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1 INTRODUCTION

One of the most basic and natural ways that a probability distri-
bution D can be altered is by truncating it, i.e. conditioning on
some subset of possible outcomes. Indeed, the study of truncated
distributions is one of the oldest topics in probability and statistics:
already in the 19th century, Galton [Gal97] attempted to estimate
the mean and standard deviation of the running times of horses on
the basis of sample data that did not include data for horses that
were slower than a particular cutoff value. Since the running times
were assumed to be normally distributed, this was an early attempt
to infer the parameters of an unknown normal distribution given
samples from a truncated version of the distribution. Subsequent
early work by other statistical pioneers applied the method of mo-
ments [Pea02, Lee14] and maximum likehood techniques [Fis31] to
the same problem of estimating the parameters of an unknown uni-
variate normal distribution from truncated samples. The study of
truncation continues to be an active area in contemporary statistics
(see [Sch86, BC14, Coh16] for recent books on this topic).

Quite recently, a number of research works in theoretical com-
puter science have tackled various algorithmic problems that deal
with high-dimensional truncated data. Much of this work attempts
to learn a parametric description of an unknown distribution that
has been subject to truncation. For example, in [DGTZ19] Daskalakis,
Gouleakis, Tzamos and Zampetakis gave an efficient algorithm for
high-dimensional truncated linear regression, and in [DGTZ18]
Daskalakis, Gouleakis, Tzamos and Zampetakis gave an efficient
algorithm for estimating the mean and covariance of an unknown
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multivariate normal distribution from truncated samples given ac-
cess to a membership oracle for the truncation set. In [FKT20]
Fotakis, Kalavasis and Tzamos gave a similar result for the setting
in which the unknown background distribution is a product distri-
bution over {0, l}d instead of a multivariate normal distribution,
and in [KTZ19] Kontonis, Tzamos and Zampetakis extended the
results of [DGTZ18] to the case of an unknown truncation set sat-
isfying certain restrictions. In summary, the recent work described
above has focused on learning (parameter estimation) of truncated
normal distributions and product distributions over {0, 134,

This Work: Detecting Truncation. In the current paper, rather
than the learning problem we study what is arguably the most basic
problem that can be considered in the context of truncated data —
namely, detecting whether or not truncation has taken place at all.
A moment’s thought shows that some assumptions are required in
order for this problem to make sense: for example, if the truncation
set is allowed to be arbitrarily tiny (so that only an arbitrarily
small fraction of the distribution is discarded by truncation), then
it can be arbitrarily difficult to detect whether truncation has taken
place. It is also easy to see that truncation cannot be detected if the
unknown truncation set is allowed to be arbitrarily complex. Thus,
it is natural to consider a problem formulation in which there is a
fixed class of possibilities for the unknown truncation set; this is
the setting we consider.

We note that the truncation detection problem we consider has a
high-level resemblance to the standard hypothesis testing paradigm
in statistics, in which the goal is to distinguish between a “null
hypothesis” and an “alternate hypothesis.” In our setting the null
hypothesis corresponds to no truncation of the known distribution
having taken place, and the alternate hypothesis is that the known
distribution has been truncated by some unknown truncation set
belonging to the fixed class of possibilities. However, there does
not appear to be work in the statistics literature which deals with
the particular kinds of truncation problems considered in this work,
let alone computationally efficient algorithms for those problems.

Prior Work: Convex Truncation of Normal Distributions. Re-
cent work [DNS23] considered the truncation detection problem in
a setting where the background distribution D is the standard mul-
tidimensional normal distribution N(0, 1)"” and the truncation set is
assumed to be an unknown convex set in R™. This specific problem
formulation enabled the use of a variety of sophisticated tools and
results from high-dimensional convex geometry, such as Gaussian
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isoperimetry and the Brascamp-Lieb inequality [BL76b] and exten-
sions thereof due to Vempala [Vem10]. Using these tools, [DNS23]
gave several different algorithmic results and lower bounds. Chief
among these were (i) a polynomial-time algorithm that uses O(n/&?)
samples and distinguishes the non-truncated standard normal dis-
tribution N(0, 1)" from N(0, 1)" conditioned on a convex set of
Gaussian volume at most 1 — ¢; and (i) a Q(y/n)-sample lower
bound for detecting truncation by a convex set of constant volume.

The results of [DNS23] provide a “proof of concept” that in suf-
ficiently well-structured settings it can sometimes be possible to
detect truncation in a computationally and statistically efficient way.
This serves as an invitation for a more general study of truncation
detection; in particular, it is natural to ask whether strong structural
or geometric assumptions like those made in [DNS23] (normal dis-
tribution, a convex truncation set) are required in order to achieve
nontrivial algorithmic results. Can efficient algorithms detect trun-
cation for broader classes of “background” distributions beyond
the standard normal distribution, or for other natural families of
truncations besides convex sets? This question is the motivation
for the current work.

This Work: “Low-Degree” Truncation of Hypercontractive
Product Distributions. In this paper we consider
o A broader range of possibilities for the background distri-
bution D over R”, encompassing many distributions which
may be either continuous or discrete; and
o A family of non-convex truncation sets corresponding to
low-degree polynomial threshold functions.

Recall that a Boolean-valued function f : R® — {0,1} is a
degree-d polynomial threshold function (PTF) if there is a real mul-
tivariate polynomial p(x) with deg(p) < d such that f(x) = 1
if and only if p(x) > 0. Low-degree polynomial threshold func-
tions are a well-studied class of Boolean-valued functions which
arise naturally in diverse fields such as computational complex-
ity, computational learning theory, and unconditional derandom-
ization, see e.g. [BS92, GL94, HKM14, DRST14, Kan14a, DOSW11,
CDS20, DKPZ21, BHYY22, DKN10, Kan11b, Kanl1a, Kan12, KM13,
MZ13, Kan14b, DDS14, DS14, Kan15, KKL17, KL18, KR18, ST18,
BV19, OST20] among many other references.

