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Abstract

Synthetic data generation has become an emerg-

ing tool to help improve the adversarial robust-

ness in classification tasks, since robust learning

requires a significantly larger amount of train-

ing samples compared with standard classifica-

tion. Among various deep generative models,

the diffusion model has been shown to produce

high-quality synthetic images and has achieved

good performance in improving the adversarial

robustness. However, diffusion-type methods are

generally slower in data generation as compared

with other generative models. Although differ-

ent acceleration techniques have been proposed

recently, it is also of great importance to study

how to improve the sample efficiency of synthetic

data for the downstream task. In this paper, we

first analyze the optimality condition of synthetic

distribution for achieving improved robust accu-

racy. We show that enhancing the distinguisha-

bility among the generated data is critical for im-

proving adversarial robustness. Thus, we pro-

pose the Contrastive-Guided Diffusion Process

(Contrastive-DP), which incorporates the con-

trastive loss to guide the diffusion model in data

generation. We validate our theoretical results

using simulations and demonstrate the good per-

formance of Contrastive-DP on image datasets.

1. Introduction

The success of most deep learning methods relies heavily

on a massive amount of training data, which can be expen-

sive to acquire in practice. For example, in applications

like autonomous driving (O’Kelly et al., 2018) and medical

1School of Data Science, The Chinese University of Hong
Kong, Shenzhen, China 2Department of Statistics, University of
California, Los Angeles, USA. Correspondence to: Liyan Xie
<xieliyan@cuhk.edu.cn>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

diagnosis (Das et al., 2022), the number of rare scenes is

usually very limited in the training dataset. Moreover, the

number of labeled data for supervised learning could also

be limited in some applications since it may be expensive

to label the data. These challenges call for methods that

can produce additional data that are easy to generate and

can help improve downstream task performance. Synthetic

data generation based on deep generative models has shown

promising performance recently to tackle these challenges

(Sehwag et al., 2022; Gowal et al., 2021; Das et al., 2022).

In synthetic data generation, one aims to learn a synthetic

distribution (from which we generate synthetic data) that

is close to the true date-generating distribution and, most

importantly, can help improve the downstream task per-

formance. Synthetic data generation is highly related to

generative models. Among various kinds of generative mod-

els, the score-based model and diffusion type models have

gained much success in image generation recently (Song

& Ermon, 2019; Song et al., 2021b; 2020; Song & Ermon,

2020; Sohl-Dickstein et al., 2015; Nichol & Dhariwal, 2021;

Bao et al., 2022; Rombach et al., 2022; Nie et al., 2022; Sun

et al., 2022). As validated in image datasets, the prototype

of diffusion models, the Denoising Diffusion Probabilistic

Model (DDPM) (Ho et al., 2020), and many variants can

generate high-quality images as compared with classical

generative models such as generative adversarial networks

(Dhariwal & Nichol, 2021).

This paper mainly focuses on the adversarial robust classifi-

cation of image data, which typically requires more training

data than standard classification tasks (Carmon et al., 2019).

In (Gowal et al., 2021), 100M high-quality synthetic images

are generated by DDPM and achieve the state-of-the-art

performance on adversarial robustness on the CIFAR-10

dataset, which demonstrates the effectiveness of diffusion

models in improving adversarial robustness. However, a

major drawback of diffusion-type methods is the slow com-

putational speed. More specifically, DDPM is usually 1000

times slower than GAN (Song et al., 2021a), and this draw-

back is more serious when generating a large number of

samples, e.g., it takes more than 99 GPU days 1 for gener-

ating 100M image data according to (Gowal et al., 2021).

1Running on a RTX 4x2080Ti GPU cluster.
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Moreover, the computational cost will increase dramatically

when the resolution of images increases, which inspires a

plentiful of works studying how to accelerate the diffusion

models (Song et al., 2021a; Watson et al., 2022; Ma et al.,

2022; Salimans & Ho, 2022; Bao et al., 2022; Cao et al.,

2022; Yang et al., 2022). In this paper, we aim to study

the aforementioned problem from a different perspective

– “how to generate effective synthetic data that are most

helpful for the downstream task?” We analyze the optimal

synthetic distribution for the downstream tasks to improve

the sample efficiency of the generative model.

We first study the theoretical insights for finding the optimal

synthetic distributions for achieving adversarial robustness.

Following the setting considered in (Carmon et al., 2019),

we introduce a family of synthetic distributions controlled

by the distinguishability of the representation from different

classes. Our theoretical results show that the more distin-

guishable the representation is for the synthetic data, the

higher the classification accuracy we will get. Motivated by

the theoretical insights, we propose the Contrastive-Guided

Diffusion Process (Contrastive-DP) for efficient synthetic

data generation, incorporating the gradient of the contrastive

learning loss (van den Oord et al., 2018; Chuang et al., 2020;

Robinson et al., 2021) into the diffusion process. We con-

duct comprehensive simulations and experiments on real

image datasets to demonstrate the effectiveness of the pro-

posed Contrastive-DP method.

The remainder of the paper is organized as follows. Sec-

tion 2 presents the problem formulation and preliminaries

on diffusion models. Section 3 contains the theoretical in-

sights of optimal synthetic distribution under the Gaussian

setting. Motivated by the theoretical insights, Section 4

proposes a new type of synthetic data generation procedure

that combines contrastive learning with diffusion models.

Finally, Section 5 conducts extensive numerical experiments

to validate the good performance of the proposed generation

method on simulation and image datasets.

2. Problem Formulation and Preliminaries

We first give a brief overview of adversarial robust classi-

fication, which is our main focus in this work. It is worth

mentioning that the whole framework can be applied to

other downstream tasks in general. Denote the feature space

as X , the corresponding label space as Y , and the true (joint)

data distribution as D = DX×Y .

Assume we have labeled training data Dtrain :=
{(xi, yi)}ni=1 sampled from D. We aim to learn a robust

classifier fθ : X 7→ Y , parameterized by a learnable θ, that

can achieve the minimum adversarial loss:

min
θ

Ladv(θ) := E(x,y)∼D

(
max
δ∈∆

ℓ(x+ δ, y,θ)
)
, (1)

where ℓ(x, y, θ) = 1{y ̸= fθ(x)} is the 0-1 loss function,

1{·} is the indicator function, and ∆ = {δ : ∥δ∥
∞

f ϵ} is

the adversarial set defined using ℓ∞-norm. Intuitively, the

solution to problem (1) is a robust classifier that minimizes

the worst-case loss within an ϵ-neighborhood of the input

features.

In the canonical form of adversarial training, we train the ro-

bust classifier fθ on the training set Dtrain := {(xi, yi)}ni=1

by solving the following sample average approximation of

the population loss in (1):

min
θ

L̂adv(θ) :=
1

n

n∑

i=1

max
δi∈∆

ℓ(xi + δi, yi,θ). (2)

2.1. Adversarial Training Using Synthetic Data

As shown in (Carmon et al., 2019), adversarial training re-

quires more training data in order to achieve the desired

accuracy. Synthetic data generation has been used as a

method to artificially increase the size of the training set by

generating a sufficient amount of additional data, thus help-

ing improve the learning algorithm’s performance (Gowal

et al., 2021).

The mainstream generation procedures can be categorized

into two types: unconditional and conditional generation. In

the unconditional generation, we first generate the features

(x) and then assign pseudo labels to them. In the conditional

generation, we generate the features conditioned on the

desired label. Our analysis is mainly based on the former

paradigm, which can be easily generalized to the conditional

generation procedure, and our proposed algorithm is also

flexible enough for both pipelines.

Denote the distribution of the generated features as D̃X

and the generated synthetic data as Dsyn := {(x̃i, ỹi)}ñi=1.

Here the feature values x̃i are generated from the synthetic

distribution D̃X , and ỹi are pseudo labels assigned by a

classifier learned on the training data Dtrain. Combining the

synthetic and real data, we will learn the robust classifier

using a larger training set Dall := Dtrain ∪ Dsyn which now

contains n+ ñ samples:

min
θ

{·
(
1

n

n∑

i=1

max
δi∈∆

ℓ(xi + δi, yi,θ)

)
+

(1− ·)

(
1

ñ

n∑

i=1

max
δi∈∆

ℓ(x̃i + δi, ỹi,θ)

)}
,

(3)

where · ∈ (0, 1) is a parameter controlling the weights of

synthetic data.

2.2. Diffusion Model for Data Generation

We build our proposed generation procedure based on the

Denoising Diffusion Probabilistic Model (DDPM) (Ho et al.,
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2020) and its accelerated variant Denoising Diffusion Im-

plicit Model (DDIM) (Song et al., 2021a). In the following,

we briefly review the key components of DDPM.

The core of DDPM is a forward Markov chain with Gaussian

transitions distributions q(xt|xt−1) to inject Gaussian noise

to the original data distribution q(x0). More specifically,

(Ho et al., 2020) model the forward Gaussian transition as:

q (xt|xt−1) := N (
√
³txt−1, (1− ³t) I) ,

where ³t, t = 1, 2, . . . , T is a decreasing sequence

to control the variance of injected noise, and I is the

identity covariance matrix. The joint likelihood for

the above Markov chain can be written as q (x0:T ) =

q (x0)
∏T

t=1 q (xt|xt−1). DDPM then propose to use

pθ (x0:T ) = pθ (xT )
∏T

t=1 pθ (xt−1|xt) to model the re-

verse process, where pθ(xt−1|xt) is parameterized using a

neural network. The training objective is to minimize the

Kullback–Leibler (KL) divergence between the forward and

reverse process: DKL(q (x0:T ) , pθ (x0:T )), which can be

simplified as:

min
θ

Et,x0,ϵ

[∥∥ϵ− ϵθ
(√

³̄tx0 +
√
1− ³̄tϵ, t

)∥∥2
]
,

where the expectation is taken with respect to x0 ∼ q(x0),
ϵ ∼ N (0, I), and t uniformly distributed in {1, . . . , T}.

Here ³̄t =
∏t

s=1 ³s and ϵθ(x, t) denotes the neural net-

work parameterized by ¸. We refer to (Ho et al., 2020) for

the detailed derivation and learning algorithms.

