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Abstract

ZigBee is a popular wireless communication standard for In-
ternet of Things (IoT) networks. Since each ZigBee network
uses hop-by-hop network-layer message authentication based
on a common network key, it is highly vulnerable to packet-
injection attacks, in which the adversary exploits the com-
promised network key to inject arbitrary fake packets from
any spoofed address to disrupt network operations and con-
sume the network/device resources. In this paper, we present
PhyAuth, a PHY hop-by-hop message authentication frame-
work to defend against packet-injection attacks in ZigBee
networks. The key idea of PhyAuth is to let each ZigBee
transmitter embed into its PHY signals a PHY one-time pass-
word (called POTP) derived from a device-specific secret key
and an efficient cryptographic hash function. An authentic
POTP serves as the transmitter’s PHY transmission permis-
sion for the corresponding packet. PhyAuth provides three
schemes to embed, detect, and verify POTPs based on dif-
ferent features of ZigBee PHY signals. In addition, PhyAuth
involves lightweight PHY signal processing and no change to
the ZigBee protocol stack. Comprehensive USRP experiments
confirm that PhyAuth can efficiently detect fake packets with
very low false-positive and false-negative rates while having
a negligible negative impact on normal data transmissions.

1 Introduction

ZigBee is an IEEE 802.15.4-based specification very popu-
lar for Internet of Things (IoT) networks [13]. The ZigBee
stack architecture comprises four layers from low to high: the
Physical layer (PHY), medium access control layer (MAC),
network layer (NWK), and application layer (APL) [3]. The
APL layer consists of the application support sublayer (APS)
and the ZigBee device objects (ZDO). PHY and MAC layers
are defined in the IEEE 802.15.4 standard [7], and NWK and
APL layers are defined in the ZigBee specification [3].

A ZigBee network consists of three device types: coordina-
tor, router, and end device. Each ZigBee network has exactly
one coordinator and can have many routers and end devices.
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Figure 1: ZigBee network topologies.

The coordinator acts as a central node responsible for man-
aging the ZigBee network. Routers can route traffic between
different devices. End devices (e.g., wireless sensors) can
only transmit/receive a message to/from their parent nodes
(routers or the coordinator). As shown in Fig. 1, a ZigBee
network can operate in three network topologies and support
up to 65,000 nodes [3]. ZigBee supports multi-hop mesh net-
working based on the AODV (Ad-hoc On-demand Distance
Vector) routing protocol [27]. ZigBee packets comprise uni-
cast transmissions between two APL peer entities that can be
multi-hop away, network-wide or one-hop broadcast transmis-
sions, and multicast transmissions to a group of nodes. ZigBee
has been widely used in many mission-critical contexts, such
as hospitals and healthcare automation, critical-infrastructure
monitoring and management, industrial/home/building au-
tomation, personnel and asset tracking, smart-city sensing,
and military/defense applications [11]. For example, the UK
government uses ZigBee mesh networks to connect smart
meters in homes to the utility network [14]. In addition, smart
factories use ZigBee-enabled sensors to monitor and manage
the entire manufacturing process [17,21]. Moreover, ZigBee
networks are used to control the routes of multiple automatic
guided vehicles in smart factories or warehouses [12].
ZigBee defines security mechanisms at the NWK and APS
layers based on “link” keys and a “network” key [3]. In par-
ticular, unicast frames between APL peer entities are secured
with a 128-bit link key shared by the source and destination,
while broadcast/multicast frames and all network-layer frames
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Figure 2: The IEEE 802.15.4/ZigBee frame structure with all
possible security features.

(e.g., routing commands) are secured with a 128-bit network
key shared amongst all devices in the network. As shown in
Fig. 2, every NWK frame is encrypted and/or authenticated
with a Message Integrity Code (MIC) based on the network
key and the 128-bit AES-CCM algorithm.' An APS frame can
also be encrypted and/or authenticated with a MIC based on
128-bit AES-CCM with the network key or a link key accord-
ing to the frame type and application requirements. ZigBee
achieves hop-by-hop message authentication by letting each
node use the network key to verify the MIC of each incoming
NWK frame before any further processing (e.g., forwarding
to the next hop). In contrast, the APS MIC is only verified at
the APS entity of the end-to-end destination.

Hop-by-hop message authentication based on the com-
mon network key makes ZigBee networks very vulnerable to
packet-injection attacks. In such an attack, the adversary first
acquires the authentic network key by compromising any node
in the large network. In the current ZigBee security architec-
ture, a ZigBee device is considered legitimate by its neighbors
as long as it shows the knowledge of the correct network key
by appending an authentic MIC in each forwarded/originated
NWK frame. So the adversary can exploit the compromised
network key to inject arbitrary fake NWK frames with forged
content but a valid MIC from spoofed legitimate or even
random device addresses, which can all evade hop-by-hop
message authentication. NWK frames can be classified into
command frames for routing and network management and
data frames carrying APS-layer broadcast/unicast/multicast
data messages. Since NWK command frames and NWK data
frames containing APS-layer broadcast data are only authen-
ticated with the network key, fake packets targeting these
frame types can propagate throughout the entire network to
be falsely accepted by every node, leading to severe disruption

' AES-CCM stands for Advanced Encryption Standard-Counter with Ci-
pher Block Chaining-Message Authentication Code.

of network operations and quick depletion of device batteries.
Even if some NWK data frames such as those carrying APS-
layer unicast data can be additionally authenticated by an
APS MIC based on a non-compromised end-to-end link key,
fake packets involving these frame types can only be detected
by the APL entity at the final destination and would have
consumed massive network resources for being relayed along
multi-hop paths. An intuitive countermeasure against such
packet-injection attacks is to replace the common network key
with unique node-dependent keys to (re)generate and verify
the NWK MICs at every hop towards the destination. This
plausible defense would involve a major change to the NWK
layer of the ZigBee specification and is thus impractical.

In this paper, we present PhyAuth, a PHY hop-by-hop mes-
sage authentication framework that complements the current
ZigBee NWK hop-by-hop message authentication method.
The key idea of PhyAuth is to let each ZigBee transmitter em-
bed into its PHY signals a PHY one-time password (called
POTP) derived from a device-specific secret key. An authentic
POTP serves as the transmitter’s PHY transmission permis-
sion for the corresponding NWK frame. A verifier authen-
ticates a ZigBee transmitter by detecting and verifying the
POTP from its PHY signals. Verifiers can be normal Zig-
Bee receivers or dedicated intrusion detection systems (IDS)
not engaged in normal ZigBee communications. If a valid
POTP cannot be detected, verifiers drop the corresponding
NWK frame without any further processing; they can also
send an alert message to the network administrator which can
physically locate and remove illegitimate transmitters. POTP
generation and verification use any standard cryptographic
hash function implemented in software or hardware.

PhyAuth includes three methods—VarChip, VarAmp, and
VarPhase—that explore different features of ZigBee PHY
frames (Fig. 2) to embed a POTP. In particular, ZigBee uses
the IEEE 802.15.4 PHY layer which explores Direct Sequence
Spread Spectrum (DSSS) to improve interference and noise
resilience (§2.2). Each 4-bit ZigBee symbol from the MAC
layer is spread to a predefined 32-chip pseudorandom noise
(PN) sequence at the transmitter. VarChip sends a POTP by
substituting it for some chips in the PN sequences. In ad-
dition, ZigBee adopts offset quadrature phase-shift keying
(OQPSK) to (de)modulate the PN sequences outputted by
DSSS. VarAmp embeds a POTP by increasing (or decreasing)
the amplitude of an OQPSK symbol to convey a bit-1 (or
bit-0). Finally, VarPhase embeds a POTP by manipulating the
phase shifts between consecutive OQPSK signals according
to predefined parameters. All three schemes only involve ad-
ditional processing steps to existing PHY signal processing
operations in ZigBee devices. In addition, they can be used
independently or collectively as needed.