Our main results, described in the next subsection, are efficient
algorithms and matching information-theoretic lower bounds for
detecting truncation by low-degree polynomial threshold functions
for a wide range of background distributions and parameter set-
tings.

1.1 Our Results

To set the stage for our algorithmic results, we begin with the
following observation:

Observation 1. For any fixed (“known”) background distribution
P over R", Od(nd /€%) samples from an unknown distribution D
are sufficient to distinguish (with high probability) between the two
cases that (i) O is the original distribution ¥, versus (ii) D is P|r,
i.e. P conditioned on f~1(1), where f is an unknown degree-d PTF
satisfying Pryp[f(x) = 1] < 1—e.

This is an easy consequence of a standard uniform convergence
argument using the well-known fact that the Vapnik-Chervonenkis
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dimension of the class of all degree-d polynomial threshold func-
tions over R is O(n?). For the sake of completeness, we give a
proof in Appendix A of the full version of this paper.

While the above observation works for any fixed background
distribution P, several drawbacks are immediately apparent. One is
that a sample complexity of O(n%) is quite high, in fact high enough
to information-theoretically learn an unknown degree-d PTF; are
this many samples actually required for the much more modest goal
of merely detecting whether truncation has taken place? A second
and potentially more significant issue is that the above VC-based
algorithm is computationally highly inefficient, involving a brute-
force enumeration over “all” degree-d PTFs; for a sense of how
costly this may be, recall that even in the simple discrete setting of
the uniform distribution over the Boolean cube {—1, 1}" there are
2200 distinet degree-d PTFs over {—1, 1}" for constant d [Sak93,
Theorem 2.34]. So it is natural to ask whether there exist more
efficient (either in terms of running time or sample complexity)
algorithms for interesting cases of the truncation detection problem,
and to ask about lower bounds for this problem.

On the lower bounds side, it is natural to first consider arguably
the simplest case, in which % is the uniform distribution U over the
Boolean hypercube {—1, +1}". In this setting we have the following
observation:

Observation 2. If the truncating PTF f is permitted to have as few
as n/2 satisfying assignments, then any algorithm that correctly
decides whether its samples come from D = U versus from D =

U|r must use Q(nd/ samples.

This lower bound can be established using only basic linear
algebra and simple probabilistic arguments; it is inspired by the
“voting polynomials” lower bound of Aspnes et al. [ABFR94] against
MAJ-of-AC? circuits. We give the argument in Appendix B of the
full version of this paper.

Taken together, there is a quartic gap between the (computa-
tionally inefficient) upper bound given by Observation 1 and the
information-theoretic lower bound of Observation 2 for PTFs with
extremely few satisfying assignments. Our main result is a proof
that the true complexity of the truncation distinguishing problem
lies exactly in the middle of these two extremes. We:

(i) Give a computationally efficient distinguishing algorithm
which has sample complexity O(n?/?) for a wide range of
product distributions and values of Vol(f), and

(if) Show that even for the uniform background distribution
U over {-1,+1}", distinguishing whether or not U has
been truncated by a degree-d PTF of volume ~ 1/2 requires
Q(n4/?) samples.

We now describe our results in more detail.

An Efficient Algorithm. We give a truncation distinguishing al-
gorithm which succeeds if P is any multivariate i.i.d. product dis-
tribution P = p®" over R" satisfying a natural hypercontractivity
property and if Vol(f) is “not too small” We defer the precise tech-
nical definition of the (fairly standard) hypercontractivity property
that we require to Section 2.2, and here merely remark that a wide
range of i.i.d. product distributions satisfy the required condition,
including the cases where y is
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e any fixed distribution over R that is supported on a finite
(independent of n) number of points;

e any normal distribution N(c, %) where ¢, o are independent
of n;

e any uniform distribution over a continuous interval [a, b];

e any distribution which is supported on an interval [a, b]
for which there are two constants 0 < ¢ < C such that
everywhere on [a, b] the pdf is between ¢/(b — a) and C/(b -
a).

An informal statement of our main positive result is below:

Theorem 3 (Efficiently detecting PTF truncation, informal theorem
statement). Let 0 < ¢ < 1. Fix any constant d and any hypercon-
tractive i.i.d. product distribution z®" over R™. Let f : R" — {0, 1}
be an unknown degree-d PTF such that

1-e> Pr [f(x)=1] > 270(n),
x~l1®n

There is an efficient algorithm that uses O(n/2/¢2) samples from
D and successfully (w.h.p.) distinguishes between the following
two cases:

(i) D is p®", ie. the “un-truncated” distribution; versus
(i) O is p®" |rs ie. u®" truncated by f.

Note that ¢ is a lower bound on the probability mass of the
distribution ®™ which has been “truncated;” as remarked earlier,
without a lower bound on ¢, it can be arbitrarily difficult to distin-
guish the truncated distribution. Thus, as long as the background
distribution is a “nice” i.i.d. product distribution and the truncating
PTF’s volume is “not too tiny”, in polynomial time we can achieve
a square-root improvement in sample complexity over the naive
brute-force computationally inefficient algorithm.

A Matching Lower Bound. It is natural to wonder whether The-
orem 3 is optimal: Can we establish lower bounds on the sample
complexity of determining whether a “nice” distribution has been
truncated by a PTF? And can we do this when the truncating PTF
(unlike in Observation 2) has volume which is not extremely small?

Our main lower bound achieves these goals; it shows that even
for the uniform distribution U over {—1, 1}" and for PTFs of vol-
ume ~ 1/2, the sample complexity achieved by our algorithm in
Theorem 3 is best possible up to constant factors.

Theorem 4 (Lower bound for detecting PTF truncation, informal
theorem statement). Fix any constantd.Let f : {—1,1}"" — Rbean
unknown degree-d PTF such that Pr, _q/[f(x) = 1] € [0.49,0.51].
Any algorithm that uses samples from O and successfully (w.h.p.)
distinguishes between the cases that (i) D is U, versus (ii) D is
U|fr, must use Q(n?/2) samples.

1.2 Techniques

We now give a technical overview of both the upper bound (Theo-
rem 3) and the lower bound (Theorem 4), starting with the former.

