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Abstract

Diffusion model has become a main paradigm for synthetic data generation in
many subfields of modern machine learning, including computer vision, language
model, or speech synthesis. In this paper, we leverage the power of diffusion model
for generating synthetic tabular data. The heterogeneous features in tabular data
have been main obstacles in tabular data synthesis, and we tackle this problem
by employing the auto-encoder architecture. When compared with the state-of-
the-art tabular synthesizers, the resulting synthetic tables from our model show
nice statistical fidelities to the real data, and perform well in downstream tasks
for machine learning utilities. We conducted the experiments over 15 publicly
available datasets. Notably, our model adeptly captures the correlations among
features, which has been a long-standing challenge in tabular data synthesis. Our
code is available at https://github.com/UCLA-Trustworthy-Al-Lab/AutoDiffusion.

1 Introduction

The creation of synthetic tabular data is invaluable for research, testing, and analysis, especially
when real-world data is scarce or sensitive. It facilitates scenario exploration, algorithm testing, and
practical data analysis experiences for students and professionals. Additionally, synthetic tabular
data serves as a benchmark for evaluating data processing and predictive models, ensuring safe
performance assessment. It addresses privacy, data scarcity, and accessibility issues, offering new
possibilities for data-driven research in academia and industry.

Given the importance of synthesizing tabular data, many researchers have put enormous efforts on
building tabular synthesizers with fidelity and utility guarantees. CTGAN [24] and its variants [25,
26] (e.g., CTABGAN, CTABGAN+) have gained popularity for generating tabular data using a
Generative Adversarial Networks [8] (GANs). These models employ advanced data encoders,
modeling continuous variables with Gaussian Mixture models (GMM) and discrete variables with
one-hot encoding. However, GMM may not work well for certain real-world continuous variables,
and one-hot encoding can increase data dimensionality for discrete variables, requiring large neural
networks.

With the rise of Dalle-2 [20], diffusion models [23] have excelled, outperforming Generative Adversar-
ial Network (GAN)[8] models in various domains like image synthesis[4], medical imaging [17], etc.
Recently, diffusion-based tabular synthesizers, like Stasy [11], have shown promise by preprocessing
data with min-max scaling and one-hot encoding, outperforming GAN-based methods in various
tasks. Yet, score-based diffusion models [23] weren’t initially designed for heterogeneous features.
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Newer approaches, such as those using Doob’s h-transform [15], TabDDPM [13], and CoDi [14], aim
to address this challenge by combining different diffusion models [23, 10] or leveraging contrastive
learning [22] to co-evolve models for improved performance on heterogeneous data. Following this
line of research, we present a new tabular data synthesizer combining the ideas of auto-encoder and
diffusion model referred as AutoDiff. In the next subsection, we specify the contributions of our
model in the context of challenges of tabular synthesizing.

1.1 Main Contributions

In this subsection, we present three challenges of tabular data synthesizing and the main ideas of our
model AutoDiff to tackle those issues. To facilitate the understandings of AutoDiff model, the ideas
are often highlighted by brief comparisons with the other state-of-the-art (SOTA) models

Heterogeneous features are the most challenging issue for building a tabular synthesizer, as real-
world tables frequently have numerical, discrete, or even mixed-type features. We are tackling this
challenge by combining the ideas from auto-encoder and score-based diffusion model [23]. An
autoencoder is a type of neural network architecture that learns to encode input data into latent
representations and reconstruct them back to the original input. We leverage the power of autoencoder
for learning the “continuous respresentations” of the original heterogeneous features in the latent
space. Then, the learned representations are fed to diffusion model to generate new latent representa-
tions. The trained decoder translates the newly generated representations back to the form of original
heterogeneous features. This idea nicely takes the advantages of both models as auto-encoder can
deal with the heterogeneous features and diffusion model has been showing the great performances
for learning the distributions on continuous space.

Mixed-type feature is a type of features commonly observed in many real-world tabular data, where
it has both numerical and discrete components. These features are specifically difficult to capture
as most of generative models only focus on either learning distributions on numerical or discrete
domains. So it is not clear by simply combining the two different models which are separately
designed for numerical and discrete variables. In this paper, we tackle this issue by creating a dummy
variable which encodes the frequency of repeated values in a mixed-type feature. This dummy
variable is appended to the pre-processed table as an input to the autoencoder so that the latent
representations of autoencoder include the information about the dummy variable. The new latent
representations generated from diffusion model are decoded back through pre-trained decoder. The
output of decoder has both mixed-type feature and corresponding dummy feature. The information
of these two features are combined together as the final output. More detailed descriptions are given
in section 2. It should be noted the mixed-type encoder introduced in [25] is different from ours
in a sense that they directly encode the rows via one-hot-encoding and parameters in GMM. To
showcase the performance of our idea, we present comparison plots of generated versus real data of a
mixed-type variable over 6 different models in Figure 1.

