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Abstract
Connected autonomous vehicles (CAVs) offer opportunities
to improve road safety and enhance traffic efficiency. Vehicle-
to-everything (V2X) communication allows C AV s  to com-
municate with any entity that may affect, or may be affected
by, the vehicles. The implementation of V 2 X  in CAVs  is in-
separable from sharing and receiving a wide variety of data.
Nevertheless, the public is not necessarily aware of such ubiq-
uitous data exchange or does not understand their implications.
We conducted an online study (N =  595) examining
drivers’ privacy perceptions and decisions of four V 2 X
application scenarios. Participants perceived more benefits but
fewer risks of data sharing in the V2 X  scenarios where data
collection is critical for driving than otherwise. They also
showed more willingness to share data in those scenarios.
In addition, we found that participants’ awareness of privacy
risks (priming) and their experience on driving assistance
and connectivity functions impacted their data-sharing
decisions. Qualitative data confirmed that benefits, especially
safety, come first, in-dicating a privacy-safety tradeoff.
Moreover, factors such as misconceptions and novel
expectations about C AV  data col-lection and use moderated
participants’ privacy decisions. We discuss implications of
the obtained results to inform C AV  privacy design and
development.

1 Introduction

The U.S. road transportation infrastructures are verging on
the most significant technological transformation since the
introduction of the automobile on the road. To facilitate the
operation of connected, autonomous, and connected and au-
tonomous vehicles (CAVs), the existing infrastructures that
ensure mobility are being replaced with intelligent transporta-
tion systems (ITS [92]). Leveraging the vehicle-to-everything
(V2X) communication [75], the ITS  enables the exchange
of driving relevant information between a vehicle and any
entity that may affect, or may be affected by, the vehicle, sup-
porting interconnected vehicles’ operations to be performed
autonomously [52].
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While deploying the ITS  and V 2 X  communication is
promising to have enormous social and technical benefits (e.g.,
enhancing road safety and improving traffic efficiency), they
also offer the chances for privacy and security attacks [72,82].
In particular, drivers and passengers of CAVs  are required to
share heterogeneous data (e.g., vehicle identity, speed, and
GPS coordinates) at unprecedented speed and scale, exposing
them to potentially severe privacy invasions.

Prior studies have explored users’ perception of CAVs [12,
16, 17, 20, 93] with a focus on vehicle-based sensing and
recording (e.g., data collected by external camera, radar, and
LiDAR). Those results generally show that participants un-
derestimated the capability of vehicle-based data collection
and their secondary use (e.g., identification and tracking).
Participants’ perceived benefits of such data collection (e.g.,
enhancing driving safety) were context-dependent (e.g., inter-
acting with the vehicle as drivers or bystanders [93]) or varied
among individuals (e.g., prior experience with driving assis-
tant systems [17, 20]). While those efforts provide an initial
understanding of human aspects of privacy for CAVs,  they
have mainly focused on vehicle-based sensing and recording. It
is not yet well understood regarding the privacy of C AVs  from
the connectivity aspect (i.e., V 2 X  communication).

Previous research on V 2 X  communication privacy has fo-
cused on technical aspects and proposed anonymization [6,81,
87,105], perturbation [3,98], and differential privacy (DP [5])
methods to protect identity privacy and location privacy. Little
work has addressed the issue by considering the user as an
integral privacy component. However, due to lack of knowl-
edge about and experience in emerging C AV  technologies,
users’ privacy awareness of V 2 X  communication might be
low and consequent privacy control might be limited [55].
Moreover, the data collection and analysis of V2 X  communi-
cation are diverse and dynamic [72]. For example, different
types of V2 X  communication (e.g., vehicle-to-vehicle (V2V)
and vehicle-to-infrastructure (V2I) [32]) have been applied
to various application categories (e.g., road safety and traffic
management [30]), raising novel challenges for users’ ade-
quate privacy awareness and informed privacy decisions [71].
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In this work, we fill the gap toward understanding users’
privacy perception and decision of V 2 X  communication in
CAVs. We examine whether, how and why users’ privacy per-
ceptions and decisions vary among different V2X application
categories. To inform the design of privacy risk communi-
cation in CAVs,  we also investigate whether priming would
change users’ privacy perceptions and decisions. Moreover,
we explore whether users’ prior experience in connectivity
and driving assistance functions would have any influences.

We conducted an online experiment (N =  595) on Amazon
Mechanical Turk (MTurk) using a mixed design. There were
three between-subjects conditions: control, privacy priming,
privacy&security priming. Participants were informed of po-
tential privacy risks of data disclosure in the privacy-priming
condition. Security risks of receiving data were further shown
in the privacy&security-priming condition. The four V 2 X
communication applications were within-subjects: 1) cooper-
ative autonomous driving, 2) road safety, 3) traffic manage-
ment, and 4) infotainment, comfort and convenience [30]. Dur-
ing the study, participants viewed one scenario describing the
data exchange and its purpose of each application. For each
scenario, participants indicated their 1) perceived benefits, 2)
perceived risks, 3) data-sharing decision, and 4) data-sharing
decision confidence. We also asked an open-ended question
at the end to understand why participants chose to share or
not share their data in each scenario.

We obtained several important findings. First, participants
perceived more benefits but fewer risks in the three scenarios
where data sharing is critical to driving than otherwise. Their
privacy decisions were aligned with such privacy perceptions
(Sections 4.1 & 4.2). Response to the open-end questions
confirmed that participants believed that safety comes first,
indicating the critical role of privacy-safety tradeoff (Section
4.5). Second, the privacy priming was effective in encouraging
safer data-sharing decisions in general. Yet, the extra security
priming did not increase the priming effect (Sections 4.1 &
4.2). Moreover, participants’ prior experience in connectivity
and driving assistance functions impacted perceived benefits
and risks of data sharing, as well as privacy decisions (Section
4.3). In summary, the contributions of our work include:

• We conduct an online study investigating users’ pri-
vacy perception and decision of V 2 X  communication
for CAVs as a result of considering benefits and privacy
risks of sharing data, and benefits and security risks of
receiving data.

• Besides privacy-utility tradeoff, our results suggest the
critical role of privacy-safety tradeoff in users’ data-
sharing decisions of V 2 X  communication in CAVs.

• We identify various factors (e.g., safety, privacy priming,
and prior experience) that can influence people’s per-
ceived benefits, privacy risks, and data-sharing decisions
of V 2 X  communication in CAVs.

2 Background and Research Questions

In this section, we first describe vehicle-to-everything (V2X)
communication in CAVs,  focusing on the communication
types and the main applications. We then discuss privacy
challenges of CAVs, previous research efforts examining peo-
ple’s privacy perception and decision for CAVs, the effect of
driving technology experience on people’s perceived risks of
CAVs.  We summarize our research questions (RQs) at the
end. We notice the extended length of this section, which is
justified given the novelty of research topic.

2.1 V 2 X  Communication in C AV s

While the data collection and processing by sensors are neces-
sary for C AV  functions and features, the pervasive connection
with other parties, such as other vehicles and the infrastructure,
are critical to fulfilling the promise for CAVs [52]. V2X com-
munication is a wireless ad-hoc technology aimed at enabling
data exchange between a vehicle and its surroundings [75].

V2X incorporates specific types of communication such as
V2I (vehicle-to-infrastructure), V2V (vehicle-to-vehicle), and
V2P (vehicle-to-pedestrian). Take the V2V communication
as an example. When a C AV  brakes suddenly, it can transmit a
notice to vehicles behind that enables those vehicles to warn
their drivers to stop or automatically apply brakes if a crash
is imminent. Generally, V 2 X  applications in C AVs  can be
separated into the four categories [30]: 1) cooperative
autonomous driving, 2) road safety, 3) traffic management,
and 4) infotainment, comfort and convenience (see Figure 1).

Cooperative Autonomous Driving. Self-driving applica-
tions mainly rely on sensors inside and outside the vehicles
(e.g., LiDAR and radar) to achieve automobile recognition as
well as other driving roles [7]. For instance, ultrasonic sensors
are used to detect obstructions (e.g., animals) for automatic
braking. Yet, the limited perception range of those onboard
sensors only allows for detecting adjacent vehicles. These
limitations can be overcome by V 2 X  communication, which
enables cooperative sensing and maneuvering [52]. Through
the mutual exchange of sensed data, cooperative sensing in-
creases the sensing range. Cooperative maneuvering allows
the vehicles to cooperate efficiently and perform maneuvers
with a high complexity based on a common centralized or
decentralized decision-making strategy.

