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Abstract

This paper investigates the problem of computing the equilibrium of competitive games
in the form of two-player zero-sum games, which is often modeled as a constrained saddle-
point optimization problem with probability simplex constraints. Despite recent efforts in
understanding the last-iterate convergence of extragradient methods in the unconstrained
setting, the theoretical underpinnings of these methods in the constrained settings, espe-
cially those using multiplicative updates, remain highly inadequate, even when the objec-
tive function is bilinear. Motivated by the algorithmic role of entropy regularization in
single-agent reinforcement learning and game theory, we develop provably efficient extra-
gradient methods to find the quantal response equilibrium (QRE)—which are solutions
to zero-sum two-player matrix games with entropy regularization—at a linear rate. The
proposed algorithms can be implemented in a decentralized manner, where each player
executes symmetric and multiplicative updates iteratively using its own payoff without ob-
serving the opponent’s actions directly. In addition, by controlling the knob of entropy
regularization, the proposed algorithms can locate an approximate Nash equilibrium of the
unregularized matrix game at a sublinear rate without assuming the Nash equilibrium to
be unique. Our methods also lead to efficient policy extragradient algorithms for solv-
ing (entropy-regularized) zero-sum Markov games at similar rates. All of our convergence
rates are nearly dimension-free, which are independent of the size of the state and action
spaces up to logarithm factors, highlighting the positive role of entropy regularization for
accelerating convergence.

Keywords: zero-sum Markov game, matrix game, entropy regularization, global conver-
gence, multiplicative updates, no-regret learning, extragradient methods

1. Introduction

Finding the equilibrium of competitive games, which can be viewed as constrained saddle-
point optimization problems with probability simplex constraints, lies at the heart of modern
machine learning and decision making paradigms such as Generative Adversarial Networks
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(GANSs) (Goodfellow et al., 2020), competitive reinforcement learning (RL) (Littman, 1994),
game theory (Shapley, 1953), adversarial training (Mertikopoulos et al., 2018b), to name a
few.

In this paper, we study one of the most basic forms of competitive games, namely two-
player zero-sum games, in both the matrix setting and the Markov setting. Our goal is
to find the equilibrium policies of both players in an independent and decentralized manner
(Daskalakis et al., 2020; Wei et al., 2021b) with guaranteed last-iterate convergence. Namely,
each player will execute symmetric and independent updates iteratively using its own payoff
without observing the opponent’s actions directly, and the final policies of the iterative pro-
cess should be a close approximation to the equilibrium up to any prescribed precision. This
kind of algorithms is more advantageous and versatile especially in federated environments,
as it requires neither prior coordination between the players like two-timescale algorithms,
nor a central controller to collect and disseminate the policies of all the players, which are
often unavailable due to privacy constraints.

1.1 Last-iterate convergence in competitive games

In recent years, there have been significant progresses in understanding the last-iterate con-
vergence of simple iterative algorithms for unconstrained saddle-point optimization, where
one is interested in bounding the sub-optimality of the last iterate of the algorithm, rather
than say, the ergodic iterate — which is the average of all the iterations — that are com-
monly studied in the earlier literature. This shift of focus is motivated, for example, by
the infeasibility of averaging large machine learning models in training GANs (Goodfellow
et al., 2020). While vanilla Gradient Descent / Ascent (GDA) may diverge or cycle even
for bilinear matrix games (Daskalakis et al., 2018), quite remarkably, small modifications
lead to guaranteed last-iterate convergence to the equilibrium in a non-asymptotic fashion.
A flurry of algorithms is proposed, including Optimistic Gradient Descent Ascent (OGDA)
(Rakhlin and Sridharan, 2013; Daskalakis and Panageas, 2018; Wei et al., 2021a), predictive
updates (Yadav et al., 2018), implicit updates (Liang and Stokes, 2019), and more. Several
unified analyses of these algorithms have been carried out (see, e.g. Mokhtari et al. (2020a);
Liang and Stokes (2019) and references therein), where these methods in principle all make
clever extrapolation of the local curvature in a predictive manner to accelerate convergence.
With slight abuse of terminology, in this paper, we refer to this ensemble of algorithms as
extragradient methods (Korpelevich, 1976; Tseng, 1995; Mertikopoulos et al., 2018a; Harker
and Pang, 1990).

However, saddle-point optimization in the constrained setting, which includes competi-
tive games as a special case, remains largely under-explored even for bilinear matrix games.
While it is possible to reformulate constrained bilinear games to unconstrained ones using
softmax parameterization of the probability simplex, this approach falls short of preserv-
ing the bilinear structure and convex-concave properties in the original problem, which
are crucial to the convergence of gradient methods. Therefore, there is a strong neces-
sity of understanding and developing improved extragradient methods in the constrained
setting, where existing analyses in the unconstrained setting do not generalize straightfor-
wardly. Daskalakis and Panageas (2019) proposed the optimistic variant of the multiplica-
tive weight updates (MWU) method (Arora et al., 2012)—which is extremely natural and



FAST PoLicY EXTRAGRADIENT METHODS FOR COMPETITIVE GAMES WITH ENTROPY REGULARIZATION

popular for optimizing over probability simplexes—called Optimistic Multiplicative Weight
Updates (OMWU), and established the asymptotic last-iterate convergence of OMWU for
matrix games. Very recently, Wei et al. (2021a) established non-asymptotic last-iterate
convergences of OMWU. However, these last-iterate convergence results require the Nash
equilibrium to be unique, and cannot be applied to problems with multiple Nash equilibria.

1.2 Our contributions

Motivated by the algorithmic role of entropy regularization in single-agent RL (Neu et al.,
2017; Geist et al., 2019; Cen et al., 2022b) as well as its wide use in game theory to account
for imperfect and noisy information (McKelvey and Palfrey, 1995; Savas et al., 2019), we
initiate the design and analysis of extragradient algorithms using multiplicative updates for
finding the so-called quantal response equilibrium (QRE), which are solutions to competitive
games with entropy regularization (McKelvey and Palfrey, 1995). While finding QRE is of
interest in its own right, by controlling the knob of entropy regularization, the QRE provides
a close approximation to the Nash equilibrium (NE), and in turn acts as a smoothing scheme
for finding the NE. Our contributions are summarized below, with the detailed problem
formulations provided in Section 2.1 for matrix games and Section 3.1 for Markov games,
respectively.

e Near dimension-free last-iterate convergence to QRE of entropy-reqularized matriz
games. We propose two policy extragradient algorithms to solve entropy-regularized
matrix games, namely the Predictive Update (PU) and OMWU methods, where both
players execute symmetric and multiplicative updates without knowing the entire
payoff matrix nor the opponent’s actions. Encouragingly, we show that the last iterate
of the proposed algorithms converges to the unique QRE at a linear rate that is almost
independent of the size of the action spaces. Roughly speaking, to find an e-optimal
QRE in terms of Kullback-Leibler (KL) divergence, it takes no more than

o(m()

iterations, where (7)() hides logarithmic dependencies. Here, 7 is the regularization
parameter, and 7 is the learning rate of both players no larger than O(1/(7+ || 4| ..)),
where ||A|l« = max; ;|A; ;| is the /o, norm of the payoff matrix A. Optimizing the
learning rate, the iteration complexity is bounded by O (I A]loom ! log(1/€)).

e Last-iterate convergence to e-NE of unreqularized matriz games without uniqueness
assumption. The QRE provides an accurate approximation to the NE by setting the
entropy regularization 7 sufficiently small, therefore our result directly translates to
finding a NE with last-iterate convergence guarantee. Roughly speaking, to find an
e-NE (measured in terms of the duality gap), it takes no more than

6 (14l=)

iterations with optimized learning rates, again independent of the size of the action
spaces up to logarithmic factors. Unlike prior literature (Daskalakis and Panageas,
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Eauilibri Requi
quitbrinm Method Convergence rate | Dimension-free .equlre
type unique NE
e-QRE P(Ighfés C\))vl\fX)[I linear yes n/a
OMWU asymptotic no €es
(Daskalakis and Panageas, 2019) Symp yes
e-NE (Wei 21\/37‘][2}0213) sublinear + linear no yes
PU & OMWU .
(this work) sublinear yes no

Table 1: Comparisons of last-iterate convergence of the proposed entropy-regularized PU
and OMWU methods with prior results for finding e-QRE or e-NE of competitive
matrix games. We note that the convergence rates of unregularized OMWU estab-
lished in Wei et al. (2021a) are problem-dependent, and scale at least polynomially
on the size of the action spaces. Desirable features in the last two columns are
highlighted in blue.

2019; Wei et al., 2021a), our last-iterate convergence guarantee does not require the
NE to be unique.

e No-regret learning of entropy-regqularized OMWU. We further establish that under a
decaying learning rate, the proposed OMWU method achieves a logarithmic regret for
the entropy-regularized matrix game — on the order of O(logT) — even when only
one player follows the algorithm against arbitrary plays of the opponent. By setting
T appropriately, this translates to a regret of O((TlogT)'/?) for the unregularized
matrix game, therefore matching the regret in Rakhlin and Sridharan (2013) without
the need of mixing in an auxiliary uniform distribution for exploration.

e FEaxtensions to two-player zero-sum Markov games. By connecting value iteration with
matrix games, we propose a policy extragradient method for solving infinite-horizon
discounted entropy-regularized zero-sum Markov games, which finds an e-optimal min-

imax soft Q-function — in terms of ¢, error — in at most O <ﬁ log? (%)) it-
erations, where v € (0,1) is the discount factor. By setting 7 sufficiently small, the

proposed method finds an e-approximate NE (measured in terms of the duality gap) of

the unregularized Markov game within O (ﬁ) iterations, which is independent

of the dimension of the state-action space up to logarithmic factors.

To the best of our knowledge, our paper is the first one that develops policy extragradient
algorithms for solving entropy-regularized competitive games with multiplicative updates
and dimension-free linear last-iterate convergence, and demonstrates entropy regularization
as a smoothing technique to find e-NE without the uniqueness assumption. Table 1 and
Table 2 provide detailed comparisons of the proposed methods with prior arts for solving
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Equilibrium Method Convergence | Dimension-free | Symmetric | Last-iterate
type rate rate updates convergence
e-QRE (this work) linear yes yes yes
(Perolat et al., 2015) sublinear no no yes
(Zhao et al., 2022) sublinear no no yes
eNE (Daskalakis et al., 2020) sublinear no no no
(Wei et al., 2021Db) sublinear no yes yes
(this work) sublinear yes yes yes

Table 2: Comparisons of the proposed policy extragradient method with competitive algo-
rithms for finding e-NE of two-player zero-sum Markov games. We note that the
convergence rates in the prior arts all depend on various notions of concentrability
coefficient and therefore not dimension-free. Desirable features in the last three
columns are highlighted in blue.

competitive games. Our results highlight the positive role of entropy regularization for ac-
celerating convergence and safeguarding against imperfect payoff information in competitive
games.

1.3 Related works

Our work lies at the intersection of saddle-point optimization, game theory, and reinforce-
ment learning. In what follows, we discuss a few topics that are closely related to ours.

Unregularized matrix game. Freund and Schapire (1999) showed that many standard
methods such as GDA and MWU have a converging average duality gap at the rate of
O(1/+/T), which is improved to O(1/T) by considering optimistic variants of these methods,
such as OGDA and OMWU (Rakhlin and Sridharan, 2013; Daskalakis et al., 2011; Syrgkanis
et al., 2015). However, the last-iterate convergence of these methods are less understood
until recently (Daskalakis and Panageas, 2019; Wei et al., 2021a). In particular, under
the assumption that the NE is unique for the unregularized matrix game, Daskalakis and
Panageas (2019) showed the asymptotic convergence of the last iterate of OMWU to the
unique equilibrium, and Wei et al. (2021a) showed the last iterate of OMWU achieves
a linear rate of convergence after an initial phase of sublinear convergence, however the
rates therein can be highly pessimistic in terms of the problem dimension, while our rate
for entropy-regularized OMWU is dimension-free up to logarithmic factors. In terms of
no-regret analysis, Rakhlin and Sridharan (2013) established a no-regret learning rate of
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O(log T/T"/?) with an auxiliary mixing of a uniform distribution at each update, which is
later improved to O(1/T"/?) in Kangarshahi et al. (2018) with a slightly different algorithm.