Correlations of features are important statistical objects that need to be captured when building a
tabular synthesizer. Yet, due to the heterogeneous nature of tabular data, capturing these correlations
is even more demanding than capturing correlations among purely numerical or discrete features.
AutoDiff naturally circumvents this challenge by its construction as diffusion model learns the joint
distribution of latent representations in the continuous space. As long as auto-encoder in AutoDiff
gives good latent representations of rows in the table, it should be expected AutoDiff can nicely
capture the correlations among features. We would like to emphasize this contribution by contrasting
our idea with the SOTA diffusion based method, TabDDPM, where each categorical variables are
considered as independent (i.e., they use separate forward diffusion process for each categorical
variable.) and the categorical and numerical variables are also modelled as independent since they
used two different types of diffusion models for numerical and discrete variables, respectively. Similar
arguments can be made for GAN-based methods (i.e., CTGAN, CTABGAN+) as they separately
employ the GMM for numerical features. We perform comparative experiments of these models with
ours on various real world datasets whose results are given in Table 1 in section 3.

Numerical comparisons of AutoDiff with other models (with publicly available codes), namely,
CTGAN [24], TVAE [24], CTABGAN+ [26], Stasy [11], and TabDDPM [13] are conducted compre-
hensively across 15 real-world datasets under various metrics. In addition to the models mentioned
above, we introduce the AutoGAN model, which is a customized adaptation of MedGAN [3]. This
inclusion is specifically tailored for the purpose of comparing diffusion model’s performance with
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Figure 1: Comparison histograms of a generated and real “Mixed-type” feature over 6 models. The
feature presented in the plot is “Length of Conveyer” in faults dataset.

GAN model’s under same auto-encoder. Specifically, qualities of generated tables are measured
through (1) statistical fidelities, (2) machine learning utilities in downstream tasks, and (3) privacy
guarantees via Distances to Closest Records (DCR) in [25].

2 Proposed Method

In this section, we provide detailed descriptions on each component in our model. Pre-and post-
processing steps of the input and synthesized tabular data are introduced. Then, constructions on
auto-encoder and diffusion models are provided.

Pre- and post-processing steps. It is essential to pre-process the real tabular data in a form that the
machine learning model can extract the desired information from the data properly. We divide the
heterogeneous features into three categories; (1) numerical, (2) discrete, and (3) mixed-type features.
Following is how we categorize the variables, and process each feature type. Let x be the column of
a table to be processed.

1. Numerical feature : If X’s entries are real-valued continuous, we categorize x as a numerical
feature. Moreover, if the entries are integers with more than 25 distinct values, e.g., “Age
in adult-income dataset”, the x is categorized as a numerical variable. Here, 25 is a
user-specified threshold. We will be using either min-max scaler or gaussian quantile
transformation from scikit-learn library [19] for pre-processing numerical features. Hereafter,

Proc
we denote xyr, as the processed column.

2. Discrete feature : If X’s entries have string datatype, we categorize x as a discrete feature,
e.g., “Gender”. Additionally, the x with less than 25 distinct integers is categorized as a
discrete feature. For pre-processing, we simply map the entries of x to the integers greater
than or equal to 0, and further divide the data type into two parts; binary and categorical,
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denoting them as x5} and X .

3. Mixed-type feature : Let’s say x is categorized as a numerical feature. If certain values in
the x are repeated more than h-percentages of the entire data points, we consider the x as
the mixed-type feature. Here, h is a user-specified parameter, and we set it as 1 throughout
this paper. The idea to encode the mixed-type variable is to create another discrete feature
variable y, which encodes the labels of entries in x. We label the entries repeated less than
h-percent as 0Os. For entries repeated more than h-percent, we label them with the integers
from 1 to K in the order of frequent repetition. Here, K is the total number of entries which
are repeated more than h-percent of the entire data points.

