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1 INTRODUCTION
One of the most basic and natural ways that a probability distri-

bution D can be altered is by truncating it, i.e. conditioning on

some subset of possible outcomes. Indeed, the study of truncated

distributions is one of the oldest topics in probability and statistics:

already in the 19th century, Galton [Gal97] attempted to estimate

the mean and standard deviation of the running times of horses on

the basis of sample data that did not include data for horses that

were slower than a particular cutoff value. Since the running times

were assumed to be normally distributed, this was an early attempt

to infer the parameters of an unknown normal distribution given

samples from a truncated version of the distribution. Subsequent

early work by other statistical pioneers applied the method of mo-

ments [Pea02, Lee14] and maximum likehood techniques [Fis31] to

the same problem of estimating the parameters of an unknown uni-

variate normal distribution from truncated samples. The study of

truncation continues to be an active area in contemporary statistics

(see [Sch86, BC14, Coh16] for recent books on this topic).

Quite recently, a number of research works in theoretical com-

puter science have tackled various algorithmic problems that deal

with high-dimensional truncated data. Much of this work attempts

to learn a parametric description of an unknown distribution that

has been subject to truncation. For example, in [DGTZ19]Daskalakis,

Gouleakis, Tzamos and Zampetakis gave an efficient algorithm for

high-dimensional truncated linear regression, and in [DGTZ18]

Daskalakis, Gouleakis, Tzamos and Zampetakis gave an efficient

algorithm for estimating the mean and covariance of an unknown
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multivariate normal distribution from truncated samples given ac-

cess to a membership oracle for the truncation set. In [FKT20]

Fotakis, Kalavasis and Tzamos gave a similar result for the setting

in which the unknown background distribution is a product distri-

bution over {0, 1}d instead of a multivariate normal distribution,

and in [KTZ19] Kontonis, Tzamos and Zampetakis extended the

results of [DGTZ18] to the case of an unknown truncation set sat-

isfying certain restrictions. In summary, the recent work described

above has focused on learning (parameter estimation) of truncated

normal distributions and product distributions over {0, 1}d .

This Work: Detecting Truncation. In the current paper, rather

than the learning problem we study what is arguably the most basic

problem that can be considered in the context of truncated data —

namely, detecting whether or not truncation has taken place at all.

A moment’s thought shows that some assumptions are required in

order for this problem to make sense: for example, if the truncation

set is allowed to be arbitrarily tiny (so that only an arbitrarily

small fraction of the distribution is discarded by truncation), then

it can be arbitrarily difficult to detect whether truncation has taken

place. It is also easy to see that truncation cannot be detected if the

unknown truncation set is allowed to be arbitrarily complex. Thus,

it is natural to consider a problem formulation in which there is a

fixed class of possibilities for the unknown truncation set; this is

the setting we consider.

We note that the truncation detection problem we consider has a

high-level resemblance to the standard hypothesis testing paradigm

in statistics, in which the goal is to distinguish between a “null

hypothesis” and an “alternate hypothesis.” In our setting the null

hypothesis corresponds to no truncation of the known distribution

having taken place, and the alternate hypothesis is that the known

distribution has been truncated by some unknown truncation set

belonging to the fixed class of possibilities. However, there does

not appear to be work in the statistics literature which deals with

the particular kinds of truncation problems considered in this work,

let alone computationally efficient algorithms for those problems.

PriorWork: Convex Truncation of Normal Distributions. Re-
cent work [DNS23] considered the truncation detection problem in

a setting where the background distribution D is the standard mul-

tidimensional normal distribution N (0, 1)n and the truncation set is

assumed to be an unknown convex set in Rn . This specific problem
formulation enabled the use of a variety of sophisticated tools and

results from high-dimensional convex geometry, such as Gaussian
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isoperimetry and the Brascamp-Lieb inequality [BL76b] and exten-

sions thereof due to Vempala [Vem10]. Using these tools, [DNS23]

gave several different algorithmic results and lower bounds. Chief

among these were (i) a polynomial-time algorithm that usesO(n/ε2)
samples and distinguishes the non-truncated standard normal dis-

tribution N (0, 1)n from N (0, 1)n conditioned on a convex set of

Gaussian volume at most 1 − ε ; and (ii) a Ω̃(
√
n)-sample lower

bound for detecting truncation by a convex set of constant volume.

The results of [DNS23] provide a “proof of concept” that in suf-

ficiently well-structured settings it can sometimes be possible to

detect truncation in a computationally and statistically efficient way.

This serves as an invitation for a more general study of truncation

detection; in particular, it is natural to ask whether strong structural

or geometric assumptions like those made in [DNS23] (normal dis-

tribution, a convex truncation set) are required in order to achieve

nontrivial algorithmic results. Can efficient algorithms detect trun-

cation for broader classes of “background” distributions beyond

the standard normal distribution, or for other natural families of

truncations besides convex sets? This question is the motivation

for the current work.

This Work: “Low-Degree” Truncation of Hypercontractive
Product Distributions. In this paper we consider

• A broader range of possibilities for the background distri-

bution D over Rn , encompassing many distributions which

may be either continuous or discrete; and

• A family of non-convex truncation sets corresponding to

low-degree polynomial threshold functions.
Recall that a Boolean-valued function f : Rn → {0, 1} is a

degree-d polynomial threshold function (PTF) if there is a real mul-

tivariate polynomial p(x) with deg(p) ≤ d such that f (x) = 1

if and only if p(x) ≥ 0. Low-degree polynomial threshold func-

tions are a well-studied class of Boolean-valued functions which

arise naturally in diverse fields such as computational complex-

ity, computational learning theory, and unconditional derandom-

ization, see e.g. [BS92, GL94, HKM14, DRST14, Kan14a, DOSW11,

CDS20, DKPZ21, BHYY22, DKN10, Kan11b, Kan11a, Kan12, KM13,

MZ13, Kan14b, DDS14, DS14, Kan15, KKL17, KL18, KR18, ST18,

BV19, OST20] among many other references.

Our main results, described in the next subsection, are efficient

algorithms and matching information-theoretic lower bounds for

detecting truncation by low-degree polynomial threshold functions

for a wide range of background distributions and parameter set-

tings.

1.1 Our Results
To set the stage for our algorithmic results, we begin with the

following observation:

Observation 1. For any fixed (“known”) background distribution

P over Rn , Od (n
d/ε2) samples from an unknown distribution D

are sufficient to distinguish (with high probability) between the two

cases that (i) D is the original distribution P, versus (ii) D is P|f ,

i.e. P conditioned on f −1(1), where f is an unknown degree-d PTF

satisfying Prx∼P [f (x) = 1] ≤ 1 − ε .

This is an easy consequence of a standard uniform convergence

argument using the well-known fact that the Vapnik-Chervonenkis

dimension of the class of all degree-d polynomial threshold func-

tions over Rn is O(nd ). For the sake of completeness, we give a

proof in Appendix A of the full version of this paper.