Road Safety. To enhance road safety (i.e., the safety of
drivers, passengers, and people on the road), vehicle speed
control, accidents, alerts, and all sorts of emergencies (e.g.,
collision warning) on the road can be communicated through
enabling the communication of signals and messages of all
interconnected entities in ITS  [65].

Traffic Management. Data collection and use in the traffic
management applications are to provide detailed information
concerning cars, drivers, and status on the roads, which are
expected to enhance traffic flow control and synchronization
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(a) Cooperative Autonomous Driving

(c) Traffic Management

(b) Road Safety

(d) Infotainment, Comfort and Convenience
Figure 1: Illustration of an example scenario for the four V 2 X  communication application categories. The illustrations are only for concept
explanation but not presented in our study.

[89]. For example, these applications will collect and analyze
the messages exchanged by ITS  entities and communicate
existing congested zones to C AV  users. Traffic data (e.g.,
crossing pedestrians) can also be obtained by the deployed
road side units (RSUs) and the road sensors to prevent acci-
dents from occurring.

Infotainment, Comfort and Convenience. Data collection
and use in these applications aim to enhance user experi-
ence in the driving cockpit through services that meet their
needs [27]. For example, connectivity to the Internet is ex-
pected to be offered to provide access to services, such as
online music and videos. Such applications are close to the ap-
plications in most mobile devices, which also include weather
services, navigation, and entertainment.

How the data are being used in CAVs  can be presented in
more granular levels [e.g., at the levels of RSU and onboard
unit (OBU)]. Considering those unique characteristics of V2X
communication, we choose the above coarse, application-level
categorization to help us identify major, novel usable privacy
challenges, which we apply in the following scenario design.

2.2 Privacy Challenges of C AV s

The heterogeneous data exchanges in the V 2 X  communi-
cation could potentially invade the privacy of C AV  drivers

and passengers in an unprecedented manner. For example,
identity and location information broadcasted in beacon mes-
sages [61] or basic safety messages [70] can reveal informa-
tion (e.g., home address) and behavior (e.g., whereabouts) of
drivers and passengers. Such information could be linked and
exploited for further behavior mining (e.g., home address +
whereabouts → political ideology). In this work, we examine
data exchanges in the four V2 X  communication applications.

Driving is a highly cooperative context [46, 51], in which
behaviors such as slowing down to allow another vehicle to
merge into the current lane, are expected to communicate
drivers’ status and intentions [77]. In privacy-sensitive scenar-
ios, individuals’ information disclosure decisions can also be
impacted by social preferences or norms, such as altruism [2].
V 2 X  communication in the C AV s  relies on both data shar-
ing and data receiving. To comprehensively understand C AV
users’ data-sharing behavior, it will be critical to understand

the potential impacts of data receiving.

2.3 Human Privacy Behavior

Despite the privacy challenges of V 2 X  communication ap-
plications in CAVs,  little research has been conducted on
understanding users’ privacy behavior. Using the human
information-processing approach [104] we characterize that
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individuals process privacy via stages of privacy percep-
tion, privacy motivation, and privacy decisions. For each
stage, we first introduce human factors that have been iden-
tified influencing the privacy in the general online environ-
ment [85, 94] and the IoT setting [36, 56, 76], and discuss fac-
tors in recording and sensing for connected and self-driving
vehicles [12, 93].

Privacy Perception. Privacy perception refers to people’s
representation and comprehension of possible risks through-
out the interaction with an application or service that can
gather and process personal data or information [83]. Be-
sides passively receiving information from the environment,
human perception is often shaped by individuals’ memory,
expectations, and attentions [43]. For example, people tend
to pay more attention to information that is consistent with
their prior knowledge or meet their expectations, resulting in
disregarding some information in decision making [13].

In the IoT setting, studies have revealed that users’ expec-
tations and concerns about privacy are also shaped by their
prior experiences with computing technologies (e.g., causing
them not to expect privacy by default [97]). Such expectations
can also pose consequences to users’ privacy evaluations for
CAVs, given that over 80% of the U.S. population have some-
what experience with technologies inside the vehicles [88].
Previous studies also show that users’ familiarity and expe-
rience with driving assistance systems could modulate their
privacy perception [17, 66, 100]. A  recent online survey exam-
ined participants’ privacy awareness and decisions on differ-
ent C AV  scenarios using sensor data [20]. The authors found
that participants’ prior experience with advanced driving assis-
tance systems (e.g., adaptive cruise control) and connectivity
functions had a positive effect on their data-sharing decisions.
We explored the impact of this factor on privacy perception
of V 2 X  communication for CAVs.

Privacy Motivation. Individuals are motivated to share
information online by various goals, such as economic ben-
efits [48] and social benefits [22]. While the utility of those
disclosure decisions (e.g., low price and social engagements)
are typically immediate or instant, possible information leak-
age or privacy risks tend to be delayed or occur in the future.
Prior work showed that users chose low instant reward, which
might result in a long-term negative influence [2]. Compared
to the general online environment, there are novel motives
for individuals to share information in V 2 X  communication,
such as road safety and traffic management. Also, autonomous
driving and safety could become users’ primary motives for
data disclosure (e.g., concerns about fatal C AV  accidents due
to not sharing some diagnostic data). While the safety issues
might be distal, people probably choose to share the data
anyway due to the severe consequences of not sharing. Thus,
existing tradeoff between privacy and utility becomes trade-
offs of privacy-safety and privacy-utility in the C AV  context.
To the best of our knowledge, this phenomenon is not very
understood yet, and our study aims to fill the gap.

Privacy Decisions. Even if individuals can attend to all
available information, their ability to translate the information
into informed decisions is limited by bounded rationality [91].
In other words, individuals reveal systematic biases that devi-
ate the choices they make from the optimal choices assumed
rational. The privacy literature has identified numerous cogni-
tive and behavioral factors that affect and sometimes impede
privacy decision making [1]. For example, individuals’ pri-
vacy decision making relies on the first available information
(i.e., anchoring [23]), in the default privacy settings [8], or
how the information is framed [25, 28, 84].

Priming refers to the phenomenon that when a stimulus
(e.g., one word or a picture) makes associated information
from humans’ long-term memory (e.g., a concept) more avail-
able to their short-term memory [99]. Thus, humans tend to
consider that information into their consequent behavioral
responses. Previous studies showed that participants could
be primed by thinking about their safety and privacy through
answering privacy statements [49, 84] or viewing descrip-
tions or videos [29]. Thus, regardless of the priming formats
(self-relevant questions or factual information), the concept of
“privacy” introduced by priming could be activated as part
of the task set, which could change consequent privacy
behavior (i.e., increased privacy awareness and conservative
privacy decisions). We examine the effect of priming to
inform the design of privacy risk communication in CAVs.

Vignette-based (or scenario-based) online surveys [38]
have been found to well approximate real-world behav-
iors [47]. Hypothetical data collection scenarios have been
used to examine people’s disclosure decisions in the IoT set-
ting [67] and vehicle-based sensing and recording [93]. Simi-
lar methodologies have also been adopted in the C AV  context.
Howard and Dai [53] examined participants’ attitudes toward
self-driving cars and found that the participants were most
attracted to potential safety benefits and the convenience. A
recent study investigated the C AV  service for the purposes
of safety/security and convenience [20]. For each service
purpose, different C AV  scenarios were generated based on
varying what was collected. The participants revealed more
intentions to share personal information for the safety/security
scenarios than for the convenience scenarios. Due to the lack
of operational environment for the V 2 X  communication for
CAVs, we adopt the scenario-based method in our study.

2.4 Research Questions

The data exchange with other vehicles, infrastructures, and
service providers, can make C AVs  more vulnerable to data
exploitation and cyber attacks than conventional automo-
biles [71]. Thus, a lack of awareness of V2 X  communication
could result in users’ underestimation of the CAVs ’  privacy
risks and uninformed privacy decisions. To understand users’
privacy perception and decision of V 2 X  communication in
CAVs, we ask the following RQs in this work:
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Infotainment,
comfort,
convenience

Traffic management

Road safety

[19], [39]

• RQ1: Given an adequate understanding of C AVs  and
V 2 X  communication, do participants vary their per-
ceived benefits and risks, data-sharing decisions and
confidence across different V 2 X  communication appli-
cations? What are the reasons behind their willingness
or unwillingness to share the data?