Saddle-point optimization. Considerable progress has been made towards understand-
ing OGDA and extragradient (EG) methods in the unconstrained convex-concave saddle-
point optimization with general objective functions (Mokhtari et al., 2020a,b; Nemirovski,
2004; Liang and Stokes, 2019). However, most works have focused on either average-iterate
convergence (also known as ergodic convergence) (Nemirovski, 2004), or the characteriza-
tion of Fuclidean update rules (Mokhtari et al., 2020a,b; Liang and Stokes, 2019), where
parameters are updated in an additive manner. These analyses do not generalize in a
straightforward manner to non-FEuclidean updates. As a result, the last-iterate convergence
of non-Euclidean updates for saddle-point optimization still lacks theoretical understand-
ing in general, and most works fall short of characterizing a finite-time convergence result.
In particular, Mertikopoulos et al. (2018a) demonstrated the asymptotic last-iterate con-
vergence of EG, and Hsieh et al. (2020) investigated similar questions for single-call EG
algorithms. Lei et al. (2021) showed that OMWTU converges to the equilibrium locally
without an explicit rate. Wei et al. (2021a) showed that the last-iterate of OGDA converges
linearly for strongly-convex strongly-concave constrained saddle-point optimization with an
explicit rate.

Entropy regularization in RL and games. In single-agent RL, the role of entropy
regularization as an algorithmic mechanism to encourage exploration and accelerate con-
vergence has been investigated extensively (Neu et al., 2017; Geist et al., 2019; Mei et al.,
2020; Cen et al., 2022b; Lan, 2022; Zhan et al., 2021). Turning to the game setting, entropy
regularization is used to account for imperfect information in the seminal work of McKelvey
and Palfrey (1995) that introduced the QRE, and a few representative works on entropy
and more general regularizations in games include but are not limited to Savas et al. (2019);
Hofbauer and Sandholm (2002); Mertikopoulos and Sandholm (2016); Cen et al. (2022a).

Zero-sum Markov games. There have been a significant recent interest in developing
provably efficient self-play algorithms for Markov games, including model-based algorithms
(Perolat et al., 2015; Sidford et al., 2020; Zhang et al., 2020; Li et al., 2022; Cui and
Yang, 2021), value-based algorithms (Bai and Jin, 2020; Xie et al., 2020; Mao et al., 2022),
and policy-based algorithms which either assumes access to gradient (Daskalakis et al.,
2020), Bellman operator (Wei et al., 2021b), or both (Zhao et al., 2022). Our approach
can be regarded as a policy-based algorithm to approximate value iteration, which can be
implemented in a decentralized manner with symmetric and multiplicative updates from
both players, and the iteration complexity is almost independent of the size of the state-
action space. The iteration complexities in prior works (Perolat et al., 2015; Daskalakis
et al., 2020; Wei et al., 2021b; Zhao et al., 2022) depend on various notions of concentrability
coefficient and therefore can scale quite pessimistically with the problem dimension. In
addition, while the last-iterate convergence guarantees in (Perolat et al., 2015; Daskalakis
et al., 2020; Zhao et al., 2022) are applicable to the duality gap, Wei et al. (2021b) proves
the last-iterate convergence in terms of the Euclidean distance to NE, together with an
average convergence in terms of the duality gap.

It is worth mentioning that the study of model-based and value-based algorithms typ-
ically focuses on the statistical issues in terms of sample complexity under the generative
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model or the online model of data collection; on the other end, the study of policy-based al-
gorithms highlights the optimization issues by sidestepping the statistical issues using exact
gradient evaluations, and later translating to sample complexity guarantees by leveraging
model-based or value-based policy evaluation algorithms. Indeed, after the appearance of
the initial version of this paper, Chen et al. (2021) has built on our algorithm to develop a
sample-efficient version of policy extragradient methods in the online setting using bandit
feedback.

1.4 Notation

We denote by A(A) the probability simplex over the set \A. We overload the functions
such as log(:) and exp(-) to take vector inputs with the understanding that the function
is applied in an entrywise manner. For instance, given any vector z = [z;]1<i<n € R", the
notation exp(z) denotes exp(z) := [exp(z;)]i<i<n; other functions are defined analogously.
Given two probability distributions p and p' over A, the KL divergence from u' to u is
defined by KL(p || ') = 3 ,c4 1(a)log 5,(((;)). Given a matrix A, |4, is used to denote
entrywise maximum norm, namely, ||Al|,, = max;;|A;;|. The all-one vector is denoted as
1.

2. Zero-sum matrix games with entropy regularization

In this section, we consider a two-player zero-sum game with bilinear objective and prob-
ability simplex constraints, and demonstrate the positive role of entropy regularization in
solving this problem. Throughout this paper, let A = {1,...,m} and B = {1,...,n} be
the action spaces of each player. The proofs for this section are collected in Appendix A.

2.1 Background and problem formulation

Zero-sum two-player matrix game. The focal point of this subsection is a constrained
two-player zero-sum matrix game, which can be formulated as the following min-max prob-
lem (or saddle point optimization problem):

e VénAlgg)f(u, v) = p Av, (1)
where A € R™*" denotes the payoff matrix, © € A(A) and v € A(B) stand for the
mixed/randomized policies of each player, defined respectively as distributions over the
probability simplex A(A) and A(B). It is well known since von Neumann (1928) that the
max and min operators in (1) can be exchanged without affecting the solution. A pair of
policies (u*,v*) is said to be a Nash equilibrium (NE) of (1) if

) 2 f(u",v") =2 f(pv®)  forall (u,v) € A(A) x A(B). (2)

In words, the NE corresponds to when both players play their best-response strategies
against their respective opponents.

Entropy-regularized zero-sum two-player matrix game. There is no shortage of
scenarios where the payoff matrix A might not be known perfectly. In an attempt to
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accommodate imperfect knowledge of A, McKelvey and Palfrey (1995) proposed a seminal
extension to the Nash equilibrium called the quantal response equilibrium (QRE) when the
payoffs are perturbed by Gumbel-distributed noise. Formally, this amounts to solving the
following matrix game with entropy regularization (Mertikopoulos and Sandholm, 2016):

: T
max Imin V) i=pu Av+ 17H(p) — TH(v), 3
(ax min Fr(uv) = (1) (¥) (3)
where H(m) := — ), m; log(m;) denotes the Shannon entropy of a distribution 7, and 7 > 0 is
the regularization parameter. As is well known, the optimal solution (i, v) to (3), dubbed
as the QRE, is unique whenever 7 > 0 (due to the presence of strong concavity /convexity),
which satisfies the following fixed point equations:

(it (a) = Zﬁpgj‘p("[{j{;/ﬂj 75 o exp([Avs]a/7), for all a € A,

exp(—=[AT uX)y /7 *
vE(b) = Z,’,‘lece(xpf({[i;]z/:]z/ﬂ oc exp(—[ATpx]y/7), forall b€ B.

(4)

Goal. We aim to efficiently compute the QRE of the entropy-regularized matrix game in
a decentralized manner, and investigate how an efficient solver of QRE can be leveraged to
find a NE of the unregularized matrix game (1). Namely, we only assume access to “first-
order information” as opposed to full knowledge of the payoff matrix A or the actions of the
opponent. The information received by each player is formally described in the following
sampling oracle.

Definition 1 (Sampling oracle for matrix games) For any policy pair (u,v) and pay-
off matriz A, the sampling oracle returns the exact values of ' A and Av.

Additional notation. For notational convenience, we let  represent the concatenation
of u € Rl and v € RIBl, namely, ¢ = (i, ). The solution to (3), which is specified in (4),
is denoted by ¢* = (uf,v}). For any ¢ = (u,v) and ¢’ = (¢/, 1), we shall often abuse the
notation and let

KL(C¢) = KL(p| &) + KL(v || V).

The duality gap of the entropy-regularized matrix game (3) at ¢ = (p,v) is defined as

DualGa = (W, v) — min  fr(p, 5
ualGap_.(¢) max fr(Wv) i fr (s V') (5)
which is clearly nonnegative and DualGap,(¢¥) = 0. Similarly, let the optimality gap of the
entropy-regularized matrix game (3) at ¢ = (11, v) be OptGap(¢) = | f-(u,v) — fr(us, vE)|.

2.2 Proposed extragradient methods: PU and OMWU

To begin, assume we are given a pair of policies z; € A(A), 22 € A(B) employed by each
player respectively. If we proceed with fictitious play, i.e. player 1 (resp. player 2) aims
to optimize its own policy by assuming the opponent’s policy is fixed as z2 (resp. z1), the
saddle-point optimization problem (3) is then decoupled into two independent min/max
optimization problems:

uIenAa(}jl) p Azy + TH(p) — TH(22) and VénAigg) 2] Av + TH(z1) — TH(v),
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which are naturally solved via mirror descent / ascent with KL divergence. Specifically, one
step of mirror descent / ascent takes the form

pl) = argmax, ey (Azo — 7log )T — KL (g || u9)

vt = arg min, e (s) (AT2z + 7logv)Tw + %KL(I/ I I/(t))

where 7 is the learning rate, or equivalently

1 (a) o p® (a)l ” exp(n[Aza]a), for all a € A,
]/(t+1) (b) o< ]/(t) (b)l_nT eXp(—nI:ATZ]_]b)7 fOI‘ all b S B

The above update rule forms the basis of our algorithm design.

Motivation: a form of implicit updates with linear convergence. To begin with,
we select the policy pair (z1, zp) = (D .= (ut+1D) L (+D)Y a5 the solution to the following
equations, and call the conceptual update rule as the Implicit Update (IU) method:

. D (@) oc p0(a) " exp(n[Av],),  forall a € A,
Implicit Update: _—— (7)
v (b) o v (b) K exp(—n[ATp(HV)],), for all b e B.

Though unrealistic — since it uses the future updates and denies closed-form solutions —
it leads to a one-step convergence to the QRE when n = 1/7 (see the optimality condition
in (4)). Encouragingly, we have the following linear convergence guarantee of IU when
adopting a general learning rate.

Proposition 1 (Linear convergence of IU) Assume 0 < n < 1/7, then for all t > 0,
the iterates ¢ .= (u®), 1) of the IU method in (7) satisfy

KL(C1¢M) < (1 — )t KL(¢E ] ¢).

In words, the IU method achieves an appealing linear rate of convergence that is independent
of the problem dimension. Motivated by this observation, we seek to design algorithms
where the policies (21, z2) employed in (6) serve as good predictions of (u*+1), p(+1) such
that the resulting algorithms are both practical and retain the appealing convergence rate
of TU.

Proposed algorithms. We propose two extragradient algorithms for solving the entropy-
regularized matrix game, namely the Predictive Update (PU) method and the Optimistic
Multiplicative Weights Update (OMWU) method, where the latter is adapted from Rakhlin
and Sridharan (2013). Detailed procedures can be found in Algorithm 1 and Algorithm 2, re-
spectively. On a high level, both algorithms maintain two intertwined sequences { (u(*), V(t))}tz()
and {(a®, I7(t))}t20, and in each iteration ¢ = 0,1, ..., proceed in two steps:

e The midpoint (a1, 7(+1)) serves as a prediction of (1, »(+1) by running one
step of mirror descent / ascent (cf. (6)) from either (21, 29) = (u®,v®) (for PU) or
(21, 20) = (B, 1)) (for OMWU).
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Algorithm 1: The PU method
initialization: (9, p(©),
parameters: learning rate 7;.
fort=0,1,2,--- do

Update i and 7 according to

B W N =

ﬂ(t+1)(a) x p® (a)ll—mf exp(n; [Ay(f)]a)a
Ij(t+1) (b) x l/(t) (b) —MeT eXp(_nt[AT,u(t)]b)

5 Update p and v according to

lu(t+1) (a) x ,U,(t) (a)llfﬁﬂ' exp(T]t[AD(tJrl)]a)a
VD (b) oc O (B) T exp(—m[AT 0],

e The update of (p(*+D, »(+1)) then mimics the implicit update (7) using the prediction
(a0, 5+ obtained above.