While the above observation works for any fixed background

distribution P, several drawbacks are immediately apparent. One is

that a sample complexity ofO(nd ) is quite high, in fact high enough

to information-theoretically learn an unknown degree-d PTF; are

this many samples actually required for the much more modest goal

of merely detecting whether truncation has taken place? A second

and potentially more significant issue is that the above VC-based

algorithm is computationally highly inefficient, involving a brute-

force enumeration over “all” degree-d PTFs; for a sense of how

costly this may be, recall that even in the simple discrete setting of

the uniform distribution over the Boolean cube {−1, 1}n there are

2
Ω(nd+1)

distinct degree-d PTFs over {−1, 1}n for constant d [Sak93,

Theorem 2.34]. So it is natural to ask whether there exist more

efficient (either in terms of running time or sample complexity)

algorithms for interesting cases of the truncation detection problem,

and to ask about lower bounds for this problem.

On the lower bounds side, it is natural to first consider arguably

the simplest case, in which P is the uniform distributionU over the

Boolean hypercube {−1,+1}n . In this setting we have the following

observation:

Observation 2. If the truncating PTF f is permitted to have as few

as nd/2 satisfying assignments, then any algorithm that correctly

decides whether its samples come from D = U versus from D =

U|f must use Ω(nd/4) samples.

This lower bound can be established using only basic linear

algebra and simple probabilistic arguments; it is inspired by the

“voting polynomials” lower bound of Aspnes et al. [ABFR94] against

MAJ-of-AC0
circuits. We give the argument in Appendix B of the

full version of this paper.

Taken together, there is a quartic gap between the (computa-

tionally inefficient) upper bound given by Observation 1 and the

information-theoretic lower bound of Observation 2 for PTFs with

extremely few satisfying assignments. Our main result is a proof

that the true complexity of the truncation distinguishing problem

lies exactly in the middle of these two extremes. We:

(i) Give a computationally efficient distinguishing algorithm

which has sample complexity O(nd/2) for a wide range of
product distributions and values of Vol(f ), and

(ii) Show that even for the uniform background distribution

U over {−1,+1}n , distinguishing whether or not U has

been truncated by a degree-d PTF of volume ≈ 1/2 requires

Ω(nd/2) samples.

We now describe our results in more detail.

An Efficient Algorithm.We give a truncation distinguishing al-

gorithm which succeeds if P is any multivariate i.i.d. product dis-

tribution P = µ⊗n over Rn satisfying a natural hypercontractivity
property and if Vol(f ) is “not too small.” We defer the precise tech-

nical definition of the (fairly standard) hypercontractivity property

that we require to Section 2.2, and here merely remark that a wide

range of i.i.d. product distributions satisfy the required condition,

including the cases where µ is



Detecting Low-Degree Truncation STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

• any fixed distribution over R that is supported on a finite

(independent of n) number of points;

• any normal distribution N (c,σ 2) where c,σ are independent

of n;
• any uniform distribution over a continuous interval [a,b];
• any distribution which is supported on an interval [a,b]
for which there are two constants 0 < c < C such that

everywhere on [a,b] the pdf is between c/(b −a) andC/(b −
a).

An informal statement of our main positive result is below:

Theorem 3 (Efficiently detecting PTF truncation, informal theorem

statement). Let 0 < ε < 1. Fix any constant d and any hypercon-

tractive i.i.d. product distribution µ⊗n over Rn . Let f : Rn → {0, 1}

be an unknown degree-d PTF such that

1 − ε ≥ Pr
x∼µ⊗n

[f (x) = 1] ≥ 2
−O (

√
n).

There is an efficient algorithm that uses Θ(nd/2/ε2) samples from

D and successfully (w.h.p.) distinguishes between the following

two cases:

(i) D is µ⊗n , i.e. the “un-truncated” distribution; versus
(ii) D is µ⊗n |f , i.e. µ

⊗n
truncated by f .

Note that ε is a lower bound on the probability mass of the

distribution µ⊗n which has been “truncated;” as remarked earlier,

without a lower bound on ε , it can be arbitrarily difficult to distin-

guish the truncated distribution. Thus, as long as the background

distribution is a “nice” i.i.d. product distribution and the truncating

PTF’s volume is “not too tiny”, in polynomial time we can achieve

a square-root improvement in sample complexity over the naive

brute-force computationally inefficient algorithm.

A Matching Lower Bound. It is natural to wonder whether The-

orem 3 is optimal: Can we establish lower bounds on the sample

complexity of determining whether a “nice” distribution has been

truncated by a PTF? And can we do this when the truncating PTF

(unlike in Observation 2) has volume which is not extremely small?

Our main lower bound achieves these goals; it shows that even

for the uniform distributionU over {−1, 1}n and for PTFs of vol-

ume ≈ 1/2, the sample complexity achieved by our algorithm in

Theorem 3 is best possible up to constant factors.

Theorem 4 (Lower bound for detecting PTF truncation, informal

theorem statement). Fix any constantd . Let f : {−1, 1}n → R be an
unknown degree-d PTF such that Prx∼U [f (x) = 1] ∈ [0.49, 0.51].

Any algorithm that uses samples from D and successfully (w.h.p.)

distinguishes between the cases that (i) D is U, versus (ii) D is

U|f , must use Ω(nd/2) samples.

1.2 Techniques
We now give a technical overview of both the upper bound (Theo-

rem 3) and the lower bound (Theorem 4), starting with the former.

1.2.1 Overview of Theorem 3. For simplicity, we start by consid-

ering the case when the background distribution P = µ⊗n is the

uniform measure on the Boolean hypercube.

The Boolean Hypercube {−1,+1}n . Let us denote the uniform
measure over {−1,+1}n byUn . Recall that our goal is to design an

algorithm with the following performance guarantee: Given i.i.d.

sample access to an unknown distribution D, the algorithm w.h.p.

(i) Outputs “un-truncated” when D = Un ; and

(ii) Outputs “truncated” when D = Un |f −1(1) for a degree-d

PTF f : {−1,+1}n → {0, 1}, where 1 − ε ≥ Pr[f (x) = 1] for

x ∼ Un .

To avoid proliferation of parameters, we set ε = 0.1 for the rest of

the discussion. We thus have

Pr
x∼Un

[
f (x) = 1

]
≤ 0.9.

For any point x ∈ {−1,+1}n , let x̃ ∈ {−1,+1}(
n
1
)+...+(nd) be the

vector given by

x̃ :=
(
x̃α

)
α ⊆[n]

0< |α | ≤d
where x̃α :=

∏
i ∈α

xi .

In other words, every coordinate of x̃ corresponds to a non-constant

monomial in x of (multilinear) degree at most d . Note that the

map x 7→ x̃ can be viewed as a feature map corresponding to the

“polynomial kernel” in learning theory.

The main idea underlying our algorithm, which is given in The-

orem 3, is the following:

(1) WhenD = Un , then it is easy to see that E
[
x̃
]
= 0 (the all-0

vector). This is immediate from the fact that the expectation

of any non-constant monomial under Un is 0.