• RQ2: Do participants augment their privacy perceptions
and decisions of V2X communication if they are primed
by privacy&security than participants who are primed
by privacy only?

• RQ3: Do participants’ prior experience in connectivity
and driving assistance functions have impact on their
privacy perceptions and decisions across different V 2 X
application scenarios?

3 Method

We conducted a scenario-based online survey using Qualtrics.
There were three between-subject conditions: control, pri-
vacy priming, and privacy&security priming. We created a
set of data collection and use scenarios related to the four
V 2 X  applications in C AVs  (see Table 1). Each scenario de-
scribed the data flow and information usage of a specific
V 2 X  application (e.g., road safety). After viewing each sce-
nario, participants were prompted for different questions. To
increase participants’ privacy awareness, we presented extra
descriptions about the privacy risks of data sharing for V 2 X
communication in the privacy-priming condition. Moreover,
participants in the privacy&security priming condition were
further informed of the security risks of data receiving. In
the end, participants answered a few post-session questions,
including their general privacy attitudes and demographics.

3.1 Constructing Descriptions and Scenarios

The study was performed with participants’ own laptops or
computers. To ensure the readability of the survey contents,
we did not allow participants to continue the study if they
were using any mobile devices with an embedded function in
Qualtrics [106].

C AV  and V 2 X  Descriptions. To situate participants into
the hypothetical scenarios for the V2 X  applications in CAVs,
we presented a brief description of C AVs  and V 2 X  com-
munication at the beginning of the study, respectively. We
also gave examples of the C AV  features and different types
of V 2 X  communication, including vehicle-to-infrastructure
(V2I), vehicle-to-vehicle (V2V), and vehicle-to-pedestrian
(V2P). See details of our survey protocol in supplementary
material [21].

Comprehension-check Questions. Previous studies have
shown that a basic understanding of the survey topic is critical
to differentiate legitimate and fraudulent respondents [107].

Participants’ comprehension of C AVs  could also have im-
pact on their privacy decision-making of CAVs,  since the
public is unfamiliar with C AVs  and related concepts [54].
We applied comprehension check for both C AV  and V 2 X
applications. Following each description, we proposed com-
prehension questions evaluating participants’ grasp of each
concept. We measured participants’ understanding of CAVs
by asking 1) the role of human driver; 2) CAVs ’  data col-
lection and use; and 3) the CAVs ’  definition. Participants’
comprehension of V 2 X  was evaluated through information
sharing and receiving in V2I, V2V and V2P, respectively. All
questions were True/False questions except that the last ques-
tion about V 2 X  was a multi-choice selection question (see
supplementary material [21]).

Table 1: Proposed Scenarios in Each Application Based on
Current Available Algorithms and Techniques

Application Scenario Reference
- in-car gaming
- car parking [9], [30],
- in-car video streaming [42], [95]
- trip planning
- location and upcoming trip details
- vehicle information [24], [73],
- location and speed [102]
- speed, heading, and vehicle type
- autonomous sensing
- intersection movement assistant [62], [73],
- traffic navigation [90], [101]
- in vehicle safety and emergency monitoring
- GPS coordinates

Autonomous driving      - pictures of surroundings
applications - approaching vehicles, pedestrians, and objects

- vehicle movement of the environment

Scenario Design. We proposed four representative scenar-
ios for each V2 X  application category based on the literature
(see Table 1). Scenarios in each category were concerned with
different realistic examples to ensure the representativeness
but were nonetheless similar in nature. We specified the pur-
pose of the data collection in a service-oriented manner, so
that the daily drivers could better understand the connection
of the scenarios to their lives. We also ensured that the sce-
narios in each category embedded comparable types of data
collected and purposes. Specifically, all scenarios included
both aspects of data sharing and data receiving. Thus, each
scenario embedded possible privacy concerns and security
risks in the data exchange process. We highlighted the key
factors in each scenario, such as the application system, data
type and collection purpose, to help participants better capture
the critical information flow [78] (see examples in Figure 1).

Al l  proposed scenarios were reviewed by two outside ex-
perts, one in the field of computer vision and the other in data
privacy. Each of them decided individually the validity of
each scenario based on a 7-point scale (“1” meaning “very in-
valid” and “7” meaning “very valid”). They were instructed to
make intuitive decisions based on their knowledge and exper-
tise, rather than referring to literature or other materials. Each
expert gave an overall rating of 5.7 and 6.1, respectively. The
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average ratio of agreement (valid vs. invalid) was 1.0. Both
experts rated two scenarios (i.e., online shopping and gam-
ing) in the infotainment category as invalid. Consequently, we
deleted the online shopping scenario. Based on the suggestion
of one expert, we separated the online gaming scenario into
one game scenario and one in-car video streaming scenario.
See the finalized 16 scenarios (S) at Appendix A.1.

Priming Descriptions. To shed light on interventions in
facilitating private behavior in CAVs,  we propose objective,
textual descriptions of privacy and security risks of V2X com-
munication. The textual description describes the potential
privacy risks of sharing data to use V 2 X  services, which we
expect to play a role in privacy priming. Moreover, an extra
description specifies the potential security risks of receiv-
ing data from external entities, which is expected to have a
stronger priming effect (See supplementary material [21]).

3.2 Procedure

Participants were randomly assigned to one of the three condi-
tions after informed consent. There were three phases in each
condition. At Phase 1, participants read the descriptions of
CAVs  and V 2 X  at first. Then they answered several compre-
hension questions to test their understanding of each concept
(see supplementary material [21]). Participants in the privacy-
priming condition also viewed a paragraph that describes the
potential privacy risks of sharing data to use V 2 X  services.
Moreover, participants in the privacy&security-priming con-
dition received a description that warned them of the potential
security risks of receiving data from external entities.

At Phase 2, one of the four scenarios in each category was
randomly selected and presented to the participants. Thus, in
this and later sections we use “scenario” and “V2X applica-
tion category” interchangeably. For each scenario, participants
were asked about their agreement on whether they found the
data-sharing beneficial and whether they have privacy con-
cerns about sharing the data using a 7-point Likert scale,
respectively. Participants in the privacy&security-priming
condition also answered two similar questions about their
perceived benefits and security concerns of receiving data
from external entities. Then participants in all conditions indi-
cated their willingness to use the service by sharing their data,
and their confidence in making such a decision. The reasons
why they were willing or unwilling to share the data were
collected through an open-ended question. The four scenarios
were presented in a randomized order.

After answering questions for all scenarios, Phase 3 started.
We asked about participants’ demographics (e.g., age, gender
and race), their prior experience in using driving assistance
functions and connectivity functions in the vehicles, and their
overall trust in V 2 X  technology. Finally, we measured their
general privacy concern with a subset of Internet users’ in-
formation privacy concerns (IUIPC) questions [74]. We mea-
sured it at the end to avoid any possible priming effect [84].

3.3 Interview Study

To validate the proposed scenarios, comprehension questions,
and the survey in general, we did an interview study with six
participants (4 females) before the online survey. Participants
were recruited using the snowball methods [44]. Specifically,
we first recruited participants from our social networks and
then asked them to recommend other participants. We re-
quested all participants have a driving license to ensure the
sample is similar to the main survey. The interviews were
conducted online using Zoom. Besides answering all survey
questions, participants were asked to think aloud whether they
understood the survey instructions, proposed scenarios, sur-
vey questions, and listed options. The interview took about
one hour. Each participant was compensated $20.

We gained two main insights from the participants’ to im-
prove the survey. On the one hand, participants described that
it was hard for them to understand the advanced technologies
applied in CAVs  and memorize all acronyms (e.g., V2V and
V2X). Given V 2 X  and C AVs  are still under development,
we believe those participants may represent people who are
non-tech savvy or have limited experience in using advanced
driving assistance or connectivity functions. Thus, we spelled
out the acronyms to facilitate participants’ comprehension in
the online survey. On the other hand, participants found some
comprehension questions were hard to answer, such as Q2 in
the C AV  description and Q2-Q4 in the V2X description. They
indicated that there were ambiguities in the relevant descrip-
tions. For example, they failed to capture that each category
in V2X  communication implies bidirectional communication
between the C AV  and other parties (e.g., other vehicles, in-
frastructure and pedestrians) when reading the description.
Thus, we highlighted those keywords within the descriptions
to increase participants’ awareness of the key information.