When the proposed algorithms converge, both (,u(t), I/(t)> and (/Z(t), D(t)) converge to the
same point. The two players are completely symmetric and adopt the same learning rate,
and require only first-order information provided by the sampling oracle. While the two
algorithms resemble each other in many aspects, a key difference lies in the query and use
of the sampling oracle: in each iteration, OMWU makes a single call to the sampling oracle
for gradient evaluation, while PU calls the sampling oracle twice. It is worth noting that,
when 7 = 0 (i.e., no entropy regularization is enforced), the OMWU method in Algorithm 2
reduces to the method analyzed in Rakhlin and Sridharan (2013); Daskalakis and Panageas
(2019); Wei et al. (2021a) without entropy regularization.

2.3 Last-iterate linear convergence guarantees

We are now positioned to present our main theorem concerning the last-iterate convergence
of PU and OMWU for solving (3). Its proof can be found in Section A.2.

Theorem 2 (Last-iterate convergence of PU and OMWU) Suppose that the learn-
ing rates ny = n = npy of PU in Algorithm 1 and n: = n = nomwu of OMWU in Algorithm 2
satisfy

1
T+2]4]

1 1
0 <npy < and 0 < nomwuy < min{ } )

27+ 2| Al " 4114l

Then for any t > 0, the iterates (V) = (u®,v®) and ¢ = (2", 5®) of both PU and
OMWU achieve

e Linear convergence of policies in KL divergence and entrywise log-ratios:
max {KL(G; [1¢®), 3KL(GICED) | < (1= nr)KL(¢ 1<), (92)

10
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Algorithm 2: The OMWU method
0)

initialization: p(©) = g(©), () = 5(0),
parameters: learning rate 7;.
fort=0,1,2,--- do

Update i and 7 according to

B W N =

ﬂ(t+1)(a) x p® (a)ll—mf exp(n; [A;j(f)]a)a
S(t+1) (b) x () (b) —MT eXp(_nt[AT,a(t)]b)'

5 Update p and v according to

lu(t+1) (a) x ,U,(t) (a)llfﬁﬂ' exp(T]t[AD(tJrl)]a)a
D (b) oc O (B) T exp(—m[AT 0],

() (0)
log Cc < 2(1 —nr)t||log CC + %(1 — ) PRL(CH 1 ¢) 2 (9b)
e Linear convergence of values in optimality and duality gaps:
OptGap,(¢")) < 30" (1 — )" KL(¢r (1<), (9¢)
DualGap, () < (™" + 2r 1A%, ) (1= n7) ' KL(G 1<), (9d)

Remark 3 To further understand the term KL(C;‘ I C(O)) in (9), setting 2 and v to be
uniform policies leads to a universal bound

KL(CE 11 ¢) = log | A] + log |B] — H(uZ) — H(v7) < log | A| + log |B]
regardless of (¥ = (uk,vr).

Remark 4 Similar results continue to hold even when the two players use different regu-
larization parameters 7,,7, > 0 in (3), as long as the reqularization parameter T is replaced
by max{7,, 7.} in the upper bounds of the learning rate, and the contraction parameter is
replaced by 1 — min{7,, 7, }n.

Theorem 2 characterizes the convergence of the last-iterates () and (® of PU and
OMWU as long as the learning rate lies within the specified ranges. While PU doubles
the number of calls to the sampling oracle, it also allows roughly as large as twice the
learning rate compared with OMWU (cf. (8)), and hence leads to an equivalent level of
computational efficiency. Compared with the vast literature analyzing the average-iterate
performance of variants of extragradient methods, our results contribute towards charac-
terizing the last-iterate convergence of multiplicative update methods in the presence of
entropy regularization and simplex constraints, which to the best of our knowledge, are the
first of its kind. Several remarks are in order.

11
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e Linear convergence to QRE. To achieve an e-accurate estimate of the QRE in
terms of the KL divergence, the bound (9a) tells that it is sufficient to take

ilog <log].A] —i—log\B\)

nTt €

iterations using either PU or OMWU. Notably, this iteration complexity does not
depend on any hidden constants and only depends double logarithmically on the car-
dinality of action spaces, which is almost dimension-free. Maximizing the learning
rate, the iteration complexity is bounded by (1 + ||A|loo/7) log(1/€) (modulo log fac-
tors), which only depends on the ratio || Ao /7.

e Entrywise error of the policy log-ratios. Both PU and OMWU enjoy strong
entrywise guarantees in the sense we can guarantee the convergence of the /., norm
of the log-ratios between the learned policy pair and the QRE at the same dimension-
free linear rate (cf. (9b)), which suggests the policy pair converges in a somewhat
uniform manner across the entire action space.

e Linear convergence of optimality and duality gaps. Our theorem also estab-
lishes the last-iterate convergence of the game values in terms of the optimality gap
(cf. (9¢)) and the duality gap (cf. (9d)) for both PU and OMWU. In particular, as
will be seen, bounding the optimality gap of matrix games turns out to be the key
enabler for generalizing our algorithms to Markov games, and bounding the duality
gap allows to directly translate our results to finding a NE of unregularized matrix
games.

Figure 1 illustrates the performance of the proposed PU and OMWU methods for solving
randomly generated entropy-regularized matrix games. It is evident that both algorithms
converge linearly, and achieve faster convergence rates when the regularization parameter
increases.

Remark 5 It is worth highlighting that the proposed algorithms are different from the mir-
ror prox algorithm (Nemirovski, 2004) or the optimistic mirror descent method (Mertikopou-
los et al., 2018a), as the extragradient is only applied to the bilinear term but not the entropy
reqularization term. In particular, the mirror prox algorithm proceed by applying

{WU(a) oc 0 (@) @D (@) 71 exp(n[AptHD)],)

, 10
O (E) o O (85 (0) 7 exp(—n  ATEC V], 1o

while PU restrict the extragradient step to the bilinear part and yields the update:

P (@) o (@) 7 exp(n[ D))
V) (b) o 10 (b) 7 exp(—n[ AT )

This seemingly small, but important, difference leads to a more concise closed-form update
rule and a tractable analysis. It is of great interest to see if similar last-iterate convergence

1. We remark that evaluating the matrix-vector product Av and A" still takes up to O(|.A[*>) computation
cost per iteration.

12
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Figure 1: Performance illustration of the PU and OMWU methods for solving entropy-
regularized matrix games with |A| = [B| = 100, where the entries of the payoff
matrix A is generated independently from the uniform distribution on [—1, 1]. The
learning rates are fixed as n = 0.1. The left panel plots various error metrics of
convergence w.r.t. the iteration count with the entropy regularization parameter
7 = 0.01, while the right panel plots these error metrics at 1000-th iteration with
different choices of 7. Due to their similar nature, PU and OMWU yield almost
identical convergence behaviors and overlapping plots.

guarantees can be established to the mirror prox update rule (10), which to the best of
knowledge, is not available in the literature.?

Last-iterate convergence to approximate NE. The entropy-regularized matrix game
can be thought as a smooth surrogate of the unregularized matrix game (1); in particular,
it is possible to find an e-NE by setting 7 sufficiently small in (3). According to (Zhang
et al., 2020, Definition 2.1), a policy pair ¢ = (u, ) is an e-NE if it satisfies

DualGap(¢) := o fl',v) - ,min flp V') <e

Observe that setting 7 = guarantees

€/4
log [A]+log [ B]
Frv) = fuv)| < €/d forall (i) € A(A) x A(B)

in view of the boundedness of the Shannon entropy #(-). Theorem 9 (cf. (9d)) also ensures
that our proposed algorithms find an approximate QRE ¢(T) such that DualGa p,.(¢ (T)) <e€/2

2. It was brought to our attention during the review process that an unpublished arXiv note Titov (2021),
which was posted after our initial arXiv version, claimed a similar last-iterate convergence guarantee for
some restarted variant of mirror prox. However, we note that Theorem 1 in the note exhibited a different
form from its reference (Stonyakin et al., 2020, Theorem 4.8) and as such the proof of the main result of
the note has a gap. Further scrutiny and efforts might be needed to establish the performance of vanilla
mirror prox for solving the entropy-regularized matrix game.
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after taking T' = 9] ( ) iterations, which is no more than

1
ne
o (141
€

iterations with optimized learning rates. It follows immediately that

DualGap(¢™M)

< DualGap, ((") + max | f,(u/, 7)) = (a7, ") = (f(u/,0D) = (@D, )| <e, (11)
JTn%

and therefore ((7) is an e-NE. Intriguingly, unlike prior work (Daskalakis and Panageas,
2019; Wei et al., 2021a) that analyzed the last-iterate convergence of OMWU in the unreg-
ularized setting (7 = 0), our last-iterate convergence does not require the NE of (1) to be
unique. See Table 1 for further comparisons.

Remark 6 For simplicity, we have set the reqularization parameter T on the order of the
final accuracy €. In practice, it might be desirable to use an annealing schedule of T similar to
the doubling trick, see e.g. Yang et al. (2020); Li et al. (2021). We omit such straightforward
generalizations for conciseness.

Rationality. Another attractive feature of the algorithms developed above is being ratio-
nal (as introduced in Bowling and Veloso (2001)) in the sense that the algorithm returns
the best-response policy of one player when the opponent takes any fized stationary policy.
More specially, in terms of matrix games, when player 2 sticks to a stationary policy v, the
update of player 1 reduces to

1 (@) o pD(a) " exp(n[Ava). (12)

In this case, Theorem 2 can be established in exactly the same fashion by restricting atten-
tion only to the updates of p(®).

2.4 No-regret learning of entropy-regularized OMWU

Besides convergence to equilibria, in game-theoretical settings, it is often desirable to de-
sign and implement no-regret algorithms, which are capable of providing black-box guar-
antees over arbitrary sequences played by the opponent (Cesa-Bianchi and Lugosi, 2006;
Rakhlin and Sridharan, 2013). Therefore, no-regret algorithms provide a sort of robust-
ness especially when operating in contested environments, when the opponent is potentially
adversarial. Fortunately, it turns out that entropy regularization not only accelerates the
convergence, but also enables no-regret learning somewhat “for free”: it encourages ex-
ploration by putting a positive mass on every action, therefore guards against adversaries.
Moreover, since algorithms that call the sampling oracle more than once per iteration of-
ten incurs a linear regret (Golowich et al., 2020), we focus on OMWU (Algorithm 2) and
establish it as a no-regret algorithm.

14
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No-regret learning of OMWU for the entropy-regularized matrix game. We
begin by formally defining the notion of regret. Suppose that player 2 plays according
to Algorithm 2 to update v and 7® based on the received payoff sequence {ATﬁ(t)},
t =0,1,..., whose construction potentially is deviated from the update rule of Algorithm 2,
and even adversarial. Let

fOw) =T Av + rH(EY) — TH(v),

which is the regularized game value upon fixing the policy of player 1 as p = a¥. The
regret experienced by player 2 is then defined as

T T
Regret, (T) = ZfT(t)(D(t)) — min Z O, (13)
t=0 t=0

veA(B)

which measures the gap between the actual performance and the performance in hindsight.
The following theorem shows that with appropriate choices of the learning rate, OMWU
achieves a logarithmic regret bound O(log T').

Theorem 7 Suppose only one player (say, player 2) follows the entropy-reqularized OMWU

method in Algorithm 2. Setting the learning rate as n, = ﬁ and the initialization

policy as the uniform policy, i.e. I/(O)(b) = 1/|B|,Vb € B, the regret against any sequence
{AT YL of play is bounded by

Regret, (T) < 7~ (log T + 1)(7 log |B| + 5| A[l..)? + 4| All, -

Theorem 7 implies that the average regret satisfies

1 logT
TRegretA(T) < O? ,

which goes to zero as T increases, therefore implies the entropy-regularized OMWU method
is no-regret.

