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Abstract

We propose ScaledGD(λ), a preconditioned gra-

dient descent method to tackle the low-rank ma-

trix sensing problem when the true rank is un-

known, and when the matrix is possibly ill-

conditioned. Using overparameterized factor rep-

resentations, ScaledGD(λ) starts from a small

random initialization, and proceeds by gradient

descent with a specific form of damped precon-

ditioning to combat bad curvatures induced by

overparameterization and ill-conditioning. At the

expense of light computational overhead incurred

by preconditioners, ScaledGD(λ) is remarkably

robust to ill-conditioning compared to vanilla gra-

dient descent (GD) even with overprameterization.

Specifically, we show that, under the Gaussian

design, ScaledGD(λ) converges to the true low-

rank matrix at a constant linear rate after a small

number of iterations that scales only logarithmi-

cally with respect to the condition number and the

problem dimension. This significantly improves

over the convergence rate of vanilla GD which

suffers from a polynomial dependency on the con-

dition number. Our work provides evidence on the

power of preconditioning in accelerating the con-

vergence without hurting generalization in over-

parameterized learning.

1. Introduction

Low-rank matrix recovery plays an essential role in modern

machine learning and signal processing. To fix ideas, let us

consider estimating a rank-r⋆ positive semidefinite matrix

M⋆ ∈ R
n×n based on a few linear measurements y :=

A(M⋆), where A : Rn×n → R
m models the measurement

process. Significant research efforts have been devoted

to tackling low-rank matrix recovery in a statistically and
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computationally efficient manner in recent years. Perhaps

the most well-known method is convex relaxation (Candès

& Plan, 2011; Davenport & Romberg, 2016; Recht et al.,

2010), which seeks the matrix with lowest nuclear norm to

fit the observed measurements:

min
M⪰0

∥M∥∗ s.t. y = A(M).

While statistically optimal, convex relaxation is prohibitive

in terms of both computation and memory as it directly

operates in the ambient matrix domain, i.e., Rn×n. To

address this challenge, nonconvex approaches based on low-

rank factorization have been proposed (Burer & Monteiro,

2005):

min
X∈Rn×r

1
4

∥∥A(XX⊤)− y
∥∥2
2
, (1)

where r is a user-specified rank parameter. Despite noncon-

vexity, when the rank is correctly specified, i.e., r = r⋆, the

problem (1) admits computationally efficient solvers (Chi

et al., 2019), e.g., gradient descent (GD) with spectral initial-

ization or with small random initialization. However, two

main challenges remain when applying the factorization-

based nonconvex approach in practice.

• Unknown rank. First, the true rank r⋆ is often unknown,

which makes it infeasible to set r = r⋆. One necessarily

needs to consider an overparameterized setting in which r
is set conservatively, i.e., one sets r ≥ r⋆ or even r = n.

• Poor conditioning. Second, the ground truth matrix M⋆

may well be ill-conditioned, which is commonly encoun-

tered in practice. Existing approaches such as gradient de-

scent are still computationally expensive in such settings as

the number of iterations necessary for convergence increases

with the condition number.

In light of these two challenges, the main goal of this work

is to address the following question: Can one develop an

efficient method for solving ill-conditioned matrix recovery

in the overparameterized setting?

1.1. Our contributions: a preview

The main contribution of the current paper is to answer

the question affirmatively by developing a preconditioned

gradient descent method (ScaledGD(λ)) that converges to
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and all proofs are deferred to the appendix.

2. Problem Formulation

Section 2.1 introduces the low-rank matrix sensing prob-

lem, and Section 2.2 provides background on the proposed

ScaledGD(λ) algorithm for the overparameterized case.