1.2.1  Overview of Theorem 3. For simplicity, we start by consid-
ering the case when the background distribution P = p®" is the
uniform measure on the Boolean hypercube.

The Boolean Hypercube {1, +1}". Let us denote the uniform
measure over {—1, +1}" by U,,. Recall that our goal is to design an

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

algorithm with the following performance guarantee: Given i.i.d.
sample access to an unknown distribution 9, the algorithm w.h.p.
(i) Outputs “un-truncated” when D = U,,; and
(ii) Outputs “truncated” when D = Uy |f-1(y) for a degree-d
PTF f : {-1,+1}" — {0, 1}, where 1 — & > Pr[f(x) = 1] for
x ~Uy.
To avoid proliferation of parameters, we set ¢ = 0.1 for the rest of
the discussion. We thus have
R [fx)=1] <0.9.
For any point x € {-1,+1}", let X € {—l,+1}('11)+“'+(;) be the
vector given by

X = (Xg) acln] where X, = l_[xi.
0<|a|<d ica
In other words, every coordinate of X corresponds to a non-constant
monomial in x of (multilinear) degree at most d. Note that the
map x — X can be viewed as a feature map corresponding to the
“polynomial kernel” in learning theory.
The main idea underlying our algorithm, which is given in The-
orem 3, is the following:
(1) When D = U, then it is easy to see that E [3?] = 0 (the all-0
vector). This is immediate from the fact that the expectation
of any non-constant monomial under U, is 0.
(2) On the other hand, suppose D = Uy, |r-1(1) for a degree-d
PTF f as above. In this case, it can be shown that
E [Ff] > Z_G(d) =icy.
Unl-1)
This is done by relating the quantity in the LHS above to the
Fourier spectrum of degree-d PTFs, which has been exten-
sively studied in concrete complexity theory (see for example
[GL94, DRST14, HKM14, Kan13]). In particular, we obtain

this lower bound on HE [f]

‘ from an anti-concentration
2

property of low-degree polynomials over the Boolean hyper-
cube. This in turn is a consequence of hypercontractivity of
the uniform measure over {—1, +1}", a fundamental tool in
discrete Fourier analysis (see Section 9.5 of [0'D14]).

2
Items 1 and 2 above together imply that estimating ”E [f]“z

up to an additive error of icé/ 2 suffices to distinguish between
D=U,and D =U, |f_1(1). Next, note that

e =)

Using the idea of “U-statistics” [Hoe94], this suggests a natural

2
= E
2 x,y~D

unbiased estimator, namely drawing 2T points 0, ..., %D and
’g(l), ces g(T) for some T which we will fix later, and then setting

1/ (i) T~u>
M:=—{(>» x\, .

2

In particular, we have E[M] = ”E [x] “2
In order to be able to distinguish between the un-truncated and
truncated distributions by estimating M (and then appealing to
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Chebyshev’s inequality), it therefore suffices to upper bound the
variance of M in both the un-truncated and the truncated settings.
When D = U, then Var[M] is straightforward to calculate and it
turns out that

m
Var[M] = —
(un[ ]

72 where m :== #{a C [n] : 0 < |a| < d} = Od(nd).

However, in the truncated setting, Var[M] is significantly trickier
to analyze; at a high-level, our analysis expresses Var[M] in terms
of the “weights” of various levels of the Fourier spectrum of f.!
The key technical ingredient we use to control the variance is the
so-called “level-k inequality” for Boolean functions, which states
that for any Boolean function f : {-1,+1}" — {0, 1}, writing

W=k f] for the “Fourier weight at level-k”, we have

- - 1
WHIfT < 0| WL log® | o= | |
W=0f]
Recall that W=°[ f] = Eq, [f 12, and so the level-k inequality bounds
higher-level Fourier weight in terms of the mean of the function.
We remark that the level-k inequality is also a consequence of hy-

percontractivity over the Boolean hypercube (as before, see Section
9.5 of [O’D14]). With this in hand, we can show that

o) d
Var [M] = d(;l )
Unlp-10) T

as long as Eq [f] > 2~Vn,

Finally, taking T = © 4(n%/2) implies that the standard deviation
of each of our estimators is comparable to the difference in means
(which was cé), allowing us to distinguish between the un-truncated
and truncated settings.

Hypercontractive Product Distributions ;®". We use the same
high-level approach (as well as the same estimator M) in order to
distinguish low-degree truncation of a hypercontractive product
measure ;®", but the analysis becomes more technically involved.
To explain the principal challenge, note that over the Boolean hy-
percube {1, +1}", the Fourier basis functions (Yo ) g c[n]»

Xa@) =[x
ica
form a multiplicative group. This group structure is useful because
it means that the product of two basis functions is another basis
function: For a, f C [n], we have the product formula

Xa " XB= Xanp
where a A f§ denotes the symmetric difference of « and f.

Over an arbitrary hypercontractive measure y®", this may no
longer be the case; as a concrete example, this fails for the Gauss-
ian measure and the Hermite basis (cf. Chapter 11 of [O’D14]).
Over a general product space y®" the Fourier basis functions are
now indexed by multi-subsets of [n] (as opposed to subsets of [n]
over {—1, +1}")—see the discussion following Definition 5. More
importantly, there is no simple formula for the product of two
Fourier basis functions, and this makes the analysis technically
more involved. We remark that this problem, which is known as
the linearization problem, has been well studied for various classes

ISee Section 2.1 for a formal definition.
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of orthogonal polynomials (see Section 6.8 of [AAR99]). Lemmas 16
and 17 establish a weak version of a “product formula” between
two Fourier basis functions for y®" that suffices for our purposes
and lets us carry out an analysis similar to the above sketch for the
Boolean hypercube {-1, +1}".