4. Post-processing step : After the AutoDiff model generates a synthetic dataset, it must be
restored to its original format. For numerical features, this is achieved through inverse
transformations, such as reversing min-max scaling or using inverse normal transformations.
Integer labels in discrete features are mapped back to their original categorical or string
values. For mixed-type features, denote y*" as the newly synthesized column from the Au-
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Figure 2: Structures of AutoDiff and AutoGAN models. Here z are random inputs to the models for
newly generated latent vectors x4,

toDiff model of the dummy variable y generated in the item 3. We combine the information
of x*" and y™" leaving the entries in x*¥" as they are, if the corresponding labels in y*¥" are
0. If the labels in y*™" are the integer values greater than 0, then the corresponding entries in
x*" are replaced with the repeated values used to encode y.

Auto-encoder. The pre-processed input data x7¢ := [xo¢ : xFroc; xProe] g fed into the auto-encoder
i.e., AE, and AE learns the latent representations of the input data. Network architecture of the AE
simply consists of multilayer perceptron blocks with ReLLU activation function.

MLPBIlock(x) = ReLU(Linear(x))
xM = Linear(MLPBlock(- - - MLPBlock(x"))) (1)
x°" = Linear(MLPBlock(- - - MLPBlock(x"*))) )

Let xQut xg]-“nt, and xg‘i‘[‘ be the numerical, binary, and categorical outputs of the decoder (2). Note

Num>
that the dimensions of xQ and x9" are same with their corresponding inputs, but the dimension

of x2% is Y, K; where K; is the number of categories in each categorical variable. We set the
dimensions of output features in this way as we used the mean-squared (MSE), binary cross entropy
(BCE), and cross entropy (CE) in Pytorch package. Additionally, in order to keep the domain of the
original numerical features, (e.g., “Age” cannot be negative.) we truncate the output of xQ%  with

Num
min and max values of x{'°¢ . Finally, we minimize the following objective function:

MSE (xim, XXum) + BCE(xgin, xpin) + CE(xCiy, x2it)- ©)

Lat Proc

It should be noted that the dimension of x-*' is kept same with that of x
other layers are set as 250 throughout the paper.

and the outputs of all the

Stasy- & Tab-AutoDiff. The score-based diffusion model [23] is utilized to generate new latent

representations of x™. Due to space limitations, we defer the detailed descriptions of the diffusion
model to Appendix B. In this work, we utilize Variance Preserving (VP)-SDE for data perturbation,
and Euler-Maruyama method [23] for sampling over the experiments. Here, we devise two types
of AutoDiff models. Stasy-AutoDiff (resp. Tab-AutoDiff) adopts the same time-dependent score
network used in Stasy [11] (resp. TabDDPM [13]) and min-max scaler (resp. Gaussian Quantile
Transformation) is used for pre-processing numerical variables. The constructions of the score
networks with detailed architectural settings for two models are deferred to Appendix B. The reason
for employing the same score networks is to facilitate comparisons of the performances between the
Stasy-AutoDiff (resp. Tab-AutoDiff) and Stasy (resp. TabDDPM). (The néive form of Stasy without
fine-tuning step is employed in this work.) The overall pipeline of AutoDiff is given in Figure 2.

Med-AutoDiff & AutoGAN. MedGAN [3] has a very similar structure with AutoDiff in a sense that
they used the idea of combining auto-encoder and GAN model. The model is only applicable to
datasets with discrete variables. Notably, they used MSE for categorical variables instead of CE-loss
in (3). Following this set-up, we modify the loss (3) and refer the trained model as Med-AutoDiff.
Furthermore, we design AutoGAN model which is applicable to heterogeneous features. We take the
advantage of auto-encoder mentioned above, and used the same generator and discriminator in GAN




Marginal Joint
Models Num Dist. Cate Dist. Num-Num Cat-Cat Num-Cat
(Wasserstein) | (Jensen Shannon) | (Pearson Corr) | (Theil’s U) | (Correl Ratio)
CTGAN 5.10 3.86 1.60 0.27 0.35
TVAE 4.05 5.77 0.93 0.70 0.30
CTABGAN+ 4.63 4.61 1.59 0.39 0.53
Stasy 7.95 5.23 2.88 0.26 0.56
TabDDPM 4.42 5.11 2.16 0.35 0.60
AutoGAN 6.49 5.23 0.78 1.65 0.62
Stasy-AutoDiff 3.57 4.42 0.66 0.15 0.15
Med-AutoDiff 3.67 5.32 0.46 0.69 0.37
Tab-AutoDiff 3.92 5.32 0.81 0.15 0.17