(2) On the other hand, suppose D = Un |f −1(1) for a degree-d
PTF f as above. In this case, it can be shown that





 E

Un |f −1(1)

[
x̃
]







2

≥ 2
−Θ(d ) =: cd .

This is done by relating the quantity in the LHS above to the

Fourier spectrum of degree-d PTFs, which has been exten-

sively studied in concrete complexity theory (see for example

[GL94, DRST14, HKM14, Kan13]). In particular, we obtain

this lower bound on




E [
x̃
]




2

from an anti-concentration

property of low-degree polynomials over the Boolean hyper-

cube. This in turn is a consequence of hypercontractivity of

the uniform measure over {−1,+1}n , a fundamental tool in

discrete Fourier analysis (see Section 9.5 of [O’D14]).

Items 1 and 2 above together imply that estimating




E [
x̃
]


2

2

up to an additive error of ±c2d/2 suffices to distinguish between

D = Un and D = Un |f −1(1). Next, note that



E
D

[
x̃
]



2

2

= E
x ,y∼D

[〈
x̃, ỹ

〉]
.

Using the idea of “U-statistics” [Hoe94], this suggests a natural

unbiased estimator, namely drawing 2T points x̃ (1), . . . , x̃ (T ) and

ỹ(1), . . . , ỹ(T ) for some T which we will fix later, and then setting

M :=
1

T 2

〈 T∑
i=1

x̃ (i),
T∑
j=1

ỹ(j)
〉
.

In particular, we have E[M] =




E [
x̃
]


2

2

.

In order to be able to distinguish between the un-truncated and

truncated distributions by estimating M (and then appealing to
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Chebyshev’s inequality), it therefore suffices to upper bound the

variance of M in both the un-truncated and the truncated settings.

When D = Un , then Var[M] is straightforward to calculate and it

turns out that

Var
Un

[M] =
m

T 2
wherem := #{α ⊆ [n] : 0 < |α | ≤ d} = Od (n

d ).

However, in the truncated setting, Var[M] is significantly trickier

to analyze; at a high-level, our analysis expresses Var[M] in terms

of the “weights” of various levels of the Fourier spectrum of f .1

The key technical ingredient we use to control the variance is the

so-called “level-k inequality” for Boolean functions, which states

that for any Boolean function f : {−1,+1}n → {0, 1}, writing

W=k [f ] for the “Fourier weight at level-k”, we have

W=k [f ] ≤ Ok
©­«W=0[f ] · logk

(
1

W=0[f ]

)ª®¬.
Recall thatW=0[f ] = EUn [f ]

2
, and so the level-k inequality bounds

higher-level Fourier weight in terms of the mean of the function.

We remark that the level-k inequality is also a consequence of hy-

percontractivity over the Boolean hypercube (as before, see Section

9.5 of [O’D14]). With this in hand, we can show that

Var
Un |f −1(1)

[M] =
Od (n

d )

T 2

as long as EUn [f ] ≥ 2
−
√
n
.

Finally, taking T = Θd (n
d/2) implies that the standard deviation

of each of our estimators is comparable to the difference in means

(whichwas c2d ), allowing us to distinguish between the un-truncated
and truncated settings.

Hypercontractive Product Distributions µ⊗n .We use the same

high-level approach (as well as the same estimatorM) in order to

distinguish low-degree truncation of a hypercontractive product

measure µ⊗n , but the analysis becomes more technically involved.

To explain the principal challenge, note that over the Boolean hy-

percube {−1,+1}n , the Fourier basis functions (χα )α ⊆[n],

χα (x) :=
∏
i ∈α

xi ,

form a multiplicative group. This group structure is useful because

it means that the product of two basis functions is another basis

function: For α, β ⊆ [n], we have the product formula

χα · χβ = χα △ β

where α △ β denotes the symmetric difference of α and β .
Over an arbitrary hypercontractive measure µ⊗n , this may no

longer be the case; as a concrete example, this fails for the Gauss-

ian measure and the Hermite basis (cf. Chapter 11 of [O’D14]).

Over a general product space µ⊗n the Fourier basis functions are

now indexed by multi-subsets of [n] (as opposed to subsets of [n]
over {−1,+1}n )—see the discussion following Definition 5. More

importantly, there is no simple formula for the product of two

Fourier basis functions, and this makes the analysis technically

more involved. We remark that this problem, which is known as

the linearization problem, has been well studied for various classes

1
See Section 2.1 for a formal definition.

of orthogonal polynomials (see Section 6.8 of [AAR99]). Lemmas 16

and 17 establish a weak version of a “product formula” between

two Fourier basis functions for µ⊗n that suffices for our purposes

and lets us carry out an analysis similar to the above sketch for the

Boolean hypercube {−1,+1}n .

1.2.2 Overview of Theorem 4. We turn to an overview of our lower

bound, Theorem 4. As in the previous section, we write Un to

denote the uniform distribution over the n-dimensional Boolean

hypercube {−1,+1}n and (χS )S for the Fourier basis over {−1,+1}
n
.

To prove Theorem 4, it suffices to construct a distribution Fd over

degree-d PTFs over {−1,+1}n with the following properties:

(1) The distribution Fd is supported on thresholds of homoge-

nous degree-d polynomials over {−1,+1}n . Note that such

polynomials are necessarily multilinear; in particular, each

PTF f ∼ Fd can be expressed as

f (x) := 1


∑
S : |S |=d

p̂(S)χS (x) ≥ 0

.
The coefficients p̂(S) will be i.i.d. random variables drawn

from the standard Gaussian distribution N (0, 1).

(2) Letm = Ω(nd/2) and consider the distributions

• D1, obtained by drawing m independent samples from

Un ; and

• D2, obtained by first drawing f ∼ Fd , and then drawing

m independent samples from Un |f −1(1).

Then distributions D1 and D2 are o(1)-close to each other

in variation distance.

Polynomials of the form∑
S

p̂(S)χS (x) for p̂(S) ∼ N (0, 1)

are known in the literature as Gaussian random polynomials, and
have been extensively studied (with an emphasis on the behavior

of their roots) [IZ97, Ham56, BS14]. We will however be interested

in a certain “pseudorandom-type” behavior of these polynomials.

In particular, we first reduce the problem of proving indistin-

guishability of D1 and D2 to proving the following: Suppose u1,
. . . ,um arem randomly chosen points from {−1, 1}n (which we fix).

Then, with probability 1 − o(1) over the choice of thesem points,

the distribution of(
f (u1), . . . , f (um )

)
is o(1)-close to that of

(
b1, . . . ,bm

)
for f ∼ Fd and where each bi is an independent unbiased random

bit. In other words, we aim to show that if the evaluation points

u1, . . . ,um are randomly chosen (but subsequently known to the

algorithm), then f (u1), . . . , f (um ) is o(1)-indistinguishable from
random.