No-regret learning for the unregularized matrix game. Similar to earlier discus-
sions, one can still hope to control the regret of the unregularized matrix game, by appro-
priately setting 7 sufficiently small. It is easily seen that the regret of the unregularized
matrix game is given by

T T

T
Regrety(T) = Z fét)(ﬂ(t)) — min Z fét)(l/) = max Z [fét)(
=0

veA(B) =0 veA(B) =0

V|
SN
-~
=
N—
St
o~
=
—
<
N—

T
< Regret, (T — 7Y 7T
< Regret, ( )+Vén&>é){ T;H(u )+ T H(u)}

< Regret(T) + 277 log | B|

<7 'logT +1)(rlog |B| + 5 || Al .)* + 4]|Al| o + 27T log |B].
Therefore, by setting 7 = O((logT/T)/?), we can ensure that the regret with regard to
the unregularized problem is bounded by Regret,(T) = O((T'logT)'/?), which is on par
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with the regret established in Rakhlin and Sridharan (2013). It is worthwhile to highlight
that the OMWU method in (Rakhlin and Sridharan, 2013) requires blending in a uniform
distribution every iteration to guarantee no-regret learning, while a similar blending is
enabled in ours without extra algorithmic steps.

3. Zero-sum Markov games with entropy regularization

Leveraging the success of PU and OMWU in solving the entropy-regularized matrix games,
this section extends our current analysis to solve the zero-sum two-player Markov game,
which is again formulated as finding the equilibrium of a saddle-point optimization problem.
We start by introducing its basic setup, along with the entropy-regularized Markov game,
which will be followed by the proposed policy extragradient method with its theoretical
guarantees. The proofs for this section are collected in Appendix B.

3.1 Background and problem formulation

Zero-sum two-player Markov game. We consider a discounted Markov Game (MG)
which is defined as M = {S, A, B, P,r,~v}, with discrete state space S, action spaces of
two players A and B, transition probability P, reward function r : & x A x B — [0, 1] and
discount factor v € [0,1). A policy i : S — A(A) (resp. v : S — A(B)) defines how player 1
(resp. player 2) reacts to a given state s, where the probability of taking action a € A (resp.
b € B) is p(als) (resp. v(b|s)). The transition probability kernel P : & x A x B — A(S)
defines the dynamics of the Markov game, where P(s'|s,a,b) specifies the probability of
transiting to state s’ from state s when the players take actions a and b respectively. The
state value of a given policy pair (u,v) is evaluated by the expected discounted cumulative
reward:

ViV(s) =K

i

[o.¢]
Z’ytr(st, ag, by) ‘ S50 =8
t=0

where the trajectory (so,ag,bo,s1,---) is generated by the MG M under the policy pair
(u, v), starting from the state sg. Similarly, the Q-function captures the expected discounted
cumulative reward with an initial state s and initial action pair (a,b) for a given policy pair

(1, v):

oo
Q" (s,a,b) =E [Z V'r (s, ap,be) | so = s,a0 = a,bg = b] )
t=0
In a zero-sum game, one player seeks to maximize the value function while the other
player wants to minimize it. The minimax game value on state s is defined by

V*(s) = maxmin V*¥(s) = min max V*"(s).
poow v

Similarly, the minimax Q-function Q*(s,a,b) is defined by
Q*(s,a,b) = 7(s,a,b) + YEgp([sap)V*(5). (14)

It is proved by Shapley (1953) that a pair of stationary policy (u*, v*) attaining the minimax
value on state s attains the minimax value on all states as well (Filar and Vrieze, 2012),
and is called the NE of the MG.
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Entropy-regularized zero-sum two-player Markov game. Motivated by entropy
regularization in Markov decision processes (MDP) (Geist et al., 2019; Cen et al., 2022b),
we consider an entropy-regularized variant of MG, where the value function is modified as

VEY(s) :=E th (r(st, at,be) — 7log p(at|st) + 7logv(belst)) ‘ so=s5|, (15)
t=0

where the quantity 7 > 0 denotes the regularization parameter, and the expectation is eval-
uated over the randomness of the transition kernel as well as the policies. The regularized
Q-function Q5" of a policy pair (u,v) is related to V" as

QY (s,a,b) = 1(s,a,b) + YEgp(s,a,) [VT“’”(S’)]. (16)

We will call V" and Q4" the soft value function and soft Q-function, respectively. A
policy pair (ur,v}) is said to be the quantal response equilibrium (QRE) of the entropy-
regularized MG, if its value attains the minimax value of the entropy-regularized MG over

all states s € S, i.e.

V*(s) = maxmin V4 (s) = min max V4 (s) := VA7 (s),
woov vooh

where V is called the optimal minimax soft value function, and similarly Q7 := Q’ﬁ’yi is
called the optimal minimax soft Q-function.

Goal. Our goal is to find the QRE of the entropy-regularized MG in a decentralized
manner where the players only observe its own reward without accessing the opponent’s
actions, and leverage the QRE to find an approximate NE of the unregularized MG.

3.2 From value iteration to policy extragradient methods

Entropy-regularized value iteration. It is known that classical dynamic programming
approaches such as value iteration can be extended to solve MG (Perolat et al., 2015),
where each iteration amounts to solving a series of matrix games for each state. Similar
to the single-agent case (Cen et al., 2022b), we can extend these approaches to solve the
entropy-regularized MG. Setting the stage, let us introduce the per-state Q-value matrix
Q(s) == Q(s,-,-) € RMIXIBI for every s € S, where the element indexed by the action pair
(a,b) is Q(s,a,b). Similarly, we define the per-state policies u(s) := u(:|s) € A(A) and
v(s) :=v(:|s) € A(B) for both players.

In parallel to the original Bellman operator, we denote the soft Bellman operator T, as

T-(Q)(s,a,b) :=1(s,a,b) + VEyp(|s.a max min £ (Q(s); u(s),v(s")) |,
(Q)( ) ( )+ P(-|s,a,b) (R (s (B)f ( (s"); u(s"), v(s))
(17)

where for each per-state Q-value matrix Q(s), we introduce an entropy-regularized matrix
game in the form of

s min - (Q(): p(s).v(5)) 1= u(s) T Qs)w(s) — TH(n(s)) + TH((5).
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Algorithm 3: Policy Extragradient Method applied to Value Iteration for
Entropy-regularized Markov Game

1 initialization: Q¥ = 0.
fort =0,1,2,--+ ,Tiain do
3 Let Q® denote

N

Q(t) (37 a, b) = 7“(8, a, b) + ,YES/NP("S,G,b)V(t) (S/)' (20)

4 Invoke PU (Algorithm 1) or OMWU (Algorithm 2) for Ty, iterations to solve
the following entropy-regularized matrix game for every state s, where the
initialization is set as uniform distributions:

1 (1) (&)-
max min T s); s),v(s)).
M(S)EA(A) V(S)EA(B) f (Q ( ) ,u( ) ( ))

Return the last iterate ﬂ(t’TS‘lb)(s), D(thsub)(s)_
5 L Set V(t+1) (S) frd fT (Q(t) (S);/j(t’TS“b)(S), ﬁ(t7Tsub)(s)).

The entropy-regularized value iteration then proceeds as
UV = T(QW), (18)

where Q(©) is an initialization. By definition, the optimal minimax soft Q-function obeys
T-(Q%) = QF and therefore corresponds to the fix point of the soft Bellman operator.
Given the above entropy-regularized value iteration, the following lemma states its iterates
contract linearly to the optimal minimax soft Q-function at a rate of the discount factor ~.

Proposition 2 The entropy-regularized value iteration (18) converges at a linear rate, i.e.

10D — Q%lloe <7 1Q — Q% (19)

Approximate value iteration via policy extragradient methods. Proposition 2
suggests that the optimal minimax soft Q-function of the entropy-regularized MG can be
found by solving a series of entropy-regularized matrix games induced by {Q(t)}tzo in (18),
a task that can be accomplished by adopting the fast extragradient methods developed
earlier. To proceed, we first define the following first-order oracle, which makes it rigorous
that the proposed algorithm does not require access to the Q-function of the entire MG,
but only its own single-agent Q-function when playing against the opponent’s policy.

Definition 8 (first-order oracle for Markov games) Given any policy pair ji(s),v(s)
and Q-value matriz Q(s) for any s € S, the first-order oracle returns

[Q<3)V<S)]a = IEbrvu(s) [Q(Sv a, b)] ) and [Q(S)TN(S)]b = Earvu(s) [Q(37 a, b)]

for anya € A and b € B.
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Figure 2: Performance illustration of Algorithm 3 for solving a random generated entropy-
regularized Markov game with |A| = |[B| = 20, S| = 100 and v = 0.99. The
learning rates of both players are fixed as 5 = 0.005. The left panel plots
HQ(T""“") — Qj”oo w.r.t. the iteration count 7Ty,,i, when Ty, = 400 under various
entropy regularization parameters, while the right panel plots HQ(Tmain) — Q:HOO
w.r.t. the regularization parameter 7 when Tp.in = 2000 with different choices of
Tsub- Due to their similar nature, PU and OMWU yield almost identical conver-
gence behaviors and overlapping plots.

Algorithm 3 describes the proposed policy extragradient method. Encouragingly, by
judiciously setting the number of iterations in both the outer loop (for updating the Q-
value matrices) and the inner loop (for updating the QRE of the corresponding Q-value
matrix), we are guaranteed to find the QRE of the entropy-regularized MG in a small
number of iterations, as dictated by the following theorem.

the total

Theorem 9 Assume |A| > |B| and 7 < 1. Setting g, = n = 2(1+T(lolg_|1|+1—»y))7

iterations (namely, the product Twain - Tsub) required for Algorithm 3 to achieve

<e

oo

(log |A| +1/7) log |A| \?
O( (-7 <1°g<1—w>e>)'

Theorem 9 ensures that within O (ﬁg log? (%)) iterations, Algorithm 3 finds a close

| — @

18 at most

approximation of the optimal minimax soft Q-function @ in an entrywise manner to a
prescribed accuracy €. Remarkably, the iteration complexity is independent of the dimen-
sions of the state space and the action space (up to log factors). In addition, the iteration
complexity becomes smaller when the amount of regularization increases.

Figure 2 illustrates the performance of Algorithm 3 for solving a randomly generated
entropy-regularized Markov game with |A| = |[B] = 20, |S| = 100 and v = 0.99 with
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varying choices of Tiain, Tsup and 7. Here, the transition probability kernel and the reward
function are generated as follows. For each state-action pair (s,a,b), we randomly select
10 states to form a set Ssqp, and set P(s'|s,a,b) &< Usqp ¢ if 8 € Sgq, and 0 otherwise,
where {Us o5 ~ UJ0, 1]} are drawn independently from the uniform distribution over [0, 1].
The reward function is generated by 7(s,a,b) ~ U qp - Us, where Us 43 and Uy are drawn
independently from the uniform distribution over [0, 1]. It is seen that the convergence speed
of the ¢, error on HQ(Tmai“) — Q:HOO improves as we increase the regularization parameter
7, which corroborates our theory.

3.3 Last-iterate convergence to approximate NE

Similar to the case of matrix games, solving the entropy-regularized MG provides a viable
strategy to find an e-approximate NE of the unregularized MG, where the optimality of a
policy pair is typically gauged by the duality gap (Zhang et al., 2020). To begin, define the
duality gap of the entropy-regularized MG at a policy pair ¢ = (u,v) as

DualGap™™°V(¢) = max VT“/’V(P)— min VTW/(P)’ (21)
W EA(A)ISI v'eA(B)ISI

where p is an arbitrary distribution over the state space S, and V" (p) := Es~, [V (s)].3

Similarly, the duality gap of a policy pair { = (u, ) for the unregularized MG is defined as

DualGap™™V(¢) = max V¥*¥(p)— min V" ,
p™(C) X p) v )

where V#¥(p) := E,., [V#¥(s)]. Following Zhang et al. (2020), a pair of policy ¢ is said to
be e-approximate NE if DualGap™*™*°V(¢) < e. Notice that for any policy pair (u,v), it is
straightforward that

.
-

V2" (p) = V()| < 1 (log|A| + log |B]).
Encouragingly, the following corollary ensures that Algorithm 3 yields a policy pair with
e-optimal duality gap for the entropy-regularized MG.
1—y
2(14+7(log |A|+1—7))’

3 takes no more than O <7(le)2 log? (%)) iterations to achieve DualGap™a™®V(¢) < e.

