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In this paper, we propose a new framework to construct confidence sets for a d-dimensional unknown
sparse parameter 6 under the normal mean model X ~ N(6, o2D). A key feature of the proposed confidence
set is its capability to account for the sparsity of @, thus named as sparse confidence set. This is in sharp
contrast with the classical methods, such as the Bonferroni confidence intervals and other resampling-
based procedures, where the sparsity of @ is often ignored. Specifically, we require the desired sparse
confidence set to satisfy the following two conditions: (i) uniformly over the parameter space, the coverage
probability for @ is above a pre-specified level; (ii) there exists a random subset S of {1, ...,d} such that
§ guarantees the pre-specified true negative rate for detecting non-zero 6;’s. To exploit the sparsity of
6, we allow the confidence interval for 6; to degenerate to a single point O for any j ¢ S. Under this
new framework, we first consider whether there exist sparse confidence sets that satisfy the above two
conditions. To address this question, we establish a non-asymptotic minimax lower bound for the non-
coverage probability over a suitable class of sparse confidence sets. The lower bound deciphers the
role of sparsity and minimum signal-to-noise ratio (SNR) in the construction of sparse confidence sets.
Furthermore, under suitable conditions on the SNR, a two-stage procedure is proposed to construct a
sparse confidence set. To evaluate the optimality, the proposed sparse confidence set is shown to attain a
minimax lower bound of some properly defined risk function up to a constant factor. Finally, we develop
an adaptive procedure to the unknown sparsity. Numerical studies are conducted to verify the theoretical
results.

Keywords: Adaptivity; confidence interval; high-dimensional statistics; minimax optimality; sparsity; true
negative rate.

1. Introduction

Assume that we observe a d-dimensional random vector X = (X, ..., X;;) satisfying the following normal
mean model, also known as Gaussian sequence model,

X ~ N@,0%0), (1.1)

where 6 = (6;,...,0;) is a d-dimensional unknown parameter, I is an identity matrix and o2
is the common variance which is assumed to be known. The mathematical simplicity of normal
mean models is often exploited to discover the fundamental phenomena underlying more compli-
cated statistical models. In particular, the normal mean model has attracted numerous interest in
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high-dimensional statistics. Among others, [1] proposed an adaptive procedure for estimating sparse
0 which is asymptotically minimax for £, loss, while [10] derived the minimax risk for the recovery
of sparsity pattern under the Hamming loss. From a different perspective, the detection boundary for
testing the null hypothesis # = 0 has been well studied by [2, 17, 18], among many others. However,
the uncertainty quantification in terms of confidence sets for  is less explored, partly because one can
easily construct the following (1 — «) level confidence sets:

{0 eR?: max X, — 60, < 1,0}, (1.2)

where the cut-off 7, can be determined by the Gaussianity of X with Bonferroni (or Sidak) correction
or resampling methods [3, 13]. With a slightly different goal, [6] proposed to construct confidence
intervals for some randomly selected components of #, known as selective confidence intervals; see also
[7, 16, 31, 34] for some recent development.

Recently, there is a growing interest in developing confidence intervals for sparse linear regression
and other regression models, for instance, [5, 11, 19, 24, 26, 27, 29, 32], a list that is far from exhaustive.
The method is often termed as a debiased or desparsifying approach in the literature. Their main idea is
to remove the bias of the penalized estimator, e.g. Lasso, so that the resulting estimator of the unknown
regression coefficients is asymptotically linear. The confidence intervals for each component of the
regression parameter are obtained by Gaussian approximation. Intuitively, the debiased estimator can
be viewed as the random vector X in the normal mean model after the use of the central limit theorem
and other asymptotic approximations. As a result, one can construct confidence sets for the whole
vector of regression parameter in a similar way as (1.2) using the resampling method; see [33]. In
another strand of research, [25] proposed honest and adaptive confidence sets for sparse linear models.
A computationally feasible approach is developed by [12], in which the confidence set has the form
Be g = 0 € R : |6 — 0], < C,} for some suitable C,, and @ is the Lasso estimator in linear
regression.

For such confidence set centred at the debiased estimator or Lasso estimator (e.g. B, 3), the points
in this set are not necessarily sparse (especially in finite samples). If we know a priori that the true
parameter is sparse, all non-sparse points in B, g are not the true parameter, which can be removed from
B 3. In other words, the confidence set B 5 does not respect the sparsity structure of the parameter.
Conceptually, we can improve B 3 by taking all sparse points in B 5 as the confidence set for 0.
However, such a procedure is less intuitive and the result is hard to interpret. To the best of our knowledge,
it is an open problem to formulate ‘sparse confidence sets’ and, if possible, construct them in a simple
and optimal way.

1.1 Formulation of sparse confidence sets

To address this question, we propose a new framework to construct ‘sparse confidence sets’ for @ under
the normal mean model. The proposed method can simultaneously quantify the uncertainty of non-zero
parameters and also account for the sparsity of 8. To be specific, we first consider the setting that the
parameter § = (6, ..., 0,;) belongs to a one-sided sparse set in RY ie. 0 e ®7 (s, a), where

O%(s,0) = {0 € R': |8llp < 5. min 6, > al, (1.3)

20z Iudy | g uo 3sanb Aq 906080./€6 | L/E/Z /o101 /Ierewl/wod dno-olwapede//:sdiy Wwody papeojumod



Y. NING AND G. CHENG 1195

for some s,a > 0. Given X ~ N(0,0°I), a sparse confidence set M (S, U, L) for @ is defined in the
following form:

M(S.U.L)={# e R : 05 =0and §, € [L;, U] for any j € S}, (1.4)

where S := S(X) is a random subset of [d] = {1,2,...,d}, S denotes the complement of S and L =
(Ly,...Ly) and U = (Uy, ..., Uy) with L= Lj(X) and U; = Uj(X), respectively, being the lower and
upper confidence bounds for Oj. If j belongs to S, [LJ-, U j] is the confidence interval for Oj, otherwise the
confidence interval degenerates to a single point 0. The cardinality of the random set S determines the
‘sparsity’ level of M (S, U, L). Note that by setting S = [d], M(S, U, L) reduces to the classical confidence
intervals, such as (1.2). On the other hand, if the support set of  is known, one can take S = supp(0)
and M(S, U, L) reduces to the so-called oracle confidence intervals; see Remark 4. By exploiting the
sparsity of 6, the oracle confidence interval degenerates to 0 for those 6; not in the support, and therefore
is an example of sparse confidence sets in (1.4). Since the support set of  is unknown, in regression
models, [14, 15, 30] proposed to construct asymptotically valid oracle confidence intervals for the non-
zero parameters under the assumption that the support set can be recovered with probability tending to
1.

Formally, we require that the desired sparse confidence set (1.4) should satisfy the following two
conditions.

e M(S,U,L) has the desired coverage probability for # uniformly over ®* (s, a), that is for a given
level 0 < o < 1,

sup Py(@ ¢ M(S,U,L)) < a. (1.5)
0O (s,a)

This is the typical requirement for the validity of the confidence set.

e M(S,U,L) is ‘sparse.” Formally, for a given level 0 < § < 1, we require

FPR <1 -4, where FPR := sup sup Py € S(X)). (1.6)
JEld1 0O (s,a),6;=0

This condition implies that the probability of a null signal with 6; = 0 being selected by some variable
selection algorithm via the set S(X) is no greater than 1 — §. Thus, 1 — § corresponds to the false
positive rate (FPR) of selecting non-zero ¢;’s. Similarly, we can define the true negative rate (TNR)
as TNR = 1 — FPR, and view ¢ as the desired TNR level. From this interpretation, we can see that a
larger value of § requires the confidence set to have less false positives. Finally, we note that § also
controls the expected cardinality of S = S(X), where we use |S(X)| to denote the cardinality of the
set S(X). Specifically, by (1.6) we obtain

sup  Eg|S(X)| = sup [ D P eSX)+ D Pylie S(X))]

)+ ok . .
0cOT(s,a) 0O (s,a) Jj:0;#0 j:6;=0

<s+d-9(01-9),
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where the inequality follows from ||@]|, < s and (1.6). Recall that if j ¢ S(X), [Lj, U:] degenerates to
a single point 0. Thus, the expected number of intervals [L, U] that degenerate to O is at least (d — 5)3,
ie. EglS°X)| =d—s5—(d—s5)(1—58)=(d—s)é.

Conceptually, it may be more intuitive to directly pre-specify the size of S when constructing
M(S, U, L) as opposed to requiring (1.6). However, an appropriate choice of |S| depends on the unknown
sparsity of 8 and is often difficult to specify in practice. Therefore, we take the current approach which
requires (1.6) together with (1.5).

1.2 Main results

Under this novel framework, our goal is to construct M (S, U, L) such that (1.5) and (1.6) hold. In view
of the definition of the sparse confidence set (1.4), it is easily seen that if there exists some j € [d] such
that j € supp(f) and j ¢ S, then @ would never be covered by M (S, U, L). Similarly, if |S] is too large
(e.g. S = [d]), there may exist too many false positives such that (1.6) is violated. Thus, the bottleneck
is how to construct a set S for which supp(#) < S holds with some desired probability and (1.6) is
valid. We first study the existence of such set S. To this end, a non-asymptotic minimax lower bound
for Py (supp(#) Z S) is established in Theorem 1 over a suitable class of random sets S satisfying (1.6).
More precisely, the class of the random sets is defined in (2.1). The lower bound details the conditions
on the sparsity and minimum signal-to-noise ratio (SNR) in the construction. To match the lower bound,
we further show in Theorem 3 that, under appropriate conditions on the SNR, a random set §a, obtained
by a simple thresholding procedure contains supp(f) with probability greater than 1 — o’ and satisfies
(1.6), where o' is a pre-specified tolerance level.

Given the set §a/, we proceed to construct the lower and upper confidence bounds L and U. Since
the parameter space ® 1 (s, a) in (1.3) is one-sided, we focus on the one-sided sparse confidence set with
U; = +oo forj € S. In Section 2.2, we derive the lower confidence bound Zj for those j € §a, using
Bonferroni correction to account for the multiple comparisons and the randomness of the estimated
set Ea,. In Theorem 4, we show that the sparse confidence set constructed above satisfies the desired
conditions (1.5) and (1.6).

Theorems 1, 3 and 4 together characterize the role of the minimum SNR, defined as a/o, in the
construction of sparse confidence sets. In particular, in the asymptotic regime d,s — oo, a phase
transition phenomenon occurs when the SNR reaches the level ®~!(8) 4+ /2Togs, where ®~!(-) is
the inverse function of the Gaussian c.d.f. ®(-). To be specific, if a/o < ®~1(8) + (1 — €)/2]og s for
an arbitrarily small positive constant e, it is impossible to construct sparse confidence sets with the set
in (2.1). On the other hand, if a/o > ®~!(8) 4+ /2 log s, the proposed sparse confidence set satisfies the
conditions (1.5) and (1.6).

When the conditions on the SNR are fulfilled, there exist infinite number of sparse confidence
sets of form (1.4) that meet (1.5) and (1.6). In Section 3, we further evaluate the optimality of the
sparse confidence set. For the one-sided interval M (S, U, L), we formally define the following optimality
criterion function

RM(S,U,L),0%(s,0) := sup sup Ey(; — L)), (1.7)
1<j<d 0c®*(s,a)

which represents the maximum distance between Qj and E, (Lj); see Section 3 for further details.
Intuitively, L; < 6; is expected in order for the one-sided confidence interval to cover the unknown
parameter 9]-. As a result, the smaller E, (0]- — Lj) is, the more preferred the confidence interval is.
However, the non-coverage probability of the confidence set M(S, U, L) can be inflated, if we force
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RM(S,U,L),®*(s,a)) to be too small. This trade-off is formalized in Theorem 6. In particular, we
establish the non-asymptotic minimax lower bound for the non-coverage probability of M (S, U, L) over
the class of confidence sets that satisfy (1.6) and R(M(S, U, L), ®T (s,a)) < m for some given m. Under
the asymptotic regime d,s — 00, a direct implication of Theorem 6 is the minimax lower bound for
R(M(S,U, L), ®%(s,a)). This result is shown in Corollary 8. We further show that the sparse confidence
set Ma, defined in (2.14) attains the above minimax lower bound up to a constant factor 2. Thus, the
proposed sparse confidence set is optimal (up to a constant) with respect to R(M(S, U, L), ®7 (s, a)).

While the proposed sparse confidence set A_/Ia/ is optimal, the construction of Ma/ requires the
knowledge of the unknown sparsity s and the minimum signal strength a. In Section 4, we propose
a sparse confidence set that is adaptive to the unknown sparsity. In Theorem 9, we show that, under
the asymptotic regime, the adaptive sparse confidence set attains the same minimax lower bound for
R(M(S,U,L),®"(s,a)) up to a constant.

Numerical studies are conducted in Section 6 to backup our results. The proofs are deferred to the
Appendix.

1.3 Comparison with the existing literature

In selective inference, the goal is to provide valid confidence intervals for a set of selected parameters
{0;},c5, where Sisa data-dependent subset of [d] from some variable selection algorithm. Within this
framework, there are different types of error rates one may want to control, such as simultaneous over
all possible selection (SoP) error rate [8], conditional over selected error rate [21] and simultaneous over
selected (SoS) error rate [7, 16]. Refer to [7] for the detailed literature review. Note that one requirement
of our sparse confidence set is (1.5), which implies that the sparse confidence set controls the SoP and
SoS errors at level «; see Section 5 in [7].

While our two-stage procedure is in similar spirit to selective confidence intervals, our goal is to
provide a valid confidence set that covers the whole vector of # with the desired coverage probability. In
particular, if j ¢ S(X) for some S(X) constructed via our two-stage method, our confidence interval for
0; is 0. The uncertainty of assigning 0 confidence intervals to 6; is taken into account in our method. In
contrast, selective inference makes no confidence statement about the parameters not selected in s (or
equivalently their confidence interval for 6; is (—o0, +-00) for j ¢ 3‘).

The confidence intervals from the debiased method can be viewed as the confidence intervals with
Bonferroni correction under the Gaussian sequence model [5, 11, 19, 26, 29, 32]. Both the Bonferroni
confidence intervals and our sparse confidence intervals have the desired coverage probability for the
entire vector @ € RY. However, our sparse confidence intervals can degenerate to the point 0 for some
entries of @, which means the sparse confidence intervals can also perform variable selection. Intuitively,
if the practitioners are interested in both variable selection and confidence intervals for 6, the sparse
confidence intervals can be more appropriate. Finally, we note that the optimality results established in
Corollary 8 are not applicable to the Bonferroni confidence interval, as it does not belong to .#__ in (3.4).