We establish this last statement by proving something even

stronger. Namely, we first observe that the Rm-valued random

variable (p(um ), . . . ,p(um )) is anm-dimensional normal random

variable for any fixed outcome of u1, . . . ,um . Subsequently, we

show that this random variable (p(um ), . . . ,p(um )) is o(1)-close
to the standardm-dimensional normal random variable N (0, Im )

where Im is the identity matrix in m dimensions. This exploits

a recent bound on total variation distance between multivariate

normal distributions [DMR20] in terms of their covariance matrices,
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and involves bounding the trace of the Gram matrix generated by

random points on the hypercube; details are deferred to the main

body of the paper.

1.3 Related Work
As mentioned earlier, “truncated statistics" has been a topic of

central interest to statisticians for more than a century and re-

cently in theoretical computer science as well. Starting with the

work of Daskalakis et al. [DGTZ18], several works have looked

at the problem of learning an unknown high-dimensional distri-

bution in settings where the algorithm only gets samples from

a truncated set [FKT20, KTZ19, BDNP21]. We note here that in

the recent past, there have also been several works on trunca-

tion in the area of statistics related to supervised learning scenar-

ios [DSYZ21, DGTZ19, DRZ20], but the models and techniques in

those works are somewhat distant from the topic of the current

paper. Finally, in retrospect, some earlier works on “learning from

positive samples" [CDS20, DDS15, DGL05] also have a similar flavor.

In particular, the main result of [CDS20] is a poly(n) time algorithm

which, given access to samples from a Gaussian truncated by an

unknown degree-2 PTF, approximately recovers the truncation set;

and one of the main results of [DDS15] is an analogous poly(n)-
time algorithm but for degree-1 PTF (i.e. LTF) truncations of the

uniform distribution over {−1, 1}n . Note that while the settings of

[CDS20, DDS15] are somewhat related to the current paper, the

goals and results of those works are quite different; in particular, the

focus is on learning (as opposed to testing / determining whether

truncation has taken place), and the sample complexities of the algo-

rithms in [CDS20, DDS15], albeit polynomial in n, are polynomials

of high degree.

In terms of the specific problem we study, the work most closely

related to the current paper is that of [DNS23]. In particular, as

noted earlier, in [DNS23], the algorithm gets access to samples

from either (i) N (0, 1)n or (ii) N (0, 1)n conditioned on a convex

set. Besides the obvious difference in the truncation sets which are

considered—convex sets in [DNS23] vis-a-vis PTFs in the current

paper—the choice of the background distribution in [DNS23] is far

more restrictive. Namely, [DNS23] requires the background distri-

bution to be the normal distribution N (0, 1)n , whereas the results in

current paper hold for the broad family of hypercontractive product

distributions (which includesmany other distributions as well as the

normal distribution). The difference in the problem settings is also

reflected in the techniques employed in these two papers. In partic-

ular, the algorithm and analysis of [DNS23] heavily rely on tools

from convex geometry including Gaussian isoperimetry [Bor85],

the Brascamp-Lieb inequality [BL76a, BL76b], and recent structural

results for convex bodies over Gaussian space [DNS21, DNS22]. In

our setting, truncation sets defined by PTFs even of degree two

need not be convex, so we must take a very different approach. The

algorithm in the current paper uses techniques originating from the

study of PTFs in concrete complexity theory, in particular on the

hypercontractivity of low-degree polynomials, anti-concentration,

and the “level-k” inequalities [O’D14]. So to summarize the current

work vis-a-vis [DNS23], the current work studies a different class

of truncations under a significantly less restrictive assumption on

the background distribution, and our main algorithm, as well as its

analysis, are completely different from those of [DNS23].

Our lower bound argument extends and strengthens a Ω̃(n1/2)
lower bound, given in [DNS23], for distinguishing the standard

normal distribution N (0, 1)n from N (0, 1)n |f −1(1) where f is an un-

known origin-centered LTF (i.e. a degree-1 PTF); both arguments

use a variation distance lower bound between a standard multi-

variate normal distribution and a multivariate normal distribution

with a suitable slightly perturbed covariance matrix. Our lower

bound argument in the current paper combines tools from the LTF

lower bound mentioned above with ingredients (in particular, the

use of a “shadow sample”; see Section 4 of the full version) from a

different lower bound from [DNS23] for symmetric slabs; extends

the [DNS23] analysis from degree-1 to degree-d for any constant

d ; and gives a tighter analysis than [DNS23] which does not lose

any log factors.

We end this discussion of related work with the following over-

arching high-level question, which we hope will be investigated in

future work: Suppose P is a background distribution and F is a

class of Boolean functions. Under what conditions can we distinguish
between D = P versus D = P|f (for some f ∈ F ) with sample
complexity asymptotically smaller than the sample complexity of
learning F ?We view our results on distinguishing truncation by

PTFs as a step towards answering this question.

2 PRELIMINARIES
We write N := {0, 1, . . .} and 1{·} for the 0/1 indicator function.

We will write (
[n]

d

)
:= {S ⊆ [n] : |S | = d}.

Let (R, µ) be a probability space. Forn ∈ N, we write L2(Rn, µ⊗n )
for the (real) inner-product space of functions f : Rn → R with

the inner product 〈
f ,д

〉
:= E

x∼µ⊗n

[
f (x) · д(x)

]
.

Here µ⊗n denotes the product probability distribution on Rn . For
q > 0 we write

∥ f ∥q := E
x∼µ⊗n

[
| f (x)|q

]
1/q
.

In particular, for f : Rn → {0, 1}, we write Vol(f ) := ∥ f ∥1 =
E[f (x)] where x ∼ µ⊗n .

We say that a function f : Rn → {0, 1} is a degree-d polynomial
threshold function (PTF) if there exists a polynomial p : Rn → R of

degree at most d such that

f (x) = 1{p(x) ≥ 0}.

The primary class of distributions we will consider throughout is

that of truncations of an i.i.d. product distribution µ⊗n by a degree-

d PTF of at least some minimum volume; more precisely, we will

consider the following class of truncations:

CPTF(d,α) :=
{
µ⊗n |f −1(1) : f is a degree-d PTF with Vol(f ) ≥ α

}
(1)

where α = α(n) may depend on n (in fact we will be able to take α

as small as 2
−Θ(

√
n)
). Throughout the paper we will assume that d
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(the degree of the PTFs we consider) is a fixed constant independent

of the ambient dimension n.

2.1 Harmonic Analysis over Product Spaces
Our notation and terminology in this section closely follow those of

O’Donnell [O’D14]; in particular, we refer the reader to Chapter 8

of [O’D14] for further background.

Definition 5. A Fourier basis for L2(R, µ) is an orthonormal basis

B = {χ0, χ1, . . .} with χ0 ≡ 1.

It is well known that if L2(R, µ) is separable,2 then it has a Fourier
basis (see for e.g. Section I.4 of [Con19]). Note that we can obtain a

Fourier basis for L2(Rn, µ⊗n ) by taking all possible n-fold products

of elements of B; more formally, for a multi-index α ∈ Nn , we
define

χα (x) :=
n∏
i=1

χαi (xi ).