Corollary 10 Assume |A| > |B| and T < 1. Setting npy =n = Algorithm

With Corollary 10 in place, setting the regularization parameter sufficiently small, i.e. 7 =
O(g(l)g_&)\le), and invoking similar discussions as (11) allows us to find an e-approximate NE
of the unregularized MG within
~ 1
o——
<(1 - 7)36>

iterations. See Table 2 for further comparisons with Perolat et al. (2015); Wei et al.
(2021Db); Daskalakis et al. (2020); Zhao et al. (2022). To the best of our knowledge, the
proposed method is the only one that simultaneously possesses symmetric updates, problem-
independent rates, and last-iterate convergence.

3. For notation simplicity, we omitted the dependency with p in DualGap™™®¥(¢).

p
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4. Conclusions

This paper develops provably efficient policy extragradient methods (PU and OMWU) for
entropy-regularized matrix games and Markov games, whose last iterates are guaranteed to
converge linearly to the quantal response equilibrium at a linear rate. Encouragingly, the
rate of convergence is independent of the dimension of the problem, i.e. the sizes of the
space and the action space. In addition, the last iterates of the proposed algorithms can also
be used to locate Nash equilibria for the unregularized competitive games without assuming
the uniqueness of the Nash equilibria by judiciously tuning the amount of regularization.

This work opens up interesting opportunities for further investigations of policy extra-
gradient methods for solving competitive games. For example, can we develop a two-time-
scale policy extragradient algorithms for Markov games where the Q-function is updated
simultaneously with the policy but potentially at a different time scale, using samples, such
as in an actor-critic algorithm (Konda and Tsitsiklis, 2000)? A recent work by Cen et al.
(2023) partially answered this question under exact gradient evaluation. Can we general-
ize the proposed algorithms to handle more general regularization terms, similar to what
has been accomplished in the single-agent setting (Lan, 2022; Zhan et al., 2021)? Can we
generalize the proposed algorithm to other type of games (Ao et al., 2023)7 We leave the
answers to future work.
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Appendix A. Analysis for entropy-regularized matrix games

Before embarking on the main proof, it is useful to first consider the update rule (6) that
underlies both PU and OMWU, which is reproduced below for convenience:

10 (@) o 1u® (@) exp(n[Aza)a),  for all a € A, )
22
VD (B) o v® (0)' " exp(—n[AT z1]y), for all b € B,

where z; € A(A) and zo € A(B). These updates satisfy the following property, whose proof
is provided in Appendix C.1.

Lemma 11 Denote () = (u®,0®) and ((2) = (21, 22). The update rule (22) satisfies:
(log ") — (1 =) log ) — nrlog ik, 21 — pky = n(ps — 21) TAWE — ), (23a)
(log VD (1 — pr)log ™ — nrlog vt 2o — Vi) = —n(v} — 21)TA(VE — 2),  (23b)

and
(log (V) — (1 =) log ¢ — n7log (7, ¢(2) = ¢7) = 0. (24)

As we shall see, the above lemma plays a crucial role in establishing the claimed conver-
gence results. The next lemma gives some basic decompositions related to the game values
that are helpful.

Lemma 12 For every (pu,v) € A(A) x A(B), the following relations hold
Fe(,v) = fr(uvy) = TKL(C I ¢F), (252)
Fr(pv) = fr(r,vi) = (r = ) TAWS = v) + TKL(v [|v}) = 7KL (1 || 25). (25b)

In addition, we also make record of the following elementary lemma that is used fre-
quently.

Lemma 13 For any pq, uo € A(A) satisfying
p1(a) o< exp(ai(a) and  pia(a)  exp(aa(a))
for some x1,x9 € RMI we have
1
Nog 11 —log pialog < 2[|21 — 2l and KL(pn || p2) < 5 [l — 22 —c- 1%
where the latter inequality holds for all ¢ € R.
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A.1 Proof of Proposition 1

Setting ¢(z) = ¢**1 in Lemma 11, we have

(log (MY — (1 = n7)log ¢ — priog ¢, ¢ — ) = 0. (26)
By the definition of the KL divergence, one has
— (log ¢V — (1 = y7) log ¢ — 7 log (7. ¢7)
= —(1 = n7)(log ¢& —log (™, (7Y + (log ¢ — log ¢V ¢F)
= —(1 = r)KL(¢[1¢D) + KL(¢ |1 ¢, (27)
and similarly,
(log ¢ — (1 = n7)log ¢ — nrlog ¢, (D)
= (1 —n7){log ¢ —1log ¢, (1) 4 nr(log (Y —log ¢, ¢HY)
= (1= pm)KL(CD [ ¢O) + nrKL (D )1 ¢F).
Combining the above two equalities with (26), we arrive at
KL(G D) +nrKL(C D ) + (1= )KLV <) = (1= am)KL(¢E(1¢Y). (28)

This immediately leads to KL(¢F || C(t+1)) < (1 —nr)KL(¢E || C(t)) by the nonnegativity of
the KL divergence, as long as 1 — n7 > 0. Therefore

KL(G1CD) < (1 —nr)'KL(¢E ][ <) forall £ > 0.

A.2 Proof of Theorem 2
A.2.1 PROOF OF POLICY CONVERGENCE IN KL DIVERGENCE (9a)

First noticing that both PU and OMWU share the same update rule for ,u(tH) and (D),
which takes the form

n0 (@) o p ()" exp(p[AntH],),
VD () oc v (B)' T exp(—n[AT ptHD],).

Regarding this sequence, Lemma 11 (cf. (24)) gives

{(log (1) — (1 — 1) log ¢ — 7 log ¢&, (YD — ¢&) = 0. (29)

In view of the similarity of (26) and (29), we can expect similar convergence guarantees
to that of the implicit updates established in Proposition 1 with the optimism that ¢ (t+1)
approximates ¢(“t1) well. Following the same argument as (27), we have

~(log ¢ — (1 = yr) log () — 7 log (7, ¢7) = —(1 = nr)KL(¢F [ <) + KL [ ¢“*Y).
(30)
On the other hand, it is easily seen that

(log ¢ — (1 — n7)log ¢ — nrlog ¢, CHY)
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= (log (" — (1 = nr)log ¢ — nrlog ¢, (V) — (log (FY —log ¢+, (1)
— (log CU+D) o ((+1) Flt+1) _ C(t+1)>
=(1— nT)KL(E(t“) I C(t)) + nTKL(E(t“) 1¢) + KL(C(HI) [ g(t+1))
_ <10g E(Hl) _ 10g<(t+1)7 E(H-l) _ C(t+1)>- (31)

Combining equalities (30), (31) with (29), we are left with the following relation pertaining
to bounding KL(¢x[|¢):

(1= n7)KL(G11¢™) = (1 = nm)KL(CHD [ ¢W) 4 prKL(HD | ¢r) + KL(¢E | ¢HD)
— {log (V) —1og ¢V D @Dy L kL (¢ ¢, (32)

In addition, to bound KL(C:. ¢ (t“)), we will resort to the following three-point equality,
which reads

KL(CH | )
= KL(¢ [ YY) = (¢, 1og ¢ —Tog ¢HD)
= KL(G1¢1HD) — KL | ¢ — (¢ = CHD 1og (D) — log 1), (33)

which can be checked directly using the definition of the KL divergence.

To proceed, we need to control (log CtHD _og ¢t ct41) Q(t+1)> on the right-hand
side of inequality (32), and (¢* — (*D,log (*+Y) —1log (*+Y)) on the right-hand side of
inequality (33), for which we continue the proofs for PU and OMWU separately as follows.

Bounding KL(¢* | ¢®) for PU. Following the update rule of ((*+1) = (g(+1), p(t+1) in
PU, we have
log gD — log pt+1) = T]A(V(t) — 17<t+1)) +c-1 (34)

for some normalization constant c¢. With this relation in place, one has

(t4+1) _ (t+1) (t+1) (t+1)> _ n(ﬂ(t-i-l) _ ,u(tH))TA(l/(t) _ l7(t+1))

(log fz log 1

<Al G+ D) 1 HD(tH) _ V(t)Hl‘

Combined with Pinsker’s inequality, it is therefore clear that

(log D g D gD M(t+1)> < %77 Ao ( atHD) ) j+ HD(tJrl) _ V(t)HQ)
< Al (KL(aH || A0FD) 4 KL |[00))
(35)
Analogously, one can achieve the same bound regarding the quantity

S(t+1) (t+1)’ 1) _ V(t+1)>.

<log 1% log v

Summing up these two inequalities, we end up with

(1og (1Y) —10g (141, (0D — (1) < gy 4] o (KLY || D) + KLY |1 ¢0) ).

28



FAST PoLicY EXTRAGRADIENT METHODS FOR COMPETITIVE GAMES WITH ENTROPY REGULARIZATION

Plugging the above inequality into inequality (32) leads to

KL(CG 1 ¢HD) < (@ = nr)KL(EE1¢Y) = (1 =07 — || Afl o )KL || ¢®)
—rKL(CED 1 ¢E) — (1= JA KL [ D). (36)

Therefore, as long as the learning rate 7 satisfies n < ﬁ, we are ensured that

KL(¢r 1<) < (1 —nm)KL(¢t 11 ¢Y),
which further implies inequality (9a) when applied recursively.
Bounding KL (¢ | C_(Hl)) for PU. By similar tricks of arriving at (35), we have

A+ (t+1) (t+1)> — (- gD TAW® — p+D)y

. %n 1Al (’ it ﬂ(t-l—l)Hj + v - 17(7$+1)Hj)

< Al (KL | 7D + KLEE 00)),

—(ur - log gt —log

following from (34) and Pinsker’s inequality. A similar inequality for
—(vr - 7D 1og s+ _ Jog V(t+1)>

can be obtained by symmetry, and summing together the two leads to

(G = ¢ 1o ¢ —1og (D) < Al (KL(GHICHD) + KL(ED 1 ¢9)).
Plugging the above inequality into (33) and rearranging terms, we reach at
(1= Al )KL I CHY) < KL(SHICTD) + nlAll o KL 1¢0).
Along with (36), we have

(1= n Al )KL(C [ CTD) < (1 = nr)KL(EG1¢PD) = (1 = nr — 29[| Afl )KL (D [ ¢)
—rKL(CHD [ ¢*) — (1= Al )KL(CED | DY,
(37)

Therefore, with n < 1/(7 + 2 ||A]|,,) we have
KL(¢r 1<) < 2KL(¢r 1¢") < 21 —nr)'KL(¢F 11 ¢”).

Bounding KL(¢* || (V) for OMWU. Following the update rule of {‘+1) = (g(t+1) p(t+1)
for OMWU, we have

log i) —log Y = nAE® — ) 4 ¢ 1
=AY — Oy £ nA® — D) 4.1, (38)

29



CEN, WEI AND CHI

where ¢ is some normalization constant. Similar to the proof of relation (35), it can be
easily demonstrated that

(log ™D — log 1) Et+1) — (D)
= () — fEHNT 45O — p Oy (gD — DT 4,0 — D)y
<Al (KL(V(t) [ 78) + KL(ZED || @) 4 2KL (D | gt )) (39)

By symmetry, we can also establish a similar inequality for

(t+1) _

log (D) 1) _ V(t+1)>7

(log 7
which in turns yields

(log C1'FY) —log (1Y), (D) — ¢(+D)

<Al (KLCD 1) + KL ) + 2KL (D 1) ).

Plugging the above inequality into equation (32) and re-organizing terms, we arrive at

KL(¢E || ¢ty
< (1= nr)KL(G D) = @ = nr — n |A]| o) KL(CED | ¢D) — prKL(CE ) ¢2)
— (1 =20 | Al )KL (T DY 4 ] Al o KL(CW || D). (40)

With the choice of the learning rate n < min{2||A||1 3 4“2” }, it obeys

(1 =n7)(1=2n]All) = nllAll«
Combining the above inequality with (40) gives
KL(G 1Y) + (1= 20| All o KL(CEHD | (D)
< (L =nn)KL(GI1¢W) + 1A KL [ ¢V) = nrKL(CHD )1 ¢7).
< (1= n7) [KL(GI1CD) + (1= 20 A OKL(CD 1CD)] = mrKL (D ) ¢2).
For conciseness, let us introduce the shorthand notation
D= KL(CE1¢D) + (1 =25 | A KL 1 ¢W). (41)
As a result, the above inequality can be restated as
LY < (1= pr) LW — 7KLV )| ¢). (42)

Since we initialize OMWU with (0 = ¢©), therefore L(® = KL(C: I C(O)), which in turn
gives

KL(G1¢W) < LW < (1 —pr)'L® = (1 — pr)'KL(¢E || ¢).