PhyAuth has many nice features that render a practical and
effective defense against packet-injection attacks. (1) It is
invulnerable to single point of compromise. Since POTPs
use device-specific secret keys, the adversary can only use a
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compromised device itself to inject fake packets instead of
impersonating other devices as in the case of message authen-
tication based on the single network key. Continuous fake
packets originating from the compromised device make it
easily identifiable if the network administrator adopts fake-
packet traceback defenses. (2) It is standard-complaint. The
ZigBee specification defines the NWK and APL layers and
assumes the use of IEEE 802.15.4 MAC and PHY layers.
The actual PHY implementation (i.e., signal processing) is
up to each device manufacturer as long as it offers proper
services to the MAC layer. PhyAuth does not modify the
ZigBee NWK/APL/MAC layers and only involves additional
simple PHY processing logics. (3) It is backward-compatible.
PhyAuth involves no hardware modification and can be imple-
mented as a firmware update with slightly modified PHY sig-
nal processing logics. (4) It is low-intrusive. PhyAuth incurs
a negligible negative impact on ZigBee PHY communication
performance. ZigBee devices not implementing PhyAuth are
oblivious to the POTPs embedded in PHY signals and can
receive packets as usual. (5) It is resilient to fake and replayed
POTPs. (6) It is computationally efficient due to using a stan-
dard hash function for POTP generation and verification.

We prototype PhyAuth on Universal Software Radio Pe-
ripheral (USRP) devices and thoroughly evaluate its perfor-
mance in three representative environments: a laboratory
room, a hallway, and an apartment. Our results show that
PhyAuth can extract and verify POTPs from legitimate pack-
ets with an average false-negative rate of 0.8%. In addition,
PhyAuth is highly resilient to fake packets with forged or
replayed POTPs with an average false-positive rate of 0.01%.
Moreover, PhyAuth has a negligible negative impact on nor-
mal ZigBee data transmissions.

2 ZigBee Basics
2.1 ZigBee Security 101

The ZigBee security architecture extends the basic security
services provided by the underlying IEEE 802.15.4. It as-
sumes an “open trust” model such that the protocol stack lay-
ers trust each other and that the layer that originates a frame is
responsible for initially securing it. ZigBee communications
are secured with 128-bit keys used with symmetric-key cryp-
tographic building blocks including AES-CCM (an authen-
ticated encryption algorithm) and AES-MMO (the Matyas-
Meyer-Oseas hash function based on AES-128) [3].

ZigBee uses an entity known as the Trust Center to authen-
ticate joining devices, distribute keys, and manage security
policies. ZigBee supports two security models. There is ex-
actly one active Trust Center (typically the ZigBee coordina-
tor) in the centralized security model, while all ZigBee routers
can act as the Trust Center in the distributed security model.
The decision to use a centralized or distributed security model
is made when the network is formed and cannot be changed
afterward. Our PhyAuth can support both security models.

Broadcast and all NWK communications are secured with

a 128-bit common network key in both distributed and cen-
tralized security models. Each device obtains the network
key from the Trust Center in a secure fashion when admitted
into the network. In addition, a ZigBee device is considered
legitimate by its neighbors as long as it can send correctly
formed NWK frames secured with the active network key.
End-to-end ZigBee communications are secured with a 128-
bit link key. In particular, unicast communications between
two APL peer entities are secured by a 128-bit application
link key uniquely shared by the two devices, neither of which
is the Trust Center. An application link key can be manually
configured or established through the Trust Center which gen-
erates a key and sends it securely to two requesting devices.
Each ZigBee device also maintains a 128-bit Trust Center
link key for securing APS messages with the Trust Center
which can be either global or unique for each device. Trust
Center link keys may also be negotiated at the APL layer with
a Certificate-Based Key Exchange protocol [3]. Fig. 2 shows
the IEEE 802.15.4/ZigBee frame structure with all possible
security features. MAC security can be optionally used based
on the ZigBee keys. Both NWK and APS security can use
only encryption, only authentication, or both. The MIC length
can be 32, 64, or 128 bits in both NWK and APS frames.

2.2 ZigBee PHY Operations

ZigBee Transmitter. Fig. 16(a) shows how a ZigBee de-
vice transmits RF signals. Specifically, ZigBee first employs
Direct Sequence Spread Spectrum (DSSS) to spread the bit-
stream from the MAC layer. Each byte of the bitstream is
divided into two 4-bit ZigBee symbols with each mapped to
a specified 32-chip PN sequence which is further modulated
using OQPSK with half-sine pulse shaping. In particular, the
odd and even chips are modulated as the in-phase (I) and
quadrature (Q) components of the carrier wave, respectively.
Both in-phase and quadrature chip sequences go through a
half-sine pulse shaping module to shape the chips to a sinu-
soidal wave. Particularly, a chip-1 (or chip-0) is shaped to a
positive (or negative) half-sine. Additionally, the quadrature
chip sequence has a half-chip delay. Finally, the in-phase and
quadrature signals are combined and transmitted to the air.

ZigBee Receiver. Fig. 16(b) shows the workflow of a ZigBee
receiver. After receiving RF signals, the ZigBee receiver uses
an Analog-to-digital converter (ADC) to digitize them into
1/Q samples. Next, the ZigBee receiver uses the phase shift
between consecutive I/Q samples to demodulate ZigBee sym-
bols. Specifically, the phase shifts between consecutive 1/Q
samples are computed from arctan(Z(n) « Z*(n— 1)), where
Z*(n—1) is the conjugate of Z(n — 1). ZigBee outputs a chip-
1 if the phase shift is bigger than 0° and otherwise a chip-0.
After collecting a sequence of chips, ZigBee converts every
32-chip PN sequence to a 4-bit ZigBee symbol. However,
due to noise and interference, some chips could be corrupted
during transmission, leading to 32-chip PN sequences that do
not match any of the 16 valid sequences. So ZigBee selects
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the closest symbol with the smallest Hamming distance. In
addition, users can define a correlation threshold to control
the maximum Hamming distance between the received and
the predefined 32-chip sequences that the ZigBee receiver
can tolerate. Finally, the ZigBee receiver passes the decoded
packets to the MAC layer.

3 PhyAuth Design

In this section, we first outline the PhyAuth workflow. Then
we illustrate the generation and verification of POTPs. Finally,
we present three schemes for embedding, transmitting, and
extracting POTPs at the PHY layer.

3.1 PhyAuth Workflow

PhyAuth consists of two steps. (1) In the sending step, every
legitimate ZigBee transmitter initiating or forwarding a packet
must embed a POTP into the PHY signals of the preamble
sequence in the 802.15.4/ZigBee frame (Fig. 2). It is worth
noting that no change is made to the frame structure and
standard frame processing at MAC/NWK/APS layers. (2) In
the receiving step, every ZigBee receiver hearing the packet
acts as a POTP verifier to extract and verify the POTP from
the PHY signals of the preamble sequence. Only the packet
with a valid POTP is passed to MAC/NWK/APS layers for
routine ZigBee processing. The ZigBee receiver simply drops
the packet without a valid POTP and can optionally notify the
network administrator which can take further actions such as
locating and excluding the network intruder. Since preamble
processing is done at every ZigBee receiver regardless of
whether it is the intended receiver, PhyAuth incurs negligible
additional computational overhead for a simple bit-wise POTP
comparison and an optional real-time hash operation.