Then the collection Bn :=
{
χα : αi ∈ N

n}
forms a Fourier ba-

sis for L2(Rn, µ⊗n ); this lets us write f ∈ L2(Rn, µ⊗n ) as f =∑
α ∈Nn f̂ (α)χα where

f̂ (α) :=
〈
f , χα

〉
is the Fourier coefficient of f on α .

We can assume without loss of generality that the basis elements

of L2(R, µ), namely

{
χ0, χ1, . . .

}
, are polynomials with deg(χi ) = i .

This is because a polynomial basis can be obtained for L2(R, µ)
by running the Gram-Schmidt process. By extending this basis to

L2(Rn, µ⊗n ) by taking products, it follows that we may assume

without loss of generality that for a multi-index α ∈ Nn , we have
deg(χα ) = |α | where

|α | :=
n∑
i=1

αi .

We will also write #α :=
��
supp(α)

��
where supp(α) := {i : αi , 0}.

Remark 6. While the Fourier coefficients { f̂ (α)} depend on the

choice of basis

{
χα

}
, we will always work with some fixed (albeit

arbitrary) polynomial basis, and hence there should be no ambiguity

in referring to the coefficients as though they were unique. We

assume that the orthogonal basis {χα } is “known” to the algorithm;

this is certainly a reasonable assumption for natural examples of

hypercontractive distributions (e.g. distributions with finite support,

the uniform distribution on intervals, the Gaussian distribution,

etc.), and is in line with our overall problem formulation of detecting

whether a known background distribution has been subjected to

truncation.

As a consequence of orthonormality, we get that for any f ∈

L2(Rn, µ⊗n ), we have

E
x∼µ⊗n

[
f (x)

]
= f̂ (0n ) and ∥ f ∥2

2
=

∑
α ∈Nn

f̂ (α)2,

with the latter called Parseval’s formula. We also have Plancharel’s
formula, which says that〈

f ,д
〉
=

∑
α ∈Nn

f̂ (α)д̂(α).

2
Recall that a metric space is separable if it contains a countable dense subset.

Product Distribution D Cq

Gaussian Distribution N (0, 1)n [AS17]

√
q − 1

Uniform Measure on {−1,+1}n [O’D14]

√
q − 1

Finite Product Domains (Ωn, µ⊗n ) [Wol07]

√
q

2min(µ)

Table 1: Examples of hypercontractive distributions, along
with their accompanying hypercontractivity constants.
Here min(µ) denotes the minimal non-zero probability of
any element in the support of the (finitely supported) dis-
tribution µ.

Finally, we write

W=k [f ] :=
∑
|α |=k

f̂ (α)2 and W≤k [f ] :=
∑
|α | ≤k

f̂ (α)2

for the Fourier weight of f at level k and the Fourier weight of f up
to level k respectively.

2.2 Hypercontractive Distributions
The primary analytic tools we will require in both our upper and

lower bounds are consequences of hypercontractive estimates for

functions in L2(Rn, µ⊗n ); we refer the reader to Chapters 9 and 10

of [O’D14] for further background on hypercontractivity and its

applications.

Definition 7. We say that (R, µ) is hypercontractive if for every
q ≥ 2, there is a fixed constant Cq (µ) such that for every n ≥ 1 and

every multivariate degree-d polynomial p : Rn → R we have

∥p∥q ≤ Cq (µ)
d · ∥p∥2 (2)

where Cq (µ) is independent of n and satisfies

Cq (µ) ≤ K
√
q (3)

for an absolute constant K . When the product distribution µ⊗n is

clear from context, we will sometimes simply write Cq := Cq (µ)
instead.

It is clear from themonotonicity of norms thatCq ≥ 1; see Table 1

for examples of hypercontractive distributions with accompanying

hypercontractivity constants Cq (µ).

Remark 8. We note that Definition 7 is not the standard definition

of a hypercontractive product distribution (cf. Chapters 9 and 10 of

[O’D14]), but is in fact an easy consequence of hypercontractivity

that is sometimes referred to as the “Bonami lemma.” The guaran-

tees of Equations (2) and (3) are all we require for our purposes,

and so we choose to work with this definition instead.

Remark 9. While Equation (3) may seem extraneous, we note

that the “level-k inequalities” (Proposition 11) crucially rely on this

bound on the hypercontractivity constant Cq .

We turn to record several useful consequences of hypercontrac-

tivity which will be crucial to the analysis of our estimator as well
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as to our lower bound. We defer the proofs of Propositions 10 and 11

to the full version of this paper.

The following anti-concentration inequality is a straightforward

consequence of hypercontractivity. A similar result for arbitrary

product distributions with finite support was obtained by Austrin–

Håstad [AH09], and a similar result for functions over {−1,+1}n

with the uniform measure was obtained by Dinur et al. [DFKO06].

The proof of the following proposition closely follows that of Propo-

sition 9.7 in [O’D14]:

Proposition 10 (Anti-concentration of low-degree polynomials).
Suppose (Rn, µ⊗n ) is a hypercontractive probability space. Then for
any degree-d polynomial p : Rn → Rwith E[p] = 0 and Var[p] = 1,

we have

Pr
x∼µ⊗n

[
|p(x)| ≥

1

2

]
≥ 0.5625 · cd

for a constant c := c(µ) independent of n.

The following proposition bounds Fourier weight up to level k

(i.e.W≤k [f ]) in terms of the bias (i.e. the degree-0 Fourier coeffi-

cient) of the function.We note that an analogous result for functions

over {−1,+1}n with the uniform measure is sometimes known as

“Chang’s Lemma” or “Talagrand’s Lemma” [Cha02, Tal96]; see also

Section 9.5 of [O’D14].

Proposition 11 (Level-k inequalities). Suppose (R, µ) is hypercon-
tractive and f : Rn → {0, 1} is a Boolean function. Then for all

1 ≤ k ≤ 2 log

(
1

Vol(f )

)
we have

W≤k [f ] ≤ Kk · Vol(f )2 ·

(
log

(
1

Vol(f )

))k
where K is a constant independent of n.

Remark 12. Wenote that the Proposition 11 also holds for bounded

functions f : Rn → [−1, 1] with Vol(f ) := E[| f |], although we will

not require this.

3 AN O(nd/2)-SAMPLE ALGORITHM FOR
DEGREE-d PTFS

In this section, we present a O(nd/2)-sample algorithm for distin-

guishing a hypercontractive product distribution µ⊗n from µ⊗n

truncated by the satisfying assignments of a degree-d PTF. More

precisely, we prove the following in Section 3.2:

Theorem 13. Let ε > 0 and let (R, µ) be hypercontractive. There
is an algorithm, PTF-Distinguisher (Algorithm 1), with the follow-

ing performance guarantee: Given access to independent samples

from any unknown distribution D ∈ {µ⊗n } ∪ CPTF(d, 2
−
√
n ), the

algorithm uses T samples where

T := Θd

©­­­«
nd/2

min

{
1, ε/(1 − ε), cΘ(d )/(1 − ε)

}
2

ª®®®¬
with c := c(µ) as in Proposition 10, runs in Od (T · nd ) time, and

(1) IfD = µ⊗n , then with probability at least 9/10 the algorithm
outputs “un-truncated;”

Input: D ∈ {µ⊗n } ∪ CPTF(d, 2
−
√
n ), ε > 0

Output: “Un-truncated” or “truncated”

PTF-Distinguisher(D):

(1) Draw 2T independent sample points

x (1), . . . ,x (T ),y(1), . . . ,y(T ) ∼ D, where

T := Θd

©­­­«
nd/2

min

{
1, ε/(1 − ε), cΘ(d )/(1 − ε)

}
2

ª®®®¬.
(2) Compute the statistic M where

M :=
1

T 2

〈 T∑
i=1

x̃ (i),
T∑
j=1

ỹ(j)
〉

with

x̃ (i) :=
(
χα (x

(i))
)
1≤ |α | ≤d

and ỹ(j) defined similarly.