3.4 Recruitment and Ethics

Power analysis using G*Power 3.1 [37] suggested 606 partic-
ipants to detect a small effect size (Cohen’s f = 0.10) of a two-
way interaction of 4 (V2X communication scenario: infotain-
ment, road safety, traffic management, autonomous driving)
×  3 (condition: control, privacy priming, privacy&security
priming) with a power of 0.8 [mixed analysis of variance
(ANOVA) test (α = .05)]. Considering the uncontrolled on-
line setting, we doubled the sample size and recruited 1204
participants initially to ensure sufficient power.

Participants were recruited on Amazon Mechanical Turk
(MTurk). The human intelligent task (HIT) was posted with
restrictions to workers who (1) are at least 18 years old; (2)
completed more than 100 HITs and with a HIT approval rate of
at least 95%; (3) are located in the U.S.; and (4) are vehicle
owners. Considering the emergent issue of data quality on
Amazon MTurk [60] and the public is unfamiliar with C AV
and related concepts, we applied comprehension-check ques-
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Gender

Ethnicity

5,000 - 10,000 38.3%

tions to ensure data quality and participants’ privacy percep-
tions and decisions were based on an adequate understanding
of C AV  and V2 X  communication (see details in Section 3.1).
Based on the interview results, we set a criterion of 5 out 7
to filter out inattentive or fraudulent participants. Among the
1204 participants recruited, 56.4% (680) of them passed the
test and completed the survey. We viewed the comprehension-
check questions as a proxy for attention check, of which the
pass rate on MTurk is about 60% or less [60]. The median
completion time was about 15 min. We paid each participant
$1.901. Participants who failed the comprehension check (me-
dian completion time = 2.3 min) were compensated for $0.50.
This experiment complied with the American Psychological
Association Code of Ethics and was approved by the Insti-
tutional Review Board at the authors’ institution. Informed
consent was obtained from each participant.

Table 2: Demographics of Participants in the Online Survey

Item Option Percentage
Male                                   50.6%

Female 48.7%
Non-binary / third gender                  0.5%

Prefer Not To Answer 0.2%
18-24 2.7%
25-34                                  27.2%
35-44                                  25.9%

Age 45-54 22.2%
55-64 13.8%
≥  65                                   8.1%

Prefer Not To Answer                     0.2%
African / African American                5.2%

American Indian / Alaska Native           0.7%
Asian                                   4.7%

Caucasian 83.2%
Hispanic / Latino                         3.9%

Native Hawaii / Pacific Islander 0%
More than one race                       1.7%

Prefer Not To Answer                     0.7%
< 2 years                                0.3%

2 - 5 years 5.7%
Years of Driving 5 - 10 years                             11.4%

> 10 years 82.5%
Prefer Not To Answer                       0%

< 2,000 6.7%
2,000 - 5,000                            18.5%

Mileage (Miles/Year) 10,000 - 20,000 27.9%
> 20,000                                 8.2%

Prefer Not To Answer 0.3%

4 Results

Another 15 participants who spent less than 5 min (the short-
est completion time in the pilot survey) or longer than 1 hr
(the long tail of the right-skewed completion time distribu-
tion) on the survey were removed from the analysis. An extra
12 participants who chose “prefer not to answer” in at least
one question at Phases 2 and 3 were excluded from data anal-

1We ran a pilot survey on MTurk with 20 participants to decide the
expected time. Our payment was based on federal minimal wage $7.25.

ysis. We excluded another 58 participants’ results because
they failed to give at least two meaningful answers to the
four open-ended questions (manually verified by the authors).
For the remaining 595 participants2, there was an approxi-
mately equal number in each condition, control (220), privacy
priming (202), and privacy&security priming (173). A  similar
number of participants was assigned in each scenario: info-
tainment (S01-S04: 156, 155, 138, 146), traffic management
(S05-S08: 164, 140, 155, 136), road safety (S09-S12: 144,
144, 151, 156), and autonomous driving (S13-S16: 135,
168, 144, 148). Table 2 shows participants’ demographics.

Analysis Plan. Our statistical analysis focused on four
measures (perceived benefits, perceived risks, willingness to
share, and confidence of sharing decision) related to C AV
privacy decision-making at Phase 2. We manipulated two fac-
tors: condition (control, privacy priming, privacy&security
priming) and scenario (autonomous driving, road safety, traf-
fic management, infotainment). As shown in Figure 2, the
mean values of the four measures vary across the conditions
or scenarios.

To quantify the effect, we first construct a Cumulative Link
Mixed-effects Model (CLMM) for each measure with “clmm”
function from the “ordinal” package [31]. We chose CLMM
because of the ordinal nature of the scale ratings for each
measure and its modeling of random effects. We model each
measure as the dependent variable and took the two main
effects and their two-way interaction as the fixed effect. To ac-
count for the within-subject design and the scenario randomly
selected for each category, we also took the participant ID and
scenario ID as the random effect. We report χ2 values and
corresponding p values for each model. To further quantify
the effect’s direction and magnitude, we report estimated co-
efficients (β) and corresponding p values of significant terms.
Complete regression results are shown in Table 3. We con-
ducted null-hypothesis testing (α = 0.05) for those measures.
The null hypothesis was rejected when the obtained results
among the conditions were significantly different from each
other. Parametric tests such as ANOVA are robust to yield
the right answer even when distributional assumptions are
violated [18, 80]. We also constructed a linear mixed-effects
regression (or LMER) for each model and obtained results
consistent with CLMMs (see Appendix A.2).

At Phase 3, we measured participants’ experience in using
connectivity and driving assistance functions. Based on the
their responses, we categorized their experience into three lev-
els: little (151 “never” or “rarely” used either function), some
(240 “sometimes” or “often” use at least one of the functions),
much (204 “sometimes” or “often” use both functions). We
conducted the CLMMs same as Phase 2 but added experience
(little, some, much) as another factor for each measure.

2The final participant number was slightly smaller than 606 (the suggested
participant number through power analysis), the power we achieved was .793.
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(a) Perceived Benefits of Data Sharing

(c) Willingness to Share

(b) Perceived Risks of Data Sharing

(d) Confidence of Sharing Decision

Figure 2: Results of four measures at Phase 2 as a function of Scenario (infotainment, traffic management, road safety and autonomous
driving) and Condition (control, privacy priming, privacy&security priming). Numbers in the parentheses indicate the number of participants in
each condition. The error bars represent 2 standard errors.

4.1 Perceived Benefits and Risks

Sharing Data. The CLMM results confirmed that both sce-
nario, χ2 (3) =  50.14, p <  .001, and condition, χ2 (2) =  7.84,
p =  .020, had an significant effect on the perceived benefits
(see Figure 2a). In the CLMMs, the control condition and the
infotainment scenario are the baseline condition and scenario,
respectively. Generally, participants perceived more benefits
for sharing data in the driving-related scenarios (i.e., traffic
management, road safety, autonomous driving) than in the in-
fotainment scenarios (βs > 1.708, ps <  .001), consistent with
previous findings (e.g., [20, 53]). Compared to the control
condition, only participants in the privacy-priming condition
perceiving fewer benefits (β =  −0.736, p <  .01). The two-
way interaction of scenario ×  condition was also significant,
χ2 (6) =  15.62, p =  .016, mainly because participants in the
privacy&security-priming condition perceived more benefits
for the traffic management scenario than those in the control
condition for the infotainment scenario (β =  0.580, p <  .05).

For the perceived risks, participants gave an average rating
larger than 4 (see Figure 2b), indicating that they were aware
of privacy risks in each scenario. The main effect of scenario
was significant, χ2 (3) =  33.17, p <  .001. In agreement with
the results of perceived benefits, the participants perceived
fewer risks in the driving-related scenarios than in the info-
tainment scenarios (βs < − 0.697, ps <  .01). Nevertheless,

the main effect of condition and its interaction with scenario
were not significant, χ2 <  4.22, ps >  .176, revealing limited
impacts of the priming effect on risk perception.