1.2.2  Overview of Theorem 4. We turn to an overview of our lower
bound, Theorem 4. As in the previous section, we write U, to
denote the uniform distribution over the n-dimensional Boolean
hypercube {—1, +1}" and (ys)s for the Fourier basis over {—1, +1}".
To prove Theorem 4, it suffices to construct a distribution ¥; over
degree-d PTFs over {—1, +1}" with the following properties:

(1) The distribution ¥ is supported on thresholds of homoge-
nous degree-d polynomials over {—1, +1}". Note that such
polynomials are necessarily multilinear; in particular, each
PTF f ~ ¥4 can be expressed as

fe) =17 > pS)xsx) = 0.

S:|S|=d

The coefficients p(S) will be i.i.d. random variables drawn
from the standard Gaussian distribution N(0, 1).
(2) Let m = Q(n%/?) and consider the distributions

e D, obtained by drawing m independent samples from
Uy; and

e Dy, obtained by first drawing f ~ ¥, and then drawing
m independent samples from U, | F1a1)-

Then distributions D and D- are o(1)-close to each other

in variation distance.

Polynomials of the form

D PO)xs(x)  for p(S) ~ N(0,1)
S

are known in the literature as Gaussian random polynomials, and
have been extensively studied (with an emphasis on the behavior
of their roots) [IZ97, Ham56, BS14]. We will however be interested
in a certain “pseudorandom-type” behavior of these polynomials.

In particular, we first reduce the problem of proving indistin-
guishability of D; and D, to proving the following: Suppose uj,
..., U, are m randomly chosen points from {-1, 1}" (which we fix).
Then, with probability 1 — o(1) over the choice of these m points,
the distribution of

(f),.... fum))

for f ~ F; and where each b; is an independent unbiased random
bit. In other words, we aim to show that if the evaluation points
ui, ..., Uy are randomly chosen (but subsequently known to the
algorithm), then f(u1),..., f(um,) is o(1)-indistinguishable from
random.

We establish this last statement by proving something even
stronger. Namely, we first observe that the R"-valued random
variable (p(upm), . . ., p(um)) is an m-dimensional normal random
variable for any fixed outcome of uy, ..., u;,. Subsequently, we
show that this random variable (p(u,), ..., p(um)) is o(1)-close
to the standard m-dimensional normal random variable N(0, I,)
where I, is the identity matrix in m dimensions. This exploits
a recent bound on total variation distance between multivariate
normal distributions [DMR20] in terms of their covariance matrices,

is o(1)-close to that of (b1,....,bm)
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and involves bounding the trace of the Gram matrix generated by
random points on the hypercube; details are deferred to the main
body of the paper.

1.3 Related Work

As mentioned earlier, “truncated statistics" has been a topic of
central interest to statisticians for more than a century and re-
cently in theoretical computer science as well. Starting with the
work of Daskalakis et al. [DGTZ18], several works have looked
at the problem of learning an unknown high-dimensional distri-
bution in settings where the algorithm only gets samples from
a truncated set [FKT20, KTZ19, BDNP21]. We note here that in
the recent past, there have also been several works on trunca-
tion in the area of statistics related to supervised learning scenar-
ios [DSYZ21, DGTZ19, DRZ20], but the models and techniques in
those works are somewhat distant from the topic of the current
paper. Finally, in retrospect, some earlier works on “learning from
positive samples" [CDS20, DDS15, DGLO05] also have a similar flavor.
In particular, the main result of [CDS20] is a poly(n) time algorithm
which, given access to samples from a Gaussian truncated by an
unknown degree-2 PTF, approximately recovers the truncation set;
and one of the main results of [DDS15] is an analogous poly(n)-
time algorithm but for degree-1 PTF (i.e. LTF) truncations of the
uniform distribution over {—1, 1}". Note that while the settings of
[CDS20, DDS15] are somewhat related to the current paper, the
goals and results of those works are quite different; in particular, the
focus is on learning (as opposed to testing / determining whether
truncation has taken place), and the sample complexities of the algo-
rithms in [CDS20, DDS15], albeit polynomial in n, are polynomials
of high degree.

In terms of the specific problem we study, the work most closely
related to the current paper is that of [DNS23]. In particular, as
noted earlier, in [DNS23], the algorithm gets access to samples
from either (i) N(0,1)" or (ii) N(0,1)" conditioned on a convex
set. Besides the obvious difference in the truncation sets which are
considered—convex sets in [DNS23] vis-a-vis PTFs in the current
paper—the choice of the background distribution in [DNS23] is far
more restrictive. Namely, [DNS23] requires the background distri-
bution to be the normal distribution N(0, 1)", whereas the results in
current paper hold for the broad family of hypercontractive product
distributions (which includes many other distributions as well as the
normal distribution). The difference in the problem settings is also
reflected in the techniques employed in these two papers. In partic-
ular, the algorithm and analysis of [DNS23] heavily rely on tools
from convex geometry including Gaussian isoperimetry [Bor85],
the Brascamp-Lieb inequality [BL76a, BL76b], and recent structural
results for convex bodies over Gaussian space [DNS21, DNS22]. In
our setting, truncation sets defined by PTFs even of degree two
need not be convex, so we must take a very different approach. The
algorithm in the current paper uses techniques originating from the
study of PTFs in concrete complexity theory, in particular on the
hypercontractivity of low-degree polynomials, anti-concentration,
and the “level-k” inequalities [O'D14]. So to summarize the current
work vis-a-vis [DNS23], the current work studies a different class
of truncations under a significantly less restrictive assumption on
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the background distribution, and our main algorithm, as well as its
analysis, are completely different from those of [DNS23].

Our lower bound argument extends and strengthens a Q(n'/?)
lower bound, given in [DNS23], for distinguishing the standard
normal distribution N(0, 1)" from N(0, 1)" |f‘1(1) where f is an un-
known origin-centered LTF (i.e. a degree-1 PTF); both arguments
use a variation distance lower bound between a standard multi-
variate normal distribution and a multivariate normal distribution
with a suitable slightly perturbed covariance matrix. Our lower
bound argument in the current paper combines tools from the LTF
lower bound mentioned above with ingredients (in particular, the
use of a “shadow sample”; see Section 4 of the full version) from a
different lower bound from [DNS23] for symmetric slabs; extends
the [DNS23] analysis from degree-1 to degree-d for any constant
d; and gives a tighter analysis than [DNS23] which does not lose
any log factors.