3.2 POTP Generation and Verification

A POTP refers to a cryptographic and unforgeable binary
sequence used for authorizing ZigBee devices to transmit
packets within a ZigBee network. PhyAuth uses the following
process for constructing and verifying POTPs.

POTP Generation. PhyAuth uses standard ZigBee security
keys to construct POTPs by combining the HMAC-based
OTP (HOTP) algorithm defined in RFC 4226 [1] and the
Time-based OTP (TOTP) algorithm defined in RFC 6238 [2].
HOTP and TOTP are widely used in commercial two-factor
authentication systems such as Google Authenticator [5] and
Duo [4]. Both HOTP and TOTP use a secret key K known
only to the HOTP/TOTP generator and verifier. The HOTP
value is generated as HOTP(K, T) = Truncate(HMAC(K, C)),
where C denotes an increasing 8-byte counter, and Truncate
represents the function that converts an HMAC value into a
HOTP value as defined in [1]. In contrast, the TOTP value is
computed as TOTP(K, T') = Truncate(HMAC(K, T)) by replac-
ing the counter C with the time factor 7" derived from a time
reference and a time step.

The ZigBee transmitter generates the POTP value as

POTP(K,T,SN,src-addr) = |
Truncate(HMAC(K, T, SN, src-addr)) , M

where K denotes a standard ZigBee security key; 7 is derived
from a time reference and a time step; SN denotes the 8-bit
monotonically increasing sequence number in the 802.15.4
MAC frame header; src-addr is the transmitter’s 64-bit MAC
address. The (7', SN, src-addr) triple serves as a time-based
device-specific counter value that makes the resulting POTP
both device-dependent and time-dependent with the desired
one-time property. HMAC(-) can use any cryptographic hash
function implemented in software or hardware, such as AES-
MMO (the standard ZigBee hash function [3]) or SHA-2
available on many commercial ZigBee hardware including
CC1352P [8], CC2652P [9], and CC2652R [10]).
POTP Length. The HOTP/TOTP value should be at least
31-bit long for sufficient resilience to brute-force attacks [1,2].
So we require the POTP length to be at least 31 bits as well,
e.g., 32/64/128 bits to match the security strength of MICs at
NWK/APS layers (Fig. 2). The longer the POTP, the higher
the attack resilience, the larger the related overhead, and vice
versa. Such security-overhead trade-offs are analyzed in §4.
Time-step Size. The time factor T is an integer and repre-
sents the number of time steps between the initial counter
time Tp and the current Unix time. More specifically, let X
represent the time step in seconds and 7y denote the Unix
time to start counting time steps. Both X and T are system
parameters and must be securely conveyed to each ZigBee
device and POTP verifier when they join the system. We have
T = (current Unix time — Tp) /X, where the default floor func-
tion is used in the computation. The time-step size X is set
to less than the minimum time taken to wrap around the 8-
bit MAC frame sequence number, which can be estimated
as a common network parameter per the concrete ZigBee
application and shared with all ZigBee devices.
Choice of Secret Key K. We use standard ZigBee security
keys for the secret key K to generate the POTP and face three
choices. As the first choice, K can be the common ZigBee
network key, in which case a POTP can be verified by every
ZigBee device and also dedicated verifiers that know the net-
work key by default. Although simple, the exposure of the
network key enables the adversary to derive a valid POTP
for any illegitimate ZigBee device. As the second choice, K
can be the transmitter’s unique Trust Center link key which
is known to the Trust Center and can be loaded to dedicated
verifiers not engaged in ZigBee network operations. This op-
tion provides higher attack resilience because a compromised
Trust Center link key allows the adversary to successfully
impersonate the corresponding device only.

We opt for the last choice by setting K to an application
link key shared between the transmitter and its neighbor(s). In
particular, the ZigBee NWK layer has a neighbor-discovery
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process that allows each device to discover and record one-
hop neighbors for routing. We propose to use the standard
ZigBee procedure (§2.1) to establish a unique application
link key between any two neighboring ZigBee devices, as
well as a common device-specific application link key each
device shares with all its neighbors. Consider an arbitrary
ZigBee transmitter i which has a common application link
key k; known to all its neighbors and a unique application
link key k; ; with its neighbor j. Transmitter i uses k; as K
to generate the POTPs for broadcast packets, which can be
verified by all its neighbors; it uses k; ; to derive the POTPs
for unicast packets destined for device j, which can only be
verified by device j. Since the Trust Center helps generates all
application link keys in the ZigBee network, it can securely
distribute all of them to dedicated POTP verifiers for them to
validate all the POTPs.

POTP Verification. Let 8 denote the integer-valued maxi-
mum possible clock drift normalized by the time-step size X
between two ZigBee devices. Also assume that the current
time-step window is 7;.. Each POTP verifier extracts a POTP
from the PHY signals of each incoming packet’s preamble
sequence and then verifies it in two steps for each time factor
T € [T, —§,T. 4 3]. (1) Check if the MAC frame sequence
number is the largest it has ever seen from this transmitter
in the time-step window 7. (2) Use the broadcast/unicast ap-
plication key associated with this transmitter as K to derive
POTP(K,T, SN, src-addr) and check its equality with the ex-
tracted one. If either step fails, the POTP is considered invalid
for the time-step window 7. If the two-step verification fails
forall T € [T, — 8, T, + 9], the verifier considers the transmitter
illegitimate, drops the packet, and optionally reports this event
to the network administrator. Otherwise, it passes the packet
to the upper layers for routine ZigBee processing. The POTP
verification involves a processing delay mainly incurred by
at most 28 + 1 hash operations with each to compute one
anticipated POTP. If this already small real-time delay is a
concern, each verifier can periodically precompute and store
the POTPs for some future time-step windows. In this case,
the real-time processing delay is reduced to the negligible
time for POTP-table lookup and bit-wise POTP comparison.

3.3 POTP Encoding and Decoding

In this section, we illustrate three schemes to embed, trans-
mit, and extract a POTP from PHY signals of an IEEE
802.15.4/ZigBee frame as shown in Fig. 2. All three schemes
can embed a POTP to the PHY signals of the entire PHY
frame as needed. For simplicity, we just insert the POTP into
the preamble sequence as an example in what follows.

3.3.1 VarChip

POTP Embedding and Transmission. As mentioned in
§ 2.2, IEEE 802.15.4 uses DSSS to improve interference
and noise resilience. In particular, ZigBee transmitters map

every 4-bit ZigBee symbol to a 32-chip PN sequence. Since
interference and noise can corrupt the chip stream during
transmission, the received 32-chip sequences may not exactly
match one of the 16 predefined standard PN sequences. As a
result, a ZigBee receiver compares each received 32-chip PN
sequence with the 16 predefined PN sequences and selects the
corresponding symbol with the minimum Hamming distance.
More importantly, DSSS defines a correlation threshold (e.g.,
12) that can control the maximum Hamming distance between
the received and predefined 32-chip PN sequences, allowing
a tolerance margin for noise and interference resilience. We
propose VarChip that uses the toleration margin to embed a
POTP. Specifically, we replace some chips in a PN sequence
by POTP bits. For simplicity, we illustrate VarChip by embed-
ding POTP bits only into the PN sequence of the 4-byte PHY
preamble, which corresponds to 8 symbolsx32 chips/symbol
=256 chips.