Notation. The following notations are used throughout the paper. For any a,b € R, denote a vV b =
max(a, b) and a A b = min(a, b). Denote (a), = a if a > 0 and 0 otherwise. For any sequences a,,, b,,,
we write a, ~ b, ifa,/b, — 1 asn — oo.

2. Sparse Confidence Sets for One-sided Parameter Space

In this section, we consider how to construct sparse confidence sets M (S, U, L) under the normal mean
model X ~ N(0, 021), where # belongs to the space ®7 (s, a) defined in (1.3). In order to guarantee
(1.5) and (1.6), the bottleneck is to construct the set S, if it is possible. In Section 2.1, we consider how
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to construct the set S as our first step. Once the set S is available, we construct appropriate lower and
upper confidence bounds L and U in Section 2.2.

2.1  Construction of the set S

The first question concerns whether it is possible to construct an index set S with the desired properties.
Define

F©) ={SX) : Py(j € SX)) <134,
and the event {j € S(X)} only depends on X; for any j € [d]}, 2.1

where we define Py(& (X ;) as the probability of some event & (X j) depending on X 1 where X Fa

N(0,0?) and § is specified in (1.6). On top of (1.6), we focus on the separable rule: whether j is selected
by S(X) or not is independent of the data X; for i # j.

The following theorem provides the non-asymptotic minimax lower bound for Py (supp(@) £ S) over
the class of separable rules .%(8) for any given 4.

THEOREM 1. (Minimax lower bound). For any s > 1 and 0 < § < 1, we have

_inf  sup Py(supp@) £8) =1 — ——,
Se.7(5) 00 (s.0) 0 (A +1)s

2.2)
where A = ®(®~!(8) — a/o). Furthermore, consider the asymptotic setting that s,d — oo. Let C,
denote an arbitrary sequence ¢, — oo and c¢;/s — 0. When the SNR satisfies

ajo <k, = CI>_1(8) — CD_I(CS/S), 2.3)

we have

liminf _inf  sup Py(supp(d) £ S) = 1. (2.4)
ds—00 §e.F(5) 9O (s,a)

A few remarks are in order. First, we note that the non-asymptotic lower bound in (2.2) depends on
the TNR 4§, the SNR a/o and the sparsity level s. Since we are only interested in whether the non-zero
parameters in @ are selected by S or not, the lower bound is free of the dimensionality d, which differs
from the lower bounds for support recovery [10]. Second, the role of SNR and TNR becomes more
transparent in the asymptotic regime as both d,s — oo. In particular, the asymptotic lower bound in
(2.4) implies that when the SNR is finite or diverges slowly enough (a/o < «,), we cannot construct
sparse confidence sets M (S,U,L) where S € .Z(8) contains supp(#) uniformly over the parameter space
®7 (s, a). Third, we comment that k., > 0if and only if 6 > c¢;/s. Thus, the negative result (2.4) is
meaningful only if the pre-specified TNR is greater than c/s.

Recall that in view of the definition of the sparse confidence set, & € M(S, U, L) implies supp(f) < S.
Thus, Theorem 1 leads to the following simple corollary on the feasibility of sparse confidence sets. To
avoid repetition, we only present the asymptotic result.
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COROLLARY 2. Under the asymptotic setting s,d — 00, if (2.3) holds, then for any sparse confidence
set M(S,U, L) with S € .Z(3) we always have

liminf sup Py(0 ¢ M(S UL)=1.

d.5=>00 9@+ (s,a)

As aresult, the two requirements (1.5) and (1.6) cannot hold simultaneously unless the SNR is above
the threshold «, defined in (2.3).

In the following text, we construct an index set that satisfies the desired coverage probability under
certain signal strength condition. The estimator §a, is defined as

S, = {j cl): s (cp—l(“—/) + g) v cb—l(a)}, (2.5)

o N

where o denotes the tolerance level for the non-coverage probability of the index set. The following
theorem shows that S belongs to the set .#(8) and the non-coverage probability of S is no greater than

o

THEOREM 3. (Upper bound). For any 0 < o’ < 1, it holds that §a, € .%(8). In addition, if

ajo > k* =07 1(8) — d (' /s) (2.6)
holds, then
sup P,(supp(d) £ S,) < o' (2.7)
0Ot (s,a)

REMARK 1. Itis of interest to compare the two thresholds «, in (2.3) and «* in (2.6). Assume that s — oo
and o’ is fixed. By the tail bound inequality for Gaussian random variables (e.g. Lemma 16), we can show
that k* ~ ®~1(8) + /2Tog s. Similarly, we have «, ~ ®~1(8) + ,/21log(s/c,). Thus, Theorems 1 and
3 together imply a phase transition at the level ®~'(8) + +/2Togs, i.e.

o ifa/o <®N(S) +(1— e)«/ 2logs for some small positive constant €, it is impossible to construct
sparse confidence sets M (S U, L) with Se F(8), i.e. (2.4) holds.

e ifa/o > @‘1(5) + /2logs, Sa/ has the desired coverage probability, i.e. (2.7) holds, which leads
to a valid sparse confidence set as shown in the next subsection.

2.2 Construction of one-sided confidence sets

In this section, we are ready to construct the confidence set based on §a, in (2.5). Recall that 6 ;= 0in
©7T (s, a). We are mainly interested in the one-sided confidence interval concerning the distance of the
lower confidence bound to 0. Specifically, for j € S, we would like to construct a one-sided confidence

interval [¢ i» +00) with some ¢ (= 0.Ifc j is strictly greater than O (i.e. 0 is not contained in the confidence
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interval), we can conclude that 6 j is non-zero with the desired confidence level. Thus, we define the one-
sided sparse confidence set as

M, =M@, .UL), where L; = (X; —i,y0),, U; = +00 (2.8)

foranyj e ga, and %, is to be specified later to attain the desired coverage probability. To simplify the
presentation, we treat &’ as a given tuning parameter.
We partition the SNR region into low and high levels for constructing the sparse confidence set (2.8):

* Low SNRregion: R; = {K Tk <k <k \/75},
* High SNR region: Ry; = {K ck > k* v?},

where

Fmo () e () 29

and « is the desired level specified in (1.5). In both regions, we require the SNR to be no smaller than «* in
order to guarantee (2.7); see Remark 1. Under the asymptotic regime d, s — 00, provided that o, &’ and §
are all taken to be constants, we have k* < i and R; and Ry reduce to {x : k* <k <Xk} and {x : k >k},
respectively. However, if the pre-specified TNR is sufficiently close to 1,i.e. § > 1 — (@ — ') /d, we
have «* > &. In this case, R; becomes an empty set and Ry = {k : k > «*}.

The following theorem shows that with a suitable choice of i, the sparse confidence set (2.8) satisfies
(1.5) and (1.6).

THEOREM 4. For any 0 < &’ < «, provided (2.6) holds, we have

sup Py (j e:S\‘a/) <1-4, and sup Py(0 ¢ Ma/) <a,
0O (s,a),0;=0 0Ot (s,a)

where %, in (2.8) is given by

o1 (1 - 25¢) ifa/o € Ry,
o (1 - “—‘“"“;S)“‘”“) ifa/o € Ry,
+_ —1
where n" = ®(Z + 7 (%)),
Theorem 4 implies that, when the SNR belongs to the low SNR region assuming it exists, the

confidence interval for ¢; is either 0 if j ¢ §a, or [(X; — cd (1 - ”‘:1‘)‘/))+, +o0) ifj € Ea,. Note that

the one-sided confidence interval for 6; with Bonferroni correction (without accounting for sparsity) is

given by
[(Xj o (1 — %))+,+oo) (2.10)
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for 1 <j < d. Thus, in the case of low SNR, our sparse confidence set for 6 i withj € §a/ can be viewed
as the Bonferroni correction at a reduced level o« — o’ in order to account for the randomness of the
estimated set §a/.

To better understand the choice of %, in the high SNR region R;;, we focus on the following subset
of Ry,

S2 (- qu(%{) —o7 () veer @.11)

where € is an arbitrarily small positive constant. In this case, we can show that

n a—a'd—s o—d
d—-s5)y(1—-n") < <

T 14e d T 14+e€’
As a result, we have
_ I
a, < <I>_1(1 — M) 2.12)
s(1+¢€)/e

Recall that the oracle confidence interval is defined as
-1 o
[(Xj—ocb (1 ——)) ,+oo) (2.13)
s/)+

for j € supp(#) and O otherwise. Thus, when (2.11) holds, our sparse confidence set with (2.12) is in
similar spirit to the oracle interval with a multiplicity correction factor s(1 + €)/e at level o — o,
While Theorem 4 shows that 1\7&, in (2.8) is a valid sparse confidence set, we show in Appendix C that
1\710/ is suboptimal in terms of the criterion function R(M (S, U, L), ©% (s,a)) in (1.7) (as d, s — o0). To
investigate the optimality of the sparse confidence set in the next section, we now focus on the asymptotic
regime, where d, s — oo and we treat the pre-specified levels « and § as fixed. In the following text, we
propose an asymptotic sparse confidence set 1\_/[“,, and establish its optimality in the next section:

M, =M(S,,U,L), where L; = (X; — ii,0) , U; = +00 (2.14)

forj € S,,. Here, S, and i1, are defined as follows.

e When «** <a/o < ik, definej € Sa, if and only ifXj/cr > &~1(8), and

iy, = \/2 log (m) (2.15)
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*  Whena/o > &, define j € S, if and only if X ;/o > \/Zlog(%), and

_a/)cdfs,ot

i, = \/2 log (#) (2.16)

s,o—a’

The cut-off points for the SNR are defined as

= o716 + 21og(

and

2(d —
F= [2log @) + |210g( ——)
(@ —a)Cy_so—u Cow

where C, ,, = 2( log(s/a’))/?. The cut-off points k** and & are the asymptotic versions of «* in (2.6)
and ¥ in (2.9), respectively, by applying the tail bound inequality for Gaussian random variables (e.g.
Lemma 16). Note that ¥ diverges to infinity faster than «* as d,s — oo. Thus, unlike the high SNR
region Ry in the non-asymptotic setting, there is no need to take the maximum of k and «*.

The following corollary shows that 1\_/Ia, is a valid sparse confidence set as d, s — oo.

COROLLARY 5. Assume that d, s — oo and §, « are pre-specified fixed constants. For any 0 < o’ < «,
provided «** < a/o, we have

limsup  sup  Py(jeS,) <1-34, limsup sup Py(d ¢ M,) <a.
d;s—>00 0eO7 (s,a),0;=0 d,s—>00 0Ot (s,a)

REMARK 2. (On the choice of «’). We note that in general «**, k and i1, in (2.15) and (2.16) all depend on
the choice of o’. However, in the asymptotic regime, if we set o’ = y « for any fixed constant0 < y < 1,
then it,, ~ /2Togd in (2.15) and i1, ~ +/2Togs in (2.16), and similarly, k** ~ ®~1(8) + /2Togs
and ik ~ +/2log(d — s) + +/21og s, which are all asymptotically independent of «’. From a theoretical
perspective, when d, s are large enough, the choice of o’ has little effect on the proposed confidence
interval. Therefore, in the asymptotic analysis, we treat o’ as a fixed small constant. We refer to the
numerical studies in Section 6 for sensitivity analysis and further practical guidelines on choosing '

Finally, we note that when constructing the sparse confidence set, we treat « and ¢ as pre-specified. In
other words, we do not consider § as a tuning parameter in this work. In addition, Corollary 5 shows that
the sparse confidence set M, o 18 valid when the minimum SNR satisfies a/o > «**. Without knowing
this information, the sparse confidence set should be interpreted with care.
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3. Optimality of Sparse Confidence Sets

In this section, we will establish the optimality of the proposed sparse confidence sets with respect to
the criterion function R(M(S,U, L), ©®%(s,a)) in (1.7). We define a generic class of one-sided sparse
confidence sets as

Cly ={M(S,U,L) : S C [d], and forany j € [d], L;, U; only depend on X,

0§Lj §Xj\/0and Uj=+ooifjeS,otherwiseLj= Uj=0}.

In the above definition, S in M (S, U, L) can be any subset of [d]. For any confidence set M(S,U, L) in
Cl,, we first require that the construction of (L » U j) is separable for 1 < j < d, which is compatible
with the condition in the definition of .#(8) in (2.1). In addition, we require L i = Xj v 0, a technical
condition to control the tail of L T In order for the interval [L i 00) to cover 6 ;> one would expect that the
lower confidence bound L j is smaller than X i Together with L iz 0, this implies 0 < L i = X iV 0.1Itis

easily seen that the one-sided Bonferrroni confidence set with S = [d] and L; = (X; — od (1 - N4
belongs to CI ..

Within the class of confidence sets CI,, we further define M (m,8) as a subset such that
RM(S,U,L),®7(s,a)) < m for some given m > 0 and S € .#(J) holds as defined in (2.1). Formally,
for any m > 0 and § in (2.1), we have

M (m,8) = {M(S, U,L) € CI, : RIM(S,U,L),®" (s,a)) <m, and § € ﬁ(a)}, 3.1)

where the quantity m characterizes the maximum distance between 6; and the expected value of the lower
confidence bound E(L ). Intuitively, given any two confidence sets in CI . both with the desired coverage
probability, we would favour the one with a smaller value of R(M(S, U, L), ®% (s, a)), as it corresponds
to a ‘shorter’ one-sided confidence interval and is more informative on the possible range of 6;. However,
if we set m to be too small, the non-coverage probability of any confidence sets in .# (m,§) may go
beyond the desired level «.

In the following theorem, we demonstrate this trade-off by showing the non-asymptotic lower bound
for the non-coverage probability of any confidence set in ./ (m, ).

THEOREM 6. (Minimax lower bound). For any s > 1 and M € .# (m, $), it holds that

sup P0(0¢M)2ma><( sup G(d,A,p,m), sup G(s,B,p,m),1 —

— ), (2
0O+ (s,0) pzaA<s p=0,B<s (A+ US)

where A is defined in Theorem 1,

G A pom) = Alg(d,A,p) — (m+R)/p],
P T Al d A, p) — m+ R /ol

with

=50~ £ T (4 ) vl £+ T4 )
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and

R= /Lanp(_1(3)2)¢1+4<o/p)2—1
27 2\ ) ST 40/p2 +1

and G(s, B, p, m) is defined similarly.