After learning the time-reversed process parameterized by

¸, the original generation process in (Ho et al., 2020) is a

time-reversed Markov chain as follows:

xt−1 =
1√
³t

(
xt −

1− ³t√
1− ³̄t

ϵθ (xt, t)

)
+ Ãtzt,

starting from xT ∼ N (0, I) and calculating for t = T, T −
1, . . . , 1. The output value x0 is the generated synthetic

data. Here zt ∼ N (0, I) if t > 1 and zt = 0 if t = 1.

DDIM (Song et al., 2021a) speeds up the above procedure

by generalizing the diffusion process to a non-Markovian

process, leading to a sampling trajectory much shorter than

T . DDIM carefully designs the forward transition such that

q (xt|x0) = N
(√

³tx0, (1− ³t) I
)

for all t = 1, . . . , T .

The great advantage of DDIM is that it admits the same

training objective as DDPM, which means we can adapt the

pre-trained model of DDPM and accelerate the sampling

process without additional cost. The key sample-generating

step in DDIM is as follows:

xt−1 =
√
³t−1

(
xt −

√
1− ³tϵθ (xt, t)√

³t

)

︸ ︷︷ ︸
predicted x0

+
√
1− ³t−1 · ϵθ (xt, t)︸ ︷︷ ︸

pointing to xt

,

(4)

in which we can generate xt−1 using xt and x0. Also, the

generating process becomes deterministic.

3. Theoretical Insights: Optimal Synthetic

Distribution

In this section, we consider a concrete distributional model

as used in (Carmon et al., 2019; Schmidt et al., 2018), and

demonstrate the advantage of refining the synthetic data

generation process – using the optimal distribution for syn-

thetic data generation can help reduce the sample complexity

needed for robust classification. This provides theoretical

insights and motivates the proposed Contrastive-DP method

to be introduced in Section 4.

3.1. Theoretical Setup

Consider a binary classification task where X = R
d,Y =

{−1, 1}. The true data distribution D is specified as follows.

The marginal distribution for label y is uniform in Y , and the

conditional distribution of features is x|y ∼ N (yµ, Ã2
Id),

where µ ∈ R
d is non-zero, and Id is the d dimensional

identity covariance matrix. Thus the marginal feature dis-

tribution DX is a Gaussian mixture, for convenience we

denote as 0.5N (µ, Ã2
I) + 0.5N (−µ, Ã2

I). Suppose we

also generate a set of synthetic data from another synthetic

distribution D̃ which could be different from D.

We focus on learning a robust linear classifier under the

above setting. The family of linear classifiers is repre-

sented as fθ(x) = sign(θ⊤x). Recall that we first gen-

erate features and then assign pseudo labels to the fea-

tures. Therefore, a self-learning paradigm is adopted

here (Wei et al., 2020). Given a set of unlabeled syn-

thetic features {x̃1, x̃2, . . . , x̃ñ}, we apply an intermedi-

ate linear classifier parameterized by θ̂inter =
1
n

∑n

i=1 yixi,

learned from real data Dtrain, to assign the pseudo-label.

Then, the synthetic data Dsyn = {(x̃1, ỹ1), . . . , (x̃ñ, ỹñ)},

where ỹi = sign(θ̂
⊤

interxi), i = 1, . . . , ñ. We combine

the real data and synthetic data Dall := Dtrain ∪ Dsyn =
{{(xi, yi)}ni=1, {(x̃i, ỹi)}ñi=1} to obtain an approximate op-

timal solution θ̂final as (Carmon et al., 2019):

θ̂final =
1

n+ ñ
(

n∑

i=1

yixi +
ñ∑

j=1

ỹjx̃j). (5)

Note that the final linear classifier θ̂final depends on the

synthetic data generated from D̃. We aim to study which

synthetic distribution D̃ can help reduce the adversarial

classification error (also called robust error)

errrobust (fθ̂final
) := P(x,y)∼D(∃δ ∈ ∆, f

θ̂final
(x+ δ) ̸= y),

where ∆ = {δ : ∥δ∥
∞

f ϵ}. And we similarly define the

standard error as errstandard (fθ̂final
) := P(x,y)∼D(fθ̂final

(x) ̸=
y) which will be used later.
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Remark 3.1 (Comparison with existing literature). In (Car-

mon et al., 2019; Deng et al., 2021), sample complexity

results are analyzed based on the same Gaussian setting.

The major difference is that they all assume the learned lin-

ear classifier θ̂final is only learned from synthetic data Dsyn

rather than the combination of the real and synthetic data

Dall. In general, our theoretical setup matches well with the

practical algorithms.

3.2. Theoretical Insights for Optimal Synthetic

Distribution

We first study the desired properties of the synthetic distri-

bution D̃ that can lead to a better adversarial classification

accuracy when the additional synthetic sample Dsyn is used

in the training stage. In (Carmon et al., 2019), the stan-

dard case D̃ = D is studied, i.e., they consider the case

that additional unlabeled data from the true distribution D
is available, and they characterize the usefulness of those

additional training data. Compared with (Carmon et al.,

2019), we consider general distributions D̃ which does not

necessarily equal to D.

First note that by the Bayes rule, the optimal decision bound-

ary for the true data distribution is given by µ⊤x = 0.

Therefore, we restrict our attention to synthetic data dis-

tributions that satisfy: (i) the marginal distribution of the

label ỹ is also uniform in Y , same as D; (ii) the conditional

probability densities p(x̃|ỹ = 1) and p(x̃|ỹ = −1) of the

synthetic data distribution are symmetric around the true

optimal decision boundary µ⊤x = 0. More specifically, we

start with a special case of the synthetic data distribution

D̃X = 0.5N (µ̃, Ã2
I) + 0.5N (−µ̃, Ã2

I) (note that when

µ̃ = cµ for some constant c, the above two conditions are

all satisfied).

In the following proposition, we present several represen-

tative scenarios of synthetic distributions in terms of how

they may contribute to the downstream classification task.

Figure 1 gives a pictorial demonstration for different cases.

Proposition 3.2. Consider a special form of synthetic dis-

tributions D̃X = 0.5N (µ̃, Ã2
I) + 0.5N (−µ̃, Ã2

I) and as-

sume {x̃1, . . . , x̃ñ} are samples from D̃X . We follow the

self-learning paradigm described in Section 3.1 to learn the

classifier f
θ̂final

, when ñ is sufficiently large we have:

Case 1: Inefficient D̃X . When ïµ̃,µð = 0, the standard

error errstandard (fθ̂final
) achieves the maximum and when

ïµ̃,µ− ε1dð = 0, the robust error errrobust (fθ̂final
) achieves

the maximum.

Case 2: Optimal D̃X for clean accuracy. When µ̃ = cµ

for c > 0, errstandard (fθ̂final
) achieves the minimum, and the

larger the c is, the smaller the errstandard (fθ̂final
).

ves maximum ⇥

Figure 1. Demonstration of Proposition 3.2. We refer to the main

text for a detailed explanation.

Case 3: Optimal D̃X for robust accuracy. When µ̃ =
c(µ − ε1d) for c > 0, the robust error errrobust (fθ̂final

)

achieves the minimum, and the larger the c is, the smaller

the errrobust (fθ̂final
).

Remark 3.3 (Comparison with the existing characterization

of the synthetic distribution). We briefly comment on the

main differences and similarities with (Deng et al., 2021), in

which a similar result was presented in Theorem 4 therein.

In (Deng et al., 2021), the final solution of θ∗ was given for

minimizing robust error errrobust (fθ̂final
) and they provides a

specific unlabeled distribution µ̃ = µ− ε1d that achieves

better performance under certain condition. In this paper, we

propose a general family of optimal distribution controlled

by a scalar c, which represents the distinguishability of

the feature. The final θ∗ used in (Deng et al., 2021) can be

viewed as a special case of c = 1. Therefore, our conclusion

points out the optimality condition of unlabeled distribution

and inspires a line of work to improve the performance

of θ̂final by making the feature of unlabeled distribution

distinguishable.

We also study the sample complexity for the synthetic dis-

tributions satisfying the condition in Proposition 3.2. The

results below show that for larger c, we typically need fewer

synthetic samples to achieve the desired robust accuracy.

Theorem 3.4. Under the parameter setting ϵ < 1
2 , Ã =

(nd)1/4, ∥µ∥2 = d, there exists a universal constant C̃ such

that for ϵ2
√

d/n g C̃, where n is the number of labeled

real data used to construct the intermediate classifier, and

additional ñ synthetic feature generated with mean vector

±cµ and pseudo labels, if

ñ g 288n

c
ϵ2
√

d

n
,

then

E
θ̂final

[ err robust (fθ̂final
)] f 10−3.
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Table 1. Simulation results validating findings in Proposition 3.2

and Theorem 3.4. We use “Real” to denote the real data distribution

and n to denote the number of data from the real distribution, and

we use “c” to denote different synthetic distributions with mean

µ̃ = cµ and use ñ to denote the number of synthetic data. The

average accuracy and the standard deviation in the bracket are

obtained from 50 repetitions.

clean acc rob acc

Real
n = 10 0.9023 (0.0192) 0.6843 (0.0359)

n = 100 0.9682 (0.0014) 0.8239 (0.0028)

c = 0.5
ñ = 10 0.7562 (0.0564) 0.4611 (0.0694)

ñ = 100 0.9505 (0.0047) 0.7848 (0.0111)

c = 1
ñ = 10 0.8866 (0.0273) 0.6557 (0.0487)

ñ = 100 0.9695 (0.0012) 0.8239 (0.0031)

c = 1.5
ñ = 10 0.9400 (0.0100) 0.7603 (0.0233)

ñ = 100 0.9743 (0.0008) 0.8343 (0.0011)

Simulation Results. To verify the findings in Proposition

3.2 and Theorem 3.4, we conduct extensive simulation ex-

periments under Gaussian distributions with varying data

dimensions, sample sizes, and the mean vector µ̃. In most

cases, we find increasing c for synthetic distribution can lead

to better clean and robust accuracy. A detailed description of

the experimental setting can be found in Appendix B. In Ta-

ble 1, we demonstrate the clean and robust accuracy learned

on synthetic distribution with the angle between µ and ϵ1d

equals 0◦. Remarkably, the classifier learned only from the

synthetic distribution with µ̃ = cµ with c > 1 achieves

better performance even than the iid samples (denoted as

“Real” in Table).

