banerjee,
Vyas Sekar, Wenfei Wu, Mihalis Yannakakis, and Ying Zhang. Alem-
bic: Automated model inference for stateful network functions. In 16th
USENIX Symposium on Networked Systems Design and Implementa-
tion, NSDI 2019, Boston, MA, February 26-28, 2019, pages 699–718.
USENIX Association, 2019.

[46] Zubair Nabi. The anatomy of web censorship in Pakistan. In Free and
Open Communications on the Internet. USENIX, 2013.

[47] Arian Akhavan Niaki, Shinyoung Cho, Zachary Weinberg,
Nguyen Phong Hoang, Abbas Razaghpanah, Nicolas Christin,
and Phillipa Gill. ICLab: A global, longitudinal internet censorship
measurement platform. In Symposium on Security & Privacy. IEEE,
2020.

[48] Daiyuu Nobori and Yasushi Shinjo. VPN Gate: A Volunteer-Organized
Public VPN Relay System with Blocking Resistance for Bypassing
Government Censorship Firewalls. In 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI ’14), pages
229–241, 2014.

[49] Sadia Nourin, Van Tran, Xi Jiang, Kevin Bock, Nick Feamster,
Nguyen Phong Hoang, and Dave Levin. Measuring and Evading Turk-
menistan’s Internet Censorship. In The International World Wide Web
Conference, WWW ’23, 2023.

[50] Jong Chun Park and Jedidiah R. Crandall. Empirical study of a national-
scale distributed intrusion detection system: Backbone-level filtering of
HTML responses in China. In Distributed Computing Systems, pages
315–326. IEEE, 2010.

[51] P. Pearce, Ben Jones, F. Li, Roya Ensafi, N. Feamster, N. Weaver, and
V. Paxson. Global Measurement of DNS Manipulation. In USENIX
Security Symposium, 2017.

[52] Ram Sundara Raman, Prerana Shenoy, Katharina Kohls, and Roya
Ensafi. Censored Planet: An Internet-wide, longitudinal censorship
observatory. In Computer and Communications Security. ACM, 2020.

[53] Ram Sundara Raman, Mona Wang, Jakub Dalek, Jonathan Mayer, and
Roya Ensafi. Network measurement methods for locating and exam-
ining censorship devices. In Proceedings of the 18th International
Conference on Emerging Networking EXperiments and Technologies,
CoNEXT ’22, page 18–34, New York, NY, USA, 2022. Association
for Computing Machinery.

[54] Reethika Ramesh, Ram Sundara Raman, Matthew Bernhard, Victor
Ongkowijaya, Leonid Evdokimov, Anne Edmundson, Steven Sprecher,
Muhammad Ikram, and Roya Ensafi. Decentralized control: A case
study of Russia. In Network and Distributed System Security. The
Internet Society, 2020.

[55] W. Scott, T. Anderson, T. Kohno, and A. Krishnamurthy. Satellite:
Joint Analysis of CDNs and Network-Level Interference. In ATC ’16.

[56] Shawn Conaway. The Great Firewall: How China Polices Internet
Traffic. Certification Magazine, 2009-09. http://certmag.com/th
e-great-firewall-how-china-polices-internet-traffic/.

[57] Stephen Simons. Minimax Theorems and Their Proofs, pages 1–23.
Springer US, Boston, MA, 1995.

[58] Kushagra Singh, Gurshabad Grover, and Varun Bansal. How India
censors the web. In Web Science. ACM, 2020.

[59] Joel Sommers, Hyungsuk Kim, and Paul Barford. Harpoon: A flow-
level traffic generator for router and network tests. In Proceedings
of the Joint International Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS ’04/Performance ’04, page 392,
New York, NY, USA, 2004. Association for Computing Machinery.

[60] D. Turk. Configuring BGP to Block Denial-of-Service Attacks. RFC
3882, IETF, September 2004.