We show that the non-asymptotic lower bound (3.2) is the maximum of three terms, which are
obtained by reducing the supremum over # € ®T(s,a) to the maximum over different subsets of
©T(s,a). For example, the first term G(d, A, p,m) is obtained by considering the set @(A) = {# €
RY : 01lg =A,0; = p, for anij # 0}, where 0 < A < s and p > a. That is we consider all possible
0 with cardinality A and the parameter on the support set is fixed at p. Since the non-zero entry is no
smaller than a and the sparsity level is no greater than s, we require p > a and A < 5. When a diverges
slowly enough as s,d — o0, this term dominates and converges to 1 for some suitable m, see case (2)
of the following Corollary 7. Similarly, the second term G(s, B, p, m) is derived by reducing ®* (s, a) to
a different subset; see the proof of Theorem 6 for more information. As seen in case (3) of Corollary 7,
this term converges to 1 when a is sufficiently large. The last term is inherited from Theorem 1, see also
the discussion of Corollary 2.

To simplify the results in Theorem 6, we consider the asymptotic regime in the following corollary.

COROLLARY 7. Assume that s,d — 00.
(1). Ifa/o <k, defined in (2.3), then

lim inf inf sup Py(0 ¢ M) =1.
ds=>00 Me M1 (m.8) 00+ (s.a)

2). Ifk, <a/o <,/2log(d/A; — 1), then

lim inf inf sup Py(@ ¢ M) =1,
d.s—>00 Me M\ (m,8) 0cOt(s,a)

for m < a(% — %),/ZIOg(d/Ad -1+ %(1 — déjd), where A,, W, are two arbitrary
sequences satisfying

d
2W,; <A, <, e — o0, and W; — oo. 3.3)
d

3). Ifa/o > /2log(d/A — 1) for some constant 0 < A < s, then

lim inf inf sup Py(@ ¢ M) =1,
ds—= 00 Me M. (m5) O (s,a)

form < a(% — IVT':)* /2log(s/B; — 1)+ %(1 — Sfqu ), where B, V are two arbitrary sequences
satisfying 2V, < B, < s and s/B; — oo,V — oo.
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This corollary details the trade-off between the coverage probability of the confidence set and the
magnitude of R(M(S,U,L) in three regions depending on the value of a/o. In particular, case (1) is
inherited from Corollary 2. To understand case (2), we can first pick a sequence A, that diverges to
infinity sufficiently slow (e.g. slower than s), and then set W; = Al/ 2. The condition (3.3) holds. Thus,

in case (2), m cannot be smaller than 0(2 — o(1))+/21logd in order to guarantee the desired coverage
probability. Similarly, when the minimum SNR a/o grows fast enough as in case (3), m cannot be smaller
than o' (3 — o(1))y/21ogss.

Finally, we prove the optimality of the sparse confidence set Ma, in Corollary 5. Consider the class
of one-sided confidence sets for which the coverage probability is no smaller than 1 — « uniformly over
®7T (s, a), defined as

M, ={M(S,U,L) € CI :liminf inf Pyp(@ e M(S,U,L)) >1—a, andS € F(5)}. (3.4)
d,s—00 0O (s,a)

Recall that Corollary 5 implies Ma/ € ./ . In the following corollary, we establish the optimality of
]l_/Ia/ within the class ., with respect to the criterion function R(M, ®7 (s, a)) defined in (1.7).

COROLLARY 8. Assume that d,s — oo and §, « are pre-specified fixed constants.
(1). If«c*™ <a/o <,/2log(d/A,; — 1) for some sequence A; < s satistyingA; — oo andd/A,; —
00, then
RM, et
liminf inf ( (s, a))

35
dis—00 Me M, GM/z G-

Consider the sparse confidence set Il_/la, in Corollary 5 with o’ = y« for any constant0 < y < 1.
Then M, € ./ and

. R(Ma/’®+(sa a))
lim sup ——m————

3.6
d.5—>00 o+/2logd (3-6)

(2). Ifa/o > k where k = /2log(d — s) — loglog(d — s) + C" + +/2logs —loglogs + C' V &,
for some sufficiently large positive constant C’ and &; = \/ (loglog(d — s) — loglogs), , then

R(M,®"
liminf inf ( s, a)) 3.7)
d,s—00 Me M, a«/210gs/2
The sparse confidence set M, satisfies M, € ./ '+ and
. R(M,,,©%(s,a))
limsup —————— < (3.8)

d.s—>00 o+/2logs

ReEMARK 3. The inequalities (3.5) and (3.7) together lead to the asymptotic lower bound for
R(M,®7(s,a)) over the class of one-sided confidence sets .Z . in two different regimes. Furthermore,

20z Iudy | g uo 3sanb Aq 906080./€6 | L/E/Z /o101 /Ierewl/wod dno-olwapede//:sdiy Wwody papeojumod
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(3.6) and (3.8) imply that the sparse confidence set Ma/ developed in Corollary 5 matches the lower
bounds up to a constant factor 2 in both regimes.

However, we note that there exists a gap on the minimum SNR between these two regimes. Let
us consider the following setting. By taking A, to be a sequence that diverges to infinity sufficiently
slow, we have \/2 log(d/A; — 1) ~ +/2logd in case (1). For case (2), assume that s = dP for some
0 < B < ¢ < 1, where c is a constant. Then log(d — s) = Blogd + log(d'~# — 1) = (1 + o(1)) logd,
and log s = B log d. After some algebra, it can be shown that « in case (2) satisfies

K
1< lim ———— <1482 3.9
_dinc}o J2logd — P (33)

Thus, the ratio between the two cut-points & in case (2) and /2 log(d/A; — 1) in case (1) converges to
1 as B8 — 0, which occurs if @ is very sparse with s = logd (i.e. 8 = loglogd/logd). In this case, the
gap between the two regimes diminishes to 0 asymptotically.

REMARK 4. (Support recovery and oracle confidence set). Recall that if we know the support of 6, we
can construct the following one-sided oracle confidence interval L;’.mde = X; - c®d (1 — )4 and

U;?’“de = oo for j € supp(f) and L‘;”‘df = U?’“"le = 0 otherwise. This implies Eq(6; — L;"‘"l‘f) ~
o+/2logs for j € supp(f). Intuitively, if the support set can be recovered exactly with high probability,

i.e. S = supp(@) for some estimator S, one would expect that (under some conditions) the same result
holds for the plug-in interval

[(Xj —od! (1 — %))Jr,—i—oo) for j € S and 0 otherwise. (3.10)

However, in the following text, we will show that the construction of oracle intervals (i.e. support
recovery) is impossible even if the SNR satisfies the condition in case (2). In a recent work, [10]
established sufficient and necessary conditions for exact (and almost full) support recovery under the
Gaussian mean model. Using their notation, define the expected Hamming loss for variable selection as
Eyll7 — nll;, where n = (3, ..., n,) with nj = 1(9]- # 0) denotes the sparsity pattern of @ and 7 is an
estimator of 1. Consider the setting a/o = & as in case (2). Theorem 4.2 (ii) of [10] implies that, for d
large enough,

—~ w
inf sup Eplm—nl; =s®(—A), where A =
N 9cO*(s,q) 2/2log(d — s) —2logs + W

and W = 4logs + 24/ Qlog(d — s) — loglog(d — s) + C)(2logs — loglogs + C") with C’ given in
case (2). To simplify the expression of s®(—A), we consider the very sparse case with s = log d. After
some calculation, we can show that for d sufficiently large,

0’

2V —C/2 1 exp(—C/2
s®(—A) > s®(—y/2logs — loglogs + C) > \/j ogsexp(—C/2) N \/jexp( /2) -
7w 34/2logs —loglogs + C T 3

where C is a constant. The above derivation shows that, when a/o = k satisfies the SNR condition in
case (2), it is impossible to recover the support of # no matter what estimators to use. Since the support
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recovery is impossible in this case, the plug-in interval (3.10) may not guarantee the desired coverage
probability.

4. Adaptive Sparse Confidence Sets

In this section, we consider how to construct optimal sparse confidence sets which are adaptive to the
unknown sparsity s. In particular, we will show that adaptation is feasible when the SNR satisfies the
following condition:

a. a/o > 4/2log(d — 5) —loglog(d — 5s) + C'++/2logs —loglog s + C'VE, for some sufficiently
large positive constant C" and §; = \/(2loglog(d — s) — loglogys) ..

Note that (B) is slightly different from the case (2) in Corollary 8, where the quantity &, is replaced
with éd. Again, from the derivation in Remark 4, under the SNR condition in (B), it is impossible to
recover the support of # no matter what estimators to use. Thus, inference after variable selection (e.g.
hard thresholding) is still infeasible.

While Corollary 8 part (2) implies that M o has the desired coverage probability and is asymptotically
optimal, the construction of Ma/ with u,, given by (2.16) requires the knowledge of unknown sparsity s
and therefore is not adaptive. In the following text, we propose to construct an adaptive sparse confidence
set under condition (B). Define

Sad = {j eldl:X;/o > 2log(L)},

(@ —a)Cpyy_y

where C; ,, = 2,/ log(ﬁ). Consider a grid of points {1,2,22,...,27}, where T is the largest integer

such that 27 < d. Define § = 2™, where i = {m € [T] : 2" ! < |S%| < 2™}. Finally, define the
adaptive sparse confidence set as

MY = M(S%,U.Ly), where L5 = (X; — uy50),. U; = +00 .1

forj e Sg‘,i and /L\j’; = 0]. = 0 otherwise, and

It is seen that the construction of the adaptive interval AA/IZSJ is similar to Ma,, but there are several key

differences. First, we use a slightly different cut-off for X; /o in Sg‘,l When 2s < d and 5,d — 00, both
. s d P . .

the cut-offs in §57 and S,/ are asymptotically equivalent to /2 log d. Second, we replace the unk{lown

sparsity s in i, in (2.16) with Zs, where s can be viewed as the rounding of the cardinality of the set Sg‘,[ to

the grid {1,2,22, ...,2T}. The intuition is as follows. While the asymptotic exact recovery of the support
set of # is infeasible under (B) (see Remark 4), ngi is still a reasonable approximation of the unknown

support set. In particular, we prove that the cardinality of S‘Zf is of an order s with high probability. We
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1208 SPARSE CONFIDENCE SETS FOR NORMAL MEAN MODELS

further round |S‘g‘f| to the grid in order to rigorously control I, ©; — L is) when |S’Zf| is too large. The
rounding step is similar to the peeling method in the empirical process [20, 28] and has been used in the
Lepski’s method for adaptive estimation [9, 22, 23].

The following theorem presents the main result in this section.

THEOREM 9. Assume that 2s < d, s,d — oo and § and « are fixed. Let ' = y« for any constant
0 < y < 1. The adaptive sparse confidence set Mg?l satisfies liminf,; ;| infy g+ (5 Pp(0 € Mg‘f) >

1 —a, 8% e 7(8) and

. R(M™, 0% (s,))
limsup —F——— <

d.5—>00 o+/2logs -7

where s, a satisfy the condition (B).

Thus, the upper bound of R(A//\Igfl, O (s,a)) is asymptotically identical to the ‘non-adaptive’ confi-
dence set Ma, as shown in Corollary 8 part (2) and minimax optimal up to a constant. We note that when
constructing A//\Igfl, we borrow information from all the data to define Z\jﬁ, and therefore A//\Ig‘,i ¢ Cl . In
Appendix C, we extend our minimax results to a broader class of non-separable sparse confidence sets.

Empirically, the adaptive sparse confidence set 1\71351 (with a given «') is fully data dependent and
can be easily computed. The simulation studies in Section 6 demonstrate the favourable finite sample
performance of this adaptive approach compared with several competing methods. Finally, we note that,
as seen in the simulations, when the condition (B) fails (e.g. a/o is small), the adaptive sparse confidence
set A//\Igfl may not have the desired coverage probability.

5. Extension to Two-sided Sparse Confidence Sets
In this section, we consider @ € O (s, a), where

O(s,a) = {0 € R? : |0, < s, min |6;] > 0
(s,a) ={ [ IIo_s]{ggloli,l_a>}

is a two-sided sparse set. The goal is to generalize the results in Sections 2 and 3 to two-sided sparse
confidence intervals for 6 in ® (s, a). To this end, consider the following estimator of the support set,

TS _ | ; . e 1+
Sk —{Je[d].|xj|/az(<1> (g)+a/o)+v<b (T)} (5.1)

where ' is the tolerance level. Similarly, we require |X j| Jo = ®~1((148)/2) to guarantee the resulting
confidence interval is sparse, i.e. §£§ € Z(8), where .%#(8) is defined in (2.1). Similar to Theorems 1
and 3, we can establish the upper and lower bounds of the non-coverage probability Py (supp(8) £ 9
over the set ® (s, a). The detailed results are shown in Appendix A.

Given the index set §£§ , we define the two-sided sparse confidence set for 8 € ®(s, a) as

~ =TS =TS ~ -~ ~
Mg/s = M(§§§, U ,L "), where Z/-TS = X] — uOT[,SU, UjTS = Xj + u§§0
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foranyj e fS’Z, and

[ (1o ) g <2 <ptv[-o () oG],
Uy = —1(1 _ a=a'2(d=s)(A-n)\ :ra * _ ol _p-1(¥
o | ———F——") ifs >¢*Vv (55— 2 (5) |

where n = ®(a/o + 1 (a'/(2s))). We can prove that A//\IO{;S satisfies the conditions (1.5) and (1.6),

sup Pe(j€§£§)§1—8, sup P0(0¢M§§)§a.
0€0(s,a),0;=0 0B (s,a)

We also establish the optimality theory for the proposed two-sided sparse confidence sets in terms of the
length of confidence intervals

sup sup IE,,(U L.
1<j<d 00O (s,a)

Due to space constraint, we defer the detailed results to Appendix A.

6. Numerical Results

In this section, we conduct simulation studies to evaluate the performance of the proposed sparse
confidence sets and compare with several existing methods in terms of coverage probability, interval
length and support recovery (sparsity). The sensitivity to the choice of o is also examined empirically.

We generate X from the normal mean model with d = 1000, = 1 and § = (a, ..., 4,0, ..., 0), where
the first s = 100 entries equal a, which is also the SNR, and the rest are 0. We set « = 0.05, 6 = 0.7
and vary the value of SNR in the simulations. Recall that the proposed one-sided sparse confidence set
Ma/ in (2.8) and the asymptotic version A_/Ia, in (2.14) depend on the choice of . For simplicity, we
set ' = /2 in view of Remark 2. The sensitivity analysis of o’ and further discussions will be shown
subsequently.