The closed form of optimal synthetic distribution is µ̃ =
µ − ε1d as stated in Proposition 3.2. It is interesting to

see when µ̃ = cµ and µ is not aligned on ϵ1d, whether

increasing c provides better data distribution for learning a

robust classifier. The answer is still true, demonstrated by

the experiment results (with 30◦, 60◦, and 90◦) in Table 4,

5, 6 and 7 in Appendix B.

4. Contrastive-Guided Diffusion Process

It has been shown in Proposition 3.2 and Theorem 3.4 that

the synthetic data can help improve the classification task,

especially when the representation of different classes is

more distinguishable in the synthetic distribution. Mean-

while, the contrastive loss (van den Oord et al., 2018) can be

adopted to explicitly control the distances of the represen-

tation of different classes. Therefore, we propose a variant

of the classical diffusion model, named Contrastive-Guided

Diffusion Process (Contrastive-DP), to enhance the sample

efficiency of the generative model. In this section, we first

present the overall algorithm of the proposed Contrastive-

Algorithm 1 Generation in Contrastive-guided Diffusion

Process (Contrastive-DP)

Require: Contrastive loss temperature Ä , diffusion process

hyperparameter Ãt

1: XT = {x(i)
T }mi=1 ∼ N (0, I)

2: t = T
3: while t ̸= 1 do

4: for i = 1 to m do

5: Sampling ϵt ∼ N (0, I)

6: Choosing x
(i)
p as the positive pair of x

(i)
t

7: ∆x
(i)
t = λ ·∇

x
(i)
t

ℓcontra(x
(i)
t ,x

(i)
p ; Ä)+ϵθ(x

(i)
t , t)

8: x
(i)
t−1 =

√
³t−1(

x
(i)
t −

√

1−αt∆x
(i)
t√

αt
) +

√

1− ³t−1 − Ã2
t ·∆x

(i)
t + Ãtϵt

9: t = t− 1
10: end for

11: end while

12: Return X0 = {x(i)
0 }mi=1

DP procedure in Section 4.1, then we describe the detailed

design of the contrastive loss in Section 4.2.

4.1. Algorithm for Contrastive-Guided DP

The detailed generation procedure of Contrastive-DP is

given in Algorithm 1. We highlight below some major

differences between the proposed Contrastive-DP and the

vanilla DDIM algorithm. In each time step t of the gener-

ation procedure, given the current value x
(i)
t , we add the

gradient of the contrastive loss ℓcontra(x
(i)
t ,x

(i)
p ; Ä) with re-

spect to x
(i)
t to the original diffusion generative process,

here x
(i)
p is the positive pair of x

(i)
t (will be explained in

detail later), Ä is the temperature for softmax, and λ is the

hyperparameter balancing the contrastive loss within the

diffusion process.

This modification ensures that the generated data will be

distinguishable among data in the same batch. The construc-

tion of the contrastive loss ℓcontra(·) is very flexible – we

can adopt multiple forms of contrastive loss together with

different selection strategies of positive and negative pairs,

which will be discussed in detail in the following.

4.2. Contrastive Loss for Diffusion Process

Let X = {x1, ...,xm} be a minibatch of training data. We

apply the contrastive loss to the embedding space. Assume

f(·) is the feature extractor that maps the input data in X

onto the embedding space. In general, we adopt two forms

of the contrastive loss ℓcontra(x
(i)
t ,x

(i)
p ; Ä) which will be

used in Algorithm 1.

5
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First is the InfoNCE loss:

ℓInfoNCE (xa,xp; Ä) = − log(
gτ (xa,xp)

∑m
k=1 1k̸=agτ (xa,xk)

),

where m is the batch size, Ä is the temperature for softmax,

xa, xp denote the anchor and the positive pair, respectively,

gτ (x,x
′) = exp(f(x)⊤f(x′)/Ä), and all images except

the anchor xa in the minibatch X is negative pairs. In-

foNCE loss is an unsupervised learning metric and does

not explicitly distinguish the representation from different

classes, which implicitly regards the representation from the

same class as negative pair.

Second is the hard negative mining loss:

ℓHNM (xa,xp; Ä) = − log
gτ (xa,xp)

gτ (xa,xp) +
m
τ−

hτ (xa)
,

where

hτ (xa) = Exn∼qβ [gτ (xa,xn)]− Ä+E
v∼q+

β
[gτ (xa,v)],

and m denotes the batch size, Ä− = 1 − Ä+ denotes the

probability of observing any different class with xa and

qβ is an unnormalized von Mises–Fisher distribution (Jam-

malamadaka, 2011), with mean direction f(x) and “con-

centration parameter” ´ to control the hardness of negative

mining; qβ and q+β can be easily approximated by Monte-

Carlo importance sampling techniques. We refer to (Chuang

et al., 2020; Robinson et al., 2021) for detailed descriptions

of hard negative mining contrastive loss. Compared with

the InfoNCE loss that does not consider class/label infor-

mation, the hard negative mining (HNM) loss enhances

the discriminative ability of different classes in the feature

space.

It is worth mentioning that the Contrastive-DP enjoys the

plugin-type property – it does not modify the original train-

ing procedure of diffusion processes and can be easily

adopted to various kinds of diffusion models.

Moreover, it has a close relationship with Stein Variational

Gradient Descent (Liu & Wang, 2016; Liu, 2017). By utiliz-

ing the existing theoretical tools (Shi & Mackey, 2022) for

analyzing the convergence rate for SVGD, we may also get

the convergence guarantee for Contrastive-DP, which is left

to future work.

Remark 4.1 (Connection with Stein Variational Gradient

Descent). Recall the updating step in Contrastive-DP is

∆x
(i)
t = ϵθ(x

(i)
t , t)

︸ ︷︷ ︸
score

+λ ·∇
x

(i)
t

ℓcontra(x
(i)
t ,x(i)

p ; Ä)
︸ ︷︷ ︸

repulsive force

.

And the updating step ∆x
(i)
t in SVGD equals (Liu, 2017)

1

n

n∑

j=1

[

sp
(
x
(j)
t

)
k
(
x
(j)
t ,x

(i)
t

)

︸ ︷︷ ︸

weighted sum of score

+∇
x

(j)
t

k
(
x
(j)
t ,x

(i)
t

)

︸ ︷︷ ︸

repulsive force

]

,

where x
(j)
t is other samples in the batch, sp(x) :=

∇x log p(x) is the score function, and k(x,x′) is a pos-

itive definite kernel. Contrastive-DP is similar to the SVGD

with the score that pulls the particles to high-density region

and the repulsive force that pulls the particles away from

each other, but the score in Contrastive-DP is easier to cal-

culate as it does not require a weighted sum over the current

batch.

Numerical Validations. We first demonstrate the effec-

tiveness of Contrastive-DP in Figure 2 using a simulation

example. Consider the binary classification problem as in

Section 3.1, and the real data for each class are generated

from a Gaussian distribution. Figure 2(a) demonstrates

the synthetic data generated by the vanilla diffusion model,

which recovers the ground-truth Gaussian distribution well.

When using the contrastive-DP procedure with HNM loss,

we obtain the generated synthetic data as shown in Figure

2(b), which is more distinguishable with a much smaller

variance.

(a) DDPM (b) Contrastive-DP

Figure 2. An illustration of the effectiveness of synthetic distri-

bution guided by contrastive loss. More details can be found in

Appendix C.2.

In addition, Figure 6 and Figure 7 in Appendix C.2 demon-

strate the synthetic data distribution guided by different

kinds of contrastive loss mentioned above. It can be shown

that InfoNCE loss and hard negative mining method can-

not explicitly distinguish the data within the same class

and thus form a circle within each class to maximize the

distance between samples, while the conditional version

of contrastive loss (given the oracle class information) can

make two classes more separable.

5. Real Data Examples

In this section, we demonstrate the effectiveness of the pro-

posed contrastive guided diffusion process for synthetic data

generation in adversarial classification tasks. We first com-

pare the performance of Contrastive-DP with the vanilla

diffusion models in Section 5.1. Then, we present a compre-

hensive ablation study on the performance of Contrastive-

DP to shed insights on how to adopt the contrastive loss

functions and further data selection methods on the diffu-
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sion model in Section 5.2.

5.1. Experimental Results

We test the contrastive-DP algorithm on three image

datasets, the MNIST dataset (LeCun et al., 1998), CIFAR-

10 dataset (Krizhevsky, 2009), and the Traffic Signs dataset

(Houben et al., 2013). A detailed description of the pipeline

for generating data and the corresponding hyperparameter

can be found in Appendix D.3.

Figure 3 shows the efficacy of synthetic data in terms of

improving adversarial robustness on MNIST data. We fix

the total number of images for training the classifier as 5K

(e.g., when we use 1K real data and 4K synthetic data, to

avoid information leakage, we only use these 1K real data

to train the diffusion model. The same case for 2K, 3K,

and 4K.) 2 Notably, synthetic data improves the clean and

robust accuracy even without using any real data, which is

consistent with the results in Proposition 3.2 and Theorem

3.4. Moreover, lots of proposed methods (Madry et al., 2017;

Tsipras et al., 2018; Zhang et al., 2019) improves the robust

accuracy at the sacrifice of clean accuracy, while adding

contrastive guidance increase both the clean and the robust

accuracy at the same time under the majority of the settings

in Figure 3, which shows the potential of Contrastive-DP

in achieving a better trade-off between clean and robust

accuracy.
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Figure 3. The efficacy of the synthetic data on MNIST dataset. All

the results are trained with 5K data (with different proportions

of real and synthetic data). Subfigure (a) and (b) show the clean

and adversarial accuracy on the MNIST dataset, respectively. The

dashed line is the performance training only on 5K real data.

Table 2 demonstrates the effectiveness of our contrastive-

DP algorithm on the CIFAR-10 dataset 3, which achieves

better robust accuracy on all data regimes than the vanilla

2The case with 5K training images is a special scenario: (i) the
accuracy resulted from using all of the 5K real data is the baseline
(dashed line shown in Figure 3); (ii) while the accuracy resulted
from using 5K synthetic data generated by the diffusion model
trained on 5K real data is shown in the scatter plot.

3Since the Pytorch Implementation of (Gowal et al., 2021) is
not open source, we utilize the best unofficial implementation to
reconduct all the experiments for a fair comparison.