We complete the proof of inequality (9a) for OMWU.
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Bounding KL(¢* || (**+Y) for OMWU. By similar tricks of arriving at (39), we have

(t4+1) (t+1)>

— (i — Y Jog gl — log
() — 1) TAED - o0) D — ) TAWO - 51D

<Al <KL(V“) |70 + KL (2D | 0) 4 2KL (x| ﬁ(t+1))) ’
where the first line follows from (38). A similar inequality also holds for
_<,/: _ D(t“), log pt+1) log V(t+1)>‘
Summing the two inequalities leads to
_ <C: _ §(t+1),10g §(t+1) ~log C(t+1)>
< 4l (KL 11C0) + KL 1) + 2K 1) )

Plugging the above inequality into (33) and rearranging terms, we reach at

(1=20 | AL KL (G 1 CEFD) < KL(GITCD) Al (KL(CD 1) + KL 1 ¢)).
Along with (40), we have

(1 =27 | All ) KL(GE I ¢HY)
< (L= nm)KL(G 1Y) = (1= 07 = 20| A KL(EHD [ (D) = nrKL(CV )1 ¢)
— (1= 2| AJ| KL CHV) + 2n (| A  KL(CW (1<)
< (L= m)KL(GI1¢W) + 20 )14 KL |1 ¢V)
< KL(GEIIC™) + (1 = 20| A o )KL(CW [ ¢V) = L1,
where we recall the shorthand notation L® in (41). As the learning rate of OMWU satisfies
0<n< min{2||A||;+2T’ 4”1;”00 }, it is clear that

_ ®
KL(GH [ ¢FY) < 2L < 21 =) L < 21 —9r)'KL(¢7 11 ¢),
where (i) follows from the recursive relation L+ < (1 —n7)L® shown in inequality (42).

A.2.2 PROOF OF ENTRYWISE CONVERGENCE OF POLICY LOG-RATIOS (9b)
To facilitate the proof, we introduce an auxiliary sequence {& ) ¢ ]R‘A‘} constructed recur-
sively by
£9(a) = lexp(Avz/7)|, - 1(a), (43a)
¢ (a) = €B(a) 7 exp(n[AtY),),  VYa e At > 0. (43b)

It is easily seen that p®(a) o< £€®(a) = exp(log&®)(a)) for t > 0. Noticing that u* o
exp(Avr), one has

Hlogu(tﬂ) — log ux . <2 Hlogf(tﬂ) — AV:/THOO, (44)
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where we make use of Lemma 13.
Therefore it suffices for us to control the term Hlog§ (t+1) _ Avr/ THOO on the right-hand
side of inequality (44). Taking logarithm on both sides of (43b) yields

log €01 — Av* /7 = (1 — nr)log €W + nABHD — Av* /7
= (1= n7) (tog € — Avy/7) + A - ),
which, when combined with Pinsker’s inequality, implies

[log eV — avz/r| < (1= ) loge® — Avz/r|| +nlall [+ v

1

1/2
< (1= ) [loge® — avze| Al [2RL(z 50+
i|l/2

< (1—n7) |loge® — Avz/7||  +nllAl [ZKL(GH@““))
(45)

Plugging the bound of KL(¢} || E(Hl)) from relation (9a) into (45) and invoking the inequal-
ity recursively leads to

Hlogf(tﬂ) — AV:/THOO

t+1
< (1=nr) [log€® — Avi/r|| 4+ 2m Al S (= nr) KL | ¢0)
o s=1
1 1/2
t+1 0 * t+1)/2 * 0
< =) flog e — Avp/r|| 2l (1= nm) VP T KL )

< (1 =)+ [log€® — Avr/r|| +ar Tt Al (1 — nr)EFD2KL(CE [ ¢@) 2,

where the last line results from the fact that (1 — n7)/2 < 1 — 57/2. Combining pieces
together, we end up with

t+1)

Hlog ) — log pix

o0

<2 Hlogﬁ(t“) — AVI/TH
<21 — ) [iog€® — Avz/r|| 4 8 Al (1 mn) KGO

<2(1 —pr)tt Hlog 1 —log 2,

ST Al (1 =) KL ¢)

Similarly, one can establish the corresponding inequality for Hlog v _og zx;*Hoo, there-
fore completing the proof of inequality (9b).
A.2.3 PROOF OF CONVERGENCE OF OPTIMALITY GAP (9c)

To streamline our discussions, we only provide the proof of inequality (9¢) concerning upper
bounding f, (i), ™) — f,(u*, v¥) without taking the absolute value; the other direction of
the inequality can be established in the similar manner and hence is omitted.

32



FAST PoLicY EXTRAGRADIENT METHODS FOR COMPETITIVE GAMES WITH ENTROPY REGULARIZATION

We first make note of an important relation that holds both for PU and OMWU. Con-
sider the update rule of (u(+Y v+ which is the same in PU and OMWU. Lemma 11
inequality (23a) gives

<10g M(tJrl) o (1

—n7)log p) — nrlog px, i — ) = n(ur — g T Ay — pH),
(46)
Similar to what we have done in the proof of (9a) (cf. (32)), based on the above relation
we can therefore rearrange terms and conclude that
n (KL | gax) = (s = ) T Ay = o))
= (1= )KL (s | 1) = (1 = nr)KL (D | ) = KL (p | 6D)
+ <10g Ia(t-i-l) o IOg M(t+1) —(t+1) M(t+1)> . KL(M: ” M(t-‘rl)). (47)

In conjunction with Lemma 12 (cf. (25b)), we can further derive

(G, v2) = (@0, 700)) <o (KL (A | ) = (i = )T A(
= (L= n7)KL(p2 || 1) = (1 = nr)KL(a" || p) -

U D(t—H)))
. KL( t+1 || M t+1 ) <10gu(t+1)

KL (st | 49)
log (D g+ _ M(t+1)>’ (48)

where the second line follows from (47). From this point, we shall continue the proofs for
PU and OMWU separately but follow similar strategies

Remaining steps for PU. Plugging relation (35) into (48), we arrive at

n(fr (s, vE) — f-(REHD, 5D

< (1 —nr)KL (x| pt ) (1 — )KL (A || 1) — KL (g2 || p)
— (1= || A] KL (V|| aD) 4 Al KL(EED [ 2®)

< (1 —nr)KL (s || p®) — KL (g2 || V) = (1 = pr)KL (a0 || p®)
+ || A]l o KL(EHD | 0),

(49)

where the last line holds since n(7+|A]| ) < 1. Similarly, from Lemma 11 inequality (23b)
one can establish the following inequality in parallel

atHD D)

( 7f7(/‘6:"y:))
< (1—177)KL( v @) — KL(vx || D)

— (1= )KL || )
+ 1| Al KL | 1),

(50)
We are ready to establish inequality (9¢) for PU. Computing (49)

+2. (50) gives
3 (frluzv) = f(@0FD, 500))

2 2
< (1= ) (KL | o) + SKLQ | )] - [KL(MZ [ 0) + KL ()
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— |(L=n7) = [ Allo | KL(ED | @) + 0| Al —
(R |

< (1) [ KUt 1) + KL )] = (KL Gz 1007) + SRL@ 1009) | (51)

Here, the last step is due to the fact that (1—n7)
when 0 < n < m
satisfies

§(1—m)} KL(7D || v ®)

—2n||All = 0and n||All . —3(1—
As a direct consequence, the difference f,(u,v}) — f-

(i

777)30
)

w3

(fr(pt,ve) = f(a9, 50))

IN

(1 =n7) [(1 — )KLk || 1Y) + | All o KL (2 | V<H>)]
< (1 =nr)KL(¢[I¢Y) < (1 =)' KL(¢ 1¢).

We conclude by noting that the other side of (9c) can be shown by considering 5- (49)
(50) combined with similar arguments, and are therefore omitted

Remaining steps for OMWU. Similar to the case of PU, plugging (39) into (48) gives
n(fr(uy,vy) — fT(ﬂ(t“) D))
< (1= nr)KL(pz || 1®) = (1 = nr)KL(E" Y | u) -

(MT [ pF0)
— (1= 20 [ A KL | D) 4 Al [KL(

V)| 70) 4 KL (2D || o )] .

(52)
Similarly, one can establish a symmetric inequality as follows

n(f-( fr(p,vh))
< (1 =KLz | v®) — (1 —pr)KL(EEH | @) — KL (2 || »HHD)
— (1= 20 || Al KL (D 7D 4 A [KL(M

t+1) —(t+1))

| AY) + KL(ED [ )] .

(53)
Directly computing (52) +32- (53) gives

1 .. . i
3 (e vd) = fo () P
<

(1) [ KLz 1) + 3K

2
S KL 7—‘”“))] - [KL(MI ) + SKL(V;H,,@H))]
2
_ [(1 —nT) — 37 ||A||Oo] KL(ﬂ(t-i-l) I M(t)) + [77 I1A]|
+7 4l EKL(M“) 120 + KL | y<t>)}

_ 2 _
- (= 2 AL [ ) 4 2L 500

2
o= 50- m)] KL(zD || p)

(54)
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With our choice of the learning rate n < min{?\lAlll 57 4”1;" }, it is guarantees that

M3 (0=m) <0, (1=nr) =yl 20 and (1-nr)(1-2n]4]) > SnllAlL.
To proceed, let us introduce the shorthand notation
GO = KL (2 | p0) + KL )
20— 20 Al [KL(HO 50 + KL 20)].
With this piece of notation, we can write inequality (54) as
et t) = S (@, ) < (1= )G - GO, (59)

which in turn implies

S (e, v) = (3, )

< (1 =)@ < (1 =) LY < (1 =)' L@ = (1 —97)'KL(¢ 1<),
with L®) defined in (41). This finishes the proof of (9¢c) for OMWU.

A.2.4 PROOF OF CONVERGENCE OF DUALITY GAP (9d)

The proof of inequality (9d) is built upon the following lemma whose proof is deferred to
Appendix C.4.

Lemma 14 The duality gap at { = (u,v) can be bounded as

e foll) = min f(n) < TRLCG) + 7 AIRKL(C ).

Applying Lemma 14 to () = (z®, 5(®)) yields

DualGap,(¢V) < 7KL(¢™W || ¢Z) + 7 HJAJIZKL(¢ [ <)
< TKL(CW 1 ¢) + 20 AN (1 — ) HKL(¢ )1 ¢?), (56)

where the second step results from (9a). It remains to bound 7KL(C® || ¢#), which we
proceed separately for PU and OMWU.

Remaining steps for PU. From inequality (36), we are ensured that

nrKL(CW 1 ¢2) < (1 —nr)KL(¢E ]| ¢ V) = KL(¢z[1¢).

It thus follows that

KL 1 ¢) < n ' (1 —pr)KL(¢ )1 ¢"Y) <7t (@ = nr) T HKL(¢ 1<),

where the last inequality is due to inequality (9a). Plugging the above inequality into (56)
completes the proof of inequality (9d) for PU.
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Remaining steps for OMWU. From inequality (42), we are ensured that
TKLCW N ¢) <t (1 =pr) LD < (1 =) 2O = 7 (1 = ) KL(¢E (1 ¢9),

where the last equality follows from L = KL(C:. | ¢ (0)). Plugging the above inequality
into (56) finishes the proof of inequality (9d) for OMWU.

A.3 Proof of Theorem 7

To begin, we note that in the no-regret setting, upon receiving A’ g(® (which is possibly
adversarial), the update rule of player 2 is given by

V(t)(b) o V(tfl)(b)limfﬂ exp(—m_l[ATﬂ(t)]b), (57a)

1—mt

P () o D (5)' " exp(—m[ATAD)y). (57b)

Recalling f7(—t)(I/) = W7 Av + 7H(a®) — 7H(v), we introduce an important quantity
which is the gradient of f.gt)(v) at o0):

v = Vo9 w) = ATa® + r(logr® +1). (58)

1/:17(’5)

®)

The following lemma presents an £, bound on the size of V', whose proof can be found

in Appendix C.5.