We compare the sparse confidence set Ma/ in (2.8), A_/Ia/ in (2.14) and the adaptive version 1\713‘,1 in (4.1)
with the following three methods: Bonferroni confidence interval (2.10), oracle interval (2.13) assuming
the support of @ is known and the plug-in interval (3.10), where j € Sif and only if X; /o > (2logd) 172,

Provided the SNR is sufficiently large, the threshold (21log d)!'/? guarantees the exact support recovery
as shown by [10]. The simulation was repeated 500 times. We report the empirical coverage probability
of the above confidence sets for # and the average distance (6 i — L j) over j € supp(#) (which can be
viewed as a version of interval length for one-sided intervals). For j ¢ supp(@), we often observe that the
lower confidence bound is 0 and 6 - Lj =6 i Hence, it is not very informative to look at the average
distance (6; — L) overj ¢ supp(#), and thus we do not report these results.

Figure 1 shows the coverage probability and the average distance (6; — L;) of the proposed sparse
confidence set A71 (hat M), M (bar M), oracle interval (oracle), plug-in interval (plug-in), Bonferroni
confidence 1nterval (Bonferrom) and our adaptive interval (adaptive) over 500 simulations. It is seen
from the left panel that when SNR is small the sparse confidence sets (M /s M , and M“d) all have
considerably low coverage probability. This agrees with the minimax lower bound in Theorem 1, ie.
construction of sparse confidence sets is impossible if the SNR is too small. Provided the SNR exceeds 4,
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Fic. 1. Coverage probability and the average distance (6; — L) over 500 simulations.

all three versions of sparse confidence sets have very similar performance and their coverage probability
becomes very close to the desired level. It is of interest to mention that the coverage probability of the
plug-in intervals is only around 0.9 even if the SNR is sufficiently large. This is because in finite sample
the set S may still miss one or two non-zero signals so that the resulting confidence intervals fail to cover
the target parameter .

From the right panel, we can see that when the SNR is moderate (say between 4 and 7) the average
distance of our sparse confidence sets is comparable with the Bonferroni confidence interval, which is
consistent with part (1) of Corollary 8. Once SNR exceeds 7, our sparse confidence sets have a smaller
distance and outperform the Bonferroni confidence interval; see part (2) of Corollary 8. Among these
three versions of sparse confidence sets, Zl//\lg/d is the most conservative one (with the largest average
distance (6;—L;)). This can be viewed as the price to pay for not knowing the sparsity s when constructing
the sparse confidence sets.

To better understand the sparsity of the proposed sparse confidence set, we can take a closer look
at the estimators of the support set, that is S in (2.5), Sa/ in (2.14) and S for the plug-in interval. In
particular, we plot log |S /|, log |S /| and log |S| in Fig. 2. When the SNR is relatively small, S reduces
to{jeld:X; /0 > ®~1(8)}. This explains why the curve for S (and similarly S,,) is horlzontal for
small SNR. As SNR further grows, it becomes easier to separate the non-zero signals from the rest, and
therefore, the size of S and S decreases and eventually reduces to the true sparsity level. In contrast,
the set S for support recovery has s completely different behaviours. When the SNR is small, very few
non-zero 6; can be identified via S as X ~ N (9 1) tends to be below the threshold (2 log d)'/2. This
explains why the coverage probability of the plug in interval is much lower than the desired level as seen
in the left panel of Fig. 1.

Finally, we analyse how sensitive the coverage probability and the average distance (6; — L) of
proposed sparse confidence set Ma, (hat M), A_/Ia, (bar M) is to the choice of «’. Figure 3 illustrates the
results in two cases: SNR = 3.8 (moderate SNR) and SNR = 9 (high SNR). In panels (a) and (b),
when we increase o/, the coverage probability becomes closer to the desired level, with the price that the
average distance (6; — L) is slightly inflated. For the case where the SNR is sufficiently large (panels
(c) and (d)), the coverage probability is less dependent on &', whereas the average distance tends to be
much larger when o’ is close to & = 0.05. While the effect of &’ is asymptotically ignorable as seen in
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log sparsity of the selcted set
4
|

SNR

Fi1G. 2. Plot of log |§a/ |, log |.§a/| and log |§\ averaged over 500 simulations.

Remark 2, in finite sample o’ influences both the coverage probability and the distance (6 ; — L)) of the
proposed sparse confidence sets. As seen in Fig. 3, it seems they are not very sensitive to the choice of &’.
For this reason, we simply take &’ = «/2 in the previous simulations, leading to satisfactory numerical
results.

7. Discussion

In this work, we propose a new framework to construct sparse confidence sets for the parameter 6 in
the normal mean model. We first study the existence of such sparse confidence sets by establishing a
non-asymptotic minimax lower bound for the non-coverage probability over a suitable class of sparse
confidence sets. We further propose a two-step procedure to construct the sparse confidence set, and
show that the resulting confidence set attains the minimax lower bound of the maximum expected length
of confidence intervals up to a constant factor. Our optimality property is studied in the asymptotic
regime as d,s — oo, and we treat the TNR level § as a fixed parameter pre-specified by the users. If
a high TNR level is desirable (e.g. § = 0.999), the asymptotic analysis can be conducted by further
assuming 6 — 1. However, as § — 1, Theorem 1 implies that we have to require stronger minimum
signal strength conditions to construct sparse confidence sets. When these conditions are not satisfied,
the proposed confidence sets may not have the correct coverage probability.

One future research question is to study how to construct sparse confidence balls, which can be
defined as M(S,U,R) = {# € R? : O0gc = 0 and [0y — Ull, < R}, where § C [d] is the selected
set, U is the centre of the ball in R!SI and R is the radius. In this case, it may be more appropriate to
define the optimal sparse confidence ball based on the volume of the region. It is of interest to establish
the minimax properties of sparse confidence balls. Another direction is to extend the minimax results to
general Gaussian model X ~ N(@, X) for some non-diagonal matrix X. We show in Appendix C that
the proposed sparse confidence sets still satisfy the desired conditions (1.5) and (1.6) under this more
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FiG. 3. Sensitivity analysis of coverage probability and the average distance (¢ — L ;) with respect to o' (alpha_p).

general model. However, the lower bound results in this work are valid only when the entries of X are
independent. A rigorous minimax analysis is needed to close this gap.
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A. Extension to Two-sided Sparse Confidence Sets

In this section, we assume that § € O (s, a), where

O(s.a) =10 eR: 0], < S,]{gglo 6,1 > a > 0.

The goal is to generalize the results in Sections 2 and 3 to two-sided sparse confidence intervals for 6 in
O (s, a). To this end, consider the following estimator of the support set:

SIS = |j eldl:|X,|/o > (cb—l (%) —|—a/o) v ! (#)] (A.1)
+

where ' is the tolerance level. Similarly, we require |X j| Jo > ®~1((148)/2) to guarantee the resulting

confidence interval is sparse, i.e. 'S‘g,s € F(8), where F(§) is defined in (2.1).
The following theorem, which is parallel to Theorems 1 and 3, establishes the upper and lower
bounds of the non-coverage probability Py (supp(f) £ S) under O (s, a).

THEOREM 10.

(1) Foranys>1and0 < 4 < 1, we have

- 1
_inf  sup Py(supp(@) £ S) > 1

-, (A.2)
SeF(8) 0O (s,a) (ATS + 1)*
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where Az = (@71 (142) + &) — o (-0~ (1) + 9).

1215

(2) Assume that s,d — oo. Let ¢, be a sequence satisfying ¢, — oo and ¢;/s — 0. Assume that

& > ¢ for some constant ¢ > 0. If

ajo < ¢, = (?) — ! ( ]

we have

liminf inf sup Py(supp(d) £ S) =1.

d,s—00 Se F(5) 0O (s,a)

(3) Forany 0 < o’ < 1, it holds that ST5 e F (8). In addition, if

S+1
L5 4t = ! (L) — P~
o 2

sup [Py (supp(f) ZTS'Z,S) <d.

holds, then

00O (s,a)

1(0‘/
g)

(A.3)

(A4)

(A.5)

(A.6)

Note that in part (2), we require § to be bounded away from 0 by a constant. To see the reason,
consider the extreme case § = 0, which further implies A¢ = 0. In this case, the lower bound in (A.2)

becomes 0, which is no longer informative.

In view of (A.3) and (A.5), we observe a similar phase transition phenomenon under the parameter

space O (s, a); see Remark 1 for details.

Given the index set §0Tl,s , we define the two-sided sparse confidence set for 8 € ® (s, a) as

~ ~TS =TS e
Mg/s = M(§§§,U ,L' "), where L A/TS _X TSO’

foranyj e :S:g, and

s _ cb*1(1—“2—;/) if ¢* < 2 <¢*v[
o T

— —ao'—2(d—s)(1— . —
@ 1(1_aa (d=s)( n)) lf§Z¢*v[_ e

2s

where n = ®(a/o + 1 (a'/(29))).

7718
Yj

o

=Xj+72T§a

o125 — o5,

(5],

The following theorem shows that MT,S satisfies the conditions (1.5) and (1.6).

THEOREM 11. For any given level 0 < o’ < a, provided (A.5) holds, we have

sup Pe(j€§§§)§l—8, sup P0(0¢M§§)§a.

0€0(s,a),0;=0 0B (s,a)

We can develop a similar framework as in Section 3 to study the optimality of the two-sided sparse
confidence intervals. To this end, define the class of two-sided confidence sets as

Cl ={M(S,U,L) :Lj, Uj only dependoan, Lj < Uj, and forj ¢ S, Lj = Uj = 0}.
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To evaluate the optimality, it boils down to investigate the trade-off between the length of the interval
M(S,U,L) € Cl, i.e. SUP|<j<g Eqo(U i L j), and its coverage probability. Define

M(m,§) = {M(S, UL eCl: sup sup Eg(U;—Lj) <m, andS € .7-'(5)},
1<j<d 00O (s,a)

to be the class of confidence sets such that the length is no greater than m uniformly over 1 <j < d and
0 € O(s,a) and S € F(§) holds as defined in (2.1).

The following theorem, parallel to Theorem 6, provides the lower bound for the non-coverage
probability of M € M(m,$).

THEOREM 12. (Minimax lower bound). For any s > 1 and M € M (m, §), it holds that

1
sup Py(0 ¢ M) zmax( sup  Grg(d.A, p.m), sup Grg(s, B, p.m), 1 — —) (A7)
0O (s,a) p>a,A<s p>0,B<s (ATS + I)S

where Ay is defined in Theorem 10,

Algrs(d, A, p) —m/p],

Grg(d, A, p,m) = i
s 1 +A[gTS(d,A,p) — }’f’l/p]+
with
_2d—A) 0 o
g15(d A p) = =———@(=D) + @(; +D) _ @(; _D),
and

d—A 2
D= g cosh™! exp(p—) ,
0 A 202

and Gzg(s, B, p,m) is defined similarly. Note that cosh(x) = exp(x)/2 + exp(—x)/2 and cosh™! is the
inverse function of cosh(x) on RT.

In practice, we usually pre-specify the coverage probability of the confidence set. Define

M={M(S,U,L) € CI : lai,minf inf )]P’o(0 eM(S,U,L)) > 1 —a, and S € F(5)}

s—>00 0€B(s,a

to be the two-sided sparse confidence sets with coverage probability no smaller than 1 — . We
can similarly invert Theorem 12 to derive the lower bound for the length of confidence intervals
SUP| <j<q Ey (U i— Ly of M € M. To match the lower bound, we consider the asymptotic version

of 1\757? . Define

146 2s
¢ =07 (——)+ |[2log )
2 C2S’a/a/
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_ 4(d — ) 2s
¢ = |2log p + |2log A
(Ol - )CZ(d—x),ot—a’ C2x,a’a

where C, ,» = 2(r log(s/a’))!/?. Define

and

/TS TS IS TS 7 TS -TS _ /TS -TS
M) =M(S,,U L"), whereLj :Xj—ua,o, Uj :Xj—i—ua,a (A.8)

forj e S‘g*,g , where S’g,s and 125,5 are given as follows:

*  When ¢** < a/o < @, define j € ST if and only if X;/o| > O~ 1((8 +1)/2), and

2d
ilf = [210g (————). (A.9)
(¢ —«a )Czd,a—a’
* Whena/o > ¢, define j € ST if and only if |X /0| > \/2 1og(w/;*glz+), and
4
WS = [2log (—S) (A.10)
(0 —«a )CZx,afo/

Similar to Corollary 5, we can show that
limsup sup Py(je Sg/s) <1-34, limsup sup Py(f ¢ 1\_4579) <a.
d,s—00 0€0(s,a),0;/=0 d,s—o00 0B (s,a)

Finally, in the following corollary, we establish the optimality of M”? within the class M.

COROLLARY 13. Assume thatd,s — ocoand 0 < §,« < 1 are fixed.

(1. If o™ < a/o < /2log(d/A; — 1) for some sequence A; < s satisfying A, — oo and
d/A; — oo, then

SUP| <j<d SUPgeO (s,a) E0(Uj B Lj) > 1

liminf inf A.11
d,s—00 MeM o+/2logd/2 ( )
For Ml? with &’ = y« for any constant 0 < y < 1, we have Ml? € M and
SUP{ <icy SUP Eo(UTS — LT5)
lim sup — =4~ 006w 07 7) 7 (A.12)
d,s— o0 20«/210gd

(2). Ifa/o > /2log(d —s) —loglog(d — s) + C'++/21logs — loglog s + C’ for some sufficiently
large positive constant C’, then

SUP|<j<q SUP, E,(U.— L)
liminf inf 1sj=d SUPheco.a) =0 Y T

d,s—>00 MeM o+/2logs/2

> 1. (A.13)
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The sparse confidence set 1\7157? satisfies 1\710{/5 € M and

SUP| -y SUPg e« o B (UTS — LTS)
lim sup 1 9=4" 006w 077 T 7 (A.14)

d,s— o0 20'»,/210gs
B. Proof
Note that, for notational simplicity, the constant C may differ from line to line in the proof. For a set S,

we use ¢ to be the subvector of # with index belonging to S. Under the separable rule, sometimes we
simply use the notation IP’QJ_ to denote the probability under 6.