(a) DDIM (b) Contrasrive-DP

Figure 4. Comparison of the Contrastive-DP with the vanilla

DDIM. The image in the same position on subfigures (a) and

(b) has the same initialization.

DDPM and DDIM. All of the results are higher than the

baseline result without synthetic data (81.98%± 0.58% for

clean accuracy and 50.42% ± 0.35% for robust accuracy)

by a large margin (+6.18% in 50K setting and +9.57% in

1M setting). Table 3 demonstrates the effectiveness of our

contrastive-DP algorithm on the Traffic Signs dataset. Our

contrastive-DP achieves better clean and robust accuracy

than the vanilla DDPM model and is also higher than the

baseline result without synthetic data by a large margin

(+10.24%).

To visualize the effectiveness of the guidance, we use

the same initialization to generate images by DDIM and

Contrastive-DP. We find the guidance of the contrastive loss

changes the category of the synthetic images or makes the

synthetic images realistic (colorful).

Moreover, we visualize the t-SNE of the finial classifier

learned on different synthetic data. We find with the guid-

ance of the contrastive loss, the final classifier learns a better

representation that makes the feature of the images from dif-

ferent classes more separable than the final classifier learned

on the images generated by the vanilla DDIM.
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(a) DDIM
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(b) Contrastive-DP

Figure 5. A comparison of the T-SNE of the final classifier learned

on different synthetic data on the CIFAR-10 dataset.

5.2. Ablation Studies

In this subsection, we investigate the effectiveness of seven

kinds of contrastive loss, the effect of strength of the con-

trastive loss, and four proposed selection criterion for choos-

ing more informative data from synthetic data. Due to the
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Table 2. The clean and adversarial accuracy on CIFAR-10 dataset. The robust accuracy is reported by AUTOATTACK (Croce & Hein,

2020) with ϵ∞ = 8/255 and WRN-28-10. 50k, 200k, and 1M denote the number of synthetic used for adversarial training. The results

and the standard deviation in the bracket are obtained from 3 repetitions.

50K 200K 1M

clean acc rob acc clean acc rob acc clean acc rob acc

DDIM 84.05%(0.06%) 56.29%(0.15%) 84.86%(0.43%) 57.83%(0.28%) 85.73%(0.51%) 59.85%(0.26%)

Contrastive-DP 83.66%(0.21%) 56.60%(0.17%) 85.71%(0.18%) 58.24%(0.20%) 86.30%(0.09%) 59.99%(0.23%)

DDPM 84.84%(0.37%) 56.30%(0.06%) 85.23%(0.25%) 58.28%(0.09%) 86.86%(0.04%) 59.03%(0.16%)

Contrastive-DP 84.70%(0.43%) 56.18%(0.10%) 85.61%(0.14%) 58.62%(0.12%) 86.30%(0.10%) 59.74%(0.26%)

Table 3. The clean and adversarial accuracy on the Traffic Signs

dataset. The results and the standard deviation in the bracket are

obtained from 3 repetitions.

clean acc rob acc

No additional data 78.52% (0.16%) 46.03% (0.85%)

DDPM 86.79% (0.12%) 56.01% (0.14%)

Contrastive-DP 86.94% (0.32%) 56.27% (0.25%)

space limit, we refer to Appendix E.1, E.2, and E.3 for the

detailed numerical results, respectively.

6. Related Work

Using generative models to improve adversarial robustness

has attracted increasing attention recently. (Gowal et al.,

2021) uses 100M high-quality images generated by DDPM

together with the original training set to achieve state-of-the-

art performance on the CIFAR-10 dataset. They propose to

use Complementary as an important metric for measuring

the efficacy of the synthetic data. In (Sehwag et al., 2022), it

was claimed that the transferability of adversarial robustness

between two data distributions is measured by conditional

Wasserstein distance, which inspires us to use it as a criterion

for selecting samples. Our work follows the same line,

but we investigate how to generate the samples with high

information rather than applying the selection to the data

generated by the vanilla diffusion model. Below we also

summarize some closely related work in different lines.

Sample-Efficient Generation. We can view the sample-

efficient generation problem as a Bi-level optimization prob-

lem. We can regard how to synthesize data as the meta

objective and the performance of the model trained on the

synthetic data as the inner objective. For data-augmentation

based methods, (Ruiz et al., 2019) adopt a reinforcement

learning based method for optimizing the generator in or-

der to maximize the training accuracy. For active learning

based methods, (Tran et al., 2019) use an Auto-Encoder

to generate new samples based on the informative training

data selected by the acquisition function. Besides, (Kim

et al., 2020b) combines the active learning criterion with

data augmentation methods. They use the gradient of acqui-

sition function after one-step augmentation as guidance for

training the augmentation policy network.

Theoretical Analysis of Adversarial Robustness. In

(Schmidt et al., 2018), the sample complexity of adversarial

robustness has been shown to be substantially larger than

standard classification tasks in the Gaussian setting. (Car-

mon et al., 2019) bridges this gap by using the self-training

paradigm and corresponding unlabeled data. (Deng et al.,

2021) further extends the aforementioned conclusion by

leveraging out-of-domain unlabeled data. However, there

still lacks analysis on the optimal distribution for synthetic

data and the corresponding generation algorithm.

Contrastive Learning. Contrastive learning algorithms

have been widely used for representation learning (Chen

et al., 2020; He et al., 2020; Grill et al., 2020). The vanilla

contrastive learning loss, InfoNCE (van den Oord et al.,

2018), aims to draw the distance between positive pairs and

push the negative pairs away. To mitigate the problem that

not all negative pairs may be true negatives, the negative

hard mining criterion was proposed in (Chuang et al., 2020;

Robinson et al., 2021).

7. Conclusion and Discussion

We delve into which kind of synthetic distribution is optimal

for the downstream task, especially for achieving adversar-

ial robustness in image data classification. We derive the

optimality condition under the Gaussian setting and propose

the Contrastive-guided Diffusion Process (Contrastive-DP),

a plug-in algorithm suitable for various types of diffusion

models. We verify our theoretical results on the simulated

Gaussian example and demonstrate the superiority of the

Contrastive-DP algorithm on real image datasets.

It would also be interesting to study the theoretical guar-

antee of the contrastive-guided diffusion process from the

perspective of optimal control. We believe that the proposed

plug-in type algorithm can also be generalized to loss func-

tions other than contrastive loss, such as the acquisition

function in active learning, for other downstream tasks.
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A. Theoretical Details for Section 3

A.1. Error probabilities in closed form.

Here, we briefly recapitulate the closed-form formulation for the standard and robust error probabilities as detailed in

(Carmon et al., 2019; Deng et al., 2021).

The standard error probability can be written as

errstandard (fθ) = P
(
y · x⊤θ < 0

)
= P

(
N
(
µ⊤θ

Ã∥θ∥ , 1
)

< 0

)
= Q

(
µ⊤θ

Ã∥θ∥

)
, (6)

where

Q(x) =
1√
2π

∫ ∞

x

e−t2/2dt

is the Gaussian error function and is non-increasing. Clearly the standard error probability is minimized when θ
∥θ∥ = µ

∥µ∥ ,

i.e., θ = cµ for some scalar c > 0. We may impost ∥θ∥2 = 1 to ensure the unique solution θ = µ/ ∥µ∥.

The robust error probability under the ℓ∞ adversarial set ∆ = {¶ : ∥δ∥∞ f ϵ} is

err∞,ε
robust (fθ) = P

(
inf

∥ν∥∞≤ε

{
y · (x+ ν)⊤θ

}
< 0

)

= P
(
y · x⊤θ − ε∥θ∥1 < 0

)
= P

(
N
(
µ⊤θ, Ã2∥θ∥2

)
< ε∥θ∥1

)

= Q

(
µ⊤θ

Ã∥θ∥ − ε∥θ∥1
Ã∥θ∥

)
. (7)

In the following part, we use a simpler notation errrobust (fθ) for the robust error err∞,ε
robust (fθ) without ambiguity. The

closed-form of the optimal θ∗ that minimizes the above robust error errrobust can be shown to be (Deng et al., 2021):

θ∗ =
Tε(µ)

∥Tε(µ)∥
,

where Tε(µ) : R
d → R

d is the hard-thresholding operator with (Tε(µ))j = sign
(
µj

)
·max

{∣∣µj

∣∣− ε, 0
}

. Under the mild

assumption µj > ε, ∀j ∈ {1, 2, . . . , d}, the optimal solution can be simplified as:

θ∗ =
µ− ε1d

∥µ− ε1d∥
.

Remark A.1. Note that when µ = c1d for some constant c > ϵ, the optimal solution θ∗ = µ−ε1d

∥µ−ε1d∥ for minimizing the

robust error is the same as the optimal solution µ
∥µ∥ for minimizing the standard error. Otherwise, these two solutions are

different, representing a trade-off between robustness and accuracy.

A.2. Details for the theoretical analysis in Section 3

Overall, we would like to design an appropriate synthetic distribution D̃ that can help optimize the adversarial classification

accuracy in the downstream task. First note that by Bayes rule, the optimal decision boundary for the true distribution

x|y ∼ N (yµ, Ã2
I) is given by µ⊤x = 0, i.e., the optimal classifier is parameterized by θ = cµ for any c > 0. Therefore,

we restrict our attention to synthetic data distributions that satisfy the following two conditions:

1. The marginal probability density p(ỹ) of the synthetic distribution matches p(y) of the real data distribution well.

2. The conditional probability densities p(x̃|ỹ = 1) and p(x̃|ỹ = −1) of the synthetic data distribution are symmetric

around the true optimal decision boundary µ⊤x = 0.