Finding 1: While users perceived more benefits but fewer
risks in the driving-related scenarios, they perceived more
risks but fewer benefits in the infotainment scenarios. Such
opposite patterns reveal the relatively heavier weighting
of driving-relevant information than otherwise, implying a
privacy-safety tradeoff in the CAV context (RQ1).

Receiving Data. The main effect of scenario was signif-
icant for the perceived benefits, χ2 (3) =  47.50, p <  .001
and risks, χ2 (3) =  40.71, p <  .001, of receiving data in
the privacy&security-priming condition. Consistent with the
sharing-data results, participants perceived more benefits
(βs >  2.034, ps <  .001) but fewer risks (βs <  −0.989, ps <
.001) in the other three scenarios than in the infotainment
scenario. We also did an exploratory analysis to understand
possible differences between sharing and receiving data . The
participants perceived more benefits, χ2 (1) =  6.36, p =  .012,
but fewer risks, χ2 (1) =  18.91, p <  .001, in receiving data
than sharing data. Such pattern was consistent across the
four scenarios, χ2 (3) <  1.51, ps >  .680, indicating that partic-
ipants might have focused on the benefits but underestimated
the risks associated with receiving data.

Finding 2: Only the privacy priming was effective in reduc-

2982 32nd USENIX Security Symposium USENIX Association



(a) Perceived Benefits of Data Sharing

(c) Willingness to Share

(b) Perceived Risks of Data Sharing

(d) Confidence of Sharing Decision

Figure 3: Results of four measures at Phase 2 as a function of Scenario (infotainment, traffic management, road safety and autonomous
driving) and Experience (little, some, much). Numbers in the parentheses indicate the number of participants at each experience level. The
error bars represent 2 standard errors.

ing CAV users’ perceived benefits than those in the control.
Instead of augmenting CAV users’ privacy concerns, the pri-
vacy&security priming condition showed similar results as
those in the control, probably due to more benefits and fewer
risks perceived in receiving data than sharing data (RQ2).

4.2 Willingness to Share and Confidence

Participants’ willingness to share data varied across scenarios,
χ2 (3) =  52.43, p <  .001, and conditions, χ2 (2) =  7.49, p =
.024 (see Figure 2c). They showed more data-sharing willing-
ness for the driving-related scenarios than for the infotainment
scenarios (βs >  1.806, ps <  .001). In addition, participants in
the control condition were more willing to share data than
those in the two priming conditions (βs <  −0.660, ps <  .05).
Thus, compared to the perceived benefits or risks, the prim-
ing effect was more obvious in the data-sharing decisions.
No interaction effect was observed, χ2 (6) =  9.21, p =  .162,
indicating the priming effect is not scenario-dependent.

Participants were confident about their data-sharing deci-
sions in general (see Figure 2d). The main effect of scenario
was significant, χ2 (3) =  8.39, p =  .039. Yet, relative to the
infotainment scenario (baseline), no significant differences
were obtained (βs <  0.378, ps >  .05). Neither the main effect of
condition, χ2 (2) =  4.73, p =  .094, nor its interaction with
scenario, χ2 (6) =  11.65, p =  .070, were significant, suggest-

ing limited influence of priming for their decision confidence.

Finding 3: CAV users made more liberal privacy decisions in
the driving-related scenarios, which could have been caused
by perceiving both more benefits and fewer risks (RQ1). More-
over, they made more conservative privacy decisions as long
as they were primed (RQ2).

4.3 Effect of Prior Experience

Figure 3 shows a trend that users with much experience in
driving assistance and connectivity functions perceived more
benefits and risks, and showed more willingness to share data.
We explore the effect of their prior experience by adding it as
another factor in the CLMMs. We set the little experience as
the baseline and report significant terms involving experience.

The main effect of prior experience was significant in par-
ticipants’ perceived benefits, χ2 (2) =  17.57, p <  .001, per-
ceived risks, χ2 (2) =  8.21, p =  .017, and their willingness
to share data, χ2 (2) =  28.87, p <  .001. Yet, neither some
nor much experience levels showed any significant differ-
ences compared to the baseline for each measure (benefits:
βs <  0.320, ps >  .05; risks: βs <  0.377, ps >  .05; willing-
ness: βs <  0.868, ps >  .05). There was an interaction effect
of scenario ×  experience, χ2 (6) =  13.48, p =  .036, but no
significant differences were obtained relative to the baseline.
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Table 3: Effects of Condition and Scenario on Four Measures. We build each CLMM by considering the two main effects and
their interaction. Significance is denoted by *** (p < 0.001), ** (p < 0.01), and * (p < 0.05).

Random Effect
Participant ID
Scenario ID
Variable
Condition (Reference = Control)

Privacy Priming
Privacy&Security Priming

Scenario (Reference = Infotainment)
Traffic Management

Road Safety
Autonomous Driving

Condition : Scenario
(Reference = Control : Infotainment)

Privacy : Traffic Management
Privacy&Security : Traffic Management

Privacy : Road Safety
Privacy&Security : Road Safety

Privacy : Autonomous Driving
Privacy&Security : Autonomous Driving
Threshold Coefficient

1|2
2|3
3|4
4|5
5|6
6|7

Perceived Benefits Perceived Risks Willingness to Share Confidence of Sharing Decision
Variance       Std. Dev.                        Variance       Std. Dev.                        Variance       Std. Dev. Variance      Std. Dev.

3.164              1.779                               3.968              1.992                               4.737              2.176                               2.689             1.640
0.237              0.486                               0.082              0.287                               0.245              0.495                               0.008             0.091

Estimate (β) Std. Err. p Estimate (β) Std. Err. p Estimate (β) Std. Err. p Estimate (β) Std. Err. p

-0.736             0.257         .004**           0.656              0.272          .016*           -0.683             0.287          .017*            0.130             0.254           .608
-0.453             0.267           .090             0.466              0.282           .098            -0.660             0.297          .026*            0.014             0.263           .957

1.708 0.392      <.001*** -0.697 0.270 .010** 1.806 0.398      <.001*** 0.336 0.198 .089
2.177 0.394      <.001*** -1.053 0.271      <.001*** 2.316 0.400      <.001*** 0.378 0.196 .054
2.078 0.393      <.001*** -0.778 0.270 .004** 2.079 0.398      <.001*** 0.228 0.196 .244

0.433 0.268 .106 -0.311 0.260 .233 0.315 0.270 .243 0.012 0.274 .966
0.580 0.278          .037* -0.356 0.268 .184 0.415 0.278 .135            -0.269 0.281 .337
0.451 0.273 .099 -0.436 0.264 .098 0.395 0.275 .152 0.351 0.275 .203
-0.107 0.279 .702 -0.198 0.270 .463             -0.114 0.278 .683             -0.510 0.280 .069
-0.086 0.267 .747 -0.295 0.260 .257 0.166 0.269 .537             -0.205 0.272 .452
-0.270 0.277 .329 -0.293 0.268 .274             -0.175 0.277 .527             -0.324 0.279 .246

Estimate        Std. Err.                          Estimate        Std. Err.                          Estimate        Std. Err.                          Estimate       Std. Err.
-3.369             0.322                               -4.395             0.264                               -3.337             0.332                               -6.389            0.360
-2.104             0.309                               -2.338             0.244                               -1.843             0.320                               -4.805            0.243
-1.372             0.305                               -1.415             0.239                               -1.089             0.318                               -3.531            0.206
-0.694             0.304                               -0.734             0.238                               -0.246             0.317                               -2.397            0.191
0.500              0.304                               0.469              0.238                               1.043              0.318                               -0.978            0.184
2.654              0.309                               2.092              0.243                               3.464              0.327                               1.514             0.185

Finding 4: We observed a non-significant trend that users
with much experience in driving assistance and connectivity
functions perceived more benefits and more risks of data shar-
ing, suggesting that they might have a better understanding of
the pros and cons of the described V2X functions. Still there
was a non-significant trend that they showed higher willing-
ness in sharing the data, implying that their data-sharing
decisions were more aligned with perceived benefits (RQ3).