The key issue in VarChip is to determine the number of
the embedded POTP bits and their embedding positions in
the PN sequence of a PHY preamble. Our goal is to embed
as many POTP bits as possible into one PHY packet while
maintaining a very low symbol-error rate at the receiver. Sup-
pose that we embed m, bits into the 32-chip PN sequence of
one symbol at the transmitter. Let S; denote the set of chips
in the modified 32-bit PN sequence that differ from those
in the original 32-bit PN sequence. Since there may exist
some common bits between the POTP bits and the chips that
we want to replace in the original 32-bit PN sequence, we
have |S;| < m.. In this paper, we consider the worst case, i.e.,
|S;| = m,. This means that we need to change m, chips in the
original 32-bit PN sequence. In addition, there may be some
corrupted chips caused by interference and noise during trans-
mission, which we denote by S.. At the receiver, the hamming
distance between the received and the corresponding 32-chip
PN sequences is d, with the following four cases: vspace-.lin

1 S;NS. = 0. None of the embedded POTP bits are cor-
rupted during transmission. So we have d, = |S;| +|S,|.

ii S, NS, # 0. Not only some embedded POTP bits but also
some original chips are corrupted during transmission. So
we have d, = |S;| +|S¢| — [S: N S|

iii S; C S,. All the embedded POTP bits are corrupted during
transmission. So we have d, = |S.| — |S;/.

iv S¢ € §;. Only some embedded POTP bits are corrupted.
So we have d, = [S;| — |S¢|.

Let 6 denote the correlation threshold such that d, must be
< 0 to ensure the correct decoding of the 32-chip PN sequence
at the receiver. We have the following three cases:

i S,ﬂSC:®—>mC:|S,| §9_|SC|

ii S, NS #0—me =S| <0—|Se|+[S: NS.|.
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The maximum value of m,. in the latter two cases is greater
than that of m, in the first case, indicating that we can embed
more POTP bits if we replace some or all chips that expect
to be corrupted during transmission. However, due to the ran-
domness of the wireless communication channel, it is almost
impossible to predetermine which chips will be corrupted
during transmission. Consequently, we focus on the first case
to determine the number of POTP bits that we can insert into
a 32-chip PN sequence. Furthermore, the first case indicates
that we should replace chips that cannot be corrupted during
transmission by POTP bits, but each chip in the PN sequence
may be corrupted in practice. Therefore, a more feasible way
is to substitute POTP bits for chips with a low error prob-
ability. So how can a ZigBee transmitter identify the chip
positions with a low error probability in a PN sequence?

We propose to let each ZigBee transmitter periodically es-
timate chip-error patterns from existing ZigBee packets. For
example, 802.15.4/ZigBee uses periodic broadcast beacons
to synchronize the network devices, which can be explored
for our purpose. We use a pair of USRP B210s as the trans-
mitter and receiver to illustrate the estimation process. The
transmitter-receiver distance is set to 1 m, and the SNR is
18 dB. The transmitter sends 10 packets (e.g., beacons or data
packets) within 10 ms to the receiver. So the receiver can get
256 x 10 = 2560 preamble chips to calculate the chip-error
distribution. Fig. 3(a) shows the distribution of ZigBee sym-
bol positions with chip errors. We can see that about 80% of
chip errors occur in the first symbol of a PHY preamble. So
we can embed POTP bits from the 2nd 32-chip PN sequence
of the preamble. We further check the distribution of the chip-
error count from symbol-2 to symbol-8. Fig. 3(b) shows that
(1) about 89.3% symbols have no chip errors, and (2) about
99% symbols have 2 or fewer chip errors. So we can safely
say that the number of chip errors for symbol-2 to symbol-8
lies in [0, 2]. As a result, we can insert at most 7 x (6 — 2) bits
into the 2nd to 8th 32-chip PN sequences of the preamble. For
example, if 0 is 10, we can embed at most 7 x 8 = 56 POTP
bits into the PN sequence of the preamble. To determine the
embedding positions, we check the distribution of chip-error

positions from symbol-2 to symbol-8. Fig. 3(c) shows that
without considering the 1st and 32nd chips, the chip positions
with the lowest eight chip-error probabilities from low to high
are the 9th, 31st, 4th, 24th, 6th, 7th, 25th, and 18th. Thus, we
can choose these eight positions as the embedding positions
for symbol-2 to symbol-8.

Based on the periodically estimated chip-error pattern, the

transmitter embeds m. POTP bits into a ZigBee symbol. Let
N, denote the number of preamble symbols available for
POTP embedding. So the transmitter can embed an m.N ,-bit
POTP into the preamble of the PHY packet.
POTP Extraction. As a one-hop neighbor of the transmitter,
each verifier can estimate the same or highly similar chip-error
pattern. It then extracts the chips at the embedding positions
to construct a candidate POTP for verification.

3.3.2 VarAmp

POTP Embedding and Transmission. As mentioned in
§ 2.2, ZigBee adopts OQPSK with half-sine pulse shaping
to modulate the chip sequence outputted by the DSSS mod-
ule. In particular, the chip sequence is first split into odd and
even chip sequences, which are then assigned to the I and Q
components of the carrier wave, respectively. Specifically, a
chip-1 is encoded as a positive half sinusoid, while a chip-0 is
encoded as a negative half sinusoid. Afterward, the OQPSK
modulator sums the I component with the Q component de-
layed by a half-chip duration. This offset can limit the phase
shift to no more than +7/2 at a time. OQPSK encodes two
bits per symbol by using four phases: n/4,3n/4,5n/4, and
7w /4, corresponding to four constellation points equispaced
around a circle. We assume that the original four OQPSK
constellation points (symbols) have an amplitude ++/E.
From the OQPSK modulation process, we can see that the
amplitudes of OQPSK symbols do not carry any information
bits. Therefore, we can leverage the amplitudes of OQPSK
symbols to convey POTP bits. We propose VarAmp to embed
a POTP by dynamically changing the amplitudes of the orig-
inal OQPSK symbols. Specifically, if the POTP bit is 1, we
increase the amplitude of the original OQPSK symbol by a
factor of o (a0 > 1); if the POTP bit is 0, we decrease the am-
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Figure 4: Constellation diagram for VarAmp.

plitude of the original OQPSK symbol by multiplying a factor
of B (0 < B < 1). Here a and B here are system parameters
whose impact is analyzed in § 5.

Fig. 4 shows the constellation diagram of VarAmp. The
four black points represent the original constellation points
(£+\/E/2,£+/E/2). The phase shift between two adja-
cent constellation points is limited to +m/2, and the am-
plitude of each constellation point is VE or —VE. In ad-
dition, the blue dots at (+B+/E/2,£B+/E/2) and red dots at
(o /E/2,+0/E /2) are POTP-constellation points. The
bit value in parentheses represents the POTP bit. In addi-
tion, the two POTP-constellation points in each quadrant cor-
respond to the same data symbol but different POTP bits.
For example, the original constellation point for the OQPSK

symbol “11" is (y/E/2,/E/2). The transmitter sends

(B\/E/2,B+/E/2) for a POTP bit-0 and (0\/E/2,0\/E /2)
for a POTP bit-1.

We have two remarks to make. First, the larger o can in-
duce higher transmission power. So o cannot be too large in
practice due to many constraints. For example, FCC often
imposes an upper limit on the transmission power, and the
transmitter may have low energy residue. Second, similar to
VarChip, VarAmp can embed a POTP into the preamble and
other fields of a PHY packet.