More specifically, we consider a special case of the synthetic data distribution D̃X = 0.5N (µ̃, Ã2
I) + 0.5N (−µ̃, Ã2

I).
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Proof of Proposition 3.2. We follow the proof strategy in (Carmon et al., 2019). Let bi be the indicator that the i-th pseudo-

label ỹi assigned to x̃i is incorrect, so that we have x̃i ∼ N
(
(1− 2bi) ỹiµ̃, Ã

2
I
)
. Let µ := 1

ñ

∑n̄
i=1 (1− 2bi) ∈ [−1, 1]

and ³ := ñ
ñ+n . Note that the true data samples xi ∼ N

(
yiµ, Ã

2
I
)
, thus we may write the final estimator as

θ̂final =
1

n+ ñ
(

ñ∑

j=1

ỹjx̃j +
n∑

i=1

yixi)

=
1

n+ ñ
(

ñ∑

j=1

[(1− 2bj) ỹjµ̃+ ϵ̃j ] · ỹj +
n∑

i=1

[µyi + ϵi] · yi)

= ³µµ̃+
1

n+ ñ

ñ∑

i=1

ỹiε̃i + (1− ³)µ+
1

n+ ñ

n∑

i=1

yiεi

= ³µµ̃+ (1− ³)µ+
1

n+ ñ
(

n∑

i=1

yiεi +
ñ∑

i=1

ỹiε̃i),

where εi, ε̃i ∼ N
(
0, Ã2

I
)

independent of each other, and the marginal probability density p(ỹ) matches p(y) well. Defining

δ̃ := θ̂final − ³µµ̃− (1− ³)µ.

By (6), we have that the standard error of f
θ̂final

is a non-increasing function of µ⊤θ̂final

Ã∥θ̂final ∥
. Note that when ñ is large enough,

we have ³ → 1 and the direction of θ̂final approach the direction of µ̃. Therefore, the statement in Case 1 holds as a

consequence, and similarly for the robust error according to (7).

The remaining proof on Case 2 and Case 3 is based on a detailed discussion for the squared inverse of the term µ⊤θ̂final

Ã∥θ̂final ∥
:

∥θ̂final ∥2
(µ⊤θ̂final )2

=
∥δ̃ + ³µµ̃+ (1− ³)µ∥2

(³µïµ, µ̃ð+ µ⊤δ̃ + (1− ³)∥µ∥2)2
. (8)

Note that the larger the quantity in (8) is, the larger the standard error of f
θ̂final

.

Case 2. Assume µ̃ = cµ. Then we have (8) reduces to:

∥θ̂final ∥2
(µ⊤θ̂final )2

=
∥δ̃ + (1− ³+ cµ³)µ∥2

(
(1− ³+ cµ³)∥µ∥2 + µ⊤δ̃

)2 (9)

=
1

∥µ∥2 +
∥δ̃ + (1− ³+ cµ³)µ∥2 − 1

∥µ∥2

(
(1− ³+ cµ³)∥µ∥2 + µ⊤δ̃

)2

(
(1− ³+ cµ³)∥µ∥2 + µ⊤δ̃

)2

=
1

∥µ∥2 +
∥δ̃∥2 − 1

∥µ∥2 (µ
⊤δ̃)2

(
(1− ³+ cµ³)∥µ∥2 + µ⊤δ̃

)2 , (10)

which demonstrates that the bigger the c is, the smaller the standard error errstandard (fθ̂final
) is, which verifies the second part

of Case 2.

Case 3. Assume µ̃ = c(µ− ε1d). Similar to Case 2, we rewrite the term inside the robust error function (7) as:

∥θ̂final ∥2(
(µ− ε1d)⊤θ̂final

)2 =
∥δ̃ + (1− ³)µ+ cµ³(µ− ε1d)∥2(

cµ³∥µ− ε1d∥2 + (1− ³)µ⊤(µ− ε1d) + (µ− ε1d)⊤δ̃
)2

≈ 1

∥µ− ε1d∥2
+

∥δ̃∥2 − 1
∥µ−ε1d∥2

(
(µ− ε1d)

⊤δ̃
)2

(
cµ³∥µ− ε1d∥2 + (µ− ε1d)⊤δ̃

)2 , (11)

12
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where the last approximation is due to ñ sufficiently large and thus ³ ≈ 1. The above equation demonstrates the larger the c
is, the smaller the robust error errrobust (fθ̂final

) is, which proves the second part of Case 3.

Proof of Theorem 3.4. We follow the proof strategy in (Carmon et al., 2019), with the main difference being twofold: (i) in

our final estimate θ̂final depends on both the real data and synthetic data; (ii) our synthetic data are generated from a different

distribution from the true distribution.

Below we analyze the sample complexity to achieve desired robust accuracy. Recall that, under the mild assumption

µj > ε, ∀j ∈ {1, 2, . . . , d}, the closed form of the robust error of fθ is Q( (µ−ε1d)
⊤θ

Ã∥θ∥ ). Since θ̂final = (1−³+ cµ³)µ+ δ̃,

we have the term inside Q(·) function is:

(µ− ε1d)
⊤θ̂final

Ã∥θ̂final ∥
=

(1− ³+ cµ³)∥µ∥2 + µ⊤δ̃

Ã∥θ∥ − (ε1d)
⊤θ̂final

Ã∥θ̂final ∥
. (12)

We consider the parameter setting:

ϵ <
1

2
, Ã = (nd)1/4, ∥µ∥2 = d. (13)

Under such a setting and under the regime that d/n ≫ 1, we have the classifier fµ achieves almost optimal performance in

both robust and standard accuracy. Thus in the following, we mainly focus on the problem of finding the minimum number

of synthetic samples ñ needed in order to ensure the estimate θ̂final is close (in direction) to µ.

For the squared inverse of the first term in (12), we have

∥θ̂final ∥2(
µ⊤θ̂final

)2 =
∥δ̃ + (1− ³+ cµ³)µ∥2(

(1− ³+ cµ³)∥µ∥2 + µ⊤δ̃
)

=
1

∥µ∥2 +
∥δ̃∥2 − 1

∥µ∥2

(
µ⊤δ̃

)2

(
(1− ³+ cµ³)∥µ∥2 + µ⊤δ̃

)2

f 1

∥µ∥2 +
∥δ̃∥2

(
(1− ³+ cµ³)∥µ∥2 + µ⊤δ̃

)2

=
1

∥µ∥2 +
1

∥µ∥4
∥δ̃∥2

(
(1− ³+ cµ³) + 1

∥µ∥2µ⊤δ̃
)2 (14)

Note that due to the dependence between ỹi and ε̃i, the random variable δ̃ is non-Gaussian. To obtain the concentration

bounds for ∥δ̃∥2 and µ⊤δ̃, we follow the approach used in (Carmon et al., 2019) as follows. Recall θ̂inter =
1
n

∑n
i=1 yixi,

ỹi = sign(θ̂
⊤
interx̃i), and δ̃ = 1

n+ñ (
∑n

i=1 yiεi +
∑ñ

i=1 ỹiε̃i). Find a coordinate system such that the first coordinate is in

the direction of θ̂inter , and let v(i) denote the i th entry of vector v in this coordinate system. Then

ỹi = sign
(
x̃
(1)
i

)
= sign

(
µ(1) + ε̃

(1)
i

)
.

Consequently, ε̃
(j)
i is independent of ỹi for all i and j g 2, so that ỹiε̃

(j)
i ∼ N

(
0, Ã2

)
and 1

n+ñ (
∑n

i=1 yiε
(j)
i +

∑ñ
i=1 ỹiε̃

(j)
i ) ∼ N

(
0, Ã2/(n+ ñ)

)
and

d∑

j=2

(
1

n+ ñ
(

n∑

i=1

yiε
(j)
i +

ñ∑

i=1

ỹiε̃
(j)
i )

)2

∼ Ã2

n+ ñ
χ2
d−1.

13
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By the Cauchy-Schwarz inequality, we have:

(
1

n+ ñ
(

n∑

i=1

yiε
(1)
i +

ñ∑

i=1

ỹiε̃
(1)
i )

)2

f 1

(n+ ñ)2

{(
n∑

i=1

y2i +
ñ∑

i=1

ỹ2i

)(
n∑

i=1

[
ε
(1)
i

]2
+

ñ∑

i=1

[
ε̃
(1)
i

]2
)}

=
1

n+ ñ
(

n∑

i=1

[
ε
(1)
i

]2
+

ñ∑

i=1

[
ε̃
(1)
i

]2
) ∼ Ã2

n+ ñ
χ2
n+ñ.

Since ∥δ̃∥2 =
∑d

j=1

(
1

n+ñ (
∑n

i=1 yiε
(j)
i +

∑ñ
i=1 ỹiε̃

(j)
i )
)2

, we have by the union bound

P

(
∥δ̃∥2 g 2

Ã2

n+ ñ
(d− 1 + n+ ñ)

)
f P

(
χ2
n+ñ g 2(n+ ñ)

)
+ P

(
χ2
d−1 g 2(d− 1)

)

f e−(ñ+n)/8 + e−(d−1)/8.

Similarly applying the Cauchy-Schwarz inequality to µ⊤δ̃ = 1
ñ+n

(∑n
i=1 yiµ

⊤εi +
∑ñ

i=1 ỹiµ
⊤ε̃i
)
, we have

(
µ⊤δ̃

)2
f 1

(n+ ñ)2

{(
n∑

i=1

y2i +
ñ∑

i=1

ỹ2i

)(
n∑

i=1

(
µ⊤εi

)2
+

ñ∑

i=1

(
µ⊤ε̃i

)2
)}

=
1

n+ ñ
(

n∑

i=1

(
µ⊤εi

)2
+

ñ∑

i=1

(
µ⊤ε̃i

)2
) ∼ Ã2∥µ∥2

n+ ñ
χ2
n+ñ.

Therefore we have

P

(
|µ⊤δ̃| g

√
2Ã∥µ∥

)
= P

(
(µ⊤δ̃)2 g 2Ã2∥µ∥2

)
f e−(ñ+n)/8.

Finally, we look at the random variable µ. By definition µ = 1
ñ

∑ñ
i=1 (1− 2bi), where bi is the indicator that ỹi is incorrect

for the feature x̃i. Denote ỹ◦i ∈ {−1, 1} as the true label for x̃i, thus we have x̃i ∼ N(cỹ◦i µ, Ã
2). Therefore

E[bi] = P[bi = 1] = P

(
ỹ◦i · x̃⊤

i θ̂inter < 0
)
= P

(
N
(
cµ⊤θ̂inter

Ã∥θ̂inter ∥
, 1

)
< 0

)
= Q

(
cµ⊤θ̂inter

Ã∥θ̂inter ∥

)
.

Moreover since bi are Bernoulli random variables, we have Var(bi) = E[bi](1− E[bi]) f E[bi].