We end this discussion of related work with the following over-
arching high-level question, which we hope will be investigated in
future work: Suppose P is a background distribution and ¥ is a
class of Boolean functions. Under what conditions can we distinguish
between D = P versus D = Pl (for some f € F) with sample
complexity asymptotically smaller than the sample complexity of
learning ¥ ? We view our results on distinguishing truncation by
PTFs as a step towards answering this question.

2 PRELIMINARIES

We write N := {0, 1,...} and 1{-} for the 0/1 indicator function.
We will write

C?):{Sghﬂﬂﬂ:d}

Let (R, i) be a probability space. For n € N, we write L2(R", u®™)
for the (real) inner-product space of functions f : R — R with
the inner product

(f.9)= E

Nﬂ®n

[f(x) - g(x)].

Here p®" denotes the product probability distribution on R”. For
q > 0 we write

Ifllg = E,, [I6o1] .

In particular, for f : R® — {0, 1}, we write Vol(f) = ||flli =
E[f(x)] where x ~ u®".

We say that a function f : R" — {0, 1} is a degree-d polynomial
threshold function (PTF) if there exists a polynomial p : R” — R of
degree at most d such that

fx) =1{p(x) = 0}.

The primary class of distributions we will consider throughout is
that of truncations of an i.i.d. product distribution p®" by a degree-
d PTF of at least some minimum volume; more precisely, we will
consider the following class of truncations:

Cerr(d, @) == {p®" lf-11) * f is a degree-d PTF with Vol(f) > a}

1)
where a = a(n) may depend on n (in fact we will be able to take
as small as 2_6(‘/@). Throughout the paper we will assume that d
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(the degree of the PTFs we consider) is a fixed constant independent
of the ambient dimension n.

2.1 Harmonic Analysis over Product Spaces

Our notation and terminology in this section closely follow those of
O’Donnell [O’D14]; in particular, we refer the reader to Chapter 8
of [O’D14] for further background.

Definition 5. A Fourier basis for L*(R, p) is an orthonormal basis
B ={xo0, x1,- .-} with yp = 1.

It is well known that if L2 (R, p)is separable,2 then it has a Fourier
basis (see for e.g. Section 1.4 of [Con19]). Note that we can obtain a
Fourier basis for L2(R", u®™) by taking all possible n-fold products
of elements of B; more formally, for a multi-index @ € N", we
define

Xa(x) = l_[ Xo (xi).
i=1

Then the collection B, := { Xa : @i € N"} forms a Fourier ba-
sis for L2(R™, u®"); this lets us write f € L?(R™, u®") as f =
Yaenn f(@)ya where

f@) = (f. xa)

is the Fourier coefficient of f on a.

We can assume without loss of generality that the basis elements
of L2(R, p1), namely {)(0, Xis-- } are polynomials with deg(y;) = i.
This is because a polynomial basis can be obtained for L?(R, y1)
by running the Gram-Schmidt process. By extending this basis to
L2(R™, u®") by taking products, it follows that we may assume
without loss of generality that for a multi-index @ € N, we have

deg(xa) = || where
n
|| := Z a;.
i=1

We will also write #a := |supp(a)| where supp(@) := {i : a; # 0}.

Remark 6. While the Fourier coefficients {f(a)} depend on the
choice of basis { Xa }, we will always work with some fixed (albeit
arbitrary) polynomial basis, and hence there should be no ambiguity
in referring to the coefficients as though they were unique. We
assume that the orthogonal basis { y, } is “known” to the algorithm;
this is certainly a reasonable assumption for natural examples of
hypercontractive distributions (e.g. distributions with finite support,
the uniform distribution on intervals, the Gaussian distribution,
etc.), and is in line with our overall problem formulation of detecting
whether a known background distribution has been subjected to
truncation.

As a consequence of orthonormality, we get that for any f €
L2(R™, u®™), we have

[fe] =Fo™  and  IfIE= D fl@?

aeN”

with the latter called Parseval’s formula. We also have Plancharel’s
formula, which says that

(f.9)= D, fl@gia)

aeN”

E
x~p®"

?Recall that a metric space is separable if it contains a countable dense subset.
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Product Distribution D Cq
Gaussian Distribution N(0, 1)" [AS17] q—1
Uniform Measure on {—1, +1}" [0'D14] q-1
Finite Product Domains (Q", p®") [Wol07] 3 m§1(;4)

Table 1: Examples of hypercontractive distributions, along
with their accompanying hypercontractivity constants.
Here min(y) denotes the minimal non-zero probability of
any element in the support of the (finitely supported) dis-
tribution p.

Finally, we write

wk[f]= Y fl@?  and  WF[f]:= | fle)?
|a|=k la|<k
for the Fourier weight of f at level k and the Fourier weight of f up
to level k respectively.

2.2 Hypercontractive Distributions

The primary analytic tools we will require in both our upper and
lower bounds are consequences of hypercontractive estimates for
functions in L2(R", u®"); we refer the reader to Chapters 9 and 10
of [0'D14] for further background on hypercontractivity and its
applications.

Definition 7. We say that (R, y) is hypercontractive if for every
q 2 2, there is a fixed constant C4(p) such that for every n > 1 and
every multivariate degree-d polynomial p : R” — R we have

pllg < Cq(w)? - lipllz (2)
where Cq(p) is independent of n and satisfies
Cq(n) < KNg 3

for an absolute constant K. When the product distribution p®" is
clear from context, we will sometimes simply write Cq := Cq(u)
instead.

Itis clear from the monotonicity of norms that Cq > 1; see Table 1
for examples of hypercontractive distributions with accompanying
hypercontractivity constants Cq(y).

Remark 8. We note that Definition 7 is not the standard definition
of a hypercontractive product distribution (cf. Chapters 9 and 10 of
[O’D14]), but is in fact an easy consequence of hypercontractivity
that is sometimes referred to as the “Bonami lemma.” The guaran-
tees of Equations (2) and (3) are all we require for our purposes,
and so we choose to work with this definition instead.