2.1. Models and assumptions

Suppose that the ground truth M⋆ ∈ R
n×n is a positive-

semidefinite (PSD) matrix of rank r⋆ ≪ n, whose (compact)

eigendecomposition is given by M⋆ = U⋆Σ
2
⋆U

⊤
⋆ . Here, the

columns of U⋆ ∈ R
n×r⋆ specify the set of eigenvectors,

and Σ⋆ ∈ R
r⋆×r⋆ is a diagonal matrix where the diagonal

entries are ordered in a non-increasing order. Setting X⋆ :=
U⋆Σ⋆ ∈ R

n×r⋆ , we can rewrite M⋆ as

M⋆ = X⋆X
⊤
⋆ . (2)

We call X⋆ the ground truth low-rank factor matrix, whose

condition number κ is defined as

κ :=
σmax(X⋆)

σmin(X⋆)
. (3)

Here σmax(X⋆) and σmin(X⋆) are the largest and the small-

est singular values of X⋆, respectively.

Instead of having access to M⋆ directly, we wish to recover

M⋆ from a set of random linear measurements A(M⋆),
where A : Sym2(R

n) → R
m is a linear map from the

space of n× n symmetric matrices to R
m, namely

y = A(M⋆), i.e., yi = ⟨Ai,M⋆⟩, i = 1, . . . ,m.
(4)

We are interested in recovering M⋆ based on the measure-

ments y and the sensing operator A in a provably efficient

manner, even when the true rank r⋆ is unknown.

2.2. ScaledGD(λ) for overparameterized low-rank

matrix sensing

Inspired by the factorized representation (2), we aim to

recover the low-rank matrix M⋆ by solving the following

optimization problem (Burer & Monteiro, 2005):

min
X∈Rn×r

f(X) :=
1

4

∥∥A(XX⊤)− y
∥∥2
2
, (5)

where r is a predetermined parameter, possibly different

from r⋆. It is evident that for any rotation matrix O ∈ Or,

it holds that f(X) = f(XO), leading to an infinite number

of global minima of the loss function f .

A prelude: exact parameterization. When r is set to

be the true rank r⋆ of M⋆, Tong et al. (2021) set forth a

provable algorithmic approach called scaled gradient de-

scent (ScaledGD)—gradient descent with a specific form of

preconditioning—that adopts the following update rule

Xt+1 = Xt − ηA∗A(XtX
⊤
t −M⋆)Xt︸ ︷︷ ︸

=:∇f(Xt)

(X⊤
t Xt)

−1. (6)

Here, Xt is the t-th iterate, ∇f(Xt) is the gradient of f
at X = Xt, and η > 0 is the learning rate. Moreover,

A∗ : Rm 7→ Sym2(R
n) is the adjoint operator of A, that is

A∗(y) =
∑m

i=1 yiAi for y ∈ R
m.

At the expense of light computational overhead, ScaledGD

is remarkably robust to ill-conditioning compared with

vanilla gradient descent (GD). It is established in Tong et al.

(2021) that ScaledGD, when starting from spectral initializa-

tion, converges linearly at a constant rate—independent of

the condition number κ of X⋆ (cf. (3)); in contrast, the iter-

ation complexity of GD (Tu et al., 2016; Zheng & Lafferty,

2015) scales on the order of κ2 from the same initialization,

therefore GD becomes exceedingly slow when the problem

instance is even moderately ill-conditioned, a scenario that

is quite commonly encountered in practice.

ScaledGD(λ): overparameterization under unknown

rank. In this paper, we are interested in the so-called

overparameterization regime, where r⋆ ≤ r ≤ n. From an

operational perspective, the true rank r⋆ is related to model

order, e.g., the number of sources or targets in a scene of

interest, which is often unavailable and makes it necessary

to consider the misspecified setting. Unfortunately, in the

presence of overparameterization, the original ScaledGD

algorithm is no longer appropriate, as the preconditioner

(X⊤
t Xt)

−1 might become numerically unstable to calcu-

late. Therefore, we propose a new variant of ScaledGD by

adjusting the preconditioner as

Xt+1 = Xt − ηA∗A(XtX
⊤
t −M⋆)Xt(X

⊤
t Xt + λI)−1,

(7)

where λ > 0 is a fixed damping parameter. The new al-

gorithm is dubbed as ScaledGD(λ), and it recovers the

original ScaledGD when λ = 0. Similar to ScaledGD, a

key property of ScaledGD(λ) is that the iterates {Xt} are

equivariant with respect to the parameterization of the factor

matrix. Specifically, taking a rotationally equivalent fac-

tor XtO with an arbitrary O ∈ Or, and feeding it into the

update rule (7), the next iterate becomes Xt+1O which is

rotated simultaneously by the same rotation matrix O. In

other words, the recovered matrix sequence Mt = XtX
⊤
t

is invariant w.r.t. the parameterization of the factor matrix.