By definition of Q(·) we clearly have Q
(

cµ⊤θ̂inter

Ã∥θ̂inter ∥

)
f Q

(
µ⊤θ̂inter

Ã∥θ̂inter ∥

)
when c g 1 and µ⊤θ̂inter > 0 (which happens with

high probability as shown below). Thus

E

[
µ | θ̂inter

]
= 1− 2Q

(
cµ⊤θ̂inter

Ã∥θ̂inter ∥

)
g 1− 2 errstandard

(
f
θ̂inter

)
,

where errstandard is given in (6).

Therefore, we expect µ to be reasonably large as long as errstandard (fθ̂inter
) < 1

2 . Similar to (Carmon et al., 2019), we have

P

(
µ <

1

6

)
= P

(
1

ñ

ñ∑

i=1

(1− 2bi) <
1

6

)

= P

(
1

ñ

ñ∑

i=1

(1− 2bi) <
1

6
| errstandard (fθ̂inter

) >
1

3

)
· P
(

err standard (fθ̂inter
) >

1

3

)

+ P

(
1

ñ

ñ∑

i=1

(1− 2bi) <
1

6
| errstandard (fθ̂inter

) f 1

3

)
· P
(

err standard (fθ̂inter
) f 1

3

)

f P

(
err standard (fθ̂inter

) >
1

3

)
+ P

(
1

ñ

ñ∑

i=1

bi >
5

12
| err standard

(
f
θ̂inter

)
f 1

3

)
.
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For the first probability, note that
1

3
g Q

(
1

2

)
g Q

([
2
(
1 +

√
n/d

)]−1/2
)

Therefore, by Lemma 1 in (Carmon et al., 2019), for sufficiently large d/n,

P

(
errstandard

(
f
θ̂inter

)
>

1

3

)
f e

−c1·min
{√

d/n,n(d/n)1/4
}

for some constant c1.

For the second probability, note that bi are i.i.d. Bernoulli random variables with mean value Q
(

cµ⊤θ̂inter

Ã∥θ̂inter ∥

)
f

errstandard (fθ̂inter
). Therefore, by Hoeffding’s inequality we have

P

(
1

ñ

ñ∑

i=1

bi >
5

12
| errstandard

(
f
θ̂inter

)
f 1

3

)
f e−2ñ( 5

12
− 1

3 )
2

= e−ñ/72.

Define the event,

E :=

{
∥δ̃∥2 f 2

Ã2

n+ ñ
(d+ n+ ñ),

∣∣∣µ⊤δ̃
∣∣∣ f

√
2Ã∥µ∥, and µ g 1

6

}
,

thus by the previous concentration bounds, we have

P[EC ] f e−(ñ+n)/8 + e−(d−1)/8 + e
−c1·min

{√
d/n,n(d/n)1/4

}

+ e−ñ/72 f e
−c2 min

{

ñ,
√

d/n, n(d/n)1/4
}

.

Suppose the event E holds, then for the formula in (14) we have:

∥∥∥θ̂final

∥∥∥
2

(
µ⊤θ̂final

)2 f 1

∥µ∥2 +
2Ã2(d+ n+ ñ)

(n+ ñ)∥µ∥4
(
(1− ³+ 1

6c³)−
√
2Ã

∥µ∥

)2 ,

which, after substituting the parameter setting (13), translates into:

Ã2
∥∥∥θ̂final

∥∥∥
2

(
µ⊤θ̂final

)2 f
√

n

d
+

2nd(d+ n+ ñ)

(n+ ñ)d2
(
(1− ³+ 1

6c³)−
√
2
(
n
d

)1/4)2

f
√

n

d
+

2nd(d+ n+ ñ)

(n+ ñ)d2
(

1
6c³−

√
2
(
n
d

)1/4)2

f
√

n

d
+

72n

cñ

(
1 + c̃1

(n
d

)1/4)
,

where c̃1 is some positive constant, and above we also implicitly assumed that d/n is sufficiently large.

Combining the above results together, following the analysis in (Carmon et al., 2019), we conclude that there exists

a universal constant C̃ such that for ϵ2
√

d/n g C̃, where n is the number of labeled real data used to construct the

intermediate classifier, and additional ñ synthetic feature generated with mean vector ±cµ and pseudo labels, we have if

ñ g 288n

c
ϵ2
√

d

n
,

we have

E
θ̂final

err
∞,ϵ
robust

(
f
θ̂final

)
f Q

(
[
√
2− 1]ϵ (d/n)

1/4
)
+ e−ϵ2c2

√
d/n f 10−3.

for sufficiently large C̃.
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B. More simulation results under Gaussian setting in Section 3

In this section, we present more detailed simulation results under the Gaussian setting in Section 3 to demonstrate different

scenarios in Proposition 3.2.

Experimental setting The experimental pipeline is as follow: 1) learning a intermediate classifier θ̂inter by n label data

D = {(x1, y1), . . . , (xn, yn)}, 2) generating ñ synthetic data x̃ ∼ D̃X = 0.5N (µ̃, Ã2
I) + 0.5N (−µ̃, Ã2

I), with µ̃ = cµ,

3)assigning pseudo label for synthetic data using the intermediate classifier θ̂inter, 4) learning θ̂final by adversarial training

on ñ synthetic data, 5) testing on 10k extra real data to obtain the clean accuracy and robust accuracy. For data dimension

d = 100, we set ∥µ∥2 = 2, ε = 0.5, and for d = 100, we set ∥µ∥2 = 4, ε = 0.1.

Table 4 and Table 5 show the clean and robust accuracy learned on synthetic distribution µ̃ = cµ with different angles

between µ and ϵ1d. Table 7 shows the clean and robust accuracy learned on synthetic distribution µ̃ = c(µ− ε1d) with

different angles between µ and ϵ1d. Recall that µ is (one of) the optimal linear classifier that maximizes the clean accuracy

under the true distribution considered in Section 3, similarly µ− ϵ1d is the optimal solution for robust accuracy. Therefore,

different angles between µ and ϵ1d represent different trade-offs between the clean and robust accuracy. For example, when

the angle between µ and ϵ1d is 0 degrees, i.e., µ = c1d, we have that the optimal solution for clean accuracy and robust

accuracy are the same. In most cases, the classifier learned from the synthetic distribution that is most separable achieves

better performance even than the iid samples, which verifies Proposition 3.2.

Table 4. The clean and robust accuracy learned on synthetic distribution µ̃ = cµ when d = 2 and the angle between µ and ϵ is 0 degrees

and 90 degrees. “Real” denotes the real data distribution, and n denotes the number of data from the real distribution, while we use “c” to

denote different synthetic distributions and use ñ to denote the number of synthetic data. The results and the standard deviation in the

bracket are obtained from 50 repetitions.

0 degree 90 degree
acc (std) rob acc (std) acc (std) rob acc (std)

Real

n = 10 0.9201 (0.0012) 0.7593 (0.0020) 0.9171 (0.0046) 0.7552 (0.0040)
n = 20 0.9204 (0.0007) 0.7598 (0.0016) 0.9186 (0.0017) 0.7563 (0.0012)
n = 50 0.9206 (0.0004) 0.7605 (0.0007) 0.9196 (0.0009) 0.7566 (0.0006)
n = 100 0.9205 (0.0004) 0.7608 (0.0006) 0.9199 (0.0006) 0.7565 (0.0007)

c = 0.5

ñ = 10 0.9159 (0.0099 ) 0.7541 (0.0096) 0.9104 (0.0121) 0.7492 (0.0122)
ñ = 20 0.9179 (0.0047) 0.7562 (0.0050) 0.9161 (0.0052) 0.7546 (0.0054)
ñ = 50 0.9200 (0.0023) 0.7586 (0.0024) 0.9183 (0.0022) 0.7570 (0.0022)
ñ = 100 0.9213 (0.0011) 0.7601 (0.0009) 0.9193 (0.0012) 0.7576 (0.0010)

c = 1

ñ = 10 0.9133 (0.0066) 0.7502 (0.0061) 0.9161 (0.0048) 0.7598 (0.0048)
ñ = 20 0.9155 (0.0020) 0.7516 (0.0019) 0.9180 (0.0017) 0.7612 (0.0020)
ñ = 50 0.9161 (0.0009) 0.7525 (0.0006) 0.9186 (0.0010) 0.7620 (0.0006)
ñ = 100 0.9165 (0.0005) 0.7528 (0.0006) 0.9189 (0.0005) 0.7622 (0.0003)

c = 1.5

ñ = 10 0.9209 (0.0038) 0.7523 (0.0025) 0.9221 (0.0017) 0.7583 (0.0015)
ñ = 20 0.9228 (0.0010) 0.7536 (0.0006 ) 0.9226 (0.0013) 0.7588 (0.0013)
ñ = 50 0.9229 (0.0008) 0.7538 (0.0005) 0.9232 (0.0005) 0.7594 (0.0006)
ñ = 100 0.9232 (0.0003) 0.7538 (0.0005) 0.9233 (0.0005) 0.7595 (0.0005)
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Table 5. The clean and robust accuracy learned on synthetic distribution µ̃ = cµ when d = 2 and the angle between µ and ϵ is 30 degrees

and 60 degrees. “Real” denotes the real data distribution, and n denotes the number of data from the real distribution, while we use “c” to

denote different synthetic distributions and use ñ to denote the number of synthetic data. The results and the standard deviation in the

bracket are obtained from 50 repetitions.