B.1  Proof of Theorem 1
Denote 90T (s,a) = {# € RY : 01lg = s,6; = afor V], Qj = 0}. We know that

sup  Py(supp(@) £5) > sup Py(supp(®) £S) =1— inf Py(supp(®) C3). (BI)
0O+ (s,a) 00T (s,a) 000+ (s.a)

Since supp(f) < S is equivalent to the fact j € S for any j € supp(f), we have [Py (supp(d) < S =
Pg (N jesuppo){J € SH=T1 jesupp(@) o, (J € S), where the last step follows from the definition of the set
F(8). For notational simplicity, we denote S = supp(6). We have

sup Pp(SZSH>—
0cio+(sa) 100+ (s, a)|

D>, PBSZS)

0Ot (s,a)

1 -~
= oo 2 PUestigs)

0Ot (s,a)
1 P o
= > (ZIng](hgéS) [T Py
0070l , Lo s 1
€d®t(s,a) Jj1€S J#j1ES
+ D Py i ¢9P, (12 ¢S ] PoGeS+.+[]Py0¢ S))

J1#j2€S J#1J2€S JjES

t PN L mn .
> Gorea 2 (X P Ui#d+ 3 By g5, G #9
00Ot (s,a) Jj1€S J17j2€S
+ o+ TPy ). (B2)
jes

where t = infycyor (50 [1jes Py (j € S). Define u = P,(j¢ S), where [P, denotes the probability of
X; ~ N(a, o2). Note that [d®1 (s, a)| = (‘Si) Consider the kth term in (B.2) (1 < k < ),

k
t . R
Toreal 2 2 P, Un#d

090 (s,a) j1#- AikeS m=1

OO0
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Thus, by taking the infimum, (B.2) reduces to

N
_inf  sup Pp(SZS) > inf tz (S)uk = inf (1 +uw’ —1]. (B.3)
SeF(4) 9eio+ (sa) SeF) = \k SeF )

Next, we consider the infimum of (1 + u)® over all possible§ € F(5). Then

inf A+P,(j¢9) =1+ _inf P,(j¢9I))"
SeF(8) SeF(8)

Since j € s only depends on X j» we can denote j € 5 by T(X j) = 1 for some function 7(-). Then
Neyman-Pearson lemma implies that the infimum of P (7'(X j) = 0) over all possible 7'(-) such that

Po(T(X;) = 1) < 1 — § is attained by the likelihood ratio test of X; ~ N(0,0?) versus X ; ~ N(a,0?).
After some simple calculation, we find that the optimal 7'(X ) is

(X —a) 2

a 4 a
Ty, (X;) = I( (%) > c), where c:exp[;(b (8)_ﬁ]

and ¢ (-) is the pdf of the standard normal distribution. With this Top,(X j), infg, F6) P,(j ¢ §) = A,
where A = &(®~1(8) — 2). Plugging into (B.3), we obtain

_inf  sup  Py(supp(d) 8 > 1[(1 + A)° —1].
SeF(5) 0Ot (s,a)

As Infg 7(5) SUPgeyo+ (s.0) P (SUPP(O) & $) > 1 — tholds by (B.1), optimizing over ¢t we obtain

_inf  sup Py(supp(®) £ =1 - ——.
SeF () 0O+ (s.a) o11PP (A + 1)

This completes the proof of (2.2). By (2.3), A > ¢,/s. When ¢/s — 0, log(1 +¢,/s) > (1 —€)c,/s for
some constant 0 < € < 1. Thus,

(A +1)" = exp(slog(l + A)) > exp(slog(l + ¢,/s)) > exp((l — €)c,) = o0,

as ¢, — oo and ¢,/s — 0. Clearly, (2.4) follows from the non-asymptotic bound (2.2).

B.2  Proof of Theorem 3

To show §a/ € F(6), notice that

Py(j €S,) = IP’O(Xj/o > max(q)_l(a?) +ajo, <I>_1(8))) <Py(X;/o = ®'(8) =1-34.
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The event supp(f) £ §a, is equivalent to that there exists j € [d] such thatj € supp(f) and j ¢ Ea,. Then

Py (supp(8) £ S,) = Py(Fj € [d].j € supp(8),j & S,,/)
> Py, 50

0,0

IA

/!
= > P <007 (D) +a),
j:0j#0 §
where the last line follows from the condition that a > o (®~'(8) — ®~!(a//s)). Since X;~ N, 0?),
we have P(X; < 1) = CID(FTQ"). Plugging into the above expression, we obtain

a—0. a/
J /
) = 0lly— =,
o N

Py(supp(®) 5,0 < > @@ (5 +
j0 *

as 0; = afor 0; # 0. This completes the proof of Theorem 3.

B.3  Proof of Theorem 4

We first note that supge+ (5.4).0,=0 Po (J € §a,) < 1 — 6 holds by Theorem 3. In the following text, we
bound Py (0 ¢ A//\Ia,) by intersecting with the event supp() C Ea,,
Pp(0 ¢ M) <Py(@ ¢ M,,,supp(8) CS,,) + Py (supp(d) £ S,
=Py €S,.0;, <L, supp(®) CS,) + Py(supp(6) Z S,

o

<Py €5,.0; <L;) +Py(supp(®) £ 5,). (B.4)

By Theorem 3 and a/o > «*, Py(supp(8) £ §a,) < a'. The first term can be further bounded as

Py(3j €S,.0;, <L) (B.5)
< Py(3Fj € supp(8).6; < L)) + Py(Fj € S, \supp(6).6; < L)) :=1I, +1I,. (B.6)

Write u for'ﬁa,. For I, by noting that Qj < maX(Xj —uo,0) implies Zj > u where Zj = X’T#/ ~N(@,1),
we have

I < Z Py(Z; > u) = s(1 — D (u)). (B.7)
Jj€supp(9)

To bound 7,, noting that j ¢ supp(@) implying 6; = 0, we have

/! /!
_ . —1 o a -1 o a
L=P@ ¢ supp®).2 2 () + 47,5 w < _¢Su§pp(0) Pz o )+ 2z -0,
J
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To bound the last probability, we now consider the following two cases.
(1). When a/o € R;, by setting u = o1 - “;l"‘/), we can easily verify that CID’I("‘?/) +2 <u
Thus, I, < (d —s)(1 — ®(u)). Together with (B.4), (B.6), (B.7), we have

Py@ ¢ M) < d(l — ®w) +a =a.

(2). Whena/o € Ry, by setting u = @‘1(1—w),we can easily verify that @‘1(%)4—

Oﬂ > u. Thus, it implies I, < (d — s)(1 — n™), and finally we have

Py(0 ¢ M) < (d—s5)(1 —n")+5(1— dw) +o =a.

B.4 Proof of Corollary 5

When a/o < k, it holds that

sup  Pp(jeS,) = Py_o(X;/0 = ') =1-3,
0O (s,0),0,=0

and when a/o > k we have

2(d — )
- Ol/)cdfs,afoz’

sup  Pp(jeS,) = ng:()(xj/d > \/2 log(
0O (5,0).6,=0 (a

))51—5.

So, it also holds that suppe e+ (5,4).9,=0 Po (J € S,) <1-3.
In the following text, we first focus on the case a/o < k. Note that

Py(supp(8) £ 5,) < D Py (X; <0d™'(9)

J:0;70
X, =60, o) —a
< D P = —)
j:0;#0

IA

X. -0, s
> By (<= 2les )
020 o Coo

where the last step follows from a/o > ®~1(8) + /2 log(ﬁ). By the tail probability in Lemma 16,

it yields forany 0 < o’ < «

lim  sup Py(supp(d) & S‘a,) —ao

ds—>00 9@+ (5,0)

N

1 _)) o

/2
< lim s ——exp(—log( -
ds—oo V9 QlOg(ﬁ) Cio
2 C(/C ’
= lim ,/—A—a/zo. (B.8)
d,s— o0 T /210g(ﬁ)
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1222 SPARSE CONFIDENCE SETS FOR NORMAL MEAN MODELS

By the proof of Theorem 4, we can similarly show that

Py(® ¢ M) = d(1 - cb(/z log( ))) + Polsupp®) £5,). (B9

(a — “/)Cd,afa/

By taking the limit d, s — oo, similar to (B.8), the tail bound in Lemma 16 implies

lim sup Py(0 ¢ Ma/) <(@a@—-d)+o =a.
d,5—>00 @+ (5,q)

When a/o > k, it is easily seen that

S 2(d -

—-a’)C /
jzgj#o ) d—S,O{—Ot

X. -6, "
J J
< z IP’QI,( — < - /210g(C /a,)). (B.10)
J:0;#0 S,e

As aresult, (B.8) still holds. In the following text, we consider two cases separately.
Case (1) d > 2s. Recall the way of controlling the term I, in the proof of Theorem 4. In this case, j
is selected if Z =t where

t:\/Zlog( 2d=9)

(@ —a) Cd—s,oz—oz’

With the monotonicity of the function logx — % log log x, this term is no smaller than i1, asd — s > s.
Thus, we can show that by the proof of Theorem 4,

Py(0 ¢ M) < s(1 — D (i) + Z Py(X;/0 = 1) + Py(supp(®) £ S,

Jjésupp(6)
2s _
=s(1—-®( [2log(————— d—s)(1 — d(r P 6 S ).
s( (/ B e ))) A9 = @)+ Fyfsupp®) £,
Similar to (B.8),
lim (1 — @ (@,)) - 2%
m s — ’ —
d,s— 00 Ha 2
[2 1 2s o—ao
= lim s,/ — exp | — log( )) — =0,
ds=oe V72 [ log(e—2—) ( Cogma (@ — ) ) 2
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Y. NING AND G. CHENG 1223

and

lim (@ =91 = o) - i

\/ 2(d — o
= hm (d—S) T exp(_log( ( S) : ))_a o _o.
d,s— 00 2\/2 log( ( /Evo)z ) ) Cd—s,a—a’(a —a) )
We obtain / |
lim sup P0(0¢M ) =< i +a—a +d =a.
ds_)°°06®+(3 ) D) )

Case (2) d < 2s. Unlike the previous case, we now have ¢t < u,,. Thus,

Py(® ¢ M) < d(1 — ®(ity)) + Py (supp(d) £ S,,)

- d(l — @(\/2@(#))) +P,(supp(®) Z S,,).

Note that
lim d(1 — ®(uy)) — (o« — o)
d,s— o0

C / !
= lim i‘lz saw(@— ) —(x—a') <0,
ds—o00 28 2\/2 log(c /(a a/))

where we use d < 2s in the last step. This implies lim; ;_, . Supgce+(5.q) Po (0 ¢ Ma,) <a.

B.5 Proof of Theorem 6

Define ®(A) = {# € R? : 101y = A, 9 = p, for any@ # 0}, where 0 < A < s and p is an arbitrary
positive quantity that is p > a. Then, @(A) is contained in the parameter space ®* (s, a). For any M in
M (m,$), we use CI jto denote the confidence interval for 6 i Following the similar arguments in the
proof of Theorem 1, we have

d —1
sup  Py(0 ¢M>z(A) > Py ¢ M)

0O (s,a) 0e0 )
d —1 d

S

t(d) IZ > Py 6 ¢Cl)
)_

=1 0€0(4)
1
‘(Z Z( > Py0gcip+ D> Pp¢ c1j))
—1 (d “Ap0¢ cI) + gpp(p ¢ CIj)), (B.11)

j=1 0€O(A).6;=0 00 (A).0,=p
d

j=1
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1224 SPARSE CONFIDENCE SETS FOR NORMAL MEAN MODELS

where 1 = infy g4 H?:[ IPy.(0; € CI}). Furthermore, we can control the last term in (B.11) as follows:
P,(p¢Cl) =P, (L;>p)=P,(L;=0)+[P,(L; > p) —P,(L; =0)]. (B.12)

Since M € M (m, ) implies sup; ;4 SUPpees.q) Eg(6; — L;) < m, by taking 6; = p we have
p—m=E)L; <pP,(0<L;<p)+2pP,(p <L;<2p)+E,LJI(L;>2p)
=pP,0<L;<p)+20P,(p <Ly +E, (L; —2p)I(L; > 2p).

Then, we can plugP,(0 < L; < p) =1-P,(L; =0) —P,(L; > p) into the above display, which can
reduce to
m+E,(L; = 2p)I(L; > 2p)

P,(Lj>p)—P,(Lj=0)>— . . (B.13)

Our next step is to upper bound E o(Lj — 20)1 &L; > 20). Recall that we assume L i =X whenever
X = 0. Thus,

E,(L; —2p)I(L; > 2p) <E,(X; VO —2p)(X;V 0> 2p)

= E,(X; — 20)[(X; > 2p) = 6ENIN > 2) — pp(V > 2),
o o

where N ~ N(0, 1). By the tail bound in Lemma 16 and some simple algebra,

s tVit o

1 1 p N\VI+4/p)2 -1
=50 e (- 5(20) / =

2 20 J/1+4(/p)3+1

Combining with (B.11), (B.12) and (B.13), we have shown that
- m+R
sup P0(0¢M)zt{2( ]PO(0¢CI)+ ]P’(OeCI)) A—}
0O (s,0) = 1Y
—A m+R

>tA{ inf Eo(1 —T ET——}
=" reo ( 4l )+ ) 0

Here, T denotes an arbitrary test function from R to {0, 1}. By the Neyman—Pearson lemma, the optimal
test function is given by

D

o2 d—A
Topt(x)zl(xg + = log(— )).
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Y. NING AND G. CHENG 1225

With the optimal test function, lower bound reduces to

R
sup By(0 ¢ M) = iA[g(d, A, p) - %L

0cO*(s,a)
where
d—A 0
gd.Ap) = —=0( -5 - ;bg(— “n)+o(-2+2 log(— 1),
‘We also notice that
d
sup  Py(8 EM)=1- 1nf P,,(o eM)=1-_ 1nf HIP’@(G eCl)=1-1

0cO*(s,a)

We then optimize the lower bound with respect to 7, which leads to

sup ]Po(o ¢ M) = G(daA» P m)'
0Ot (s,a)

As the above lower bound holds for any 0 < A < s and p > a, we obtain

sup Py(@ ¢ M) > sup G(d, A, p,m).
0O (s,a) p>a,A<s

The rest of the proof focuses on showing

sup Py(@ ¢ M) > sup G(s,B, p,m). (B.14)
0cO*(s,a) p>0,B<s

We first define an s-dimensional vector a = (a,q,...,a) € R, and ©,(B) = {# € R* : |6 —a], =
B,0; = a+ pfor6; # a}, where 0 < B < s and p is an arbitrary positive quantity. Then, we define

the parameter set @'(B) = {(0,0,...,0) € R?:0 e ©,(B)}, which is contained in the parameter space
©®7 (s, a). In this case, we only perturb the parameters that are non-zero. Let 0,; and M|, denote the first
s entries of @ and the confidence intervals for @ . Similar to the previous argument, we can show that

sup Pp@ ¢ M) > sup Pyl & My)
0O~ (s,a) 0O (s,a)

_1 s
Z(;) > (e ecry TT P, ecip)

0cO'(B) j=1 J#j€ls]

71 Ky
Z/(;) Z( > Pag¢Cly+ > Pa+p(a+p¢C]j))

j=1 0e0/(B)bj=a 0€0' (B),0;=a+p

N

=

j=1

B
Py a+p ¢ Cl),
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1226 SPARSE CONFIDENCE SETS FOR NORMAL MEAN MODELS
where ¢ = infy g/ (p) Hj: 1 Py, (0; € CI)). In addition,

Poplat+p ¢ Cl) =P, ,(aeCl)>P, (L;>a+p)—P, (0<L; <a).