Remark 9. While Equation (3) may seem extraneous, we note
that the “level-k inequalities” (Proposition 11) crucially rely on this
bound on the hypercontractivity constant Cg.

We turn to record several useful consequences of hypercontrac-
tivity which will be crucial to the analysis of our estimator as well
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as to our lower bound. We defer the proofs of Propositions 10 and 11
to the full version of this paper.

The following anti-concentration inequality is a straightforward
consequence of hypercontractivity. A similar result for arbitrary
product distributions with finite support was obtained by Austrin—
Hastad [AHO09], and a similar result for functions over {-1, +1}"
with the uniform measure was obtained by Dinur et al. [DFKO06].
The proof of the following proposition closely follows that of Propo-
sition 9.7 in [O'D14]:

Proposition 10 (Anti-concentration of low-degree polynomials).
Suppose (R™, u®™") is a hypercontractive probability space. Then for
any degree-d polynomial p : R" — R with E[p] = 0 and Var[p] = 1,
we have

1
lpG)l = 2 | > 0.5625 - @

Pr
X~}1®"

for a constant ¢ := ¢(p) independent of n.

The following proposition bounds Fourier weight up to level k
(i.e. WSK[f]) in terms of the bias (i.e. the degree-0 Fourier coeffi-
cient) of the function. We note that an analogous result for functions
over {—1, +1}" with the uniform measure is sometimes known as
“Chang’s Lemma” or “Talagrand’s Lemma” [Cha02, Tal96]; see also
Section 9.5 of [O’D14].

Proposition 11 (Level-k inequalities). Suppose (R, y) is hypercon-
tractive and f : R" — {0, 1} is a Boolean function. Then for all

1<k <2log (#(f)) we have

k
Wsk[f] < Kk VOl(f)z . log (\%(f)))

where K is a constant independent of n.

Remark 12. We note that the Proposition 11 also holds for bounded
functions f : R" — [—1, 1] with Vol(f) := E[| f]], although we will
not require this.

3 AN O(n%/?)-SAMPLE ALGORITHM FOR
DEGREE-d PTFS

In this section, we present a O(n?/2)-sample algorithm for distin-
guishing a hypercontractive product distribution p®" from p®"
truncated by the satisfying assignments of a degree-d PTF. More
precisely, we prove the following in Section 3.2:

Theorem 13. Let ¢ > 0 and let (R, y) be hypercontractive. There
is an algorithm, PTF-DISTINGUISHER (Algorithm 1), with the follow-
ing performance guarantee: Given access to independent samples
from any unknown distribution O € {u®"} U Cprr(d, 2_‘/2), the
algorithm uses T samples where

pd/2

min {l, e/(1—c¢),c®@d/(1 - 5)}2

TZZG)d

with ¢ := ¢(y) as in Proposition 10, runs in O4(T - n%) time, and

(1) If D = p®", then with probability at least 9/10 the algorithm
outputs “un-truncated;”
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Input: D € {u®"} U Cprr(d, 2_\/2)» e>0

Output: “Un-truncated” or “truncated”

PTF-DISTINGUISHER(D):

(1) Draw 2T independent sample points
x(l), .. .,x(T),y(l), .. .,y(T) ~ D, where

nd/2

T := @d 5 |
min {1, e/(1-¢),c®d/(1- s)}

(2) Compute the statistic M where

with

and g(f) defined similarly.
(3) Output “truncated” if M > min {1, (L), @} and

“un-truncated” otherwise.

Algorithm 1: Distinguisher for degree-d PTFs. Throughout
the algorithm the constant ¢ := c(y) is as in the proof of
Lemma 15.

(2) If dyy (1®", D) = ¢ (equivalently, D = ,u®”|f for some

degree-d PTF f with 27V? < Vol(f) < 1 — ¢), then with
probability at least 9/10 the algorithm outputs “truncated.”

Before proceeding to the proof of Theorem 13, we give a brief
high-level description of Algorithm 1. The algorithm draws 2T
independent samples {x(D, y(i)} ieT where T is as above, and then
performs a feature expansion to obtain the 2T vectors {f(l), y(l)} ieT
where

7 .= (&)
o (Xa(x ))15|zx|§d
and y“) is defined similarly. The statistic M employed by the al-
gorithm to distinguish between the un-truncated and truncated is
then given by

(1) First computing the average of the kernelized %) vectors
and the kernelized 'y'(i) vectors; and then

(2) Taking the inner product between the two averaged kernel
vectors.

An easy calculation, given below, relates the statistic M to the
low-degree (but not degree-0) Fourier weight of the truncation
function (note that if no truncation is applied then the truncation
function is identically 1). The analysis then proceeds by using anti-
concentration of low-degree polynomials to show that the means of
the estimators differ by Q,(1) between the two settings. We bound
the variance of the estimator in both the un-truncated and trun-
cated setting (using the level-k inequalities at a crucial point in the
analysis of the truncated setting), and given a separation between
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the means and a bound on the variances, it is straightforward to
distinguish between the two settings using Chebyshev’s inequality.

Remark 14. We note that the trick of drawing a “bipartite” set of
samples, i.e. drawing 2T samples {x(D), y(i)}l-eT, was recently em-
ployed in the algorithm of Diakonikolas, Kane, and Pensia [DKP22]
for the problem of Gaussian mean testing. For our problem we
could have alternately used the closely related estimator M’ given

by »
, T —(i) ~(j
M’ := (2) #Ej <x( ),x(])>

to distinguish between the un-truncated and truncated distribu-
tions via a similar but slightly more cumbersome analysis. We note
that the main technical tool used in the analysis of Diakoniko-
las, Kane, and Pensia [DKP22] is the Carbery-Wright inequality
for degree-2 polynomials in Gaussian random variables, whereas
our argument uses the above-mentioned kernelization approach
and other consequences of hypercontractivity, namely the level-k
inequalities, beyond just anti-concentration.