4.4 Privacy Attitudes and Trust

In the post-session questionnaire, we examined participants’
privacy attitude with a subset of IUIPC (11 questions), which
is typically used to understand people’s general privacy at-
titude toward online information [74]. We averaged partic-
ipant’s ratings of the 11 questions to get a score for their
privacy attitude. The participants had strong concerns about
their own privacy regardless of the conditions3 (control: 6.1;
privacy priming: 6.1; privacy&security priming: 6.1; F  < 1.0).
Since the IUIPC questions were asked at the end of the sur-
vey, the non-significant differences across conditions could
indicate that participants might have raised similar privacy
concerns after answering questions at Phase 2. Participants’
trust in the V2X communication was also similar across condi-
tions4 (control: 3.58; privacy priming: 3.41; privacy&security
priming: 3.40; χ2 (2) =  5.63, p =  .060).

4.5 Response to Open-ended Questions

After participants indicated their willingness and confidence
to share the data in each scenario, we asked them to describe

3Participants’ privacy attitude was analyzed with one-way ANOVA.
4Trust was analyzed with Kruskal–Wallis one-way analysis of variance.

factors that they considered when making the decisions. We
did a thematic analysis [15] for the 2293 meaningful answers.
Two coders analyzed half of the data independently at first
and then developed a code book through iterative discussions.
Then they revised their codes and coded the other half data
independently. Therefore, every answer was coded by both
coders. The inter-coder agreement via Cohen’s Kappa was
0.93, indicating a high agreement [64]. The two coders re-
solved the discrepancies between them by revisiting the crite-
ria over multiple discussions. Then they discussed the results
and finalized the thematic analysis together. Note that a sin-
gle response may have multiple themes. We identified five
major themes and described the numerical difference across
scenarios:

Benefits, especially safety, come prior to privacy
(55.0%). Such a top theme showed that when participants
made data-sharing decisions, the majority of them considered
the benefits (convenience and safety). For example, P10 an-
swered, “I think the benefits [of trip planning] outweigh any
concerns I’d have [for] sharing this data.” We examined the
theme across the four scenarios. Consistent with the quanti-
tative results reported earlier, the difference across scenarios
were mainly revealed by more emphasizes on the benefits in
the three driving-related scenarios (59.7%, 66.1%, 61.7%)
than in the infotainment scenarios (31.8%). Moreover, about
14.3% of the participants mentioned safety in their responses
specifically. For instance, P343 described “Safety comes prior
to concerns for privacy [concerns]. If it will help me with my
safety and health, I  don’t mind sharing my private infor-
mation.” Such pattern was more evident in the three driving-
related scenarios (9.9%, 20.2%, 21.6%) than the infotainment
scenarios (5.2%).

Privacy concerns (29.8%). Participants had privacy con-
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cerns when making the data-sharing decision. For example,
P218 answered that “I don’t know enough yet to commit. But, it
sounds really promising, I  just have concerns about the
seemingly complete knowledge of every move I  make, who
else has access, how long it is stored, and if it can be ac-
cessed without my permission or knowledge by any person or
any agency.” Those privacy concerns varied across scenarios,
showing more concerns in the infotainment scenarios (37.7%)
than in the other scenarios (27.2%, 23.1%, 31.3%).

Common good (13.4%). Some participants were willing
to share the data because it could be beneficial to others, espe-
cially for the three driving-related scenarios (18.7%, 16.4%,
15.5%) than for the remaining one (2.9%). For instance,
P1 replied: “Sharing this data will make the roads safer for
ev-eryone so I  feel a responsibility to do so.” Notice that
some participants might have implicitly indicated this
theme by describing the application as “beneficial.” Thus,
the number reported here might be underestimated. We did
not double count responses mentioning “common good”
into “Benefits come prior to privacy” theme either.

Insensitive data or expectation of protected data sharing
(13.3%). Some participants revealed wrong perception about
data sharing in the C AV  context (e.g., “This is pretty standard
data that doesn’t feel intrusive to ME at all. It seems to be a
lot of data just about my vehicle, which isn’t a big deal to
me. And then in terms of "other" data like my vehicle
location, that doesn’t seem that much different than when I’m
using my GPS or anything like that, so I  don’t necessarily
have a problem with it”(P71)). Some participants explicitly
expected data in the C AV  setting to be temporary (e.g., “I
understand collecting this short-term data for road safety and it
makes sense to me as it could greatly reduce accidents. Also, I
would not think these data would need to be kept for the
long-term”(P530)) and processed with sufficient protection
measures (e.g., “I would trust that security software will be
developed to allow this service to be safe and not allow others
to get sensitive information”(P106)). Unsurprisingly, those
trends were more evident in the three driving-related scenarios
(14.0%, 15.5%, 13.9%) than the infotainment scenario (9.8%).

Not beneficial or unnecessary (11.8%). Compared to the
driving-related scenarios (5.6%, 7.3%, 4.1%), about 30.8% of
responses in the infotainment scenarios indicated that partici-
pants did not share the data because they perceived limited
benefits (e.g., “The service offered is a waste of my time,
money, and energy. When I  am driving I  enjoy the scenery,
the experience, and if traveling with others I  am enjoying
their company. Fiddling with gadgets is avoiding the joy of
driving and travel”(P501)). Some participants declined to use
functions already implemented in other devices (e.g., “I don’t
see a benefit in such service [find facilities nearby and receiv-
ing information of services and prices] since my cell phone
provides me exactly with the same information whenever I
need it”(P257)).

The other themes we identified in the coding process are

security concern (4.1%), government’s / companies’ abuse
of data (3.8%), and public information (3.1%). Data abuse
and security risks can be considered as specific examples
and consequences of privacy breach. Related to the theme
of “insensitive data,” participants indicated that the required
data were already public, which may have contributed to their
belief of data being insensitive.

We also observed two extra themes in small percentage
(about 1-2% on average) but somewhat unique to the C AV
context. First, several participants were unsure about their
intention and indicated they need to know more about the
technology, data type and safety measure, suggesting an unfa-
miliarity of C AV  data sharing (e.g., “I think this technology is
very new to me, I  need to get to know it better and find out
about my data and my privacy”(P203)). Second, participants
mentioned that data sharing (e.g., destination and location)
can be more risky if they were carrying other passengers in
the vehicle, suggesting their final decision may vary (e.g.,
“Sharing destinations with other individuals or entities can
be a safety risk, especially if I  am carrying other passengers
in the vehicle. It is not worth the tradeoff to me”(P248)).

Finding 5: Our thematic analysis verified the privacy-safety
tradeoff. The analysis revealed not only common factors simi-
lar to other settings, but also some unique factors for the CAV
context (RQ1).

5 General Discussion

We conducted an online vignette study with 16 V2X  commu-
nication scenarios to examine participants’ perceived benefits
and risks of various data exchanges in the C AV  context. We
also measured the participants’ data-sharing decisions and
their decision confidence. Compared to the infotainment sce-
narios, our results showed that the participants perceived more
benefits but fewer risks in the driving-related scenarios (i.e.,
traffic management, road safety, and autonomous driving), and
consequently were more willing to share their data. Moreover,
participants’ data-sharing decisions were subject to change
due to other factors such as privacy priming or their prior
experience in driving assistance and connectivity functions.

Next, we discuss possible explanations of the obtained re-
sults and interventions to facilitate privacy behavior in the
C AV  context. We then discuss recommendations for practi-
tioners, the limitations of our study and future research direc-
tions.

5.1 Privacy Behavior in the C AV  Context

A  take-home message of our study is that benefits plays a
critical role in users’ C AV  privacy decision-making. Besides
privacy-utility tradeoff (e.g., parking convenience), we ob-
tained privacy-safety tradeoff across different driving-related
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scenarios (Finding 1). Responses to the open-ended questions
also verified the critical role of safety in their decision-making.

Tradeoffs of Privacy-Utility and Privacy-Safety. The no-
tion of privacy calculus indicates that when asked to provide
personal information to service providers or companies, users
perform a cost-benefit analysis [34]. In our experiment, per-
ceived risks of data sharing were negatively correlated with
perceived benefits. The participants were more likely to share
the data (i.e., accept the potential risks that accompany the
disclosure of personal information) as long as they perceived
that benefits exceeded the costs of disclosure [33] (e.g., safety
outweighs privacy in driving-related scenarios).

Beyond safety concerns about themselves, the participants
also indicated that they made the sharing decision due to the
safety concerns about others on the road (Finding 5). Such
results are consistent with previous findings in manual driving
context, indicating the altruistic aspect of driving [77]. Some
of the participants also considered the privacy of passengers
inside the vehicles, indicating the role of social aspect in the
C AV  privacy decision-making.