Remark 1. We note that a related variant of ScaledGD,

called PrecGD, has been proposed recently in Zhang et al.

(2022; 2021) for the overparameterized setting, which fol-

lows the update rule

Xt+1 = Xt − ηA∗A(XtX
⊤
t −M⋆)Xt(X

⊤
t Xt + λtI)

−1,
(8)

3



The Power of Preconditioning in Overparameterized Low-Rank Matrix Sensing

where the damping parameters λt =
√

f(Xt) are selected

in an iteration-varying manner assuming the algorithm is

initialized properly. In contrast, ScaledGD(λ) assumes a

fixed damping parameter λ throughout the iterations. We

shall provide more detailed comparisons with PrecGD in

Section 3.

3. Main Results

Before formally presenting our theorems, let us introduce

several key assumptions that will be in effect throughout

this paper.

Restricted Isometry Property. A key property of the op-

erator A(·) is the celebrated Restricted Isometry Property

(RIP) (Recht et al., 2010), which says that the operator A(·)
approximately preserves the distances between low-rank

matrices. The formal definition is given as follows.

Definition 1 (Restricted Isometry Property). The linear map

A(·) is said to obey rank-r RIP with a constant δr ∈ [0, 1),
if for all matrices M ∈ Sym2(R

n) of rank at most r, it

holds that

(1− δr)∥M∥2F ≤
∥∥A(M)

∥∥2
2
≤ (1 + δr)∥M∥2F. (9)

The Restricted Isometry Constant (RIC) is defined to be the

smallest positive δr such that (9) holds.

The RIP is a standard assumption in low-rank matrix sens-

ing, which has been verified to hold with high probability

for a wide variety of measurement operators. For example,

if the entries of {Ai}mi=1 are independent up to symme-

try with diagonal elements sampled from N (0, 1/m) and

off-diagonal elements from N (0, 1/(2m)), then with high

probability, A(·) satisfies rank-r RIP with constant δr, as

long as m ≥ Cnr/δ2r for some sufficiently large universal

constant C > 0 (Candès & Plan, 2011).

Throughout this paper, we make the following assumption

about the operator A(·).
Assumption 1. The operator A(·) satisfies the rank-(r⋆+1)
RIP with δr⋆+1 =: δ. Furthermore, there exist a sufficiently

small constant cδ > 0 and a sufficiently large constant

Cδ > 0 such that

δ ≤ cδr
−1/2
⋆ κ−Cδ . (10)

Small random initialization. Similar to Li et al. (2018);

Stöger & Soltanolkotabi (2021), we set the initialization X0

to be a small random matrix, i.e.,

X0 = αG, (11)

where G ∈ R
n×r is some matrix considered to be normal-

ized and α > 0 controls the magnitude of the initialization.

To simplify exposition, we take G to be a standard Gaus-

sian matrix, that is, G is a random matrix with i.i.d. entries

following N (0, 1/n).

Choice of parameters. Last but not least, the parameters

of ScaledGD(λ) are selected according to the following

assumption.

Assumption 2. For some sufficiently small constants

cη, cλ > 0 and some sufficiently large constant Cα > 0, the

parameters (η, λ, α) in ScaledGD(λ) satisfy the following

conditions:

η ≤ cη, (12a)

1

100
cλσ

2
min(X⋆) ≤ λ ≤ cλσ

2
min(X⋆), (12b)

log
∥X⋆∥
α

≥ Cα

η
log(2κ) · log(2κn). (12c)

3.1. The overparameterization case

We begin with our main theorem, which characterizes the

performance of ScaledGD(λ) under overparameterization.