Table 1: Columns 1, 2 : Fidelity ranks of marginal distributions over all datasets in terms of Wasser-
stein distance between numerical columns and Jensen-Shannon divergence between categorical
columns. Columns 3,4,5 : L2-differences between correlation matrices computed on real and
synthesized tables under three metrics.

model introduced in MedGAN [3]. Specifically, we use the minibatch averaging for discriminator and
batch normalization and skip connection for generator. Same network architectures are used for the
constructions of networks as in [3]. The most notable difference between AutoGAN and MedGAN is
from the arguments taken in discriminator: in AutoGAN, discriminator distinguishes the real from
fake latent vectors, whereas in MedGAN, it distinguishes the real from fake decoded latent vectors,
and finetune the decoder while training discriminator. We choose to fix the parameters in decoder for
the fair comparisons with Med-AutoDiff. See Figure 2. Also note that we use the same auto-encoder
loss of Med-AutoDiff in AutoGAN.

3 Numerical Experiments & Future Works

Datasets. We collect 15 different real datasets to run the quantitative comparison experiments of
AutoDiff model. These datasets are commonly employed to test the performances of recent tabular
data synthesizers. Links for the datasets are provided in Appendix A. Across all 6 models, 10
synthetic tables for each of the 15 datasets are generated.

Fidelity Comparisons. Fidelity of the synthesized table refers to how well the generated table retains
the statistical properties of the original dataset. Inspired from [25, 13], we assess the similarities
in marginal and joint feature distributions between the real (R) and synthetic (S) tables using a
range of metrics. Specifically, for numerical features, we employ the Wasserstein distance (WD)
to quantify the differences between R and S. For categorical features, we use Jensen-Shannon (JS)
divergence to gauge the similarity in their distributions. The first two columns in Table 1 record
the averaged rankings of models for the respective dissimilarity measures applied to the columns
between the R and S across all 150 datasets considered for evaluation. Additionally, we evaluate
joint distribution quality using various methods depending on the feature types. This includes using
the Pearson correlation coefficient for numerical-numerical feature relationships, Theil’s U statistics
for assessing the dependence between categorical-categorical features, and the correlation ratio for
categorical-numerical feature associations. The last three columns in Table 1 record the averaged
L?-distance of computed correlation matrices between R and S across 150 synthesized tables for
each model. The result shows that the three AutoDiff models show either the best results (bold)
or the second best results (underlined) for all 5 metrics. It turns out that the AutoDiff recovers the
numerical features pretty well, but performs relatively poor on the recovery of categorical features,
when compared with CTGAN. The good performances on WD metric is due from the combination
of sophisticated design of auto-encoder, specifically for the mixed-type features, and the power of
diffusion model for its ability to learn continuous variables. The role of the auto-encoder is even
manifested when the result is compared with Stasy and TabDDPM. Recall that exactly the same
diffusion models with Stasy-AutoDiff and Tab-AutoDiff are employed in Stasy and TabDDPM.
Turning our attentions to correlation measures, three AutoDiff models shows the best performances
for the three metrics as presented in the Table 1. This matches with our expectations as diffusion
model in AutoDiff is designed to capture the joint distribution of x% unlike other models where
they employ different models for different data types. Stasy turns out to perform well at capturing
the correlations among categorical variables, and TVAE is good at capturing Num-Cat correlations.




Models Classification Regression
Accuracy F1 AUROC R? RMSE
Identity 0.923 0.809 0.941 0.633 1817.307
CTGAN 0.699 0.465 0.742 0.012 8052.081
TVAE 0.794 0.616 0.819 0.18 4699.311
CTABGAN+ 0.741 0.482 0.713 0.061 5518.107
StaSy 0.793 0.602 0.808 <0 1.06 x 108
TabDDPM 0.820 0.665 0.852 -9.39 17322.613
AutoGAN 0.618 0.356 0.647 <0 2.47 x 101!
Stasy-AutoDiff 0.834 0.620 0.846 0.199 4429.56
Med-AutoDiff 0.777 0.581 0.819 0.1 4281.12
Tab-AutoDiff 0.836 0.659 0.852 0.172 4679.11

Table 2: Classification/Regression Performance on Different Synthetic Data. We reported the average
of accuracy, F1 score, AUROC for classification tasks, and R? and RMSE for regression tasks.
Identity refers to the classifiers/regressors trained on the training set of the real data. Accuracy refers
to the proportion of predictions that equal the real label.