To further lower bound the right-hand side of the above display, we notice that

at+p-—m=<E, L;

<aPa+p(0§LjSa)+(a+p)Pa+p(a<Lj§a+p)
+(a+2/0)Pa+p(a+,0 <Lj a+2p)+Eu+pL I(L > a+2p)
SaIP’a+p(0§Lj§a)+(a+,0){1— a+p(05Lj§a)_ a+,o(Lj>a+P)}

+(a+ ZP)Pa+p(a +o<Lp)+E, ,L;—(a+2p)I(L;>a+2p)

a+p

Thus, we have

m+E

O=<L<a=>- a+p(Lj_a_2p)I(Lj>a+2p).

P

Lj>a+p) -

a+p a+p

Finally, we also note that

su P, (0 M )>1— inf P,0,,eM ) =1-"*.
o 0 (015 & M) pont FoOrg € Mig)

The rest of the proofs are similar and therefore we omit the details. Together with Theorem 1, we
complete the proof.
B.6  Proof of Corollary 7

Denote a, = ok,. When a < a,, Corollary 2 holds. When a, < a < a; := o,/2log(d/A; — 1),
Theorem 6 implies

inf sup P,(0 ¢ M) > G(d,A,;,a,,m) > G(d,A,;,a,m"),
MeM i (m,5) 06()*% a) 0 ¢ G 7l
where m* = a(— - —),/210g(d Ay — + W, defined as in the Corollary.

By Lemma 16

1
gdAga) =5+ "cb( V2log(d/A, —

1
W 7 Jlogd/A, — 1) 2

(B.15)

In addition,

m* 1w, 1 1 (1_ Ay )

- - + s
ap 2 Ay A Jlog(d/A;— 1) d—Ay
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Y. NING AND G. CHENG 1227

and for d, s large enough

R 1 Ay 1 JT+2/Tog(d/A; —1) — 1

a; md—Ad V2log(d/A,; — 1) /T+2/log(djA; — 1) + 1
1 Ay
4f,/1og(d/Ad—1 d—A,

Thus, for d large enough and as A% — 00,

Aylg(d, Ay a)) — (m* +R)/ay]

1 1 w, 1 1 Ay R
= s, D12 A 4ﬁm(l - d_Ad) Cq
VS S S T

2 s, D12 Ay A Jloa/A, D

Since W; — oo, we have

lt}m infA,lg(d, Ay a;) — (m* +R)/a;] = +o0,
WS> 00

which further implies liminf, ;. G(d,Ay,ay,m*) = 1.
Similarly, when a > o4/2log(d/A — 1), Theorem 6 implies

inf sup Py(0 ¢ M) > G(s,B

**)
MeM(m8) g+ (s,a)

’ S’

where m™* = 0(— — —) 2log(s/B, — 1) + f" (1 ngs) and p* = o,/2log(s/B; — 1). Following

a similar argument, it is shown that
B[ 1 1
V27 Jlog(s/B,— 1) +2

[g(S, s IO*) - (m** +R)/10*]

jul s

&_£]>V
B, p

This implies liminf,; ;. ., G(s, By, p*, m**) = 1. This completes the proof.

B.7 Proof of Corollary 8

Proof of (3.5) and (3.7). For simplicity, we follow the the same notations in the proof of Corollary 7 and
Theorem 6. By the proof of Theorem 6 and M € M__, we have Py(6 ¢ M) > 1 — ¢ and

m+R
B0 ¢ M) = 1A [, A p) — =]

where m = sup; ;. SuPgeer (s.q) Bg 0 — L)- If §(d, Ag, p) — "X < 0, then

m = pg(d,Ag.p) —R. (B.16)
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1228 SPARSE CONFIDENCE SETS FOR NORMAL MEAN MODELS

Otherwise, we have
m+ R

m+R}

Py(® ¢ M) = 14| (A0 0) — =) = Py(® € M)A, {00, A, ) — =

which implies

L 20 ¢y 517

Clearly, (B.16) implies (B.17), and the lower bound reduces to (B.17) by combining these two cases.
Whena < a, :=o0,/2log(d/A; — 1), we can take p = a,. By the proof of Corollary 7, e.g. (B.15),

liminf inf —
ds—>o00 MeM a;

.l 1 1 1 Py ¢ M) R
> lim inf [——I— - — — —]
ds—oo L2~ 2/m flog(d/A, — 1) +2 A ;Pe0 €M) a

. ,f[1+ 1 1 1 « 1 1 Ay ]
1m i - - -
T dssoo L2 27 Jlog(d/A;— D) +2 Agl—a  4yT Jlog(d/A,— 1) d —Ay
1

5

We then obtain (3.5).
In case (2) it is easy to verify that for d, s large enough

a/o > /2log(d — s) — loglog(d — s) + C' + /21log s — loglog s + C’ V&,

> /2log(d — s) — loglog(d — s) + C' + /2logs — loglogs + C' > /2logd + C,

for some constant C > 0. This further implies (3.7) by the proof of Corollary 7 and the similar argument
in case (1).

Proof of (3.6) and (3.8). We first note that Corollary 5 implies Ma/ e M . For (3.6), it suffices to
show that the following inequality holds regardless of the value of a,

lim sup P1sjsd Poe0 (0 P (9]- _ Lj) =1
d,s—00 G«/zlogd

where L; is defined in (2.14) and for notational simplicity we write L; for L ;- First, consider the case

that a** < a < a, where a** = k**o and a/o = \/2 log((aﬂ%‘é%) + . /2log(="=). Thus, for d
large enough

Eg®;— L) =Ea(®;, — L)I(j € 5,) +Eg(®;, — LNI(j ¢ 5,)
=Eg(0; — LNIX;/0 > ®7'(8)) + 0,Pp(X;/0 < ®7'(8))
=Ey(0; — X, + ity ) (X;/0 > i) + 0, Py(X;/0 < i)

<0 +ilyoPy(X;/0 > ) +0,Pa(X;/0 < i), (B.18)
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where u,, is defined in (2.15). If u, 0 = 6, the above display implies

Eg (9]' - Lj) <o(l+uy).

If i, y0 < 6, the above display and the Gaussian tail bound in Lemma 16 leads to

Eg(0; — L)) < o(l+it,)+ (0; — ﬁa/a)P(z > 0,/0 — ily)

<o (l+iiy) + 56,0 —i1,)?)

mexp(

o
Eo—(l—i_ﬁa’)—i_f’
J

where Z ~ N(0, 1). Combining these two cases, we have

su su E (9 L)) 1 + 1//27
lim sup P1<j<d¥Phcot ) 70 2 < lim sup tiy +1/ = 1. (B.19)
d.s—>00 o+/2logd d.5—>00 «/210gd
Now we consider the case a > a. If u,, < w, we have
Ey(0; — L)) =Eg(0;, — LNI(j € Sy) +By(0; — LNI(j ¢ Sy)
= Eo(Gj -X;+ ﬁa,o)I(Xj/a > w) + Oj]P’o(Xj/o <w)
<o+ ﬁa,aIP’o(Xj/a > w) + Qj]P’o(Xj/a <w), (B.20)

where w = \/ 2 log(m:ﬁ) and u,, is defined in (2.16). Note that it suffices to only consider the

non-zero 6 j’ since if 6 ;= 0, (B.20) can be trivially bounded by o (1 4 u,/). Then, for 6 i # 0 we have
0.

<>
o

Q|
X1
\
S
<

By the same derivation, it can be shown that

o 0/0’
Eg(®; — L)) < o(l +iig) + =2 ex(

1
NI —50;/0 - w)z). (B.21)

Note that

. o(l+uy) . 1+ 2logs—loglogs+ C
lim ——— < lim <1,
ds—oo o4/2logd ~ ds—oo 2logd

for some constant C (depending on «’, ), and

0,/0 — iy w— i

—u / w
4 14+ —E < —_
0;/jo —w 0 /a —-w /2 log(c 2 log(ﬁ)
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1230 SPARSE CONFIDENCE SETS FOR NORMAL MEAN MODELS

Plugging into (B.21) and notice that w/\/2logd < 1 for d sufficiently large, we obtain

SUP1j=a SUPheO (sa) Eo(ej _ Lj) <1+ 0(_1 —) —> 1
- Tog s '

o4/2logd V1o
However, if u,, > w, (B.20) has a slightly different form as follows:

Ey(0; — L)) =Eg(0; — LPI € Sy) +Ey(0; — LNI(j ¢ Sy

= ]E,,(ej —X;+uyo)l(X;/o > uy) + GjIP’o(Xj/o < y)
<o+ ﬁa/o]P’o(Xj/a > u,) + OjIE”e(Xj/a <u,), (B.22)
which is identical to (B.18) expect that u,, is defined in (2.16) rather than (2.15). However, this does not

change the proof of (B.19) (i.e. (B.19) still holds). This completes the proof of (3.6).
Finally, we focus on the last result (3.8). As d, s — o0,

aj/o > \/2log(d — s) — loglog(d — s) —}—C/—}—\/Zlogs—loglogs—i—C/VSd

2(d —s) s _
> [2log( )+ [2log( ) =k.
\/ Bla—aC o B

Thus, by the definition of 1\_/[0/, when a/o > «k, u,, is defined in (2.16). By (B.21), we first note that

. o(l4+uy,) . 14+ 4/2logs —loglogs+ C
lim —=—= < lim =
ds—oo o4/2logs ~ ds—oo J2logs

For d, s large enough,

1.

0;/oc —w=>=ajo —w= \/210gs—loglogs+C’\/§d.

Recall that §; = \/(loglog(d — s) — loglog s)_, . Thus, uniformly over 6 we have

9-/0’—11/ 1
e e e N2
Gj/a_wexp( 2(6‘]/0 w))
(14 T R DA
_(l—i-ej/o_w)exp( Z(Qj/g w))
w 1 5 /
=t — ~(2 v (2logs — loglogs + C'))).
_( \/ZIOgS—loglogs—}—C/)eXp( 2(&1 (2logs — loglog s )))

If d — s > s holds, we have that asd — s — oo and s — 00,
Gj/a—ﬁ

0i/joc—w

- (1+ \/210g(d—s)—loglog(d—s)+C) log s <
V2logs —loglogs + C’ log(d — s)

a/

exp ( - %(9]-/(7 - w)2)
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Otherwise, underd — s < s,
9-/0 — U, 1
A ——(0./0 —w)?
Gj/a — eXp( 2(9]/0 w) )
(1 N 21og(d — 5) — loglog(d — s) + C/) exp(—C'/2)4/log s N
V2logs —loglogs+ C s

<

0.

Thus, by (B.21) we have

SUP | <j<g SUPgeo+(s,a) Lo (6; — L;) <140 1 ) 1
o+/2logs - Jlogs '

Similarly, if #,, > w holds, then we have (B.22). By the proof of (3.6) with u,, defined in (2.16), we still
arrive at

SUP| <j<g SUPge@+(s,a) g (0 — L;) -1

o+/2logs

This completes the proof of (3.8).

B.8  Proof of Theorem 9
Proof. Proof of Theorem 90ur proof relies on the following two lemmas.

LEMMA 14. Under the same condition in Theorem 9, we have

C,(d — s)\s
zsds)’

_ C,\S/2
sup By(8ifl = 5/2) = (2) ",

sup  Py(15%4] = 29) < (
0Ot (s,a)

0Ot (s,a)

where C, and C, are two universal constants.

LeEMMA 15. Under the same condition in Theorem 9, there exists a positive constant C such that for
(t,s,d) sufficiently large,

sup  sup Ee(é’j —ZJ-J)2 < Co? log 1,
1<j<d §c®t(s,a)

where s, a satisfy the scenario (B).

First, the proof of Corollary 5 implies supy _oPy(j € 54y < 1 — 6. Note that 25 < d implies

d—s > d/2. By the monotonicity of log(x/+/log x), we can show that for any s, a satisfying the scenario
(B) and Qj # 0, we have

> hd > /2log(d — s) — loglog(d — s) + C' + /2log s — loglogs + C’
o

)
o

> /2log(d/2) — loglog(d/2) + C' + /2log s — loglog s 4 C’
> /21log(2d) — loglogd 4+ C'/2 4 /21og s — loglogs + C/,
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1232 SPARSE CONFIDENCE SETS FOR NORMAL MEAN MODELS

where C’ is a sufficiently large constant. Thus, we can show that

_ 2d
P, (supp(8) Z 547) < Z Pej(xj/a < \/ZIOg(W))

J0j#0 do—o
X.—0. 2d 0.

j:Gﬁ&O o (07 o da—a’ o
X. —0.

< Z Pej( Ja ] < —/2logs — loglogs + C’) <o, (B.23)
070

for s sufficiently large, where the last step holds as C" is a sufficiently large constant. Note that under
the event s/2 < |Sg‘,1| < 2s, by the definition of 5, we have s/2 < |qu| <3< 2|Sg‘f| < 4s. That is,
5/2 <5 < 4s. Formally, the above argument and Lemma 14 imply

=~ ~ R C,(d — s C,\5/2
sup Py(0 ¢ M) < sup Py(B ¢ M, 5/2 <3 <4s) + (—2( S)) + (—4) . (B24)
0O+ (s,a) 0Ot (s,a) sd Ky

By the proof of Theorem 4, we have
Pp(0 ¢ M, 5/2 <5 < 4s)

<s(1 =y )+ . Py(X;/o = 1) +Py(supp(8) Z 5
Jj¢supp(0)

_ s(l - @(\/ﬂog(#

s,oa—a’

))) + (@ =1 = D) + Py(supp®) £ 52, (B25)

where

2d
n= [2log(— <% .
\/ e —a)Chyw

The first two terms in (B.25) are both upper bounded by (@ — «')/2 for s, d sufficiently large, see the
proof of Corollary 5. The upper bound for the last term in (B.25) is shown in (B.23). Thus, from (B.24)
we obtain liminf, ;o infy g+ Pp(0 € A’;Ig,d) >1—oa.