3.1 Useful Preliminaries

The following lemma will be crucial in obtaining a lower-bound for
the expectation of our test statistic E[M] in the truncated setting;
we note that an analogous statement in the setting of the Boolean
hypercube was obtained by Gotsman and Linial [GL94].

Lemma 15. Suppose (R, ) is hypercontractive. If f : R" — {0,1}
is a degree-d PTF, then

2
Z fla? > Q(min {Vol( ), 1= Vol(f), Cg(d)})

1<|a|<d
for an absolute constant ¢ := ¢(u) € (0, 1].

ProoF. We may assume that

fx) =1{p(x) > 6}
where p : R" — R is a degree-d polynomial with E[p(x)] = p(0™) =
0 and ||p||§ = Var[p] = 3, p(a)? = 1. By Cauchy-Schwarz and
Plancherel, we get

D, flar=

1<]a|<d

>, fa@?

1<|a|<d

D, Bt

1<|a|<d

2

v

>, f@-pla
1<|a|<d
(E[Fe0-pw0]) @

where we made use of the the fact that p is a degree-d polynomial
with p(0") = 0 and Var [p(x)| = 1. Note that by Proposition 10, we
have that either

p(x) > %] > Q(cd) or

2

Pr

x~y®"

>Q (cd).
®)
Suppose that it is the former. (As we will briefly explain later, the

argument is symmetric in the latter case.) We further break the
analysis into cases depending on the magnitude of 6.

1
NPrm [p(x) < -3

x~p
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Case 1: 0 > % In this case, we have by Equation (4) that

—~ 2
> F@?z (B[f0-p)])
1<|a|<d
2
= (E [1p(x)ze 'P(X)])
> (Vol(f) - 6)°
> Q(Vol(f)2),
and so the result follows.
Case 2:0 < 0 < % In this case, we have by Proposition 10 that

s Q(cd).

Vol(f)= Pr |[p(x)>06]> Pr [p(x)z—
x~”®n x~‘u®n 2

Once again by Equation (4), we have

> TPz (E[f)-p0)])

1<|a|<d
2
1 1
> (—Pr )
2

p(x) >
> o(0@),

2
where the second inequality follows from f - p being always
non-negative and at least % with probability Pr[p(x) > %].

Case 3: 0 < 0. Consider the degree-d PTF fT := 1 — f given by
1) = 1{p(x) < 6}.

It is easy to check that |F(a)| = |]?(a)| for all S # 0 and that
Vol(f) = 1 — Vol(f). Repeating the above analysis then gives that

S F@r= Y fi@?
1<|e|<d 1<|e|<d

Q(Vol( iy c®(d))

\

= (1= Vol(f)* - @),
Putting Cases 1 through 3 together, we get that
2
> F@? = Q(min {VOl( £).1=Vol(f), c@)(d)}) . (6
1<|a|<d
completing the proof. Recall, however, that we assumed that

e [ = 3] > o)

in Equation (5). Suppose that we instead have

Pr |p(x) < —%] > Q(cd).

X~ p®n

Then note that the same trick used in Case 3 by considering f
instead of f and repeating the three cases completes the proof. O

We will also require the following two lemmas which are closely
linked to the linearization problem for orthogonal polynomials (see
Section 6.8 of [AAR99]). The first lemma bounds the magnitude of
the Fourier coefficients of the product of basis functions; while the
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estimate below relies on hypercontractivity, we note that exact ex-
pressions for the Fourier coefficients are known for various classes
of orthogonal polynomials including the Chebyshev, Hermite, and
Laguerre polynomials.

Lemma 16. Suppose (R, p) is hypercontractive. Let a, f,y € N™.
Then

<Xoc7)(ﬁ 'Xy> < Cy(p)PIHIYL,

Proor. Using Cauchy-Schwarz, we have that

<)(0u Xp Xy> = Lo [xa(x) : ()(ﬁ(x) : Xy(x))]

<\ B LraeP] B [apte? -1y
X~ X~H

A ey

due to the orthonormality of y,. Using Cauchy-Schwarz once
again, we have that

1/4
oo 1)< [ B o], o)
= llxglla - llxylla
< Cy(p) /A1y

where the final inequality uses hypercontractivity and the fact that
Xp (xy respectively) is a polynomial of two-norm 1 and degree at
most |B| (at most |y| respectively). O

Finally, we also require the following combinatorial lemma:

Lemma 17. Given d € N and a fixed multi-index a« € N" with
|| := k < 2d, we have

‘{(ﬂs v :Bl Iyl < d, <Xas)(ﬁ)(y> # 0} < od(nd—fk/ﬂ)

where f,y € N™.

Proor. We will upper bound the number of pairs (f, y) such
that |f], |y| < d and <)(a, )(ﬁ)(y> # 0; so fix such a pair (8, y).

We first note that for any i ¢ supp(a), we must have f; = y;;
for otherwise < Xos Xp XY> = 0 due to orthonormality of yg, and
Xy;- Also, for each i € supp(a), we must have f; +y; > a;, since if
Bi +vi < aj, then

<Xﬁ,- 'Xyl-’)(ai> =0
by orthonormality and the fact that g, - xy, is a linear combination

of basis functions {y;j}j<a;.
Summing over all i € supp(«), we get that

Z Pi+yi= Z a; = |al,
iesupp(a) iesupp(a)
and so it follows that either

> pi=[k/2] or > vz [k/2)

iesupp(a) iesupp(a)
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without loss of generality we suppose it is the former. It follows that
the total number of ways of choosing such a pair (f, y) is bounded

by

d-[k/2] ,
0a()-0g(1)- ) (n—Isupp(@)ly
j=0
which in turn is
d-Tk/2]
0q()- > nl < 0y(n?TK2D),

j=0
where
o The first two O4(1) factors bound the number of possible
outcomes of (Bi);csupp(a) (recall that each f; € [0,d] and
[supp(a)| < 2d) and (y);esupp(a) TeSPectively); and
e The third term on the LHS upper bounds the number of
choices for () igsupp(ar)’ Recall that for i ¢ supp(ar) we must

have f; = y;, and so
(ﬁi)iésupp(a) = (Yi)igsupp(a)

so we need only bound the number of choices of (;)

ie!supp(a);
moreover, as
>pi<d and Y pi=[k/2]
i iesupp(a)
we must have
> pisd-[k/2],
ig¢supp(a)
completing the proof. O