POTP Extraction. The verifier extracts a POTP according to
the constellation diagram of VarAmp. In particular, the verifier
decodes POTP bits by checking the distances between the
received data symbols and POTP-constellation points (blue
and red dots) in Fig. 4. The verifier determines the POTP-
constellation point closest to each received symbol and then
decodes the embedded POTP bit as either 1 or 0.

Amplitude
Lo -

Amplitude

0123456 7 8 910111213 141516
Time (us)

Figure 5: Half-sine wave for a zero-symbol chip sequence.
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Figure 6: Phase shift for a zero-symbol.
3.3.3 VarPhase

POTP Embedding and Transmission. ZigBee uses phase
shift between consecutive I/Q samples to demodulate ZigBee
symbols. Specifically, ZigBee calculates the phase shift be-
tween two consecutive complex samples Z(n) and Z(n— 1)
by using arctan(Z(n) * Z*(n— 1)), where Z*(n— 1) is the con-
jugate of Z(n — 1). ZigBee outputs a chip-1 if the phase shift
is bigger than 0° and otherwise a chip-0.

Based on the fact that the decoding of the chip value only
relies on the sign (4) of the phase shift, we propose VarPhase,
where legitimate transmitters embed a POTP into PHY pack-
ets by manipulating the phase shift between consecutive I/Q
data samples. Specifically, when the POTP bit is 0, the orig-
inal phase shift A¢, between two consecutive I/Q samples
is scaled by u (u > 1); when the POTP bit is 1, the original
phase shift A¢, is scaled by A (A > p).

We first check the original phase shift between consecutive
1/Q samples in PHY signals. The top figure in Fig. 5 shows
the original half-sine waveform of a zero-symbol 32-chip PN
sequence. The time duration of the zero-symbol is 16 ps. Each
chip time (i.e., 1 us) contains four discrete sampling points.
We then merge the I and Q waveforms and get the resulting
signal shown in the bottom figure of Fig. 5. Based on the
summation signal, we further calculate the original phase shift
between every two consecutive I/Q samples. Fig. 6 shows the
original phase-shift sequence. We can see that the original
phase shift A, could be § or —7%. Suppose that the current
I/Q sample is (Asin¢,,Acosd,). If the POTP bit is 1, the
next I/Q sample is (A cos (¢, +AAd,),Asin (0, +AAQ,)) and
otherwise is (Acos (¢, + uAd,), Asin (d, + uAd,)). Similar
to VarChip and VarAmp, VarPhase can embed a POTP into
the preamble and other fields of a PHY packet as needed.

POTP Extraction. To extract a valid POTP, the verifier de-
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codes POTP bits by checking the phase shift between the
received consecutive complex numbers. Specifically, if the
phase shift is larger (smaller) than an empirical threshold 7, it
decodes the embedded POTP bit as 1 (or 0).

4 Performance and Security Analysis

In this section, we theoretically analyze the POTP-decoding
performance, communication and communication overhead,
and security of VarChip, VarAmp, and VarPhase.

4.1 POTP-decoding Performance

We first analyze the bit error rate (BER) for the POTP. To
make the analysis tractable, the channel is assumed to be Ad-
ditive White Gaussian Noise (AWGN) with mean zero and
power spectral density (PSD) Ny/2. We use E to represent
the energy of an original constellation point. We define SNR
as Yy = E/Ny. According to [19], the original BER for the
OQPSK modulation is erfc(+/y/2)/2, where erfc(-) denotes
the complementary error function. Given the encoding pro-
cess in VarChip, its POTP BER at the verifier is the same as
the BER in the original OQPSK. Therefore, we only show the
following results for VarAmp and VarPhase.

Theorem 1. The POTP BER of VarAmp is

P;,‘M - erfe((o — B)\ﬁ/Z).

5 @)

Proof. According to the nearest neighbor approximation [19],

the BER is approximated as %erfc( Zd\;‘[ivlo), where dpyin is
the minimum distance between any two constellation points,
and M . is the number of neighbors separated by dyyjy. In
VarAmp, dmin equals (0. — B)VE, and My, equals 1. So we
can obtain Eq. (2). O

Theorem 2. The POTP BER of VarPhase is

Al
PPH ~ erfc(\fysin(uT%)). 3)
Proof. In VarAmp, diin is 2VE sin (uAd,/2), and My is 2.
We thus obtain Eq. (3). O

Next, we analyze the data BER of the PHY field (e.g.,
the preamble sequence) carrying POTP bits at the receiver.
Ideally speaking, we would like PhyAuth to induce negligible
changes in the data BER. Similar to the POTP BER, the data
BER of VarChip is the same as that in the original QPSK
constellation. We thus only show the following results for
VarAmp and VarPhase.

Theorem 3. For VarAmp, the data BER is upper-bounded by

PAT - erfC(BZ\/ 7/2) 7 (4)

b.data ™

and lower-bounded by

y  erolay/i72)
VY2)

b,data ™~ (5 )
Proof. The larger amplitudes of the data symbols imply a
higher SNR, leading to more error-resilient data transmission.
Therefore, the upper bound of the data BER can be achieved
when the POTP bits are all Os so that the absolute amplitude
of all data symbols is B\/m So we can have Eq. (4). In
contrast, the data BER can be minimized when the POTP bits
are all 1s, so the absolute amplitude of all data symbols is
0t,/Y/2. We thus obtain Eq. (5). O

Theorem 4. The data BER of VarPhase is upper-bounded by

BT erolgsin(502)), ©)
and lower-bounded by
. AAO,
Py dara = erfel+/¥sin (=), ™

Proof. According to the nearest neighbor approximation, the
greater distance between two constellation points implies a
lower BER. Therefore, the upper bound of the data BER can
be derived if the distance between the OQPSK constellation
points is 2v/E sin (uAd,/2). So we can have Eq. (6). Corre-
spondingly, the lower bound is achieved when the distances
between the OQPSK constellation points are always increased.
In this case, the mutual distance between the QPSK constella-
tion points is 2v/E sin (AA®, /2). We thus obtain Eq. (7). [

Let p denote the POTP BER of VarChip/VarAmp/VarPhase
as derived above. The probability for each verifier to correctly
decode an Nj-bit POTP is simply (1 — p)™, which can be
further improved by using error-correction codes such as the
Reed-Solomon code in IEEE 802.15.4 to encode the POTP.

4.2 Communication/Computation Overhead
and Energy Consumption

PhyAuth does not introduce extra ZigBee traffic except the
one-time packets for establishing application link keys, so its
runtime communication overhead is negligible.

The computation overhead and energy consumption of
PhyAuth are dominated by the HMAC(+) operation in Eq. (1)
for generating/verifying a POTP. Each HMAC operation in-
volves two passes of a cryptographic hash function such as
SHA-1/SHA-2/AES-MMO. The HMAC input is 128-bit long,
corresponding to the bit-wise XOR on a 128-bit application
link key, a 32-bit time factor 7', a 64-bit MAC address, and
a 8-bit frame sequence number. Each intermediate ZigBee
node (i.e., router) performs one HMAC operation to verify the
POTP in the incoming packet and the other to generate a new
POTP in the outgoing packet to the next hop. In contrast, each
intermediate node uses the 128-bit network key to perform
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two AES-CCM operations on an input up to 100 bytes long
in the current ZigBee security architecture, one for verifying
the NWK MIC in each incoming packet and the other for
regenerating it for the outgoing packet.