(3) Output “truncated” if M ≥ min

{
1,

(
ε

1−ε

)
, c

Θ(d )

(1−ε )

}
and

“un-truncated” otherwise.

Algorithm 1: Distinguisher for degree-d PTFs. Throughout

the algorithm the constant c := c(µ) is as in the proof of

Lemma 15.

(2) If dTV

(
µ⊗n,D

)
≥ ε (equivalently, D = µ⊗n |f for some

degree-d PTF f with 2
−
√
n ≤ Vol(f ) ≤ 1 − ε), then with

probability at least 9/10 the algorithm outputs “truncated.”

Before proceeding to the proof of Theorem 13, we give a brief

high-level description of Algorithm 1. The algorithm draws 2T

independent samples {x (i),y(i)}i ∈T where T is as above, and then

performs a feature expansion to obtain the 2T vectors {x̃ (i), ỹ(i)}i ∈T
where

x̃ (i) :=
(
χα (x

(i))
)
1≤ |α | ≤d

and ỹ(i) is defined similarly. The statistic M employed by the al-

gorithm to distinguish between the un-truncated and truncated is

then given by

(1) First computing the average of the kernelized x̃ (i) vectors

and the kernelized ỹ(i) vectors; and then

(2) Taking the inner product between the two averaged kernel

vectors.

An easy calculation, given below, relates the statistic M to the

low-degree (but not degree-0) Fourier weight of the truncation

function (note that if no truncation is applied then the truncation

function is identically 1). The analysis then proceeds by using anti-

concentration of low-degree polynomials to show that the means of

the estimators differ by Ωε (1) between the two settings. We bound

the variance of the estimator in both the un-truncated and trun-

cated setting (using the level-k inequalities at a crucial point in the

analysis of the truncated setting), and given a separation between
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the means and a bound on the variances, it is straightforward to

distinguish between the two settings using Chebyshev’s inequality.

Remark 14. We note that the trick of drawing a “bipartite” set of

samples, i.e. drawing 2T samples {x (i),y(i)}i ∈T , was recently em-

ployed in the algorithm of Diakonikolas, Kane, and Pensia [DKP22]

for the problem of Gaussian mean testing. For our problem we

could have alternately used the closely related estimator M′
given

by

M′
:=

(
T

2

)−1 ∑
i,j

〈
x̃ (i), x̃ (j)

〉
to distinguish between the un-truncated and truncated distribu-

tions via a similar but slightly more cumbersome analysis. We note

that the main technical tool used in the analysis of Diakoniko-

las, Kane, and Pensia [DKP22] is the Carbery-Wright inequality

for degree-2 polynomials in Gaussian random variables, whereas

our argument uses the above-mentioned kernelization approach

and other consequences of hypercontractivity, namely the level-k
inequalities, beyond just anti-concentration.

3.1 Useful Preliminaries
The following lemma will be crucial in obtaining a lower-bound for

the expectation of our test statistic E[M] in the truncated setting;

we note that an analogous statement in the setting of the Boolean

hypercube was obtained by Gotsman and Linial [GL94].

Lemma 15. Suppose (R, µ) is hypercontractive. If f : Rn → {0, 1}

is a degree-d PTF, then∑
1≤ |α | ≤d

f̂ (α)2 ≥ Ω

(
min

{
Vol(f ), 1 − Vol(f ), cΘ(d )

})2
for an absolute constant c := c(µ) ∈ (0, 1].

Proof. We may assume that

f (x) = 1{p(x) ≥ θ }

where p : Rn → R is a degree-d polynomial with E[p(x)] = p̂(0n ) =
0 and ∥p∥2

2
= Var[p] =

∑
α p̂(α)2 = 1. By Cauchy–Schwarz and

Plancherel, we get∑
1≤ |α | ≤d

f̂ (α)2 =
©­­«

∑
1≤ |α | ≤d

f̂ (α)2
ª®®¬
©­­«

∑
1≤ |α | ≤d

p̂(α)2
ª®®¬

≥
©­­«

∑
1≤ |α | ≤d

f̂ (α) · p̂(α)
ª®®¬
2

=
(
E

[
f (x) · p(x)

] )2
. (4)

where we made use of the the fact that p is a degree-d polynomial

with p̂(0n ) = 0 and Var
[
p(x)

]
= 1. Note that by Proposition 10, we

have that either

Pr
x∼µ⊗n

[
p(x) ≥

1

2

]
≥ Ω

(
cd

)
or Pr

x∼µ⊗n

[
p(x) ≤ −

1

2

]
≥ Ω

(
cd

)
.

(5)

Suppose that it is the former. (As we will briefly explain later, the

argument is symmetric in the latter case.) We further break the

analysis into cases depending on the magnitude of θ .

Case 1: θ ≥ 1

2
. In this case, we have by Equation (4) that∑

1≤ |α | ≤d

f̂ (α)2 ≥

(
E

[
f (x) · p(x)

] )2
=

(
E

[
1p(x )≥θ · p(x)

] )2
≥ (Vol(f ) · θ )2

≥ Ω
(
Vol(f )2

)
,

and so the result follows.

Case 2: 0 ≤ θ < 1

2
. In this case, we have by Proposition 10 that

Vol(f ) = Pr
x∼µ⊗n

[
p(x) ≥ θ

]
≥ Pr

x∼µ⊗n

[
p(x) ≥

1

2

]
≥ Ω

(
cd

)
.

Once again by Equation (4), we have∑
1≤ |α | ≤d

f̂ (α)2 ≥

(
E

[
f (x) · p(x)

] )2
≥

(
1

2

Pr
[
p(x) ≥

1

2

])2
≥ Ω

(
cΘ(d )

)
,

where the second inequality follows from f · p being always

non-negative and at least
1

2
with probability Pr[p(x) ≥ 1

2
].

Case 3: θ < 0. Consider the degree-d PTF f † := 1 − f given by

f †(x) = 1
{
p(x) < θ

}
.

It is easy to check that | f̂ †(α)| = | f̂ (α)| for all S , ∅ and that

Vol(f †) = 1 − Vol(f ). Repeating the above analysis then gives that∑
1≤ |α | ≤d

f̂ (α)2 =
∑

1≤ |α | ≤d

f̂ †(α)2

≥ Ω
(
Vol(f †)2 · cΘ(d )

)
= Ω

( (
1 − Vol(f )

)
2

· cΘ(d )
)
.