Overall AutoDiff outperforms AutoGAN model in fidelity measures for all 5 metrics. We present the
correlation plots of AutoDiff and TabDDPM for Abalone dataset in the Appendix C.

Utility Comparisons. We evaluated the efficacy of AutoDiff in preserving the Machine Learning
Utility of synthesized data, following the Train on Synthetic and Test on Real (TSTR) [7] pipeline.
For each real dataset, we split it into training/test set with the ratio of 80%/20%. Then we fit two
prediction models, one on the training set of real data and one on the corresponding synthetic table.
Finally we test the performance of both models on the test set of the real data. For classification tasks
we used Naive Bayes, K-Nearest Neighbors, Decision Tree, Random Forest, XGBoost, LightGBM,
and CatBoost. For regression tasks we used Linear Regression, Lasso regression, Decision Tree,
Random Forest. Table 2 illustrates the aggregate performance metrics averaged across all datasets, the
performances of classifiers and regressors trained on synthetic tables generated by various synthesizers
are reported. Notably, AutoDiff consistently outperforms GAN and Autoencoder-based methods,
such as CTGAN, CTABGAN+, AutoGAN, and TVAE by a substantial margin. When compared
to other diffusion-based methods, AutoDiff exhibits superior performance; it notably surpasses the
original Stasy method that does not employ autoencoder-based encoding. While the improvement that
AutoDiff demonstrates over the DDPM-based model (TabDDPM) is on-par for classification tasks,
it is significantly more pronounced for regression tasks, as evidenced by notably higher R? values
and lower RMSE scores. It is interesting to note the employment of gaussian quantile transformation
and score-network structure from TabDDPM improves the performances in classification tasks when
comparing Stasy- and Tab-Autodiffs over all three metrics.

Privacy Comparisons. Privacy is an important issue in syn-

thetic tabular data generation, and we simply measure it through _ Vodels MDCR Rank
the Distances to Closest Records (DCR) in [25]. For each syn- CTGAN 4.33
thetic sample, DCR computes the minimum L2-distance to  TVAE 7.00
real records, and Mean DCR averages these distances over al CTABGAN+ 387
synthetic samples. Essentially, low DCR indicates synthetic  Stasy 1.93
samples memorize some data points in real table, violating  TabDDPM 3.40
some privacy restrictions. In contrast, high DCR values denote ~ AutoGAN 4.93
the synthesizer generates some new data points, which cannot  ~Stasy-AutoDiff 6.13
be observed in real-table. But note that some random noises  Med-AutoDiff 7.07
can have high DCR values. Therefore, DCR should be consid-  Tab-AutoDiff 6.33

ered with fidelity and utility together. In Table 3, the averaged
rankings of Mean-DCR (MDCR) for 9 models are presented.
High ranking indicates the model has low MDCR values. The
reason why we adopt the ranking is due to the large variability
of MDCR per dataset. We present the MDCR values per each
dataset over 9 models in the Appendix D. The auto-encoder
based methods, i.e., AutoDiff, AutoGAN, TVAE, have rela-
tively higher ranks of MDCR, than non auto-encoder based methods such as Stasy or TabDDPM.
This result is expected as sophisticatedly designed auto-encoder frequently overfits the input data,
combined with the memorization issues of diffusion model [2]. We observe that the overall rank of

Table 3: Rank of MDCR over differ-
ent models. The highest rank (resp.
second to the highest) is bolded
(resp. underlined) implying synthe-
sized datasets are close to the real.



MDCR is similar to that of fidelity for numerical variables in Table 1, and strongly conjecture the
relatively good performance of TabDPPM in MDCR measure over AutoDiff is attributed to the fact
that it does not capture the correlation structures among features but shows good fidelity to individual
feature.

Future works. We believe ensuring the privacy guarantees with good statistical fidelity and utility
of synthesized tabular data is one of the most fundamental questions we should resolve. Under a
rigorous framework of differential privacy (DP) [6], further extending the current form of AutoDiff
model that satisfies the DP-constraints is the most promising directions for the future work [5, 16].
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A Real Tabular-data List

We provide the URL for the sources of each dataset considered in the paper. The provided information
also includes the downstream task that each dataset is designed for, which may include binary
classification, multi-class classification, or regression.