Next, we are ready to show

i R(M%, 07 (s,a))
msup ——————
d,sﬁoop o+/2logs

Note that
Eg(®; —Li5) = Eg(0; — L)IG < 45) + Eg(0; — L,)IG > 4s) =1, + I, (B.26)

We further decompose I as follows:

I =By (0 — LiIG < 4)(X;/0 = ) + Eg(6; — L;)IG < 49)I(X;/0 <) :=1}, + 1.
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Under the event s < 4s, it holds that

4s 16s
5=y o) =/?! ) = Uy
Uy \/ 0og <(<x — a/)cﬁaia/) = \/ og ((a — a/)CSS,Otfo[/) Uy 4s

Thus, for 1|, we have

Iy = Egl0; — (X; —uy50)  J( < 49)I(X;/0 = 1)
< Eyl0; — (X; =t 4,0) MG < 49)I(X;/0 > 1)
=Egl0; — (X; =ty 4,0) L UG < 4AO0; > (X; — Uy 4,0) DI(X /0 > 1)
+ Egl0) — (X; — 1ty 4,0) , MG < 49)1(0; < (X; — gy 450) (X, /0 = 1)
< Byl0; — (X; — tty 4,0) MG < 4910 > (X; — 0 4,0) DIX; /0 = 1)
< Egl0; — X+ uy 4,00 > (X; — g 4,0) DIX; > uy 4,0)(X;/0 = 1)

+O0Egl(0; > (X; — Uy 4,0) (X < g 4,0)1(X;/0 = ).

Following the proof of Corollary 8, we can further show that
Ey [9]- - Xj + ua/,4s0]l(9j > (Xj — ua/’4s0)+)I(Xj > ua,’4sa)1(Xj/0 >1n)

< ]Eo[Hj — Xj]I(Qj > (Xj — ua/,4sa)+)I(Xj > ua,’4sa)I(Xj/(7 > 1)+ Uy 40Py (Xj > U, 4.0)

o 4s

<0+ Uy yO.

After some simple calculation similar to the proof of Corollary 8, we can show that by the tail bound in
Lemma 16,

010 > (X; =t 4,0) DX, < 1 4, (X;/7 = 1) < OP4(X; < 1 4,0) < Co,

for any 6; # 0, where C is a positive constant. Combining the above inequalities, we obtain

I} < (14 C)o + uy 40 (B.27)

For 1, recall that it suffices to only consider non-zero 6;. The tail bound in Lemma 16 leads to
I, < OJIE”e(Xj/G <n) = GjIP’(Z/o <—(0;/0 —n)

<Co(l+ L)exp(—léz)
- 0;/0 —n 2°d

J2logd —loglogd + C"\ +/logs
) <2Co.
2logs —loglogs + C’ /log(d — )

§C6(1+
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1234 SPARSE CONFIDENCE SETS FOR NORMAL MEAN MODELS

In the following text, we consider I,. Let ) = {t € [T] : 2'~! < 4s < 2}. Then

T T
Ly=> By, —L;p)IG=2") < D (By(0; — L0} {Py G =2")"/%

t=tp =1y
For any ¢, 5 = 2 implies 2/~! < |§g’7| < 2! Thus,

Pp(5=2") < Pp(2'™" < 8% < 2') < Py(18%| = 2"~ 1.

Recall that 20~ > 2. Following the proof of Lemma 14, we have for any ¢ > Iy

e ()T )T

where C, C’ are positive constants. In addition, Lemma 15 implies

Eg(0, — L;2)* < Cllog2)ot.

Thus, for I,, there exists a constant C > 0 such that

T T 1/2 T—1o 1/2
C Ct Cty+q)
1/2 (UL
b SOZI (2t—1 —s) 0221 1 _91g—2 =0 Z 2q+io—1 _ Dig—2
1=ty 1=ty q=0
Ccrtl/2 (el co 'Y q'?
= +
- 202 20+l — 1 2002 5 29+l — 17

. . e o 1 o g\ .
It is easily seen that the infinite sum > q=0 3771 and > g=0 3gTT—] converges. Thus, there exists a
constant C' > 0 such that

peCoil, oo
2= -2 219—2
Combining with (B.26) and (B.27), we obtain

1/2

~ C’oto Co
]Ea(ej - Lj:y\) =< (1 + 3C)O' + Ma/’450‘ + — 2’0 + W
Noting that
Uy s . V2logs —loglogs + C

=1,

lim ——— = lim
ds—oo y/2logs  ds—o0 J2logs

we complete the proof. g
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Proof. Proof of Lemma 14.Consider the event |S’“d | > 2s. It implies that there exist at least s number of
9 such that 9 =0and X ; /a > \/2 log(W). Thus, we have uniformly over § € ®% (s, a),

.y d—s 2d s
P0(|Sa"i| > 2s) < ( i )[IP’Q/:O(XJ-/U > \/ZIOg(m))]

(d—s)eyst [2 1 2d s
( s s e) [ ;2\/210g(c ( /)) exp ( — lOg(Cd’aia/(a —a) )):I
da /C( o

(d — s)e\sp C,d~ ' /logd s
=15 ]

s Jlog(2-)

(G4,

IA

IA

IA

for d large enough, where C;,C, > 0 are two universal constants. Consider the event |S’“d| < s/2. 1t

implies that there exist at least s/2 number of 6; such that ¢; > 0 and j ¢ S“d Following the similar
argument and the inequality (B.10), we can show that

cad s\r 2d 5/2
Py(159/) < 5/2) < (S /2) Py, (X;/0 < \/2 o8 e )]

< ( y ):IE”(N < —/2logs — loglog s + C’)]X/2

s/2

< e[ —_Css Vlogs ]“/2
- L/2logs —loglogs + C’

2
(%)
T \s
for d, s large enough, where N ~ N(0, 1) and C5, C, > 0 are two universal constants. O

Proof. Proof of Lemma 15.Following the proof of Corollary 8, we consider two cases d > 2frand d < 2t.
When the former condition holds, we can show that

Ey (0 —Zj,t)2 =Eg(0; — X; + Uy ,0)°1(X;/0 > W) + 03Py (X;/0 < W)

:EG(O X) I(X; /o >w) +u o Po(Xj/a > w)

ot

+ 2y 0By (0, — XDIX /0 > w) + 07Py(X,;/0 < W)

<o0? +uy 00 + 2y 00 + 07Py (X /0 < W), (B.28)
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1236 SPARSE CONFIDENCE SETS FOR NORMAL MEAN MODELS

where w = \/ 2 log(m). Furthermore, the tail bound in Lemma 16 implies
<w) < o? 912/02
- - 27 Oj/O' - W

o2 2(6;/0 —w)* +2w?
<
- 2r Gj/a —-w

I
03Py (X /0 exp ( —50;/0 - w)2)

exp ( — %(9]-/0 — w)2).

Recall that if d, s large enough, we have

0;/o —w=ajo —w= \/210gs—loglogs+C’\/§d,

and w? <2 logd — loglog d + C’ for some constant C’. Thus, for d, s large enough,

202 1
Q%PO(X]-/O' <w) < \/%_n\/ﬂogs — loglog s + C/exp(— 5(210gs — loglog s + C’)z)

2 _ /
20< 2logd —loglogd + C exp(—léj)
V2 /2logs —loglogs + C’ 2

, 202 2logd —loglogd+C'  /logs

<o"+
V27 A/2logs —loglog s + C log(d — s)

2 _ /
<ol4 20° 2logd —loglogd + C" ./logs < 2
V2 /2logs —loglogs + C’ log(d/2)

k)

where C” is a positive constant. Finally, we plug into the inequality (B.28),

Eq(6; — Zj,t)z <o’ +uy 0%+ 2, 0%+ C'o’.

For (1, s, d) sufficiently large, it can be easily verified that the following inequality holds:

sup sup Ey(0; —L;,)* < Co*logt. (B.29)
1<j<d 9@ (s,a) ’

In the following text, we consider the second case d < 2¢. Similar to (B.28), we obtain that
Eg(®; —L;)* =Eg(0; — X; + 1ty ,0)*1(X;/0 > uy ) + 07Py (X, /0 < )
=By, — XD I(X;/0 > uy ) + Uy 0°Py(X;/0 > uy )
+ 2uy 0By (0, — XNIX /0 >ty ) + 07 Pp(X /0 < )

<o +ul 0 Py(X;/0 > Uy ) + 2y 07 + 07 (X /0 < Uy ).
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If 2u, 0 > 6, then By (0; — L;)> < 02 + 5u2, 0% + 2u, ,0°. If 2u,, 0 < 6, then 0;/0 — 1, >
0 j /(20), and we further have

Eg(®; —L;)* < (I +uy )?0* + (07 — uly 0HPEZ > 0;/0 — )

2
o°(8;/0) 1
< +uy, o+ —37 (—-9.2 2)
o
< +uy o’ + —,
ot NGz
as s, d tend to infinity, where Z ~ N(0, 1). For (¢, s, d) sufficiently large, (B.29) holds as well for the
second case d < 2t. This completes the proof. O

B.9  Proof of Theorem 10

Denote AT = {0 € RY : 0], = 5,6, = aforVj,6;, # 0}and A~ = {0 € R? : [|0]|, = 5,0, =
—a for Vj, 6; # 0}. Then

sup Py(supp(@) £S) > sup Py(supp(d) £S)=1— inf Py(supp(d) C5).
0cO(s.a) 0cA+tUA— cATUA~

Following the proof of Theorem 1, we obtain that

—~ 1 ~ —~
sup Pp(SZS) > 5[ sup Py(S Z 5) + sup Py(S Z S)]

00 (s,a) fcAt OcA—
1
Py(SZ S
fcAt
K k
s\uy +u
>t s
: ;(» :

where 1 = infycgeua- [1jes Py, (j € 5), and uy =P, (j ¢ S) and u_ = P_,(j ¢ 5), where PP, denotes

the probability of X; ~ N(a, o2). Applying Jensen’s inequality, the above display can be further bounded
from below which yields

sup Pp(SZS) > IZ( )(#)k = t[(l n #)S - 1].

0O (s,a)

We denote j € s by T(X j) = 1 for some function 7'(-). The Neyman—Pearson lemma implies that the
infimum of (u, +u_)/2 = IE”a(T(Xj) =0)/2 + IP’_a(T(Xj) = 0)/2 over all possible 7(-) such that
Py(T(X j) = 1) < 1 — § is attained by the likelihood ratio test of X fiae N(0,0?) versus the mixture
normal Xj ~ %N(a,az) + %N(—a,oz), which is

2
T(X) = I( cosh(aX/?) = ¢* exp(5 ) ). (B.30)
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1238 SPARSE CONFIDENCE SETS FOR NORMAL MEAN MODELS

where cosh(x) = (exp(x) + exp(—x))/2 and ¢* is chosen such that P, (7'(X j) = 0) = 4. Since cosh(x)
is symmetric and monotonically increasing for x > 0, we have

2 &2
§ = IF’O(|X/0| < %cosh_l(c* exp(%))) =1- 2<I>( - %cosh (c* exp( )))

Solving above equation, we obtain

2 143
= exp(—%) cosh ( “T— ))

Denote Az = “F= =P (T(X;) = 0)/2 + P_,(T(X,) = 0)/2 with T(X) defined in (B.30). Then,
2

Apg = %Pa(cosh(aX/az) <c exp(2 2)) (cosh(aX/U2) <c exp( ))

2 P_,
= 3B (1X/0l = 07 D) 4 5P, (X0l = 07 (C10)

14+6
— DD Piﬂ+ﬂ @@Q”&;ﬂ+§»

Following the same steps in the proof of Theorem 1, we can obtain (A.2).
To show (A.4), we consider the following two cases separately. Case (1): a/o < o1 (1—;5). Then

1+6
Bz o(@71(10) — 0O = 5,
since § > ¢ for some constant ¢ > 0. As aresult, (1 + Ay)® — oo as s — oo. This yields (A.4).
Case (2): @7 '(10) < afo < @71(122) — @7 !(c,/s). Denote g(x) = ®(@~' () +x) —
o(—p! (#) + x). We have Ap¢ = g(a/o). Note that the function g(x) is monotonically decreasing
forx > ®~!(142). This implies that

146
Ars > g(df%%) D)

_q>(2c1> 1( ’) + o- l(l—cs/s))—CD((I)_I(I—CS/S))

> o + T(s/cs)) — (1 —=c/s), (B.31)

where ¢/ = 2@‘1(%) and T(x) = +/2logx —loglogx — C and the last step holds by Lemma 16.
Applying Lemma 16 again yields

/ 1 / 2
(' +T(s/c,) > 1 — exp ( — 5+ T(s/e)) )

v

1 —Cexp ( —log(s/c,) + % loglog(s/c,) — c/w/log(s/cs))

1—c% exp (% loglog(s/c,) — C/\/M)’ (B.32)
S
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where C is a generic constant which may differ from line to line. Since s/c, tends to infinity,
loglog(s/c,) < /log(s/c,). Combining (B.31) and (B.32), we obtain

CS 1 / CS
Apg > ?[1 — Cexp (5 loglog(s/c,) — c'\/log(s/c; ))] 2

Following the same steps in the proof of Theorem 1, we can obtain (A g 4+ 1) — oo. This completes
the proof of (A.4).
To show S ATS € F (), notice that

Py(j € SI) < Py(IXj|/o = & (1/246/2)) =1 —.
The event supp(#) g 5 is equivalent to that there exists j € [d] such that j € supp(#) and j ¢
Then
Py (supp(8) £ S37) = PG € [d).j € supp(®).j ¢ L)
< D P ¢S

J:0,#0

= Z P(X;| < (ad>‘1(%) +a),),

:0,#0

where the last step holds since a/o > o1 (%) -1 (3‘—;). Ifod! (3‘—;) +a < 0, the above probability
is 0. Otherwise,

TS ey o
P(supp(8) £ SI7) < _Z P(6;/o] - 1Z] = ®7'() +afo) < Z P(Z) = o7 () =<,
J:60;#0 J:0;#0

Xi—b;
o

where Z = ~ N(0, 1), and we use min Ji0;#0 |6 J-| > a. This completes the proof.