[61] Benjamin VanderSloot, A. McDonald, W. Scott, J. A. Halderman, and
Roya Ensafi. Quack: Scalable Remote Measurement of Application-
Layer Censorship. In USENIX Security ’18.

[62] Pan Wang, Shuhang Li, Feng Ye, Zixuan Wang, and Moxuan Zhang.
Packetcgan: Exploratory study of class imbalance for encrypted traffic
classification using cgan, 11 2019.

[63] Zhongjie Wang, Yue Cao, Zhiyun Qian, Chengyu Song, and Srikanth V.
Krishnamurthy. Your state is not mine: A closer look at evading stateful
internet censorship. In Proceedings of the 2017 Internet Measurement
Conference, IMC ’17, page 114–127, New York, NY, USA, 2017. As-
sociation for Computing Machinery.

[64] Zhongjie Wang, Shitong Zhu, Yue Cao, Zhiyun Qian, Chengyu Song,
Srikanth V Krishnamurthy, Kevin S Chan, and Tracy D Braun.
SymTCP: Eluding Stateful Deep Packet Inspection with Automated
Discrepancy Discovery. In NDSS, 2020.

[65] Nicholas Weaver, Robin Sommer, and Vern Paxson. Detecting Forged
TCP Reset Packets. In Network and Distributed System Security. Inter-
net Society, 2009.

[66] Philipp Winter and Stefan Lindskog. How the Great Firewall of China
is blocking Tor. In Free and Open Communications on the Internet.
USENIX, 2012.

[67] Xueyang Xu, Z. Morley Mao, and J. Alex Halderman. Internet censor-
ship in china: Where does the filtering occur? In PAM, 2011.

[68] Diwen Xue, Reethika Ramesh, ValdikSS, Leonid Evdokimov, Andrey
Viktorov, Arham Jain, Eric Wustrow, Simone Basso, and Roya Ensafi.
Throttling Twitter: an emerging censorship technique in Russia. In
Internet Measurement Conference. ACM, 2021.

[69] Tarun Kumar Yadav, Akshat Sinha, Devashish Gosain, Piyush Kumar
Sharma, and Sambuddho Chakravarty. Where the light gets in: Ana-
lyzing web censorship mechanisms in India. In Internet Measurement
Conference. ACM, 2018.

[70] Pengxiong Zhu, Keyu Man, Zhongjie Wang, Zhiyun Qian, Roya Ensafi,
J. Alex Halderman, and Hai-Xin Duan. Characterizing transnational
internet performance and the great bottleneck of china. Proceedings of
the ACM on Measurement and Analysis of Computing Systems, 4:1 –
23, 2020.

USENIX Association 32nd USENIX Security Symposium 2631

https://signal.org/blog/doodles-stickers-censorship
https://signal.org/blog/doodles-stickers-censorship
http://certmag.com/the-great-firewall-how-china-polices-internet-traffic/
http://certmag.com/the-great-firewall-how-china-polices-internet-traffic/

[71] Jonathan Zittrain and Benjamin Edelman. Internet Filtering in China.
IEEE Internet Computing ’03, 2003.

A Geneva Features Analysis

Table 4 summarizes features extracted from Geneva flows
that are useful for the ML-based detection of Geneva probes.
Figure 8 illustrates the difference in the distribution of payload
hashes observed in Geneva and normal flows. We see that
unlike the distribution for hashes from normal flows which
are evenly distributed, hashes from Geneva and DeResistor
tend be more skewed.

Figure 8: Hash values of packet payloads in Geneva, Normal
and DeResistor flows.

B LSTM for IP-Level Detection

The choice of LSTM: LSTMs (Long Short-Term Memory)
models were proposed as time-efficient RNNs (Recurrent
Neural Networks). They have been widely used in sequence-
based decision ML tasks such as time series for weather fore-
casting [38] or DNA sequence classification [38], etc.) In this
paper, we train and test an LSTM model (Figure 9) to explore
the usability of ML for IP-level Geneva detection based on
the classification of a sequence of flow-level detection obser-
vations. As shown in Figure 9, our LSTM model has 3 layers:
the input layer “LSTM1” takes as input a tensor of multiple
sequences with size L = 10, a second layer “LSTM2” with
256 units, and a final sigmoid layer that returns the output
label (i.e., malicious IP or not).