Effects of Prior Experience. We found the main effect of
participants’ prior experience of driving assistance and con-
nectivity functions in their perception of benefits and risks,
as well as their data-sharing willingness. Such results were
consistent with Brell et al. [17], which found that participants’
prior experience with driving assistance systems (e.g., auto-
matic parking and cruise control) had a significant influence
on the perceived benefits of using CAVs and risks concerning
data collection and use. Relative to the participants with little
experience (baseline), those with more experience (some and
much) only revealed nonsignificant increasing trends. More-
over, the more willingness to share data even when perceiving
more risks suggests that C AV  users with more relevant expe-
rience are likely to be attracted by the utility but neglect the
potential privacy risks of sharing data. Thus, besides learning
from experience, it is critical to equip users with the correct
knowledge of C AV  data collection and use. In addition, the
nonsignificant differences relative to baseline could be caused
by various factors. For example, the number of participants
was probably not large enough to detect the statistically sig-
nificant differences among varied experience levels.

5.2 Privacy Risk Communication of V 2 X

Our study results (Findings 2-4) provide insights into how to
use priming to remind users about privacy risks in the C AV
context. Presenting users with privacy risks prior to the
data-sharing decision is effective in increasing conser-
vative privacy decision-making. Such results are consistent
with the literature on the app selection [29, 84] and the IoT
setting [67]. Different from the mobile setting [29], the in-
dividual differences among participants with relevant C AV
experiences indicate that interventions in the C AV  context
might need to be customized to lead them to think about their

privacy differently. For example, concrete priming items in
each scenario or personal- or self-relevant information [84]
could be considered to promote safer data-sharing decisions
for users with much relevant experience.

Ineffectiveness of Security Priming. Out of our expec-
tations, instead of reducing perceived benefits and increas-
ing perceived risks, additional security priming somehow re-
sulted in ratings between the control and the privacy-priming
conditions. Thus, the presentation of receiving data in the
security priming might have mainly increased participants’
perceived benefits. Although we highlighted possible security
risks when receiving information, participants might have
thought of them separately from the privacy risks of sharing
data. Considering the cooperation aspect in driving, such
results raise novel challenges of usable privacy in the C AV
context. Alternatively, such results might indicate that par-
ticipants were less aware of security risks than privacy risks
throughout the data exchange. As noted by participants’ an-
swers to the open-ended questions, effective training that
helps C AV  users understand the technology and the implica-
tions to data privacy and security seems to be essential.

Transparent Privacy-enhancing Technology of CAVs.
Several participants revealed expectations of strong privacy
protections in the C AV  context, suggesting the importance of
communicating privacy-enhancing technology of CAVs to en-
courage safer data sharing. Such results were consistent with
demand of preventative measures to prevent security breaches
in autonomous driving [45]. Salazer et al. [86] recently pro-
posed V 2 X  Core Anomaly Dectection System (VCADS) to
validate the V 2 X  messages beyond authentication. The au-
thors performed evaluations on V 2 X  field-testing datasets
and attack simulations, and found that VCADS were able to
detect more than 85% of attacks. Nevertheless, it is unclear
1) whether the proposed protection meets users’
expectations, and 2) whether users could understand and trust
the proposed system. To ensure the usability of such state-of-
the-art privacy technology, future work could consider a
evaluation including C AV  users throughout the design and
development processes.

5.3 Recommendations for Practitioners

We believe that automobile OEMs and policymakers can sig-
nificantly contribute to the human aspects of privacy of V 2 X
communication for CAVs by considering the following facets.

Privacy Risk Communication, Policies, and Regulations.
Drivers were concerned about sharing data in V2X communi-
cation for CAVs;  yet, they placed benefits, especially safety,
prior to privacy. Thus, automobile companies should develop
privacy policies in terms of effectively communicating privacy
risks of V 2 X  communication. For example, we recommend
communicating both general privacy risks and specific pri-
vacy implications [68] of V2X communication, such that they
become more visible and accessible for users. Also, policies
and regulations at other levels (e.g., government) should focus
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on the tradeoff between safety and privacy of data sharing
for V2X communication. Specifically, the data collection and
corresponding privacy risks should be explicit to the public.

Privacy-enhancing Technology. Users revealed expecta-
tions about protected data sharing. A  significant body of work
has been conducted to ensure privacy for vehicular communi-
cation systems [72], focusing on identity privacy and location
privacy. Yet, anonymity is not sufficient since location data
are highly correlated and driving locations based on traffic
rules are very predictable [4]. For example, the effectiveness
of anonymous authentication has been questioned by success-
ful tracking attacks in the simulator based on beacon mes-
sages [103]. Thus, more advanced technologies, such as differ-
ential privacy (DP [35]) could be considered to maintain the
trajectory privacy and utility simultaneously [14, 26, 41, 50].

V2X and C AV  Training. Incorrect perception of data shar-
ing in CAVs highlights that consumer education and training
should be considered and provided by automobile companies
and government agencies. We recommend approaches such as
driving simulator training [58] to facilitate understanding of
both what and how aspects of V 2 X  communication in CAVs.

5.4 Limitations

There are a few limitations in our study method. First, we re-
cruited MTurk workers who tend to be young, more educated,
and more aware of privacy issues [57]. Our participants were
diverse in demographics but they may not represent the U.S.
population. Our study was conducted in the U.S., thus the
obtained results may not necessarily represent privacy percep-
tion and decision of CAVs  in other regions (e.g., EU or East
Asia). Second, we introduced CAVs and V2X at the beginning
of our survey, but it was still possible that those concepts were
obscure to the participants. The functions described are far
from real applications, which could have led to difficulties for
the participants to precisely evaluate and compare the benefits
and risks. Third, our result may be limited to attentive users
or those with higher reading comprehension since they are
more likely to pass the comprehension test.

Fourth, we did not include filler to make the text length
equivalent between the two priming manipulations. Despite
more information in the privacy&security priming condition,
participants spent similar time completing the survey (Con-
trol: 947 s; Privacy: 890 s; Privacy&Security: 950 s, p = .170).
Moreover, we focused on the impact of the text descriptions
on the following privacy perceptions and decisions. The re-
sults were similar to those of the privacy priming condition,
suggesting limited impacts of the text length. Fifth, we only
randomly sampled one scenario for each V2X application. Fu-
ture work could consider increasing the sample size in each to
increase the internal validity. Lastly, we presented the priming
manipulations in two of three conditions initially, but the fol-
lowing V2X  communication scenarios were service-oriented.
Thus, participants might have focused on benefits rather than

risks when making the judgments and the decisions.

5.5 Future Research Directions

Our study findings can only serve as the basis for more sys-
tematic studies regarding human aspects of privacy of V 2 X
communication for CAVs. First, we suggest users’ privacy per-
ception and decision should be investigated in a setting with
higher ecological validity. For example, future work could
consider using video [45], a driving simulator, or AR/VR to
give users the experience of V 2 X  communication for CAVs.
Such studies could leverage the scenarios that we constructed
to create appropriate driving contexts to explore the differ-
ences among scenarios. Second, individuals’ stated disclosure
intentions could vary from their actual data-sharing behav-
iors [10,40]. We argue that such privacy paradox [79]) should
be investigated to obtain a more comprehensive understanding
of privacy behavior in CAVs. Third, our study mainly focuses
on data exchanges with other vehicles (V2V) or the transport
infrastructure (V2I) [63]. Future studies could consider other
service purposes or data collection and use (e.g., V2P). Data
exchanges in V 2 X  communication have extra unique chal-
lenges for usable privacy. For instance, CAVs normally drive
at high speed. Any decision regarding V 2 X  communication
will be time- and response-critical [59]. Also, the sheer num-
ber of possible encountered vehicles and entities could create
issues such as choice overload for privacy control, making it
hard to track the information flow in real time. We recommend
further research to explore those novel problem spaces.

6 Conclusion

The rapid development of C AVs  will make them available
to most users in the near future [69]. Our results reveal that
users have privacy concerns about V 2 X  communication in
the C AV  context but they are more likely to be attracted by
the explicit benefits and safety considerations. We suggest
service providers should inform users of the privacy risks
and implications of the collected data such that the users can
reach a comprehensive decision about using a service. We
also found that users’ prior experience on driving assistance
and connectivity functions could lead to varied privacy per-
ceptions and decisions, suggesting that individually tailored
privacy design may need to be considered for CAVs. Our the-
matic analysis results also offer insights to policy makers for
effectively communicating privacy of V 2 X  communication.
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A APPENDIX
A.1 Scenarios for Privacy Decision-Making
In this appendix, we list the textual descriptions and factor
values of all scenarios (S).