Theorem 2. Suppose Assumptions 1 and 2 hold. With high

probability (with respect to the realization of the random

initialization G), there exists a universal constant Cmin > 0
such that for some T ≤ Tmin := Cmin

η log ∥X⋆∥
α , we have

∥XTX
⊤
T −M⋆∥F ≤ α1/3∥X⋆∥5/3.

In particular, for any prescribed accuracy target ε ∈ (0, 1),
by choosing a sufficiently small α fulfilling both (12c) and

α ≤ ε3∥X⋆∥, we have ∥XTX
⊤
T −M⋆∥F ≤ ε∥M⋆∥.

A few remarks are in order.

Iteration complexity. Theorem 2 shows that by choosing

an appropriate α, ScaledGD(λ) finds an ε-accurate solution,

i.e., ∥XtX
⊤
t −M⋆∥F ≤ ε∥M⋆∥, in no more than

O(log κ · log(κn) + log(1/ε))

iterations. Roughly speaking, this asserts that ScaledGD(λ)
converges at a constant linear rate after an initial phase

of approximately O(log κ · log(κn)) iterations. Most no-

tably, the iteration complexity is nearly independent of the

condition number κ, with a small overhead only through

the poly-logarithmic additive term O(log κ · log(κn)). In

contrast, GD requires O(κ8 + κ6 log(κn/ε)) iterations to

converge from a small random initialization to ε-accuracy;

see Li et al. (2018); Stöger & Soltanolkotabi (2021). Thus,

the convergence of GD is much slower than ScaledGD(λ)
even for mildly ill-conditioned matrices.

Sample complexity. The sample complexity of

ScaledGD(λ) hinges upon the Assumption 1. When the

entries of {Ai}mi=1 are independent up to symmetry with di-

agonal elements sampled from N (0, 1/m) and off-diagonal

4



The Power of Preconditioning in Overparameterized Low-Rank Matrix Sensing

elements from N (0, 1/2m), this assumption is fulfilled as

long as m ≳ nr2⋆ ·poly(κ). Our sample complexity depends

only on the true rank r⋆, but not on the overparameterized

rank r — a crucial feature in order to provide meaningful

guarantees when the overparameterized rank r is close to the

full dimension n. The dependency on κ in the sample com-

plexity, on the other end, has been generally unavoidable in

nonconvex low-rank estimation (Chi et al., 2019).

Comparison with Zhang et al. (2022; 2021). As men-

tioned earlier, our proposed algorithm ScaledGD(λ) is quite

similar to PrecGD proposed in Zhang et al. (2021) that

adopts an iteration-varying damping parameter. In terms of

theoretical guarantees, Zhang et al. (2021) only provides the

local convergence for PrecGD assuming an initialization

close to the ground truth; in contrast, we provide global

convergence guarantees where a small random initialization

is used. More critically, the sample complexity of PrecGD

(Zhang et al., 2021) depends on the overparameterized rank

r, while ours only depends on the true rank r⋆. While Zhang

et al. (2022) also studied variants of PrecGD with global

convergence guarantees, they require additional operations

such as gradient perturbations and switching between dif-

ferent algorithmic stages, which are harder to implement

in practice. Our theory suggests that additional perturba-

tion is unnecessary to ensure the global convergence of

ScaledGD(λ), as it automatically adapts to different curva-

tures of the optimization landscape throughout the entire

trajectory.

3.2. The exact parameterization case

We now single out the exact parameterization case, i.e.,

when r = r⋆. In this case, our theory suggests that

ScaledGD(λ) converges to the ground truth even from a

random initialization with a fixed scale α > 0.

Theorem 3. Assume that r = r⋆. Suppose Assumptions 1

and 2 hold. With high probability (with respect to the re-

alization of the random initialization G), there exist some

universal constants Cmin > 0 and c > 0 such that for some

T ≤ Tmin = Cmin

η log(∥X⋆∥/α), we have for any t ≥ T

∥XtX
⊤
t −M⋆∥F ≤ (1− cη)t−T ∥M⋆∥.