1. abalone (OpenML) : https://www.openml.org/search?type=data&sort=runs&id=183&status=
active (Multi class)

2. adult (Kohavi, R) : Check the reference [12]. (Binary class)
3. Bean (UCI) : https://archive.ics.uci.edu/dataset/602/dry+bean+dataset (Multi class)

4. Churn-Modelling (Kaggle) : https://www.kaggle.com/datasets/shrutimechlearn/churn-
modelling (Binary class)

5. faults (UCI) : https://archive.ics.uci.edu/dataset/198/steel+plates+faults (Multi class)
6. HTRU (UCI) : https://archive.ics.uci.edu/dataset/372/htru2 (Binary class)

7. indian liver patient (Kaggle) : https://www.kaggle.com/datasets/uciml/indian-liver-patient-
records?resource=download (Binary class)

8. insurance (Kaggle) : https://www.kaggle.com/datasets/mirichoi0218/insurance (Regres-
sion)

9. Magic (Kaggle) : https://www.kaggle.com/datasets/abhinand05/magic-gamma-telescope-
dataset?resource=download (Binary class)

10. News (UCI) : https://archive.ics.uci.edu/dataset/332/online+news+popularity (Regression)
11. nursery (Kaggle) : https://www.kaggle.com/datasets/heitornunes/nursery (Multi class)

12. Obesity (Kaggle) : https://www.kaggle.com/datasets/tathagatbanerjee/obesity-dataset-uci-
ml (Multi class)

13. Shoppers (Kaggle) : https://www.kaggle.com/datasets/henrysue/online-shoppers-intention
(Binary class)

14. Titanic (Kaggle) : https://www.kaggle.com/c/titanic/data (Multi class)

15. wilt (OpenML) : https://www.openml.org/search?type=data&sort=runs&id=40983 &status=
active (Binary class)

B Score-based diffusion model

Diffusion model consists of two processes. The first step, forward process, transforms data into noise.
Specifically, the score-based diffusion model [23] uses the following stochastic differential equations
(SDEs) [21] for data perturbation:

dx = f(x,t)dt + g(t)dW, 4)

where f(x,t) and g(t) are drift and diffusion coefficient, respectively, and W% is a standard Wiener-
process (a.k.a. Brownian Motion) indexed by time ¢ € [0,7]. Here, the f and g functions are
user-specified, and [23] suggests three different types of SDEs, i.e., variance exploding (VE), variance
preserving (VP), and sub-variance preserving (sub-VP) SDEs for data perturbation. In this paper, we
used VP-SDE defined as :

1
dx = —§ﬂ(t)xdt + /B (t)dWy, 5)
where ((t) := 5(0) + (8(1) — 5(0))t with 5(1) := 20 and 5(0) := 0.1.
The second step, reverse process, is a generative process that reverses the effect of the for-
ward process. This process learns to transform the noise back into data by reversing SDEs in (4).

Through the Fokker-Planck equation of marginal density p;(x) of (4) for each fixed time ¢ € [0, T,
the following reverse SDE [1] can be easily derived:

dx = | f(x,t) — g(t)QVx log p¢(x) | dt + g(t)dW;. 6)



Here, the gradient of log p;(x) w.r.t to the perturbed data x(t) is referred to as score function, d¢
in (6) is an infinitesimal negative time step, and dW; is a Wiener-Process running backward in time,
ie,t: T — 0.

The score function, Vylogp(x), is approximated by a time-dependent score-based model
Se(x(t),t) which is parametrized by neural networks in practice. The network parameter 6 is
estimated through minimizing the score-matching loss:

0* = argemin Eytsfe 71 Bae()¢(0) Bx(o) | A(6)? S (x(£), ) — Vi log pe(x(t) [ x(0))[[5 |, (D)

where U[e, T is an uniform distribution over [¢,7T], and A(¢)(> 0) is a positive weighting
function that helps the scales of matching-losses ||Sg(x(t),t) — Vx log po:(x(¢) | x(O))||§ to be
in the same order across over the time ¢ € [¢,T]. The ¢ is set up to prevent the divergence
of score function when t approached 0, specifically when ground-truth pg(x) is non-smooth.
We set ¢ := le™® and T = 1 throughout the paper. The weight function is often chosen as

At) 1/\/]E|| [V log pos (x(t) | x(0))]]13. We set A(t) := 1/o(t), where o(t) is a standard
deviation of x(t) | x(0): o(t) := 1 —exp ( — 1 [ B(s)ds). See Appendix B in [23].