Putting Cases 1 through 3 together, we get that∑
1≤ |α | ≤d

f̂ (α)2 ≥ Ω

(
min

{
Vol(f ), 1 − Vol(f ), cΘ(d )

})2
, (6)

completing the proof. Recall, however, that we assumed that

Pr
x∼µ⊗n

[
p(x) ≥

1

2

]
≥ Ω

(
cd

)
in Equation (5). Suppose that we instead have

Pr
x∼µ⊗n

[
p(x) ≤ −

1

2

]
≥ Ω

(
cd

)
.

Then note that the same trick used in Case 3 by considering f †

instead of f and repeating the three cases completes the proof. □

We will also require the following two lemmas which are closely

linked to the linearization problem for orthogonal polynomials (see
Section 6.8 of [AAR99]). The first lemma bounds the magnitude of

the Fourier coefficients of the product of basis functions; while the
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estimate below relies on hypercontractivity, we note that exact ex-

pressions for the Fourier coefficients are known for various classes

of orthogonal polynomials including the Chebyshev, Hermite, and

Laguerre polynomials.

Lemma 16. Suppose (R, µ) is hypercontractive. Let α, β,γ ∈ Nn .
Then 〈

χα , χβ · χγ
〉
≤ C4(µ)

|β |+ |γ | .

Proof. Using Cauchy–Schwarz, we have that〈
χα , χβ · χγ

〉
= E

x∼µ⊗n

[
χα (x) ·

(
χβ (x) · χγ (x)

)]
≤

√
E

x∼µ⊗n

[
χα (x)2

]
E

x∼µ⊗n

[
χβ (x)2 · χγ (x)2

]
=

√
E

x∼µ⊗n

[
χβ (x)2 · χγ (x)2

]
due to the orthonormality of χα . Using Cauchy–Schwarz once

again, we have that〈
χα , χβ · χγ

〉
≤

(
E

x∼µ⊗n

[
χβ (x)

4

]
· E
x∼µ⊗n

[
χγ (x)

4

] )1/4
= ∥χβ ∥4 · ∥χγ ∥4

≤ C4(µ)
|β |+ |γ |

where the final inequality uses hypercontractivity and the fact that

χβ (χγ respectively) is a polynomial of two-norm 1 and degree at

most |β | (at most |γ | respectively). □

Finally, we also require the following combinatorial lemma:

Lemma 17. Given d ∈ N and a fixed multi-index α ∈ Nn with

|α | := k ≤ 2d , we have�����{(β,γ ) : |β |, |γ | ≤ d,
〈
χα , χβ χγ

〉
, 0

}����� ≤ Od

(
nd−⌈k/2⌉

)
where β,γ ∈ Nn .

Proof. We will upper bound the number of pairs (β,γ ) such

that |β |, |γ | ≤ d and

〈
χα , χβ χγ

〉
, 0; so fix such a pair (β,γ ).

We first note that for any i < supp(α), we must have βi = γi ;

for otherwise

〈
χα , χβ χγ

〉
= 0 due to orthonormality of χβi and

χγi . Also, for each i ∈ supp(α), we must have βi +γi ≥ αi , since if

βi + γi < αi , then 〈
χβi · χγi , χαi

〉
= 0

by orthonormality and the fact that χβi · χγi is a linear combination

of basis functions {χj }j<αi .
Summing over all i ∈ supp(α), we get that∑

i ∈supp(α )

βi + γi ≥
∑

i ∈supp(α )

αi = |α |,

and so it follows that either∑
i ∈supp(α )

βi ≥
⌈
k/2

⌉
or

∑
i ∈supp(α )

γi ≥
⌈
k/2

⌉
;

without loss of generality we suppose it is the former. It follows that

the total number of ways of choosing such a pair (β,γ ) is bounded
by

Od (1) ·Od (1) ·

d−⌈k/2⌉∑
j=0

(n − |supp(α)|)j

which in turn is

Od (1) ·

d−⌈k/2⌉∑
j=0

nj ≤ Od (n
d−⌈k/2⌉ ),

where

• The first two Od (1) factors bound the number of possible

outcomes of (βi )i ∈supp(α ) (recall that each βi ∈ [0,d] and
|supp(α)| ≤ 2d) and (γ )i ∈supp(α ) respectively); and

• The third term on the LHS upper bounds the number of

choices for

(
βi

)
i<supp(α ). Recall that for i < supp(α)we must

have βi = γi , and so(
βi

)
i<supp(α ) =

(
γi

)
i<supp(α )

sowe need only bound the number of choices of

(
βi

)
i<supp(α );

moreover, as∑
i

βi ≤ d and

∑
i ∈supp(α )

βi ≥
⌈
k/2

⌉
,

we must have ∑
i<supp(α )

βi ≤ d −
⌈
k/2

⌉
,

completing the proof. □

3.2 Proof of Theorem 13
Proof of Theorem 13. Throughout, we will write

m := #

{
α ∈ Nn : 1 ≤ |α | ≤ d

}
.

Recalling that there are at most

(n+k−1
k

)
multi-indices α ∈ Nn with

|α | = k , we have that

m ≤ Od (n
d ).

We compute the mean and variance of the estimator M in each

case (i.e. when D = µ⊗n and when D ∈ CPTF(d, 2
−
√
n )) separately.

Case 1:D = µ⊗n . For brevity (and to distinguish the calculations
in this case from the following one), we denote the un-truncated

distribution by

Du := µ⊗n .

When x (1), . . . ,x (T ),y(1), . . . ,y(T ) ∼ Du , we have by bi-linearity

of the inner product that

E
Du

[M] =
1

T 2

T∑
i , j=1

E
Du

[〈
x̃ (i), ỹ(j)

〉]
=

∑
1≤ |α | ≤d

E
Du

[
χα (x) · χα (y)

]
=

∑
1≤ |α | ≤d

E
Du

[
χα (x)

]
· E
Du

[
χα (y)

]
= 0 (7)
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as x,y ∼ Du are independent samples and also because of the

orthonormality of {χα }.
Turning to the variance, we have

Var
Du

[M] =
1

T 4

©­«
T∑

i , j=1
Var
Du

[〈
x̃ (i), ỹ(j)

〉]ª®¬ (8)

=
1

T 2

(
E
Du

[〈
x̃, ỹ

〉
2

]
− E

Du

[〈
x̃, ỹ

〉]2)
(9)

where x,y ∼ D are independent samples. In this case, we have by

our previous calculation (Equation (7)) that this is in fact equal to

Var
Du

[M] =
1

T 2

(
E
Du

[〈
x̃, ỹ

〉〈
ỹ, x̃

〉])
=

1

T 2

©­« E
x∼Du

[
x̃T E

y∼Du

[
ỹ · ỹT

]
x̃

]ª®¬
=

1

T 2

©­­« E
Du


∑

1≤ |α | ≤d

χα (x)
2


ª®®¬

=
m

T 2

≤ Od

(
nd

T 2

)
(10)

wherewe used orthonormality aswell as the fact thatEDu

[
ỹ · ỹT

]
=

Idm .