We use the benchmark results in the TI report [6] to com-
pare PhyAuth with the original ZigBee hop-by-hop message
authentication method. Assume that the input length of AES-
CCM and SHA-224 (an SHA-2 hash function) is 64 bytes.
For hardware implementations of AES-CCM and SHA-224
in the popular SimpleLink CC13x2/CC26x2 ZigBee devices,
the duration of an AES-CCM operation with a 128-bit key
is 0.041 ms with the average current of 3.9mA, while the
duration of an SHA-224 operation is 0.024 ms with the aver-
age current of 3.8mA. For Arm Cortex-M4F software-based
implementations of AES-CCM and SHA-224, the duration
of an AES-CCM operation with a 128-bit key is 0.435 ms
with the average current of 3.1mA, while the duration of an
SHA-224 operation is 0.179 ms with the average current of
3.1mA. Since each HMAC operations involves two SHA-224
operations, the energy consumption of each POTP genera-
tion/verification is (2%#0.024%3.8)/(0.041*3.9)~ 1.1 times that
of each NWK MIC verification/generation for hardware im-
plementations and (2*0.179%3.1)/(0.435*3.1)~ 0.8 times for
software implementations. The actual POTP involves an 128-
bit input, while the real NWK MIC can involve an input up to
100 bytes long. It is safe to say that the computational delay
and energy consumption of the POTP generation/verification
in PhyAuth are at least as good as the NWK-layer MIC
generation/verification in the ZigBee security architecture.
PhyAuth does add extra overhead for per-hop POTP verifica-
tion/generation involving legitimate ZigBee packets, which
can be easily mitigated. In particular, the network adminis-
trator can turn off the NWK-layer MIC operation by setting
the proper option bits in the auxiliary NWK header when
PhyAuth is always activated or on demand, e.g., when there
is evidence of huge fake traffic.

The huge energy savings of PhyAuth lie in its capability
to stop the multi-hop or network-wide transmissions of fake
packets. Without PhyAuth in place, a fake unicast packet sent
over a n-hop path involves 2n — 1 AES-CCM operations (two
by each intermediate node and one by the destination), and a
fake broadcast packet to a network of N nodes involves up to
2N AES-CCM operations (two by each node). With PhyAuth
in place, a fake unicast/broadcast packet with an incorrect
POTP but a correct NWK MIC can be immediately detected
and dropped by the legitimate neighbors of the attacker device
after each performs one POTP verification.

4.3 Security Analysis

We assume that attackers can use commodity software-defined
radios like USRPs to send fake ZigBee packets with an arbi-
trary spoofed address. By continuously transmitting fake pack-
ets, attackers aim to disrupt network operations by consum-
ing the network bandwidth as well as the processing power,

memory, and battery of ZigBee devices. Attackers are also
assumed to be computationally bounded and cannot break
the cryptographic primitives used by PhyAuth. ZigBee and
all other wireless networks are vulnerable to naive jamming
attacks that use random signals to jam the entire frequency
band. How to deal with such traditional jammers is beyond
the scope of this paper.

We first consider external attackers that do not know the
authentic network key of the target ZigBee network. Without
PhyAuth in place, fake packets do not carry a correct NWK
MIC and thus cannot pass the original hop-by-hop message
authentication that involves an AES-CCM-based MIC verifi-
cation. With PhyAuth in place, external attackers must insert
a forged POTP into the PHY signals of each fake packet.
As long as the POTP value is long enough (say, L > 32 bits
per the HOTP security recommendation [1]), the probability
1/2% that fake packets with a randomly forged POTP pass
PhyAuth detection can be made very small. Since POTP veri-
fication can be computationally much more efficient than an
AES-CCM-based MIC verification (§4.3), it is also computa-
tionally beneficial to filter fake packets with Phy Auth before
invoking the NWK MIC verification.

We then consider internal attackers that have compromised
an arbitrary node A to get the authentic network key. Without
PhyAuth in place, an internal attacker can use the compro-
mised network key to send fake packets in the name of any
spoofed node, say B. Since such fake packets carry an au-
thentic NWK MIC, they can pass hop-by-hop NWK-Ilayer
message authentication to reach the intended destinations.
With PhyAuth in place, the internal attacker must send the cor-
rect POTP for each fake packet purportedly sent by B, which
succeeds with a negligible probability 1/2. Fake packets
without an authentic POTP can be immediately detected and
dropped by the legitimate one-hop neighbors of the attacker.
Since impersonating arbitrary nodes to send fake packets is
no longer feasible, internal attackers can only use the com-
promised node A to send fake packets which carry correct
POTPs and also NWK MIC values. Although such fake pack-
ets can evade hop-by-hop message authentication by PhyAuth
and also the ZigBee NWK layer, they make A easily identifi-
able if the network administrator employs simple fake-packet
trackback mechanisms.

PhyAuth is highly resilient to the replay attack as well. In
particular, each POTP value is dependent on the transmit-
ter’s MAC address, MAC frame sequence number, and the
time factor, it satisfies the one-time property required of an
OTP algorithm. In addition, since the security key for gen-
erating POTPs is the broadcast/unicast application link key
each ZigBee transmitter shares with its authenticated one-hop
neighbors, each POTP can only be used in the one-hop neigh-
borhood of the corresponding transmitter. Therefore, both
external and internal attackers cannot replay a sniffed POTP
to impersonate the target transmitter in its vicinity or other
areas of the ZigBee network. This also implies that Phy Auth
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does not have a higher time synchronization requirement than
the current ZigBee network to deal with the replay attack.
Finally, the adversary may compromise a neighboring node
A of a target node B to acquire its broadcast/unicast appli-
cation key to generate B’s valid POTPs. But the adversary
cannot use such valid POTPs to send fake packets without be-
ing detected, as these POTPs can only be used in B’s one-hop
neighborhood and thus can be detected by B itself.

5 Performance Evaluation

In this section, we thoroughly evaluate PhyAuth using USRP
experiments. In what follows, we first describe our experi-
mental setup. Then we evaluate the performance of the three
schemes under different scenarios.

5.1 Experimental setup

We implement PhyAuth with three USRP devices as the hard-
ware platforms. Specifically, we connect one N210 USRP to
a Dell laptop with an Ethernet cable and use it as the ZigBee
receiver. One B210 USRP serves as the ZigBee transmitter,
and the other B210 USRP acts as the dedicated verifier. The
two B210 USRPs are connected to two Dell laptops which
have two Intel 4.7 GHz i7 processors where all the compu-
tations are executed. In addition, we implement the three
PhyAuth schemes (i.e., VarChip, VarAmp, and VarPhase) on
GNU Radio by modifying the open source code of IEEE
802.15.4 PHY [15]. We use the Nyquist sampling rate 4 MHz
(i.e., twice the bandwidth). SHA-1 is used to implement the
HMAC function in Eq. (1) to generate POTPs of 32 bits or
longer with the time step X set to 30 s. We embed each POTP
into randomly generated data packets with a constant payload
length of 100 bytes. Additionally, we use three representative
physical environments in the evaluations: (1) a laboratory
room with the size of 8m x 6m (Fig. 7(a)), (2) a hallway
(Fig. 7(b)), and (3) an apartment (Fig. 7(c)).

In our experiments, we evaluate the impact of the dis-
tance and the channel SNR. Specifically, in the laboratory
room and the hallway, the transmitter-receiver and transmitter-
verifier distance settings include 1 m, 4 m, 7m, and 10 m. The
receiver-verifier distances are fixed to about 2 m. In the apart-
ment, we deploy the receiver and the verifier in the kitchen,
and the transmitter in bedroom 1 or 2. The transmitter-receiver
and transmitter-verifier distances are about 9 m. In addition, at
each position, we evaluate the three schemes with 5 different
SNRs: 10dB, 14 dB, 16dB, 18 dB, 20 dB. The experienced
channel noises are from the natural physical environment.
For all experimental environments, there are random human
activities such as walking during the experiments.