The choice of the sequence length L: Considering that
DeResistor introduces a sequence of J jumps of normal flows,
to ensure LSTM receives a sequence of DeResistor flows that
include at least one Geneva flow, LSTM is trained with L > J

observations. Since J is usually less than 5 in the previous

experiments (until experiment 5), we select L = 10 to train
on previous DeResistor traces.

Figure 9: LSTM Model architecture for sequence-based IP-
level detection.

LSTM1_input mput: [CNone, 10. 1)]

InputLayer output: [CNone, 10, 1)]

LSTM1 input: (None, 10, 1)

LSTM tanh output: (None, 10, 256)

LSTM2 (None, 10, 256)input:

LSTM tanh output: (None, 150)

Output_layer mput: (None, 150)

Dense sigmoid output: (None, 2)

2632 32nd USENIX Security Symposium USENIX Association

TCP Flags Geneva probes may tamper with TCP flags. Hence, we keep track of each packet flag’s occurrence within a flow. We notice
that Geneva probing can result in sending packets with unusual flags (e.g., SRPECN, FSRPUEN) that are unlikely to occur in
a normal network flow.

Number of non-zero
SYN packets

Geneva flows contain SYN packets with non-zero payload length, which can overlap with another packet if it has the same
sequence number. In a normal flow, a SYN packet length is equal to zero. Figure 1 confirms that only Geneva flows (label=0)
include SYN packets with non-zero payload, which makes it a significant feature for Geneva users detection.

Number of overlap-
ping TCP segments

Geneva can fragment a packet into small segments and perform different actions on the resulting segments, which can lead to
sending overlapping packets to hide a forbidden keyword. Figure 1 shows that compared to normal flows, Geneva flows tend
to have a higher number of pairwise TCP overlaps, ranging from 0 to 60, while most normal flows do not surpass 10 overlaps.

Flow Size Normal (benign) flows usually have higher flow sizes (≈ 1000 - 30000 bytes) compared to an average of ≈ 150 bytes across
all Geneva flows.

Maximum Packet
Size

Inline with the previous observation, the maximum packet size within a flow is mostly higher in normal traffic compared to
Geneva traffic.

Number of corrupt
TCP data offsets

Geneva manipulations might lead to the corruption of the dataofs field of a TCP packet [13]. Figure 1 confirms that flows with
corrupt dataofs are mainly observed in Geneva traces (label=0), while it is always 0 for benign flows.

Content (Payload) Geneva might temper with packet payloads. Thus we consider it as another feature. Figure 8 shows that packet payloads of
DeResistor flows resemble more normal flows compared to Geneva’s.

More Features Corrupt TCP options is a candidate feature. However, we choose not to consider it, since it is usually either correlated with
the corrupt dataofs feature or the corrupt checksum feature. Additionally, we explore the Destination IP of Geneva packets as
another feature since Geneva mostly attempts connections with censored URLs.

Table 4: Summary of Geneva features used by flow-level detection classifiers.

USENIX Association 32nd USENIX Security Symposium 2633

	Introduction
	Background and Related Work
	Censorship Measurement
	Censorship Evasion
	Geneva as a Motivation

	Problem Formulation
	Generative Adversarial Models
	Genetic Algorithms

	Real-Time Censorship Evasion Detection
	Flow-Level ML-Based Detection
	IP-Level TRW-Based Detection

	DeResistor System Design
	Two-Objective Fitness Function
	Normal Background Traffic

	System Evaluation
	Experimental Setup
	Detection-Resilience Results
	Censorship Evasion Results

	Discussion
	Adaptive Censors and Countermeasures
	Extending DeResistor Beyond Geneva

	Ethical Considerations
	Conclusion
	Geneva Features Analysis
	LSTM for IP-Level Detection