3.2 Proof of Theorem 13
Proof of Theorem 13. Throughout, we will write

m:=#{a eN":1< |a| <d}.
Recalling that there are at most (n”kc_l) multi-indices @ € N" with
|a| = k, we have that
m< Od(nd).
We compute the mean and variance of the estimator M in each

case (i.e. when D = y®" and when D € Cprr(d, 2"/2)) separately.
Case 1: D = p®". For brevity (and to distinguish the calculations
in this case from the following one), we denote the un-truncated
distribution by
Du = /1®n
When x(l), . ,x<T), y(l), o, y(T)
of the inner product that

L I
:T_Z:

~ Dy, we have by bi-linearity

E [<;<i>,yo>>]

11)3 Xa(X) - xa(y)]

N

DEu )(a(x)

<Z<
Z Z])Eu [Xa (y)]

=0 @)
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as x,y ~ D, are independent samples and also because of the
orthonormality of { yq }.
Turning to the variance, we have

T
\gur[M] ;4(2 Va:lr <f(i),y(f)>]) (8)

-wlg lea]-gleal) o

where x,y ~ D are independent samples. In this case, we have by
our previous calculation (Equation (7)) that this is in fact equal to

Var[M] = %(g [(i 9)(", 35)])

Dy

—) (10)

where we used orthonormality as well as the fact that Eg | [’g . 'y'T] =

Id,.

Case 2: d1y (1®", D) > ¢ with D € Cprp(d, Z_W). For brevity,
we denote the truncated distribution by

Dy = }l®n|f—1(1).

In this case, f : R" — {0, 1} is a degree-d PTF with

Vol(f) e [z—ﬁ, 1- g].

We may assume that f(x) = 1{p(x) > 6} wherep : R* — R
is a degree-d polynomial with p(0™) = 0 and ||p||§ = Var[p] =
2a 5(“)2 =1

We have the following easy relation between the Fourier co-
efficients of f and the means of the characters { y,} under the
truncated distribution Dy:

f( @)
VB L] = i B el = g an
We thus have
Z a0l B [re(w)]
| t
__ 1 2
B Vol(f)? IS%Sdf(O‘)
' olmi _ @l)’
> S Q(mm {Vol(f),l Vol(f), ¢® })
2
. 1 —Vol(f) 0@
> Q(mm {1, (T(f))y W(f) (12)
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where the second line follows from Equation (11) and the final
inequality is due to Lemma 15; here ¢ := ¢(p) is as in Proposition 10.

Turning to the variance of the estimator, we have as before by
Equation (9) that

Var[M] =
Dt[ ]

IA

“SIEI| Y xere)

1<|a|<d

:%E Z

" 1=1BlLlyl=d

X0 xy () xp@®)xy (y)

2
= — E .
2 1§|ﬁ%:y\sd1)’ [Xﬁ)()’]

Similar to Equation (11) we can write

2
E [0
D
1<|BLlyl<d ="

2
= (ﬁ(f) :, [f'Wr])

1<|fl.lyl=d

1
Vol (/2 Z gu IR Z <Xﬁxy,xa>xa

1<|Bl.lyl<d la|<2d

1

=VelF7 > (kpay ) f@

1<|fly|<d \ |a|<2d
2

04(1) -
< If(a)l-l( Xy e io) (13)
Vol(f)? 1s|ﬁ%y|sd \alzszd < P >

where the O4(1) factor in Equation (13) comes from the RHS of
Lemma 16. Now, observe that for a fixed (f,y) pair with 1 <
IBl, ly| < d there are O4(1) many multi-indices « such that

<X,B)(Y’Xa> #0

as we must have supp(a) C supp(f) U supp(y). Combining this
observation with the Cauchy-Schwarz inequality

( )t( )

M-
-
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we have

1];:, [Xﬁ)(y]z

1<|l.ly|<d

< %1)2
VoIV s ¢ 417y 1<d 12

2
Vollf)* | 2a 1217 Ty 1<
d

o) $ sy

Vol(f)? £ |52k 1< 41T 1<a

5o g T 0 )

k=0 |a

flay?- 1(<XﬁXY’Xa> # 0)

fl@?- 1(<Xﬁ)(y7)(a> # 0)

Flay?- 1(<Xﬁ’)(y’)(a> # 0)

where the final inequality is due to Lemma 17. Finally, we have that

E [x;m]z (14)
1<IfLTy|<d
< o) S, (-THr21) . w( )
" Vol(f)2 &4
k
0a(1) & d-[k/2] 2
< T ];)Od(n ) - [ Vol log(v l(f)) (15)
2d
< 04(1) Z Od(nd_rk/z]) - nk/?
k=0
< 04(1) - n, (16)

where Equation (15) is by the level-k inequalities (Proposition 11)

and Equation (16) uses the fact that Vol(f) > 2~Vn (which is by
assumption). Putting everything together, we get that

nd

Var[M] < Oy4| =
Dt[] d

= (17)

To summarize, when D = p®"

and (10) that

, we have from Equations (7)

nd

E [M]=0 d  Var[M] = 04| =
ou[] an Z§lur[] d|\ 72

(18)

On the other hand, when D € Cprp(d, 27 V") with drv(D, p®") >
¢, we have from Equations (12) and (17) that

2

e ) [
E [M] > Q| min 1,( ), (19)

Dy 1-¢ 1-¢

and
nd

Var[M] < O4| = 20
Zgltr[ 1< 04 = (20)
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For the number of samples being

qd/2

T =04 3
min {1, e/(1—¢),c®@ /(1 - 6‘)}

the correctness of the distinguishing algorithm Algorithm 1 follows
directly from Equation (18) and Equations (19) and (20) by a simple
application of Chebyshev’s inequality. O
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