B.10  Proof of Theorem 11
Similar to the proof of Theorem 4, we can bound P( ¢ Mg;g) by

P ¢ M) <PGj € 5;0.0; ¢ [L;. U;D) + P(supp(8) £ S77). (B.33)

By part (3) of Theorem 10, P(supp(§) £ TS'Z;? ) < o'. The first term can be further bounded as follows:

P@Ej e S0, ¢ L. U;) (B.34)

<P € supp(6).6; ¢ [L;. U;D) +PEj € S7\supp(®).6; ¢ L. U}) :=1, +15,.  (B3S)
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1240 SPARSE CONFIDENCE SETS FOR NORMAL MEAN MODELS

For I, by noting that 9]- ¢ [Zj,lA]j] is equivalent to |Zj| > u, where Zj = @ ~ N(0,1) and u —'LTT,S,
we have
L= > P(Z] = u) =251 — d)). (B.36)
Jjesupp(6)

To bound /,, noting that j ¢ supp(#) implying 6 ; =0, we have

/ /
_ . —1 o a —1 o a
L =P ¢ supp(8), 12| = 7 () + —.1Z] = w) < _¢su§pp(a) P(Z| =z @7 () + .1z z w.
J

To bound the last probability, we now consider the following two cases.
(1). When ¢ < —&~1(45%) — 0~ 1(%), by settingu = &~ (1 — 42
®(1)). Combining with (B.33), (B.35), (B.36), we have

<2(d—s)(1—

PO ¢ ML) < 2d(1 — dw) + o' =a.

_1 — _1 !
(2). When ¢ > —&~! (22 — o~ (5)),
Recall that u = @~ (1 — €=¢=2¢=9U=1) Tpep

o where n = d(L + d1(L)).

b =1 —2<js—s><1—n> .

which is equivalent to o (%) + g > u. Therefore, I, < 2(d — s)(1 — n), and finally we have

PO ¢ ML) < 2(d — s)(1 — 1) +2s(1 — dw)) + o' = .

B.11  Proof of Theorem 12

The idea of the proof is very similar to the proof of Theorem 6. For simplicity of presentation, we skip
some intermediate steps. Denote A* = {# ¢ R? : 0llp = A,60; = p, for any@ #0landA™ = {0 €

20llg = A, 0, =—p, for anyt); # 0}, where 0 < A < s and p is an arbitrary positive quantity that
is o > a. Then

-1
sup Py(0 ¢ M) 1(;’) [ZP9(0¢M)+ZP0(0¢M)]

>
0€0(s,a) 2 9cA+ fecA—
2%( ) [ZZPQ«) ¢CI)+ZZIP9(0 ¢CI)]
j=160eAt Jj=16ecA—

d
A
=1 ( Apy0 ¢ C1) + “Bo(p & CL) + P (—p ¢ cry). B.37)
j=

1
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where t = infy 4+ - H?:l IF)Qj(Gj € CIj). Since }P’p(O,p € CIj) < Ep|Uj - Lj|/p, we have

P,(p ¢ Cl) = B, (0 € CI) —P,(0,p € CI) = P, (0 € CI) —m/p,

and similarly ]P’_p(—p ¢ CIJ-) > IP’_p(O € CIJ-) — m/ p. Together with (B.37),

d
d— Am
sup Pp(8 ¢ M) > 1 [P’(OgéCI)—i— IE”(O c1)+ ©ecry)-2"
00 (s,a) o {Z( 0 - /) 0 }
o d—A 1 1 m
> ;A{ it ( Ey(1 =)+ 3E,T + EE_pT) _ ;}, (B.38)

where T denotes a test function from R to {0, 1}. Note that

d—A

(f(x)+f () d—A))’

Ey(1 - T) + IET+ IE T = ]EO( — TS —
0

where f,, (x) denotes the pdf of N(p, 02). Thus, the above function is minimized by

(f(X)+f pM  d-A

=1 A

d—A
0):I(|x/a|§%cosh_l( 1 eXp( 2)))

where cosh ™! () is the inverse function of cosh. Plugging the definition of 7*(x) into (B.38), after some
calculation we obtain

2(d — A
sup Py(0 ¢ M) = tA{ng(—D) +o®+p) - -p)— f},
00 (s,a) A o o P
where D = < cosh™ l(d_A
details.

exp(%)). The rest of the proof is the same as Theorem 6. We omit the

B.12  Proof of Corollary 13

The proof of this corollary follows from the same line as in the proof of Corollary 8. We only highlight
the main difference. By Theorem 12, we can obtain that

1 Py(6 ¢M)}

To show (A.11), denote a; := o,/2log(d/A; — 1), and we can take p = a;. The key step is to lower
bound gr¢(d, Ay, p). Recall that

2(d —Ap) 0 p
dAgp) = —Lo(-D {cb— D)—d)(——D)};:[ L.
8rs(d,Ag, p) Y (—=D) + (0 + . + 1
where
d—A 2
p=2 cosh™!( d exp('o—z)).
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1242 SPARSE CONFIDENCE SETS FOR NORMAL MEAN MODELS

We now consider the two terms I, 1,. By the definition of cosh, we can easily verify the following
inequality logy < cosh™!(y) < log(2y) holds. Applying it to I, yields

2(d —Ay) o 2d—Ap) p
> M7 g (LT A P

P Ad
— 20— 2 Togt]A = ) - e
-2 q)( 2log(d/A;—1) \/W)

C

>
= loe@ia, =0

for some universal positive constant C. Similarly, we can show that

d—A 3 d—A
12EQ(ZIOg—d—i-—p)—CD(—g]og—d_i_ﬁ)
P Ay 20 P Ay 20

= o(2/210g(d/4; — D) - ®(0)

- -

The same argument in the proof of Corollary 8 implies (A.11). The proof of (A.13) is similar. Finally, to
show (A.12), notice that

Ey (U7 — LTS) = Eg(UTS — LT)1(j € §75) < 200",

Regardless of the SNR, lim sup IZOT[,S /~/2logd < 1 always holds. Finally, for (A.14), we have

a/o > /2log(d — s) — loglog(d — s) + C + /2logs — loglogs + C > ¢,

and therefore

which further implies lim sup /7 //2Iog’s < 1. This completes the proof.
LEmMA 16. Tail bound for Gaussian distributionLet N ~ N(0, 1). Then for any y > 0

\/Z XPVD by sy < \/Z exp(—y*/2)
Ty+Vy +4 T Vry 8

Conversely, for any ¢t > 2,

1
\/(210gt— loglogt — C), < (1 - ;) < /2logt—loglogt,

where C = 2log4 + log .
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C. Additional Theoretical Results

Cl L jin the sparse confidence set

PrROPOSITION 17. Assume thatd, s — oo and 8, o, ' are fixed. For 6 ;=a,we have the following result.

QIf k™ <a/o < k,and a < m* := o/2logd/2, then
lim P(L; =0) = 1.
d,sl—r>noo ( J )

QIfa/o = k,d > 2s, then
lim ]P(Zj =0)=0.

d,s— o0

Proof. By the definition of L;, we know that L; = 0 is equivalent to X ;/o < &, which is N(0, 1) <
u, — ajo.Incase 1, we have

ri =0 = 0( s (i) - 7)

> cb(/zlog (W) - 1\/@) > @((% — e)y/2logd),

2

where € is an arbitrarily small constant. By the Gaussian tail bound in Lemma 16, we have L ; = 0 with
probability tending to 1.
Similarly, in case 2, under d > 2s, we have

P, =0) = d>(\/2 (e ) )

s,a—a’

for some constant ¢ > 0, where we use the Gaussian tail bound in Lemma 16 again in the last step.
Letting s — 00, we complete the proof. ]

C.2 ExtensiontoX ~ N0, %)

In this section, we show that the proposed sparse confidence set is still valid under the more general
Gaussian model X ~ N(#, X) for some known PD matrix X. Without loss of generality, we assume the
diagonal entries of ¥ are identical and equals to o-2. Under this assumption, our sparse confidence sets
are exactly identical to Ma,. Recall that

M, =M@, U.L), where L; = (X; — ii,0) . U; = +00,
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1244 SPARSE CONFIDENCE SETS FOR NORMAL MEAN MODELS

where

o~

Sa/z{je[d]:é

J ey a -1
@ 'O+ Hve (5)}.
s o
THEOREM 18. For any 0 < o’ < a, provided (2.6) holds, under the model X ~ N(#, X), we have

sup  Pp(jeS,)<1-5, and sup Py ¢ M) <a,
0O (s,a),0/=0 0cO*(s,a)

where %, in (2.8) is given by
o1 (1 - ifa/o € Ry,

R IS (1 - "‘—“""“‘”“"7*)) ifa/o € Ry,

N

where nt = CID(Uﬂ + ! (%’))’ and the low SNR region R; and high SNR region R, are defined in the

same way as those in Theorem 4.

It is easily seen that the conclusion of this theorem is identical to Theorem 4. In other words, our
sparse confidence set A7Ia, is robust to the correlation among X. This result is not surprising, because the
proof of Theorem 4 does not rely on the independence assumption of X. We also note that, the proof
of Theorem 9 does require the independence assumption of X, see the proof of Lemma 14. Thus, the

current adaptivity results are not valid under the general model X ~ N(6, X).

C.3  Suboptimality ofll//\la,
Recall that

o~

M, =M@, .U.L), where L, = (X; — Uy0) . U; = +00

o — o J

foranyj € §a/, where

o~

Sw=1iclar:

JE

J > (¢—1(%) + §> vorlel.

We partition the SNR region into low and high levels:

* Low SNR region: R, = {K k* <k <k v7€},

* High SNR region: Ry; = {k : k > k* V&},
where

R L a—ao o
R=—0Tl(———) -7,
N

and

H1-) ifa/o € Ry,

o~ ®7
T et (1 - = it ago < Ry,
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ProrosiTION 19. For Gj = a := Cyo+/logd, where C;/s — o0, then as d, s — oo (assuming o, § are
fixed)

~ C
E@® — L) < on,/log d.

Proof. Similar to the proof of Corollary 8, we can show that
E(Gj - Lj) =u,o + E(Oj —Xj)I(Xj/a > ua/)I(Xj/o > B)
+ E(9; —iia,a)l(Xj/a <ﬁa,)I(Xj/a > B) +E@©; —ﬁa,a)I(Xj/a < B),

where B = (¢! (‘%) +)V ®~1(8). We denote these terms by Iy, ...,1. For I,, we can apply Cauchy—
Schwarz inequality to get I, < o. For I5, we have

3] < (6 — Bo)P(Z > 0,/0 —Tiy) < ——

Nz
where the last error bound is from the proof of Corollary 8. For I, since 6; = a := C 10 +/logd, we have

/

I, = 0(Cyy/logd — i) —.
s
It is easily seen that C;+/logd > u,,. As C;/s — 00, we have
~ C
E(Qj — Lj) = a—d\/log d.
s

The proof is complete. U

Note that, since C, in the above proposition can be arbitrarily large, the length of the confidence
interval E(6 i = Zj) = a%«/logd > o+/logd, where the latter is the minimax rate in case 1 in
Corollary 8. Thus, the sparse confidence interval AAda/ is suboptimal.

C.4 Extension to non-separable sparse confidence sets
Recall that we define the class of separable selectors as
F() ={SX) :Py(j € SX)) =1 -3,
and the event {j € S(X)} only depends on X i for any j € [d]}.

In this section, we define non-separable sparse confidence intervals as

M+ ={M$S,UL): inf Py eMS,UL)>1—«a, andS e F()}, C1H
0O~ (s,a)

where F(§) is the class of separable selectors defined above. Recall that we consider one-sided
confidence intervals for the parameters in O (s, a), so we still require L i = 0and U i= +ooifj € S,
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1246 SPARSE CONFIDENCE SETS FOR NORMAL MEAN MODELS

otherwise L = U ;= 0. In the definition of M 4, We remove the constraint from CI . that L i = X iV 0
and L; only depends on X .

Now we prove the following non-asymptotic lower bound over the class of non-separable confidence
intervals in M +» which is parallel to Corollary 3.3.

THEOREM 20. Assume thato < 1/2 andletn = 1 — 2¢.

(). Ifc™ <ajo < /log(dn? + 1), then
inf RWM, 0% (s,a)) > (1/2 — a)o/log(dn? + 1). (C2)

MeM
(2). Ifa/o > /log(dn? + 1), then

inf R(M,©%(s,a)) = (1/2 — @)a/log(sn? + 1). (C3)

MEM+

We can see that, as d, s — 00, in low SNR (case 1), the lower bound over the class of non-separable
confidence intervals is O(o +/logd), whereas, in high SNR (case 2), the lower bound is O(o +/Iogs).
Compared with the asymtotic results in Corollary 3.3 (for separable confidence intervals) and the follow-
up discussion, the lower bounds for separable and non-separable confidence intervals have the same order
asd,s — o0.

Proof. Theresultis proved based on the following Le Cam’s method [4]. Define P (A) = f Py (A)dm(6)
to be the probability of the event A when X |0 follows the specified Gaussian mean model and @ ~ 7 for
some distribution 77 on ®* (s, a). For any fixed 8’ € ©% (s, a), we can show that

Py (0’ € M(U,L)) —P_(8' € M(U,L))| < sup|Py(A) —P_(4)| < %[EG/(LfT) - 112, (4
A

where L = gg; (X) is the likelihood ratio of the data under the measure PP, versus P,. Since 8" €

O (s,a), we have Py (0’ € M(U,L)) > 1 — a. Combining with (C4), we obtain

P,(0' e M(U,L)) > 1 —a — %[Eo,(Lf,) - 12 (C5)

Finally, by noting that

P (6 e MU,L) = /]P’o(ﬂ e M(U,L)dr(#) > (1 — oe)/dn(O) =1-aqa,

(C5) further implies

P. (0,0 ¢ M(U,L)) > 1 —2a — %[JE,,(L?,) — 1112 (C6)

We pick 8’ = (0, ...,0) and define 7 in the following way. Let 7 be a random index set (with size 1)
drawn uniformly in {1, 2, ...,d}. We define 7 to be the distribution of the random variable jem ke
where « is a positive quantity to be determined. It is easy to verify the following lemma: '

j7
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LEMMA 21. Under the construction of 7 above, it holds that

1 K2
2y _
Ey(L2) =1+ E(exp(;) — 1).
By taking k2 = o2 log(dn?* + 1), (C6) implies P, (0,6 € M(U,L)) > 1/2 —a. Leté_’j = e ;. Then

d
1/2—a <P, (0,0 € M(U.L)) = éZP@j(éj,o € M(U,L))
j=1

IA

d

1

y > Ej 10,k € CI)
=1

113
<o ZIIE,;_,@-—L,-)
]:

IA

1
—supsupEy(0; — L).
K e A R

Then we have sup jSupg Eq (6 i~ L j) > k(1/2 — «), which completes the proof of (C.2). The next result
(C.3) follows the similar proof which is omitted. (I
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