Score network of Stasy-AutoDiff. Let d be the dimension of x* and the model is run over

t € [107°,1]. Under this setting, the score network is constructed as follows:

ho = XLat(t) € Rd,
h; = ELU(H;(h;_1,t) @ h; 1), 1<i<dn,
Sg(x"(t),t) = Linear(hg, ) € R?,

where H; (h;_1,t) is the concat-squash function [9] defined as

H;(h;_1,t) := Linear;(h;_;) ® ¢(Linears"(t) + Linear?™ (t)).

i i
Here, © is an element-wise multiplication, & means the concatenation operator, and ¢ is a sigmoid
function. Throughout this paper, we set (d1, da, d3, d4, ds) = (256,512,1024, 512, 256).

Score network of Tab-AutoDiff. Denote ¢ € [107°, 1] as a timestep, and SinTimeEmb refers to
a sinusoidal time embedding as in [18] with dimension of 128. For any fixed ¢ € [1075, 1], time
embedding f-emb and the input of the score-network x(t) is given as :

t-emb = Linear(SiLU(Linear(SinTimeEmb(t)))),
x(t) = Linear(x"*(t)) + t-emb.

All Linear layers in (11) and (12) have a fixed projection dimension 128. Then, we have the final
output of time-dependent score network can be computed as follows:

MLPBlock(x) = Dropout(ReLU(Linear(x))),
Sp(x(t),t) = Linear(MLPBlock(- - - MLPBlock(x(t)))).
In this paper, we used 4 blocks of MLP.
Note that in Stasy-AutoDiff, min-max scaler is used for processing the numerical variables,

whereas in Tab-AutoDiff, Gaussian Quantile Transformation is used for the processing of numerical
variables.
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C Correlation Plots of Abalone

We provide the correlation plots of abalone dataset of synthetic tables from Stasy-AutoDiff and
TabDDPM. The heatmaps on the top of Figures 3 and 4 display the difference of correlation plots
from real and synthetic datasets. We provide more correlation plots from models considered in the
paper in
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Figure 3: Correaltion Heatmap of “Abalone” dataset from Stasy-AutoDiff.
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Figure 4: Correaltion Heatmap of “Abalone” dataset from TabDDPM.
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D DCR values for each dataset

We provide the Mean-DCR values averaged over 10 synthetic datasets for each dataset. The smallest
(resp. second to the smallest) is colored in black (resp. underlined), which implies synthesized
datasets are close to the real.

Titanic adult HTRU Magic Bean wilt  abalone

CTGAN 5.24 109.60 10.63  29.64  9953.02  25.62 0.19
TVAE 2.24 61.10 6.93 14.54  2364.37 12.43 0.08
CTABGAN+ 4.74 247.74 16.65 2430 377849  17.35 0.16
Stasy 34.36 13150.87  94.45  82.08 55911.20 345.85 0.56
TabDDPM 4.63 126777.67  3.22 16.94 130.32 21.56 0.15
AutoGAN 2.04 720.72 5.70 24.28 645.77 12.13 0.09

Stasy-AutoDiff ~ 2.89 195.92 4.53 16.95 432.73 9.66 0.08
Med-AutoDiff 2.53 282.34 3.98 18.97 634.65 10.14 0.12
Tab-AutoDiff 3.18 107.58 3.77 18.37 196.68 13.87 0.07

Patient nursery faults Obesity  News INSR CM SHP

CTGAN 46.25 028 1148213 3.79 11587.43  35.00 693.81 30.08
TVAE 20.90 0.39 4964874 3.38 6736.04 29.03 59043 19.38
CTABGAN+  106.62  0.23 1499634  3.10 243409 4893 749.84  30.50
Stasy 81.29 0.22 3327054 4.86 2.71 x10® 1106.14 7017.03 4824.17
TabDDPM 256.59 095 4137191 98.82 705767.7 50.29 1699.10 9316.37
AutoGAN 46.80 1.01  300791.7 3.47 4010449 3547 585155 17.10

Stasy-AutoDiff 33.59 040 1529073 225 15147.05 2732 707.86 27.83
Med-AutoDiff  31.11 0.56 6883795 2.69 20369.19 30.65 896.85 28.32
Tab-AutoDiff ~ 75.77 0.22 2782499 2.65 3724533 38.22 688.58 64.98
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