30 degree 60 degree
acc (std) rob acc (std) acc (std) rob acc (std)

Real

n = 10 0.8307 (0.0123) 0.6343 (0.0283) 0.8348 (0.0117) 0.6378 (0.0293)
n = 20 0.8353 (0.0055) 0.6404 (0.0234) 0.8391 (0.005) 0.6433 (0.0222)
n = 50 0.8371 (0.0022) 0.6450 (0.0168) 0.8410 (0.0017) 0.6494 (0.0134)
n = 100 0.8385 (0.0010) 0.6461 (0.0097) 0.8413 (0.0013) 0.6522 (0.0102)

c = 0.5

ñ = 10 0.8265 (0.0184 ) 0.6282 (0.0418 ) 0.8338 (0.0132 ) 0.6303 (0.0335 )
ñ = 20 0.8299 (0.0129) 0.6352 (0.0325) 0.8365 (0.0132) 0.6393 (0.0316)
ñ = 50 0.8372 (0.0046) 0.6483 (0.0215) 0.8414 (0.0034) 0.6489 (0.0199)
ñ = 100 0.8402 (0.0015) 0.6466 (0.0110) 0.8431 (0.0012) 0.6510 (0.0135)

c = 1

ñ = 10 0.8383 (0.0158) 0.6439 (0.0319) 0.8377 (0.0074) 0.6396 (0.0267)
ñ = 20 0.8425 (0.0060) 0.6480 (0.0218) 0.8416 (0.0034) 0.6513 (0.0178)
ñ = 50 0.8455 (0.0023) 0.6553 (0.0128) 0.8432 (0.0020) 0.6503 (0.0122)
ñ = 100 0.8457 (0.0021) 0.6535 (0.0100) 0.8435 (0.0014) 0.65011 (0.0096)

c = 1.5

ñ = 10 0.8431 (0.0045) 0.6542 (0.0173) 0.8368 (0.0073) 0.6446 (0.0213)
ñ = 20 0.8447 (0.0021) 0.6542 (0.0142) 0.8393 (0.0022) 0.6479 (0.0150)
ñ = 50 0.8455 (0.0006) 0.6556 (0.0082) 0.8404 (0.0005) 0.6488 (0.0089)
ñ = 100 0.8457 (0.0004) 0.6547 (0.0057) 0.8404 (0.0007) 0.6486 (0.0082)

Table 6. The clean and robust accuracy learned on synthetic distribution µ̃ = cµ when d = 100 and the angle between µ and ϵ is 0

degrees. “Real” denotes the real data distribution, and n denotes the number of data from the real distribution, while we use “c” to denote

different synthetic distributions and use ñ to denote the number of synthetic data. The results and the standard deviation in the bracket are

obtained from 50 repetitions

acc (std) rob acc (std)

Real

n = 10 0.9023 (0.0192) 0.6843 (0.0359)
n = 20 0.9341 (0.0128) 0.7519 (0.0267)
n = 50 0.9599 (0.0028) 0.8078 (0.0061)
n = 100 0.9682 (0.0014) 0.8239 (0.0028)

c = 0.5

ñ = 10 0.7562 (0.0564) 0.4611 (0.0694)
ñ = 20 0.8566 (0.0307) 0.6047 (0.0491)
ñ = 50 0.9261 (0.0117) 0.7328 (0.0227)
ñ = 100 0.9505 (0.0047) 0.7848 (0.0111)

c = 1

ñ = 10 0.8866 (0.0273) 0.6557 (0.0487)
ñ = 20 0.9371 (0.0091) 0.7555 (0.0201)
ñ = 50 0.9620 (0.0028) 0.8085 (0.0060)
ñ = 100 0.9695 (0.0012) 0.8239 (0.0031)

c = 1.5

ñ = 10 0.9400 (0.0100) 0.7603 (0.0233)
ñ = 20 0.9591 (0.0037) 0.8031 (0.0080)
ñ = 50 0.9710 (0.0013) 0.8280 (0.0028)
ñ = 100 0.9743 (0.0008) 0.8343 (0.0011)
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Table 7. The clean and robust accuracy learned on synthetic distribution µ̃ = c(µ− ε1d) when d = 2 and the angle between µ and ϵ is

30 degrees and 60 degrees. “Real” denotes the real data distribution, and n denotes the number of data from the real distribution, while we

use “c” to denote different synthetic distributions and use ñ to denote the number of synthetic data. The results and the standard deviation

in the bracket are obtained from 50 repetitions.

30 degree 60 degree
acc (std) rob acc (std) acc (std) rob acc (std)

Real

n = 10 0.9152 (0.0049) 0.7633 (0.0111) 0.9211 (0.0034) 0.7702 (0.0094)
n = 20 0.9170 (0.0030) 0.7642 (0.0075) 0.9225 (0.0020) 0.7714 (0.0068)
n = 50 0.9183 (0.0009) 0.7653 (0.0040) 0.9232 (0.0011) 0.7711 (0.0050)
n = 100 0.9185 (0.0006) 0.7658 (0.0027) 0.9235 (0.0009) 0.7724 (0.0027)

c = 0.5

ñ = 10 0.9089 (0.0183) 0.7563 (0.0310) 0.9111 (0.0114) 0.7638 (0.0172)
ñ = 20 0.9144 (0.0068) 0.7659 (0.0107) 0.9138 (0.0068) 0.7694 (0.0066)
ñ = 50 0.9174 (0.0029) 0.7680 (0.0068) 0.9161 (0.0038) 0.7714 (0.0033)
ñ = 100 0.9183 (0.0016) 0.7681 (0.0053) 0.9165 (0.0031) 0.7727 (0.0014)

c = 1

ñ = 10 0.9135 (0.0116) 0.7642 (0.0194) 0.9069 (0.0111) 0.7677 (0.0109)
ñ = 20 0.9178 (0.0046) 0.7710 (0.0073) 0.9042 (0.0098) 0.7676 (0.0072)
ñ = 50 0.9183 (0.0042) 0.7728 (0.0042) 0.9073 (0.0047) 0.7702 (0.0017)
ñ = 100 0.9196 (0.0017) 0.7733 (0.0036) 0.9059 (0.0039) 0.7698 (0.0016)

c = 1.5

ñ = 10 0.9181 (0.0079) 0.7747 (0.0104) 0.9034 (0.0079) 0.7704 (0.0053)
ñ = 20 0.9209 (0.0053) 0.7770 (0.0052) 0.9077 (0.0059) 0.7716 (0.0056)
ñ = 50 0.9218 (0.0029) 0.7788 (0.0028) 0.9073 (0.0030) 0.7722 (0.0014)
ñ = 100 0.9222 (0.0017) 0.7793 (0.0023) 0.9077 (0.0024) 0.7729 (0.0011)
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C. The detailed construction of the contrastive loss

In this section, we first give a detailed description of several possible ways to design contrastive loss, especially in

constructing positive and negative pairs. Then, we give a visualization of the synthetic data distributions generated under

different contrastive losses.

C.1. Positive and negative pair selection strategy.

In this subsection, we give several possible ways to construct positive and negative pairs.

1. Vanilla version: Using all the samples in the minibatch is the common strategy for contrastive learning. In the diffusion

process, since for each time step t, we want to distinguish each image from other images in the minibatch at the same

time step, a straight-forward strategy is to use all the samples in the minibatch other than xi
t at time step t to be the

negative pairs. For the positive pairs, we can simply adopt xi
t+1 to be the positive pairs rather than augmentation of xi

t.

2. Real data as positive pairs: A possible improvement upon the vanilla version is considering we aim to generate images

similar to real data. Therefore, we can directly adopt the real data as positive pairs.

3. Real data as negative pairs: Another improvement upon the vanilla version is considering the other images in time step t
in the minibatch is not as high quality as the real data. Therefore, we can directly adopt the real data as the negative pairs.

4. Class conditional version: When we use conditional diffusion, and the class label of xt in the minibatch is available, a

further improvement can be adopted is to use all the samples with different class label y in the minibatch at time step t to

be the negative pairs.

C.2. Visualization of the synthetic data distribution generated by different designs of the contrastive loss

In this subsection, we demonstrate the synthetic distributions generated by different designs of the contrastive loss mentioned

in Section C.1 on the Gaussian setting mentioned in Section 3.1. Figure 6 shows the synthetic distribution generated by

using N (0, I) as initialization, while Figure 7 shows the synthetic distribution generated by using N (0, 4I) as initialization.

In all figures, all of the contrastive loss except for conditional hard negative mining form a circle within each class, which

means these algorithms cannot explicitly distinguish the data within the same class and thus maximize the distance within

each class, while the guidance from conditional hard negative mining can generate samples that are more distinguishable.
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(a) InfoNCE (b) Hard negative mining

(c) Hard negative mining (real data as positive
pair)

(d) Hard negative mining (real data as negative
pair)

(e) Conditional inforNCE (f) Conditional hard negative mining

Figure 6. A comparison of the synthetic distribution guided by different contrastive loss with initialization N (0, I). Real data as positive

pair means using the mixture of oracle distribution N (±1d, I) and the data in the same batch as negative pair, while real data as negative

pair means using the data in the same batch as positive pair and using the mixture of oracle distribution as negative pair.
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(a) Diffusion (b) InfoNCE

(c) Hard negative mining (d) Hard negative mining (true data as positive
pair)

(e) Hard negative mining (true data as negative
pair)

(f) Conditional hard negative mining

Figure 7. A comparison of the synthetic distribution guided by different contrastive loss with initialization N (0, 4I).
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D. The experimental results for the real datasets

D.1. Experimental setup for MNIST dataset

We describe the pipeline of synthetic data generation for adversarial robustness and a corresponding setting for the MNIST

dataset in this subsection.

Dataset. MNIST dataset (LeCun et al., 1998) contains 60k 28×28 pixel grayscale handwritten digits between 0 to 9 for

training and 10k digits for testing.

Synthetic data generation by the diffusion model. To utilize the pre-trained diffusion model 4, we use a conditional

DDPM for generating samples for MNIST dataset. We adopt the hard negative mining loss with Ä = 10, the strength of

guidance of the contrastive loss λ = 5k, the probability of the same class in the minibatch Ä+ = 0.1 and the hardness

of negative mining ´ = 1. We also use the pre-trained four layers Convolutional Neural Network model (removing the

last fully connected layer) to get the representation for applying the contrastive loss and use a 2-layer feed-forward neural

network to encode the representation after the pre-trained model.

Adversarial Training. Since grayscale handwritten digits can be easily classified, we adopt four layers Convolutional

Neural Network as the classifier instead of using the Wide ResNet-28-10 model. We adopt stochastic weight averaging

(Izmailov et al., 2018) with the decay rate 0.995 and use TRADES (Zhang et al., 2019) with 10 Projected Gradient Descent

steps and ε∞ = 0.3 for 150 epochs with batch size 1024.

D.2. Experimental setup for CIFAR-10 dataset

We describe the pipeline of synthetic data generation for adversarial robustness and a corresponding setting for the CIFAR-10

dataset in this subsection.

Dataset. CIFAR-10 dataset (Krizhevsky, 2009) contains 50K 32x32 color training images in 10 classes and 10K images

for testing.