Lemma 15 It holds for allt > 0 that

Hﬁ“)Hm < rlog|B| + 3| A, .

Regret decomposition. By the definition of fT(t)(V), we have
OO — fD ) = (ATE® 5O — 1) + 750 T log b® — 70T log v
= (ATa® + 710g )T (5 — 1) — 7KL(v || 7))
= (ﬁ(t), ) — ) — TKL(v || D(t)), (59)

where the last line follows from the definition of V' (cf. (58)). To continue, by the update
rule in (57), we have

log 7+ = (1 —m7)log v ATE® 4611
= (1—m7) [(1 —ne—17) log p(t=1) nt_lATﬂ(t) + ¢y - 1} - ntAT/](t) +ec1-1
= (1= 7 [log ¥ -y AT — gy AT = ATEO + 01

= log 7" — Utv(t) + (1= mr)ma AT (p0D — g0y 4 W1, (60)
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where the first three steps result from the update rule of 7D v(®) and 7| respectively,
and the last line follows from (58). Here, ¢, c2, and ¢® are some normalization constants.*

Rearranging terms allows us to rewrite ﬁ(t) as

v = ; (log 7 —log () 4 ). 1) + %(1 — ) AT (Y — 5O). (61)
t t

Plugging (61) into (59), we have

f“)(l7 ) = [P w)

E@Og o) —1log o)) 51 _ 1) — TKL(v || (1) ) + %(1 ) (AT (@D — g®y, 50 )

::;;{KL(VHD@U——KL(VHD“*U)4—KL(D“)HD“+D)}——TKL(V\D“U

I (L) (AT (D = p0), 70— ).

Summing the equality over t = 0,...,T gives

ffpm<@> F9)]

t=0
1 T
— KL 1/ 1/(0) + < -— = 7'> KL(v || #®
(77 > I ; e M1 (v 177)
T .
2 KLt 1) + 3 B ) (AT )0 . (62)
—o 't —

With the choice of the learning rate

1
t+ 1)1’

m =
(
one has

Sor=0, - —r=0, Mlaogm=nvizL (63
10 N M—1 Yo

Plugging the above relations into (62) leads to
T 1 T
FOE) ~ 1) = 30 KLEO | 204) = g 0),50 — ). (64)
] =g

Next, we seek to bound the two terms in (64) separately.

4. We shall set n—1 =0 and ﬁ(”) = ﬁ<0) to accommodate the case when t = 0 in (60).
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Bounding the first term of the regret. According to Lemma 13 and (60), we have

KL(7® || p¢+D) < L Hlogy D) _jog (0 _ (1) 1H2

T2 H V" (L= ) AT (D - ﬂ(t))Hi@

IN

2
H—th H + H(l — )1 AT (Y — ﬂ(t))H
< m?(rlog |B| + 3 [|Al| o) + 42 | Al%

where the final step results from Lemma 15 and the last equality in (63)

. Summing the
above inequality over t = 0,--- ,T yields

t=0

T T T

1
> KLED ) < 3 m(rlog 1B+ 314110 + 43w AL
t=0 1t t=0

7 (log T +1) |(rlog Bl +3 | All..)* + 41l41% | . (65)

where the last line follows from ZtT:O ne < 71

(logT + 1) due to the choice of the learning
rate.

Bounding the second term of the regret.

Observe that by the telescoping relation,
we have

T

> (AT(EY = a®), 70 — )

t=1

I
WE

(AT = 5 0),70) — (AT (1O — 5T, )

H
I
R

I
WE

(ATpt=1 p® — p=1y 4 Z [<ATﬂ(t—1)7,;(t DY AT a® oy — (AT (u© —
t=1

o~
Il
—

Mﬂ

(ATpt=0 50 — 5=y L (AT [0 5O —(ATEM 5Oy — (AT (u0 — gD 1y

W
I
—

T-1
< Al Y |74 = 79| + 4141 (66)
t=0

Due to Pinsker’s inequality and Lemma 13, we have

. H (t+1) D(t)H < KL( (t+1) ”ﬂ

. Hlogy 1) _ log QPO 1H

o
which further ensures that

HD(tH) —® H Hlogy 1) _ log ) —c®. IH

- H_Utv + (1= AT (Y - ﬂ(t))H
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<m H@(t)HOO o HAT(ﬂ(t—l) — ")
< e (rlog |B| + 5|4l )

HOO

where the second line follows from (60), the third line follows from the triangle inequality,
and the last line follows from Lemma 15. Plugging the above inequality into (66) leads to
T
D AT (@Y — @), 2" —v) <77 (log T+ 1) || Al (7 log [B] + 5 | All.) + 4[| All
t=1

(67)
where we use again ZtT:() e <7 tlogT +1).
Putting things together. Combining (65) and (67) into (64), we have
T
Regret,(T) = max > [ff(t)(v(t)) — W) <77 (log T+ 1)(rlog |B] + 5| Al )% + 4| All.
v =0

Appendix B. Analysis for entropy-regularized Markov games
B.1 Proof of Proposition 2
For each t, let

V®(s):= max min A (t)s; $).v(s),
()= max wminfAQU(s):(s)(s)

which is, in other words, the minimax value of the associated matrix game using a payoff
matrix Q) (s). We start by making a simple observation that for u(s) € A(A),v(s) € A(B),

‘fQ(t)(s) (1(s),v(s)) = fu(s)(n(s), I/(S))‘ - ‘“(S)T(Q(t)(S) - Q:(S))V(S))
< HQ(t)(s) - Qi(s)”oo < HQ(t) _ o )

As a direct consequence, we can control V) (s) — V*(s) by

VO (s) = V2 (s)

max min s),v(s)) — max min X (s s),v(s
WK R QO W V) = S ) SRy T ) 1 ))‘

< [e®-q:

o0

Recalling the definition of the soft Bellman operator 7; in (17), it then follows that

HQ““) —Qx =

=@ - @

Esmp(lsan [VO () = V2|

<y |vO-v| <qllev-e:

oo

Recursively invoking the above inequality proves inequality (19).
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B.2 Proof of Theorem 9

The inner loop of Algorithm 3 aims to solve an entropy-regularized matrix game indexed
by Q(t)(s), which is done by running the proposed PU or OMWU methods. To analyze the
efficacy of the inner loop, let us denote the exact minimax game value on state s at t-th
iteration by

V() = max min  f-(QW(s); u(s), v(s)), 68
()= max i fr(Q(s)i(). () (68)

which is adopted in the exact value iteration analyzed in Proposition 2, and achieved by
the equilibrium ¢*) = (u*®), 1*®)) of (68).

e Denote the output of the inner loop as ((tTsue) = (f(tTsu) (5), p(BTun) (5)), which the
entropy-regularized matrix game (68) is approximately solved by executing PU / OMWU
for Ty iterations. Theorem 2 (cf. (9c)) guarantees that for every s € S, one has

VD (5) = VD ()| = | 70 (BT (5), 70T (5)) = £ (670 (5), 070 (5))

— 1 (1-— m_)Tsub
<nt . CKL(CD | ¢©
T 006 | 1 ()T (1<)
— Tsub
S 27771 . (1 777—) . 210g ’A’,

1— (1 —n7)hu
where the last step makes use of the choice of the learning rate
1—7 1
n= < :
2(1+ r(log|Al + 1)) = 2(7 +[|QW(s)]l)

and KL(¢*® ]| ¢0) < log|A| + log |B| < 2log|A|. As a consequence, setting

1 1 1
Top = O < <log =~ +log +loglog | A| + log >) (69)
nr € 1-— Y N
yields
‘V(tJrl)(S) _ V(tﬂ)(s)‘ <(1—7)e foral seS. (70)

e We now move to monitor the progress of the outer loop. Combining (70) with some
basic calculations, we arrive at

HQ(tH) —or| < ,yHV(t—H) vl < 7HV(t+1) _ f/(t+1)H F Hf/(tﬂ) _v*
"loo — "loo — 0o " oo
<@-metr|Q¥-az
Now invoking the above relation recursively, it is ensured that
HQ(tJrl) —or| <et HQ(O) ot
T o0 - T o
In view of the above relation, if one takes
1 1 1 1
Tiain =0 | —— | log = + log w (71)
1- € 1 -7

iterations of the outer loop in Algorithm 3, we have HQ(Tmai") - Qr HOO < 2¢ as desired.
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Putting things together, the total iteration complexity sufficient to achieve e-accuracy
equals to

TmainTsub
1 1
=0 ( (log = +loglog | A| + log
nT(l—7) €
Therefore the advertised iteration complexity in Theorem 9 holds true by simply noticing

1—
that n = 2(1+T(10g&4|)+1)) and 7 < 1, and hence

1 21 4 1
log <77> <log <og]A]+> , and log(7) < log <> .

1—x I—7

1 1 1
+ 10g7-> <log + loglog | A| + log + log )) )
11— € 1—x n

B.3 Proof of Corollary 10

We begin by recording two supporting lemmas whose proofs are deferred to Appendix C.6
and Appendix C.7.

Lemma 16 Let (f = (u7,vy) be the QRE of payoff matriz A and Cr = (ix,7%) be that of
A. We have
2 2 ~
<Z. ( 1A + 1> HA - AH .
00 T 00

log ¢z —10gC: || <=

Lemma 17 For any single-agent MDP (S, A, P, r,~) with bounded reward 0 < r < R, the
entropy-reqularized value function satisfies

o . 1 R log | A|
— [ R —
VI (p) VAM‘ [1_7+T<1_7

=1,

+ 1+ log(|A| + 1))] [log #" —log || _

for any two policies m and 7.

We are now ready to prove Corollary 10, which we break into a few steps.

Step 1: iteration complexity to obtain an approximate Q. It is immediate from

Theorem 9 that Tq = O(ﬁ log2(%)) iterations are sufficient to get a ij e RISIxIAIx|B|

that achieves B
[[caEyax

Step 2: iteration complexity to obtain an approximate (7. Denote the QRE of the
matrix game induced by Q5 by (& = (ur,vy). Specifically, for every s € S, (15 (s), V5 (s))
solves the entropy-regularized matrix game induced by Q%(s). Invoking PU or OMWU with

ensures that within Tpejicy = 6(1?_105)

< €q.
oo

_ 1—y |Al 1 . .
n= 2(147(log [A[+1—7)) g log €policy) iterations, we can

find a policy pair ¢ = (u, v) such that

[log ¢ —1og C;

This taken together with Lemma 16 gives

< €policy -
00

J1og ¢ —1og ¢zl < log¢ —log &||_ + [log ¢z — 105

o0
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< ooyt 2+ (21020 +1) oz - @

4 +47log |A| + 27
S 6po|icy + 7_2(1 — 7) . EQ.

Therefore, we can get [log ¢ — log ¢¥||,, < e-C~! within
~ 1 1 1+ 7log yA\ 1
Tq + Tholicy = O | ——— log?
Q + Tpolicy O<T(17)2 og (EQ)>+O< log

7—(1 *7) €policy
-0 1 op2 }
=0 (Fap )

iterations as long as C' = poly ((1 —~)~!, 771, log|A|).

Step 3: bounding the dual gap. For any i/, we have

VI (p) = VI (p) = (VA" (0) = V5 (p) ) + (V" (0) = V' (0)
< (V) = VI () + (VT () = v (). (72)

where in each term, only one of the policies is varied. Consequently, it is possible to invoke
the well-known performance difference lemma for single-agent MDP.

We note that the same policy p’ appears in both V' l’"(p) and V' vr (p), and it is there-
fore possible to invoke performance difference lemma for single-agent MDP to characterize

VTuI’V(P) — v (p), we construct a MDP (S, B, P,7,v) with

(s']s,0) = > _ '(als)P(s'|s,a,b),

acA

=Y 1/ (als)(r(s,a,b) — Tlog 1/ (als)),

acA

and denote the associated entropy regularlzed value function by V.. This allows us to
VX

write V&V (p) = V2(p) and v "(p) = V. (p) (cf. (15)). Applying Lemma 17 with R =
1+ 7log| Al gives

V2 (p) = VI ()
= ’Vi(p -V (p)‘

1 1+Tlog].,4\ log|B|
“1l—x 1—7 1-—

+ 1+ log(|B| + 1))] |log v —log vZ||

Similarly, one can derive

’Vﬂ? VMT7 ()‘
1 1+ 7log|B log |A

< T8 IBL (108 tog(al+ 1)) | og i — tog i
1—7 1—7 1—7
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for the second term in (72). Plugging the above two inequalities into (72) gives
VI (p) = VI (p) < C|llog ¢ — log (|, < e,
where the last inequality holds as long as [|log ¢ —log (||, <e-C~! with

2 1 1 1
. [l g

14|14 1—~ +1+10g(|v4|+1)+log(|l’>’|+1)>}.