Exact recovery. Theorem 3 shows that with some fixed

initialization scale α, ScaledGD(λ) takes at most

O(log κ · log(κn) + log(1/ε))

iterations to converge to ε-accuracy for any ε > 0 in the

exact parameterization case. Compared with ScaledGD

(Tong et al., 2021) which takes O(log(1/ε)) iterations to

converge from a spectral initialization, we only pay a log-

arithmic order O(log κ · log(κn)) of additional iterations

to converge from a random initialization. In addition, once

the algorithms enter the local regime, both ScaledGD(λ)
and ScaledGD behave similarly and converge at a fast con-

stant linear rate, suggesting the effect of damping is lo-

cally negligible. Furthermore, compared with GD (Stöger

& Soltanolkotabi, 2021) which requires O(κ8 log(κn) +
κ2 log(1/ε)) iterations to achieve ε-accuracy, our theory

again highlights the benefit of ScaledGD(λ) in boosting the

global convergence even for mildly ill-conditioned matrices.

4. Analysis

In this section, we present the main steps for proving Theo-

rem 2 and Theorem 3. The detailed proofs are collected in

the Appendix. All of our statements will be conditioned on

the following high probability event regarding the initializa-

tion matrix G:

E = {∥G∥ ≤ CG} ∩ {σmin(Û
⊤G) ≥ (2n)−CG}, (13)

where Û ∈ R
n×r⋆ is an orthonormal basis of the eigenspace

associated with the r⋆ largest eigenvalues of A∗A(M⋆), and

CG > 0 is some sufficiently large universal constant. It is a

standard result in random matrix theory that E happens with

high probability, as verified by the following lemma.

Lemma 1. With respect to the randomness of G, the event E
happens with probability at least 1− (cn)−CG(r−r⋆+1)/2 −
2 exp(−cn), where c > 0 is some universal constant.

4.1. Preliminaries: decomposition of Xt

Before embarking on the main proof, we present a useful

decomposition (cf. (14)) of the iterate Xt into a signal term,

a misalignment error term, and an overparameterization

error term. Choose some matrix U⋆,⊥ ∈ R
n×(n−r⋆) such

that [U⋆, U⋆,⊥] is orthonormal. Then we can define

St := U⊤
⋆ Xt ∈ R

r⋆×r, and Nt := U⊤
⋆,⊥Xt ∈ R

(n−r⋆)×r.

Let the SVD of St be

St = UtΣtV
⊤
t ,

where Ut ∈ R
r⋆×r⋆ , Σt ∈ R

r⋆×r⋆ , and Vt ∈ R
r×r⋆ . Simi-

lar to U⋆,⊥, we define the orthogonal complement of Vt as

Vt,⊥ ∈ R
r×(r−r⋆). When r = r⋆ we simply set Vt,⊥ = 0.

We are now ready to present the main decomposition of Xt,

which we use repeatedly in later analysis.

Proposition 1. The following decomposition holds:

Xt = U⋆S̃tV
⊤
t︸ ︷︷ ︸

signal

+U⋆,⊥ÑtV
⊤
t︸ ︷︷ ︸

misalignment

+ U⋆,⊥ÕtV
⊤
t,⊥︸ ︷︷ ︸

overparameterization

, (14)

where

S̃t := StVt ∈ R
r⋆×r⋆ , Ñt := NtVt ∈ R

(n−r⋆)×r⋆ ,

and Õt := NtVt,⊥ ∈ R
(n−r⋆)×(r−r⋆). (15)
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Several remarks on the decomposition are in order.

• First, since Vt,⊥ spans the obsolete subspace arising

from overparameterization, Õt naturally represents the

error incurred by overparameterization; in particular,

in the well-specified case (i.e., r = r⋆), one has zero

overparameterization error, i.e., Õt = 0.