Overall training pipeline We follow the same training pipeline as (Gowal et al., 2021), i.e., synthesizing data by using

the diffusion model, assigning pseudo-label for synthetic data and aggregating the original data and the synthetic data for

adversarial training. We give a careful explanation of these three components as follow.

Synthetic data generation by the diffusion model. Considering the advantage of DDIM on generation speed, we base

on the official implementation of the DDIM model (Song et al., 2021a) and add the guidance of the contrastive loss. We

generate images with 200 steps with batchsize=512, and use the quadratic version of sub-sequence selection 5. For the

guidance of the contrastive loss, we try different designs of the contrastive loss mentioned in Section 4.2. We set the

temperature Ä = 0.1 and the strength of guidance of the contrastive loss λ = 20k in the InfoNCE loss, while Ä = 10, the

strength of guidance of the contrastive loss λ = 100k, the probability of the same class in the minibatch Ä+ = 0.1 and

the hardness of negative mining ´ = 1 in hard negative mining loss. These corresponding hyperparameters are chosen

based on some preliminary experiments on image generation. The detailed ablation studies can be found in Section 5.2.

Moreover, we also delve into the representation used by contrastive loss. The default setting is to use the pre-trained Wide

ResNet-28-10 model (Gowal et al., 2021) to get the representation for applying the contrastive loss, which is named as

(without embedding) in Section 5.2. A further improvement is to apply a 2-layer feed-forward neural network to encode the

representation after the pre-trained model, which is named as (with embedding). The advantage of the latter design is we

can adopt the contrastive loss to optimize the encoding network rather than a fixed encoder.

LaNet for assigning pseudo-label. Since the DDIM is an unconditional generator, we need to assign the pseudo-label to

the generated sample. We follow the same choice adopted by (Sehwag et al., 2022), i.e., using state-of-the-art LaNet (Wang

et al., 2019) network for assigning the pseudo-label for the synthetic data.

4https://github.com/VSehwag/minimal-diffusion
5We refer to Appendix D.2 for a detailed explanation of the quadratic version.
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Adversarial Training. We follow the same setting as (Gowal et al., 2021), i.e., we use Wide ResNet-28-10 (Zagoruyko &

Komodakis, 2016) with Swish activation function (Hendrycks & Gimpel, 2016), adopt stochastic weight averaging (Izmailov

et al., 2018) with decay rate 0.995 and use TRADES (Zhang et al., 2019) with 10 Projected Gradient Descent steps and

ε∞ = 8/255 for 400 epochs with batch size 10246.

Evaluation setup For each trained model, we adopt AUTOATTACK (Croce & Hein, 2020) with ϵ∞ = 8/255.

D.3. Experimental setup for Traffic Signs dataset

We describe the pipeline of synthetic data generation for adversarial robustness and a corresponding setting for the Traffic

Signs dataset in this subsection.

Dataset. Traffic Signs dataset (Houben et al., 2013) contains 39252 training images in 43 classes and 12629 images for

testing, and the image sizes vary between 15x15 to 250x250 pixels.

Synthetic data generation by the diffusion model. To utilize the pre-trained diffusion model 7, we use a conditional

DDPM for generating samples for Traffic Signs dataset. We adopt the hard negative mining loss with Ä = 10, the strength

of guidance of the contrastive loss λ = 5k, the probability of the same class in the minibatch Ä+ = 0.1 and the hardness of

negative mining ´ = 1. We also use the pre-trained Wide ResNet-28-10 model to get the representation for applying the

contrastive loss and use a 2-layer feed-forward neural network to encode the representation after the pre-trained model.

Adversarial Training. We follow the same setting as the CIFAR-10 dataset, except the training epochs are reduced to 50.

We also extend the training epochs to 400 but do not find significant improvement.

E. Ablation study8.

E.1. The effectiveness of different contrastive losses.

Table 8 demonstrates the performance of different designs of the contrastive loss. We find out that applying the hard negative

mining together with the embedding network achieves better clean and robust accuracy when the additional data is small

(50K and 200K setting), while the infoNCE loss achieves better clean and robust accuracy when the additional data is large

(1M setting). This result shows that we can improve the sample efficiency of the generative model by carefully designing

the contrastive loss.

Table 8. The performance of Contrastive-DP under different contrastive loss: infoNCE and HNM losses, and w/wo embedding denote

with/without an embedding network.

50K 200K 1M

clean acc rob acc clean acc rob acc clean acc rob acc

DDIM+infoNCE 83.40% 52.74% 84.18% 54.75% 85.64% 56.28%

DDIM+HNM(w embedding) 84.20% 53.19% 85.71% 54.92% 85.29% 56.12%

DDIM+HNM(wo embedding) 83.97% 52.89% 85.65% 54.83% 85.38% 55.95%

E.2. Sensitivity of the strength of the contrastive loss

Table 9 shows the influence of the strength of the contrastive loss. λ = 100k gives consistently better results than a

smaller λ = 50k or a larger λ = 200k on robust accuracy on all settings. Moreover, we find the larger the λ is, the better

performance we get on clean accuracy when the additional data is small (50K case), while the smaller the λ is, the better

performance we get on clean accuracy when the additional data is large (1M case).

6For Table 8 in the ablation studies subsection, we use batch size with 256.
7https://github.com/VSehwag/minimal-diffusion
8In this section, the robust accuracy is reported by the worst accuracy obtained by either AUTOATTACK (Croce & Hein, 2020) or

AA+MT (Gowal et al., 2020)
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Table 9. The performance of Contrastive-DP under different λ values.

50K 200K 1M

clean acc rob acc clean acc rob acc clean acc rob acc

λ = 50k 84.41% 53.78% 85.45% 55.24% 86.35% 56.83%

λ = 100k 83.66% 53.91% 85.71% 55.79% 86.30% 56.84%

λ = 200k 84.51% 53.55% 85.51% 55.33% 85.98% 56.69%

E.3. Data selection for synthetic data

Data selection methods are worthy of study since, in practice, we would like to know whether we can achieve better

performance by generating a large number of samples and applying some selection criteria to filter out some samples.

Therefore, we propose several data selection criterion and evaluate corresponding effectiveness in Table 10. All of the

selection methods on Contrastive-DP are higher than vanilla DDIM plus selection methods, which demonstrates the

superiority of using the contrastive learning loss as the guidance rather than using selection methods on the images generated

by the vanilla diffusion model.

Table 10. Comparison of different data selection criteria. The detailed explanation of each selection method can be found in Append E.3.

.

50K 200K 1M

clean acc rob acc clean acc rob acc clean acc rob acc

DDIM (Separability) 79.93% 49.49% 85.09% 54.90% 84.87% 56.08%

Contrastive-DP (Gradient norm) 80.41% 49.47% 84.64% 55.17% 86.36% 57.11%

Contrastive-DP (Gradient norm-rob) 83.91% 55.23% 84.78% 55.42% 85.93% 57.18%

Contrastive-DP (Entropy) 83.66% 53.91% 85.71% 55.79% 86.30% 56.84%

Below we summarize different data selection methods:

• DDIM (Separability): We adopt the separability of the data as a criterion to make the selection of the data generated by

vanilla DDIM. For each data, we use a pre-trained WRN-28-10 model to encode them into the embedding space. Then,

we compute the L2 distance between each sample and the centroid of all classes (which is easily computed as the mean of

all samples in this class) and add them together. To select a subset of samples that are most distinguishable, we choose the

top K samples that have the smallest distance in each class.

• Contrastive-DP (Gradient norm): We use the gradient norm with respect to a pre-trained WRN-28-10 model as a criterion

to make the selection on the data generated by Contrastive-DP. The larger the gradient norm is, the more informative the

sample is for learning a downstream model. Therefore, we select the top K samples that have the largest gradient norm in

each class.

• Contrastive-DP (Gradient norm-rob): Similar to Contrastive-DP (Gradient norm), we use the gradient norm of the robust

loss rather than standard classification loss as a criterion to make the selection on the data generated by Contrastive-DP.

Therefore, we select the top K samples that have the largest gradient norm in each class.

• Contrastive-DP (Entropy): We use the entropy of each sample with respect to LaNet as a criterion to make the selection

on the data generated by Contrastive-DP. The smaller the entropy is, the higher likelihood this image has good quality.

Therefore, we select the top K samples that have the smallest entropy in each class.

F. Additional experiments

F.1. Changing the base adversarial training algorithm

We mainly adopt the TRADES (Zhang et al., 2019) for adversarial training on synthetic data together with real training

data. A question is whether Contrastive-DP algorithm can also have good performance using vanilla adversarial training

algorithm (Madry et al., 2017). Table 11 demonstrates Contrastive-DP also shows advantages against vanilla DDPM and

DDIM by different base adversarial training algorithms.
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Table 11. The clean and adversarial accuracy on CIFAR-10 dataset. The robust accuracy is reported by AUTOATTACK (Croce & Hein,

2020) with ϵ∞ = 8/255 and WRN-28-10. 50k, 200k, and 1M denote the number of synthetic used for adversarial training.

50K 200K 1M

clean acc rob acc clean acc rob acc clean acc rob acc

DDIM 87.84% 54.97% 89.19% 53.79% 88.91% 55.10%

Contrastive-DP 88.50% 54.74% 88.26% 54.20% 89.43% 55.31%

DDPM 88.19% 53.32% 89.21% 54.16% 89.98% 54.17%

Contrastive-DP 88.99% 53.67% 89.55% 54.85% 89.97% 55.82%

F.2. Comparison with adversarial self-supervised learning

In the main paper, we only give the comparison of Contrastive-DP with the state-of-the-art method of adversarial robustness

(Gowal et al., 2021) by using the diffusion model to generate synthetic data. Since contrastive learning is also used in

adversarial self-supervised learning literature (Kim et al., 2020a; Fan et al., 2021; Zhang et al., 2022), we give a detailed

comparison with these methods in Table 12, which also demonstrates the effectiveness of Contrastive-DP.

Table 12. The clean and adversarial accuracy on CIFAR-10 dataset. The robust accuracy is reported by AUTOATTACK (Croce & Hein,

2020) with ϵ∞ = 8/255.

rob acc

RoCL (Kim et al., 2020a) 47.88%

AdvCL (Fan et al., 2021) 49.77%

DeACL (Zhang et al., 2022) 50.39%

Contrastive-DP 59.99%
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