S01. An in-car gaming system that is connected to the
infotainment system shares and receives the destination and
trip details to pair you with passengers in nearby vehicles
for online co-op video games.

S02. A  car parking system installed on your vehicle sends
the data of your vehicle (size, color, license plate, etc.) to
local parking lots and receives recommendations/locations
of parking spaces from the parking lot.

S03. An in-car video streaming system shares the net-
work conditions and sends requests to the remote data cen-
ter and receives the videos in-demand.

S04. The trip planning system installed on your vehicle
helps you find facilities (such as gas stations) nearby by
collecting your location, vehicle statistics, and payment
information and receiving information about services of-
fered and the prices.

S05. The trip planning system installed on your vehicle
sends your location and upcoming trip details and receives
timely updates on detours and planned events from the lo-
cal transportation management center to avoid road closings
and congestion.

S06. The trip planning system installed on your vehicle
shares the vehicle information (such as the location, height,
width, types of tires) with the roadside infrastructure data
system and receives warnings about the road conditions
such as the vertical clearance and dynamic weather update to
plan a safe route.

S07. The trip planning system installed on your vehicle
shares its location and speed at highway on-ramps and
off-ramps with the roadside unit to help improve the road
traffic control. Meanwhile, it receives the recommended
optimal speed from the roadside unit to avoid congestion.

S08. The navigation system installed on your vehicle
shares its speed, heading, and vehicle type and receives
the same information from nearby emergency vehicles to
give the right of way.

S09. The autonomous sensing system installed on your
vehicle detects and analyzes the movements of pedestrians
around you to infer unusual behaviors. The vehicle may
send a warning to other vehicles if it detects unlawful pedes-
trian crossings. It may also receive warnings from other
vehicles.

S10. The intersection movement assist system installed
on your vehicle shares and receives the speed, location,
heading, brake status, steering wheel angle, and path pre-
diction with adjoining vehicles before entering the intersec-
tion to avoid sideswipe collisions.

S11. The traffic navigation system installed on your ve-
hicle helps other vehicles near you to be prepared by broad-
casting your CAV ’s  lane changes, acceleration, and decel-
eration in advance. The vehicle also receives lane changes,
acceleration, and deceleration of other vehicles to avoid
collisions.

S12. The in-vehicle safety and emergency monitoring
system shares the status (such as tire pressure, windshield,
brake) of your vehicle to nearby roadside assistance so that
timely help and rescue can be received and deployed.

S13. The autonomous sensing system installed on your
vehicle helps avoid collision with other vehicles near you
by sharing and receiving real-time G P S  coordinates to
improve safety.

S14. The autonomous sensing system installed on your
vehicle takes pictures of the surroundings with its 360°
coverage camera suite to recognize vehicles, pedestrians,
and objects and share this information with other vehicles to
improve safety. It also receives pictures taken by other
vehicles and the roadside unit for a collaborative percep-
tion.

S15. The autonomous sensing system installed on your
vehicle scans the environment with laser beams emitted from
LiDAR sensors to detect approaching vehicles, pedestrians,
and objects and share this information with other vehicles to
improve safety. It also receives L iDAR data collected by
other vehicles and the roadside unit to work collaboratively.

S16. The autonomous sensing system installed on your
vehicle shares and receives the movement of the environ-
ment (such as the velocity, and depth) detected by the radar
sensor with nearby vehicles and roadside units.
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A.2 Tables

Table 4 shows the results of all measures (perceived benefits and perceived risks of sharing data and receiving data, data-sharing
willingness and confidence ratings). Previous literature showed that parametric tests such as ANOVA are sufficiently robust to
yield the correct answer even when distributional assumptions are violated [80] (e.g., likert scale responses [96]). Thus, we also
built a linear mixed-effects regression (or LMER) for each model with the lme4 package in R  [11]. Table 5 shows the results of
ANOVA and the post-hoc analysis that provides pairwise comparisons beyond the comparisons with baseline in Regression
analysis. There were significant main effects of scenario in perceived benefits, perceived risks and data-sharing decisions, and
condition in perceived benefits and data-sharing decisions. Thus, we obtained consistent results by using LMER and CLMM, in
agreement with results in the literature (e.g., [18]).

Table 4: Results of Four Measures of Sharing Data and Two Measures of Receiving Data in Phase 2 as a Function of
Scenario and Condition. The number in the parentheses of the first column indicates the number of participants in each
condition. The number in the parentheses of the last three columns shows the standard errors of corresponding cell.

Sharing Data
Condition

Control (220)

Privacy priming (202)

Privacy&security
priming (173)

Scenario
Infotainment

Traffic management
Road safety

Autonomous driving
Infotainment

Traffic management
Road safety

Autonomous driving
Infotainment

Traffic management
Road safety

Autonomous driving

Benefit
4.54 (0.13)
5.65 (0.10)
5.95 (0.10)
5.90 (0.10)
4.02 (0.14)
5.46 (0.11)
5.69 (0.10)
5.48 (0.10)
4.21 (0.15)
5.79 (0.12)
5.64 (0.11)
5.52 (0.11)

Risk
4.76 (0.12)
4.30 (0.13)
3.99 (0.14)
4.21 (0.13)
5.25 (0.12)
4.50 (0.13)
4.12 (0.14)
4.49 (0.14)
5.10 (0.13)
4.34 (0.15)
4.20 (0.15)
4.34 (0.15)

Willingness
4.24 (0.14)
5.40 (0.11)
5.68 (0.11)
5.56 (0.11)
3.78 (0.14)
5.13 (0.12)
5.42 (0.11)
5.24 (0.11)
3.80 (0.15)
5.29 (0.13)
5.28 (0.12)
5.08 (0.12)

Confidence
5.64 (0.09)
5.82 (0.07)
5.87 (0.08)
5.78 (0.08)
5.69 (0.09)
5.89 (0.08)
5.99 (0.08)
5.67 (0.09)
5.60 (0.10)
5.73 (0.08)
5.60 (0.09)
5.59 (0.09)

Receiving Data
Condition

Privacy&security
priming (173)

Scenario
Infotainment

Traffic management
Road safety

Autonomous driving

Benefit
4.50 (0.08)
5.86 (0.05)
5.75 (0.06)
5.73 (0.06)

Risk
4.75 (0.07)
4.00 (0.08)
3.95 (0.08)
4.09 (0.07)

Table 5: Effects of Condition and Scenario on Four Measures at Phase 2. We build each LMER model by considering the two
main effects and their interaction and report F  and p values. We report DoF with Satterthwaite denominator degrees of freedom.
Post-hoc pairwise comparisons are conducted when needed. Significance is denoted by *** (p < 0.001), ** (p < 0.01), and * (p
< 0.05).

Factor

Condition
Con. vs. Pri.

Con. vs. Pri.+Sec.
Pri. vs. Pri.+Sec.

Scenario
Info. vs. Traff.

Info. vs. Safety
Info. vs. Auto.

Traff. vs. Safety
Traff. vs. Auto.

Safety vs. Auto.
Condition * Scenario

Perceived Benefits
DoF F p

(2, 592.72)        4.16           .016*
.014*

N/A              N/A            .248
.996

(3, 11.74) 12.95      <.001***
.002**
.001**

N/A N/A .002**

1
1

(6, 1767.03) 2.02 .060

Perceived Risks
DoF F p

(2, 591.67) 1.81 .164

N/A N/A N/A

(3, 11.00) 10.19      .002**
.019*

.002**

N/A N/A .015*

1
1

(6, 1787.67) 0.90 .495

Willingness
DoF F p

(2, 591.84)        4.06           .018*
.053

N/A N/A .039*
1

(3, 11.67) 13.93      <.001***
.002**

<.001***

N/A N/A .002**

1
1

(6, 1765.94) 1.17 .317

Confidence
DoF F p

(2, 592.05)       2.41      .090

N/A N/A      N/A

(3, 9.58) 2.88      .091

N/A N/A      N/A

(6, 1772.97)      1.35      .230
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