Case 2: dTV
(
µ⊗n,D

)
≥ ε with D ∈ CPTF(d, 2

−
√
n ). For brevity,

we denote the truncated distribution by

Dt := µ⊗n |f −1(1).

In this case, f : Rn → {0, 1} is a degree-d PTF with

Vol(f ) ∈
[
2
−
√
n, 1 − ε

]
.

We may assume that f (x) = 1{p(x) ≥ θ } where p : Rn → R
is a degree-d polynomial with p̂(0n ) = 0 and ∥p∥2

2
= Var[p] =∑

α p̂(α)2 = 1.

We have the following easy relation between the Fourier co-

efficients of f and the means of the characters {χα } under the

truncated distribution Dt :

E
x∼Dt

[
χα (x)

]
=

1

Vol(f )
E

x∼Du

[
f (x)χα (x)

]
=

f̂ (α)

Vol(f )
. (11)

We thus have

E
Dt

[M] =
∑

1≤ |α | ≤d

E
Dt

[
χα (x)

]
· E
Dt

[
χα (y)

]
=

1

Vol(f )2

∑
1≤ |α | ≤d

f̂ (α)2

≥
1

Vol(f )2
· Ω

(
min

{
Vol(f ), 1 − Vol(f ), cΘ(d )

})2
≥ Ω

©­«min

{
1,

(
1 − Vol(f )

Vol(f )

)
,
cΘ(d )

Vol(f )

}ª®¬
2

(12)

where the second line follows from Equation (11) and the final

inequality is due to Lemma 15; here c := c(µ) is as in Proposition 10.

Turning to the variance of the estimator, we have as before by

Equation (9) that

Var
Dt

[M] =
1

T 2

(
E
Dt

[〈
x̃, ỹ

〉
2

]
− E

Dt

[〈
x̃, ỹ

〉]2)
≤

1

T 2

(
E
Dt

[〈
x̃, ỹ

〉〈
x̃, ỹ

〉])

=
1

T 2

©­­­­«
E
Dt


©­­«

∑
1≤ |α | ≤d

χα (x)χα
(
y
)ª®®¬

2
ª®®®®¬

=
1

T 2
E
Dt


∑

1≤ |β |, |γ | ≤d

χβ (x)χγ (x)χβ (y)χγ
(
y
)

=
1

T 2

∑
1≤ |β |, |γ | ≤d

E
Dt

[
χβ χγ

]
2

.

Similar to Equation (11) we can write

∑
1≤ |β |, |γ | ≤d

E
Dt

[
χβ χγ

]
2

=
∑

1≤ |β |, |γ | ≤d

(
1

Vol(f )
E
Du

[
f · χβ χγ

] )2

=
1

Vol(f )2

∑
1≤ |β |, |γ | ≤d

©­­­« E
Du

f ·
©­­«

∑
|α | ≤2d

〈
χβ χγ , χα

〉
χα

ª®®¬

ª®®®¬
2

=
1

Vol(f )2

∑
1≤ |β |, |γ | ≤d

©­­«
∑

|α | ≤2d

〈
χβ χγ , χα

〉
f̂ (α)

ª®®¬
2

≤
Od (1)

Vol(f )2

∑
1≤ |β |, |γ | ≤d

©­­«
∑

|α | ≤2d

| f̂ (α)| · 1
(〈
χβ χγ , χα

〉
, 0

)ª®®¬
2

(13)

where the Od (1) factor in Equation (13) comes from the RHS of

Lemma 16. Now, observe that for a fixed (β,γ ) pair with 1 ≤

|β |, |γ | ≤ d there are Od (1) many multi-indices α such that

〈
χβ χγ , χα

〉
, 0

as we must have supp(α) ⊆ supp(β) ∪ supp(γ ). Combining this

observation with the Cauchy-Schwarz inequality

©­«
t∑
i=1

ai
ª®¬
2

≤ t ·
©­«

t∑
i=1

a2i
ª®¬,
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we have∑
1≤ |β |, |γ | ≤d

E
Dt

[
χβ χγ

]
2

≤
Od (1)

Vol(f )2

∑
1≤ |β |, |γ | ≤d

∑
|α | ≤2d

f̂ (α)2 · 1
(〈
χβ χγ , χα

〉
, 0

)
=

Od (1)

Vol(f )2

∑
|α | ≤2d

∑
1≤ |β |, |γ | ≤d

f̂ (α)2 · 1
(〈
χβ χγ , χα

〉
, 0

)
=

Od (1)

Vol(f )2

2d∑
k=0

∑
|α |=k

∑
1≤ |β |, |γ | ≤d

f̂ (α)2 · 1
(〈
χβ χγ , χα

〉
, 0

)
≤

Od (1)

Vol(f )2

2d∑
k=0

∑
|α |=k

f̂ (α)2 ·Od

(
nd−⌈k/2⌉

)
where the final inequality is due to Lemma 17. Finally, we have that∑

1≤ |β |, |γ | ≤d

E
Dt

[
χβ χγ

]
2

(14)

≤
Od (1)

Vol(f )2

2d∑
k=0

Od

(
nd−⌈k/2⌉

)
·W=k [f ]

≤
Od (1)

Vol(f )2

2d∑
k=0

Od

(
nd−⌈k/2⌉

)
·
©­­«Vol(f )2

(
log

(
1

Vol(f )

))k ª®®¬ (15)

≤ Od (1)
©­«
2d∑
k=0

Od

(
nd−⌈k/2⌉

)
· nk/2

ª®¬
≤ Od (1) · n

d , (16)

where Equation (15) is by the level-k inequalities (Proposition 11)

and Equation (16) uses the fact that Vol(f ) ≥ 2
−
√
n
(which is by

assumption). Putting everything together, we get that

Var
Dt

[M] ≤ Od

(
nd

T 2

)
. (17)

To summarize, when D = µ⊗n , we have from Equations (7)

and (10) that

E
Du

[M] = 0 and Var
Du

[M] = Od

(
nd

T 2

)
. (18)

On the other hand, when D ∈ CPTF(d, 2
−
√
n ) with dTV(D, µ

⊗n ) ≥

ε , we have from Equations (12) and (17) that

E
Dt

[M] ≥ Ω
©­«min

1,
(

ε

1 − ε

)
,

(
cΘ(d )

1 − ε

)ª®¬
2

(19)

and

Var
Dt

[M] ≤ Od

(
nd

T 2

)
(20)

For the number of samples being

T = Θd

©­­­«
nd/2

min

{
1, ε/(1 − ε), cΘ(d )/(1 − ε)

}
2

ª®®®¬,
the correctness of the distinguishing algorithm Algorithm 1 follows

directly from Equation (18) and Equations (19) and (20) by a simple

application of Chebyshev’s inequality. □
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