• Second, apart from the rotation matrix Vt, S̃t docu-

ments the projection of the iterates Xt onto the signal

space U⋆. Similarly, Ñt characterizes the misalign-

ment of the iterates with the signal subspace U⋆. It is

easy to observe that in order for XtX
⊤
t ≈ M⋆, one

must have S̃tS̃
⊤
t ≈ Σ2

⋆, and Ñt ≈ 0.

• Last but not least, the extra rotation induced by Vt is

extremely useful in making the signal/misalignment

terms rationally invariant. To see this, suppose that

we rotate the current iterate by Xt 7→ XtQ with some

rotational matrix Q ∈ Or, then St 7→ StQ but S̃t

remains unchanged, and similarly for Ñt.

4.2. Proof roadmap

Our analysis breaks into a few phases that characterize the

dynamics of the key terms in the above decomposition,

which we provide a roadmap to facilitate understanding.

Denote

Cmax :=

{
4Cmin, r > r⋆,

∞, r = r⋆,

and

Tmax :=
Cmax

η
log(∥X⋆∥/α),

where Tmax represents the largest index of the iterates that

we maintain error control. The analysis boils down to the

following phases, indicated by time points t1, t2, t3, t4 that

satisfy

t1 ≤ Tmin/16, t1 ≤ t2 ≤ t1 + Tmin/16,

t2 ≤ t3 ≤ t2 + Tmin/16, t3 ≤ t4 ≤ t3 + Tmin/16.

• Phase I: approximate power iterations. In the initial

phase, ScaledGD(λ) behaves similarly to GD, which

is shown in (Stöger & Soltanolkotabi, 2021) to approx-

imate the power method in the first few iterations up

to t1. After this phase, namely for t ∈ [t1, Tmax], al-

though the signal strength is still quite small, it begins

to be aligned with the ground truth with the overparam-

eterization error kept relatively small.

• Phase II: exponential amplification of the signal. In

this phase, ScaledGD(λ) behaves somewhat as a mix-

ture of GD and ScaledGD with a proper choice of the

damping parameter λ ≍ σ2
min(X⋆), which ensures the

signal strength first grows exponentially fast to reach

a constant level no later than t2, and then reaches the

desired level no later than t3, i.e., S̃tS̃
⊤
t ≈ Σ2

⋆.

• Phase III: local linear convergence. At the last phase,

ScaledGD(λ) behaves similarly to ScaledGD, which

converges linearly at a rate independent of the condi-

tion number. Specifically, for t ∈ [t3, Tmax], the recon-

struction error ∥XtX
⊤
t −M⋆∥F converges at a linear

rate up to some small overparameterization error, until

reaching the desired accuracy for any t ∈ [t4, Tmax].

4.3. Phase I: approximate power iterations

It has been observed in Stöger & Soltanolkotabi (2021)

that when initialized at a small scaled random matrix, the

first few iterations of GD mimic the power iterations on

the matrix A∗A(M⋆). When it comes to ScaledGD(λ),
since the initialization scale α is chosen to be much

smaller than the damping parameter λ, the preconditioner

(X⊤
t Xt+λI)−1 behaves like (λI)−1 in the beginning. This

renders ScaledGD(λ) akin to gradient descent in the initial

phase. As a result, we also expect the first few iterations of

ScaledGD(λ) to be similar to the power iterations, i.e.,

Xt ≈
(
I +

η

λ
A∗A(M⋆)

)t
X0, when t is small.

Such proximity between ScaledGD(λ) and power iterations

can indeed be justified in the beginning period, which allows

us to deduce the following nice properties after the initial

iterates of ScaledGD(λ).

Lemma 2. Under the same setting as Theorem 2, there

exists an iteration number t1 : t1 ≤ Tmin/16 such that

σmin(S̃t1) ≥ α2/∥X⋆∥, (16)

and that, for any t ∈ [t1, Tmax], S̃t is invertible and one has

∥Õt∥ ≤ (C2.bκn)
−C2.b∥X⋆∥σmin

(
(Σ2

⋆ + λI)−1/2S̃t

)
,

(17a)

∥Õt∥ ≤
(
1 +

η

12Cmaxκ

)t−t1

α5/6∥X⋆∥1/6, (17b)

∥ÑtS̃
−1
t Σ⋆∥ ≤ c2κ

−Cδ/2∥X⋆∥, (17c)

∥S̃t∥ ≤ C2.aκ∥X⋆∥, (17d)

where C2.a, C2.b, c2 are some positive constants satisfying

C2.a ≲ c
−1/2
λ , c2 ≲ cδ/c

3
λ, and C2.b can be made arbitrar-

ily large by increasing Cα.