Therefore it takes O(T(llfv)2 log?(1)) iterations to achieve

max V**(p) — min VA" (p) < e.
w !

Appendix C. Proof of auxiliary lemmas

C.1 Proof of Lemma 11

Lemma 11 follows directly from the update sequence (6) and the form of the optimal solution
pair (u%,v}), provided in (4). Given the update sequence (6), taking logarithm of both sides
of the first equation gives

log ) = (1 — n7) log u® + nAzg + ¢ - 1,

where c is the corresponding normalization constant. By rearranging terms and taking the
inner product with z; — p, we have

(log ") — (1 — ) log p®), 21 — k) = nzf Azp — nu " Az, (73)
Similarly, one can derive

(log D (1= pr) logv® | 2y — Vi) = —nz] Az + nz{ AvE. (74)

By summing up equations (73) and (74), it is guarantee that
(log ¢"+Y) — (1 — ) log ¢V, ¢. — ¢F) = —npt T Azo + 2 Av, (75)

where ((z) = (21, 22).
On the other hand, recall the optimal policy pair (uf,v}) satisfies the following fixed
point equation

?mwammmmam Va € A,
vX(b) oc exp(—[ATpx]y/7), Vb€ B.

T

Taking logarithm of both sides of the first relation gives
ntlog s =nAv: +c- 1, (76)

for some normalization constant c¢. Again, by taking the inner product with z; — uZ, we
have

<777' log s, z1 — ,u:> = (21— p}) AV, (77)
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and similarly
(n7log vy, zo — Vi) = it A(zg — 1), (78)

Combining inequalities (73) and (77), we arrive at inequality (23a); combining inequali-
ties (74) and (78) gives inequality (23b). Moreover, putting together inequalities (75), (77)
and (78) leads to

(log ¢ — (1 — n7)log ¢ — nrlog ¢, ¢(2) — ¢2) = 0.

C.2 Proof of Lemma 12
We begin with establishing (25a). By the definition of f;(u,v), direct calculations yield

* *

Frl,vl) = fr(pvp) = (= ) TAv} + 7T log i — 7y " log pi
=T ((ui — p,log pi2) + p " log 1 — i ' log ui) = 7KL (g || 7). (79)

Here, the second equality is obtained by plugging in (76). Similarly, we have

Frluitav) — o () = TKL(v || 7). (80)

Summing these two equalities completes the proof of (25a).
Turning to (25b), we first write

Pl v) + fo(,vp) = n" Av 4 2 T AvE + 7H(p) — TH(v) + TH(pF) — THWD),
P, v) + fr(pvd) = s A+ p T Avt 4+ 7H(p5) — TH(v) + TH(p) — TH ().

As a consequence, taking the difference of the above two equations leads to

Frlpsv) + fr(r, vr) = fr(pi,v) = frlpvy) = (5 — p) TA(vy —v).

This in turn allows us to write fr(u,v) — fr(uk, v}) as follows

T

fT(:u’ V) - fT(/L:ﬂV:) = (:U’: - M)TA(V: - V) + f‘r(/‘:—’ V) + fT(MvV:) - 2fT(M:—’V¢)‘ (81)

Finally, plugging (79) and (80) into (81) reveals the desired relation (25b).

C.3 Proof of Lemma 13

The second inequality follows directly from (Mei et al., 2020, Lemma 27). The first in-
equality has appeared, e.g., in Cen et al. (2022b). We reproduce a short proof for self-
completeness. By straightforward calculations, the gradient of the function log(||exp(z)||;)
is given by

Ve log(|lexp(z)ll,) = exp(z)/ [lexp(x)]]; ,

which implies ||V log(|lexp(z)|,)[|, = 1, Vz € RMI. Therefore, we have

[log pu1 = log pal o, = [l21 — w2 —log(flexp(z1)]],) - 1+ log([lexp(z2)l;) - 1l
< lzr = @2l + | = log(llexp(z1)l,) + log(llexp(x2)ll;)
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= ||z — z2f| o, + ‘ (X1 — x2, Vz log(|lexp(z) ;) |a=z.)

< llz = @l + | 21 = 2]l 7 Yog(lexp(@) o=z, |, |
=2|lz1 — 22|

where x. is a certain convex combination of 1 and xs.

C.4 Proof of Lemma 14

Since

/ i : N _ / B /
#,reng&)ff(uw) V,IenAlr(lB)fT(u,V) el A(B)fr(uw) fr (),

it boils down to control fr(u/,v) — fr(u,v') for any (i/,v') € A(A) x A(B). Towards this,
we have

fr(v) = fo(u, V) = (Fr (W' v) = fr (i v0) = fr(ps V') + fr(pns ) = (Fr(urs V') — fr (1 vF))
= (fT(N/a v) — ff(//’ vy) — fr(u, V/) + fr (e, V/)) - TKL(C/ I C:)7 (82)

where the last step is due to fr(p,vF) — fr(ur,v) = TKL(C I C:), as revealed in Lemma 12
(cf. (25a)).
To continue, observe that

Fr(sv) = fr(iv3) = W TAWw = vp) + v T logw — vr T log vy
= (W — 5 TAW = v + fr(h,v) = fr(us, vi).
Similarly, we have
—fr(p V) + (V) = = (= i) T AW = )+ fr (ks v) = Fr(p ).
Plugging the above two equalities into (82) gives
fT(,u'/7V) - fT(,u’a l//)
* T * * * * * *
= (/1'/ - MT) A(V - VT) - (:u' - :u-r)T A(V, - VT) + f’T(l’LT? V) - fT(l’L7 VT) - TKL(CI ” CT)
* T * * * * *
(6 — 2) T A — ) — (= )T AW — )+ TKL(C ) ¢2) — TRL(C 1)

1Al (11" = w2l v = vl + ||V = vl e — 5lly) + 7KL(C I ¢) — TKL(C 11¢F)

1 T ! %12 / %12 HAHoo * (12 * (12

3 140 [ (o = 4 7 = 217) + 150 (= s+ =217
+7KL(CII¢r) — TKL(¢ (1 ¢F)

(ii) A 2
2 kil e) + e (5 ¢y + KL ) - KL )

T

INZ N

A e oo 1 ) 2oL e et
s )+ rru(cl )
where the second step invokes Lemma 12 (cf. (25a)), (i) follows from Young’s inequality,

namely ab < g—z + % with € = %, and (ii) results from Pinsker’s inequality. Taking

maximum over y’, v/ finishes the proof.
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C.5 Proof of Lemma 15
First, we show that the update of () (cf. (57b)) satisfies

7D () o exp([AEP]y/7)  for some iV € A(A) (83)

by induction.
e For ¢t = 0, it is easily seen that 7(0)(b) = ﬁ o exp([AT O], /7) with 7(©) =
e Now assume (83) holds for all steps up to t. The update rule (cf. (57b)) implies
P () oc O (0) 1 exp(m AT )
x exp((1 - ) [ATEO),/7) expm[AT i D)) = exp([ATE D), /1),
with g = (1 — ner) @ + ™ € A(B).

Therefore, the claim (83) holds for all ¢ > 0.
It then follows from (83) straightforwardly that

(1)  exp([ApV]y, /7) o T
70 (by) — exp([AE®)],, /7) < exp(2|| Al /7)

for any b1, b € B. Therefore, we have

1= 3" 700) < [Blexp(2 Al /7) - min 70 (0).
beB

which gives minyep 7 (b) > |B| ™ exp(—2 || Al /), or equivalently
og 7| < 2All /7 +log|B.

We conclude the proof in view of the expression of V" in (58):

Hv(t)H = HAT + 7log v t)H HAT/Z(t)H +7 Hlogu(t)H < 7log|B| + 3 ||A]

~ -
C.6 Proof of Lemma 16
Instantiating (77) at z1 := ¥, we have
(rlog i, il — ity = T Avk — iz T Av.
Similarly, instantiating (78) with 2o := v/*, we obtain
(Tlog vy, v —vi) = =i T AV + T Avy.
Summing the above two equalities then leads to

T<10g C:a ;'* - C‘r> _:U’TTAV/* + IU’QTTAV:
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In view of symmetry, the following equality holds as well
T(log ¢, ¢ — () = —pul T AlvE + s T AV,
Taken the above relations collectively allows us to arrive at

KL(CH ([ ¢%) + KL(¢X |1 ¢E) = (log ¢ —log &, ¢ — ¢)

= (T A Ay - T (A )
-
= (T ) ) - - ) T (A A)
1
< —flA= A ez =l + vz = vl )- (84)

On the other hand, we have

1
g e = w2 |y v = v 07 < Yl = w2+ [l = w2 1] < KL(GR162) + KL(SZ 11 62),
(85)
where the second step results from Pinsker’s inequality. Combining (84) and (85) leads to

167 = Gl = ller = [y + Nl = vl < % A=A (86)
This in turn allows us to bound
[Avy — AV™| o < [[A@T = )| + I(A = A0
< Al o7 =™, + 14 = A
<Al llr = Il + A=A

2
< (21l +1) - a1,

where the final step invokes (86). Since uf o exp(—Av}/7), p'* « exp(—Av™* /1), we invoke
Lemma 13 to arrive at

2 2 2
[og 7 —log ™|, < — [l Awr — AV| < = (T 1400 + 1) 14—

which establishes the desired bound.

C.7 Proof of Lemma 17

Using the regularized version of the performance difference lemma (see (Zhan et al., 2021,
Lemma 7) or (Lan, 2022, Lemma 2)), we have:

7 (0) = VE(0) = Ty [(QF (9.7 Cls) = m(1s)) = (MG (1)) — H(n(19)]]
(87)

We then bound the two terms separately.
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e To control the first term, we notice that Q,(s,a) is bounded by 0 < Q- (s,a) <
A T8 £ all (s, a). Hence, we have

T— T—y

(QF (), (1) = =(19))| < @7’ )| _ (1) = mC1s)]
< Q)| Hlogw ~log(]s)] .
s1_17<R+Tlog|A|>Hlogw'<-|s>—1ogw<-|s>uoo, (88)

where the second step is due to (Mei et al., 2020, Lemma 24).

e Turning to the entropy difference term in (87), let

F(logn(|s)) = —(exp(log 7(-|s)),log 7(|s)) = H(m(:|s)).

We can then invoke mean value theorem to show

|—H(x'(]s)) + s))| = |-F(logn'(:|s)) + F(logm(-|s))|
= |(log 7' (-|s) —log 7 (:|s), VF(log £))|
< |[log 7' (-] > log 7(-[s)]|  [IVF(log &)y
< |flog 7'(-]s) —logm(-|s)||  (I€l; + 1€ © log&[ly),  (89)

where log & = clog m(-|s) + (1 — ¢) log 7’ (+|s) for some constant 0 < ¢ < 1, and the last
line follows from VF (log &) = —{—£®log &, where ® denotes point-wise multiplication.
Holder’s inequality guarantees that

el = K1), 7 (L) )] < D) Mhe 17 CLs) el g = 1

Introduce € which appends a scalar 1 — [|€]|, to € as € = [¢T,1 — ||¢]|,]T, so that € is
a probability vector. It is straightforward to get

I¢ © logéll, = = &(a) log&(a)

acA

< =) &a)logéla) — (1 — €]l log(1 = [I€]ly) = H(E) < log(|A] +1).

acA

Substitution of the above two inequalities into (89) gives
|=H(7'(-|s)) + H(m(|s))] < [[log ' ([s) —logm(-|s)|| , (1 +log(|A] +1)).  (90)

Plugging (90) and (88) into (87) completes the proof.
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