5.2 Performance Metrics

We use four performance metrics as follows. (1) The first
B

is the POTP-bit error rate (PBER) defined as PBER = x—eg,
L

where N2 denotes the number of received POTP-bit errors,

and N? denotes the POTP length. We use PBER to evaluate
the performance of the three schemes on decoding POTPs
from the received data packets. (2) The second is the packet er-
ror rate (PER) defined as PER = x—;, where N; and Nf denote
the number of incorrectly received and total Zi gBee packets,
respectively. We use PER to evaluate the impact of the three
schemes on normal data transmission/reception. (3) The third

FN
is the false-negative rate (FNR) defined as FNR = 1\]/\(}; ,

NPN and N? denote the number of legitimate packets that are
incorrectly classified as fake packets and total received legiti-
mate packets, respectively. (4) The fourth is the false-positive
rate (FPR) defined as FPR = 1\1155’ where NP and N¥ denote
the number of fake packets that are incorrectly classified as le-
gitimate packets, and total received fake packets, respectively.
We use FNR and FPR to evaluate the ability of the three
schemes to distinguish between legitimate and fake packets.

5.3 Parameter Selection
5.3.1 VarChip

where

In VarChip, we need to configure three parameters: N,, m,,
and S,. In our experiments, the transmitter sends 10 beacon
packets within 10 ms in every time step to determine these
three parameters. Our results show that the chip error pat-
terns are different for different scenarios. We also observe
that about 80% to 95% chip errors occur in the first pream-
ble symbol. Therefore, we can embed POTP bits from the
2nd preamble symbol and set N, to 7 in all experiments. For
the 2nd to 8th preamble symbol, we further check the fre-
quency distribution of chip-error count in each preamble sym-
bol. Then we can find the chip-error count N, in the 97th
percentile. This indicates 97% preamble symbols have N,
or fewer chip errors. We then set m, to 6 — N,., where 0 is
the correlation threshold and equals 10 in our experiments.
Our experimental results show that m, decreases as SNR de-
creases. This is reasonable because a channel with a lower
SNR can corrupt more chips during transmission. After this,
we check the chip-error position distribution to find m, chip
positions with the lowest error probability and put them in
the embedding-position set S,. In our experiments, we find
that m, and the chip-error position distributions change under
different scenarios (e.g., different SNRs and time). The rea-
son is that the wireless channel is not very stable in different
scenarios. We thus can not list all the settings of the three
parameters for all scenarios due to space limitations. It is
also worth noting that m, is no less than 5 in all experiments,
indicating that we can insert at least 5 x 7 = 35 POTP bits
into one packet with VarChip.

5.3.2 VarAmp

In VarAmp, we embed a 128-bit POTP into one PHY packet.
We also need to set up two parameters: o and 3. We evaluate
the impact of & and B on PER, LRR, and PBER at different
positions with different SNRs. In our experiments, o is set
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Figure 8: Parameter settings in VarAmp and VarPhase.

to 1.2[1.4]1.6/1.8, B is set to 0.8]0.7|0.65]0.6. So the ratio
o/B is 1.5]2]2.5|3. Fig. 8(a) shows the impact of o/p on
PBER when the SNR is 20 dB. As expected, the PBERs dra-
matically decrease as /P increases. We can also observe
similar results under other scenarios. Since a/f relates to
the distance between two POTP-constellation points in each
quadrant, the larger o/, the greater distance between two
POTP-constellation points in each quadrant, the lower detec-
tion error for POTP bits, and versa. In addition, we evaluate
the impact of a/p on PER and have similar observations.
Based on these observations, we set oo = 1.8 and B = 0.6 in
our experiments.

5.3.3 VarPhase

Similar to VarAmp, VarPhase can also embed a 128-bit POTP
into one packet. In VarPhase, we need to determine three
parameters: A, g, and T. Similar to VarAmp, we evaluate the
impact of A and u on PBER at different positions with dif-
ferent SNRs. In our experiments, A is set to 1.5, 2, 2.5, 3, u
is set to 1 for all scenarios. So the ratio of A to u is 1.5, 2,
2.5, 3. Fig. 8(a) shows the impact of A/u on PBER when
SNR is 20 dB. As expected, the PBERs decrease dramatically
as A/u increases. Similar results can also be observed under
other scenarios. Similar to VarAmp, a larger A/u indicates a
greater distance between two consecutive constellation points,
inducing a lower detection-error rate for POTP bits. We also

evaluate the impact of A/ on PER and have similar obser-
vations. Therefore, we set A and u to 3 and 1, respectively.
Additionally, we empirically set T to 0.85 based on our exper-
imental results.

5.4 PhyAuth Performance

In our experiments, we let the ZigBee transmitter send 5,000
packets with POTPs embedded in their PHY preambles. Since
VarAmp increases or decreases the amplitude of the original
OQPSK symbols if a POTP bit is 1 or 0, the average transmis-
sion power consumption does not change if POTP bit-1 and
bit-0 occur with equal probability. Fig. 9 shows the PBER
performance for our three schemes under all scenarios. As ex-
pected, we can observe the PBER curves for all three schemes
decreases as SNR increases from 10 dB to 20 dB. In addition,
the four curves in each figure are close to each other, indicat-
ing that the distance impact on the three schemes is negligible.
Moreover, compared with VarChip and VarAmp, VarPhase
can achieve lower PBERs, which is consistent with the analy-
sis in Eq. (2) and Eq. (3). Specifically, when the SNR is larger
than 16 dB, the PBERs of VarPhase in all scenarios are be-
low 10%. In addition, when the SNR is larger than 18 dB, the
PBERs of the three schemes in almost all scenarios are below
10%. These results demonstrate that the three schemes can
effectively extract and decode POTPs in practice. We place
more statistical results about PBER in Appendix B. Moreover,
we can encode the POTP with a lightweight error-correction
code (ECC) to dramatically improve the detection perfor-
mance. For example, we can simply repeat every POTP bit
three times and using the majority vote for decoding. Fig. 15
shows the PBER performance for VarPhase at the hallway.
Compared with Fig. 9(h), the PBERs can be reduced about
by 50%. The error tolerance or detection performance can
be further improved if more sophisticated ECCs such as the
Reed-Solomon code are used to encode POTP bits.

Fig. 10 illustrates the PER at the receiver of the three
schemes. According to Eq. (4) to (7), both VarAmp and
VarPhase can lower the BER, resulting in a reduction in PERs
in contrast to the original OQPSK modulation. In addition,
we notice that VarChip can increase the PERs in low SNR
cases. The reason for this is that we replace some chips in the