Remark 2. Let us record two immediate consequences of

(17), which sometimes are more convenient for later analy-

sis. From (17a), we may deduce

∥Õt∥ ≤ (C2.bκn)
−C2.b∥X⋆∥σmin(Σ

2
⋆ + λI)−1/2σmin(S̃t)
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≤ κ(C2.bκn)
−C2.bσmin(S̃t)

≤ (C ′
2.bκn)

−C′
2.bσmin(S̃t), (18)

where C ′
2.b = C2.b/2, provided C2.b > 4. It is clear that

C ′
2.b can also be made arbitrarily large by enlarging Cα.

Similarly, from (17b), we may deduce

∥Õt∥ ≤
(
1 +

η

12Cmaxκ

)t−t1

α5/6∥X⋆∥1/6

≤
(
1 +

η

12Cmaxκ

)Cmax
η

log(∥X⋆∥/α)
α5/6∥X⋆∥1/6

≤ (∥X⋆∥/α)1/12α5/6∥X⋆∥1/6 = α3/4∥X⋆∥1/4.
(19)

Lemma 2 ensures the iterates of ScaledGD(λ) maintain sev-

eral desired properties after iteration t1, as summarized in

(17). In particular, for any t ∈ [t1, Tmax]: (i) the overparam-

eterization error ∥Õt∥ remains small relatively to the signal

strength measured in terms of the scaled minimum singu-

lar value σmin

(
(Σ2

⋆ + λI)−1/2S̃t

)
, and remains bounded

with respect to the size of the initialization α (cf. (17a) and

(17b) and their consequences (18) and (19)); (ii) the scaled

misalignment-to-signal ratio remains bounded, suggesting

the iterates remain aligned with the ground truth signal sub-

space U⋆ (cf. (17c)); (iii) the size of the signal component

S̃t remains bounded (cf. (17d)). These properties play an

important role in the follow-up analysis.

Remark 3. It is worth noting that, the scaled minimum

singular value σmin((Σ
2
⋆ + λI)−1/2S̃t) plays a key role in

our analysis, which is in sharp contrast to the use of the

vanilla minimum singular value σmin(S̃t) in the analysis

of gradient descent (Stöger & Soltanolkotabi, 2021). This

new measure of signal strength is inspired by the scaled

distance for ScaledGD introduced in (Tong et al., 2021;

2022), which carefully takes the preconditioner design into

consideration. Similarly, the metrics ∥ÑtS̃
−1
t Σ⋆∥ in (17c)

and
∥∥Σ−1

⋆ (S̃t+1S̃
⊤
t+1 −Σ2

⋆)Σ
−1
⋆

∥∥ (to be seen momentarily)

are also scaled for similar considerations to unveil the fast

convergence (almost) independent of the condition number.

4.4. Phase II: exponential amplification of the signal

By the end of Phase I, the signal strength is still quite small

(cf. (16)), which is far from the desired level. Fortunately,

the properties established in Lemma 2 allow us to establish

an exponential amplification of the signal term S̃t thereafter,

which can be further divided into two stages.

1. In the first stage, the signal is boosted to a constant

level, i.e., S̃tS̃
⊤
t ⪰ 1

10Σ
2
⋆;

2. In the second stage, the signal grows further to the

desired level, i.e., S̃tS̃
⊤
t ≈ Σ2

⋆.

We start with the first stage, which again uses σmin

(
(Σ2

⋆ +

λI)−1/2S̃t

)
as a measure of signal strength in the following

lemma.