USENIX Association

32nd USENIX Security Symposium 11



22.5
=8— Bedroom #1
20.0 —-#- Bedroom #2
17.5
$15.0
12,5
S
10.0
7.5
5.0
10 16 18 20 10 14 16 18 20 10 14 16 18 20
SNR (dB) SNR (dB) SNR (dB)
(a) VarChip at Lab (b) VarChip at Hallway (c) VarChip at Apartment
20.0 —8— Bedroom #1
175 —#- Bedroom #2
15.0
S g
< <125
& &
@ 010.0
o o
7.5
5.0
o 0 25
10 14 16 18 20 10 14 16 18 20 10 14 16 18 20
SNR (dB) SNR (dB) SNR (dB)
(d) VarAmp at Lab (e) VarAmp at Hallway (f) VarAmp at Apartment
16
20.0 14 x\ —8— Bedroom #1
17.5 14 \ =%~ Bedroom #2
12
15.0 12
125 glo 10
fi10.0 58 &
o o o 8
’ 6
5.0 4
4
25 2
2
10 16 18 20 10 16 18 20 10 14 16 18 20
SNR (dB) SNR (dB) SNR (dB)
(g) VarPhase at Lab (h) VarPhase at Hallway (i) VarPhase at Apartment
Figure 9: PBER performance.
5 &\\ =@~ Original 56 52
S ~#- VarChip
N -8- VarAmp 54 51
4 S -@- VarPhase =50
S S 852 —e— VarChip g g —e— VarChip
23 =% « A =% Varamp < %49 —#- VarAmp
& § ,l ‘- VarPhase @ 2 _e =®- VarPhase
50 o 48 N
’ S e~ TN,
Y b it ¢ i 7N ~ .-»
. . —8— VarChip 47 , AN ;F._—__’
8 (\\ /' \-._ ./“. =%~ VarAmp x/ AN _-
~ b & % -e- VarPhase 46 Y
10 14 16 20
10 14 16 18 20 10 16 18 20 10 14 16 18 20
SNR (dB) SNR (dB) SNR (dB) SNR (dB)

Figure 10: PER performance. Figure 11: No POTP.

original PN sequences with POTP bits, thus increasing the
chip-error count in each packet. However, VarChip has almost
no negative impact on the PER when the SNR is above 18 dB
in normal communication environments.

Fig. 14 shows the average FNRs of the three schemes under
different scenarios. In our experiments, we set a threshold to

Figure 12: Fake POTPs.  Fjgyre 13: Replay POTPs.

determine if a decoded POTP is valid or not. Specifically, if the
PBER of a decoded POTP is below the predefined threshold,
we consider the corresponding received packet legitimate and
otherwise fake. In VarChip, VarAmp, and VarPhase, we set the
threshold to 25%. We can see that the average FNRs decrease
as the SNR increases. When the SNR is above 14 dB, the

12 32nd USENIX Security Symposium

USENIX Association



5% —e— VarChip 8 &%
\ ~#- VarAmp
\ =@- VarPhase

PBER (%)
>

10 14 18 20 10 14

16 16
SNR (dB) SNR (dB)

Figure 14: FNR performance. Figure 15: PBER (r = 3).

FNRs of the three schemes can be lower than 1%. These
results demonstrate that the three schemes can extract and
verify POTPs from legitimate packets with a very low FNR.

We also experimentally evaluate the attack resilience of our
three schemes. In our experiments, we use one USRP B210
as the attacker to transmit 5,000 packets without any POTP,
with fake POTPs, and with replayed valid POTPs. The verifier
always follows the PhyAuth protocol and tries to detect and
decode POTPs from each received packet regardless of the
adversary’s actions. We then calculate the average PBER from
the extracted POTPs. Fig. 11, Fig. 12, and Fig. 13 show the
average PBER performance of the three schemes under the
three attacks. As we can see, the average PBERs of decoded
POTPs extracted from fake packets in all schemes are above
45%, which is much greater than those of legitimate POTPs.
Furthermore, we evaluate the FPRs of the three schemes with
the same setting for FNRs. As expected, the average FPRs
of VarChip, VarAmp, and VarPhase can be as low as 0.01%.
These results show the high efficacy (i.e., attack resilience) of
the three schemes for fake-packet detection.

To summarize, VarChip, VarAmp, and VarPhase have
slightly different performance for various SNR contexts but
are comparably very good overall. In practice, the network ad-
ministrator can activate one of them based on onsite SNR and
PBER measurements. Any combination of the three schemes
can also be used to improve the error tolerance of POTP trans-
missions or even implement a PHY covert channel without
violating the ZigBee specification.

6 Related Work

The most related work to PhyAuth is PHY authentication
(PLA) in wireless networks. According to [31], we classify
existing works into passive and active PLA schemes.

In the passive PLA schemes, a receiver uses the features
of the received PHY signals to verify the transmitter. The
scheme in [24] uses differential constellation trace figure
(DCTF) to identify ZigBee devices. But the authors only eval-
uate their scheme on 16 ZigBee devices. The scheme in [25]
uses DCTF, carrier frequency offset (CFO), modulation offset,
and I/Q channel offset features extracted from constellation
trace figure (CTF) to train a hybrid ML classifier to iden-
tify different ZigBee devices. Their results show that there
is a 4%—-9% loss of classification accuracy under multipath

fading scenarios. The scheme in [34] extracts statistics from
the preambles of ZigBee devices and uses the Mahalanobis
distance and nearest neighbor algorithm to identify 50 Zig-
Bee devices. In addition, the schemes in [23,26,32] employ
DNN models to extract latent features from received signals
to distinguish ZigBee devices. But it requires a large amount
of data to train a DNN model. Moreover, their results show
that the performance of the trained models suffers a great loss
of degradation in accuracy for low SNR cases (e.g., SNR <
15 dB). Furthermore, these schemes cannot be deployed on
resource-constrained ZigBee devices.

PhyAuth belongs to active PLA schemes, in which a trans-
mitter constructs an authentication token based on a symmet-
ric key and embeds it into a PHY packet. Then the intended
receiver extracts and verifies the authentication token from the
received packet. The schemes in [33] and [28] superimpose
the authentication token to the original 16-QAM and QPSK
signal. The schemes in [22] and [30] add the authentication
token into the PHY packet by replacing some initialization
bits in the original message with the corresponding token bits.
In [18], Goergen et al. hide the authentication in the chan-
nel fading. Auth-SLO [29] divides the transmitting signals
into two groups according to a pre-shared secret key and ma-
nipulates the transmission power of each group marginally.
The scheme in [16] superimposes an authentication token to
QAM signals by controlling the disturbance of the transmit-
ted symbol around constellation points. The scheme in [20]
embeds a spectrum bit into an OFDM frame by dynamically
changing its cyclic prefix length. Unlike these existing works,
our work focuses on ZigBee networks that have a different
data modulation scheme and thus require different methods
for embedding an authentication token into PHY signals.

7 Conclusion and Discussion

In this paper, we presented the design and evaluation of
PhyAuth, a PHY message authentication framework against
packet-inject attacks in ZigBee networks. ZigBee devices
commonly adopt the wireless microcontrollers (MCUs) made
by major manufacturers such as TI, NXP, Microchip, and
Silicon Labs. To deploy PhyAuth in practice, these ZigBee
MCU makers need to update the firmware to incorporate
the required PHY signal processing logic and also provide
the corresponding API for this additional security feature to
be invoked by the application profile of the corresponding
ZigBee device. PhyAuth does have a few limitations. First,
it incurs additional PHY processing overhead for legitimate
packets due to two HMAC operations for POTP verification
and generation, respectively. This limitation can be mitigated
if the network administrator only activates PhyAuth when a
certain amount of fake traffic is reported, which requires the
deployment of a network intrusion system. Second, some ex-
isting ZigBee devices may not easily support PHY firmware
updates, in which case PhyAuth cannot apply.
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A ZigBee Communication Basics
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Figure 16: Illustrations of ZigBee transmitters and receivers.

B Statistical PBER Results

Fig. 17, Fig. 18 and Fig. 19 show the maximum, minimum and
95% confidence intervals of PBERs under different scenarios
for VarChip, VarAmp, and VarPhase.
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Figure 18: Minimum, maximum and 95% confidence intervals of PBER for VarAmp.
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Figure 19: Minimum, maximum and 95% confidence intervals of PBER for VarPhase.
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