Lemma 3. For any t such that (17) holds, we have

σmin

(
(Σ2

⋆+λI)−1/2S̃t+1

)
≥ (1−2η)σmin

(
(Σ2

⋆+λI)−1/2S̃t

)
.

Moreover, if σmin

(
(Σ2

⋆ + λI)−1/2S̃t

)
≤ 1/3, then

σmin

(
(Σ2

⋆ + λI)−1/2S̃t+1

)
≥

(
1 +

1

8
η

)
σmin

(
(Σ2

⋆ + λI)−1/2S̃t

)
.

The second half of Lemma 3 uncovers the exponential

growth of the signal strength σmin

(
(Σ2

⋆ + λI)−1/2S̃t

)
until

a constant level after several iterations, which resembles the

exponential growth of the signal strength in GD (Stöger &

Soltanolkotabi, 2021). This is formally established in the

following corollary.

Corollary 1. There exists an iteration number t2 : t1 ≤
t2 ≤ t1 + Tmin/16 such that for all t ∈ [t2, Tmax], we have

S̃tS̃
⊤
t ⪰ 1

10
Σ2

⋆. (20)

We next aim to show that S̃tS̃
⊤
t ≈ Σ2

⋆ after the signal

strength is above the constant level. To this end, the behavior

of ScaledGD(λ) becomes closer to that of ScaledGD, and it

turns out to be easier to work with
∥∥Σ−1

⋆ (S̃tS̃
⊤
t −Σ2

⋆)Σ
−1
⋆

∥∥
as a measure of the scaled recovery error of the signal com-

ponent. We establish the approximate exponential shrinkage

of this measure in the following lemma.

Lemma 4. For all t ∈ [t2, Tmax] with t2 given in Corollary

1, one has

∥∥Σ−1
⋆ (S̃t+1S̃

⊤
t+1 − Σ2

⋆)Σ
−1
⋆

∥∥ ≤

(1− η)
∥∥Σ−1

⋆ (S̃tS̃
⊤
t − Σ2

⋆)Σ
−1
⋆

∥∥+ 1

100
η. (21)

With the help of Lemma 4, it is straightforward to establish

the desired approximate recovery guarantee of the signal

component, i.e., S̃tS̃
⊤
t ≈ Σ2

⋆.

Corollary 2. There exists an iteration number t3 : t2 ≤
t3 ≤ t2+Tmin/16 such that for any t ∈ [t3, Tmax], one has

9

10
Σ2

⋆ ⪯ S̃tS̃
⊤
t ⪯ 11

10
Σ2

⋆. (22)

4.5. Phase III: local convergence

Corollary 2 tells us that after iteration t3, we enter a local

region in which S̃tS̃
⊤
t is close to the ground truth Σ2

⋆. In this

local region, the behavior of ScaledGD(λ) becomes closer
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Notation. The singular values of a matrix A ∈ R
n1×n2 sorted in descending order are denoted by σmax(A) = σ1(A) ≥

σ2(A) ≥ · · · ≥ σn(A) = σmin(A), where n = min(n1, n2). Let Sym2(R
n) be the set of symmetric n × n matrices.

The eigenvalues of a symmetric matrix A ∈ Sym2(R
n) are denoted by λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) =: λmin(A).

For a matrix A, its operator norm is denoted by ∥A∥ := supx ̸=0 ∥Ax∥/∥x∥, while its Frobenius norm is denoted by

∥A∥F :=
√
tr(A⊤A). In general, we denote by ||| · ||| a unitraily invariant norm of matrices, though in this paper we will

always take ||| · ||| = ∥·∥ or ∥·∥F. We use c, c′, C, C ′, . . . to denote constants that may vary upon each occurrence. The symbols

of constants are subscripted, e.g. cλ, c1, Cδ , when their values are fixed globally. The meanings of O(·),Ω(·),≲,≳,≍ are

standard, and hence omitted.

A. Related Work

Significant efforts have been devoted to understanding nonconvex optimization for low-rank matrix estimation in recent

years, see (Chi et al., 2019) and (Chen & Chi, 2018) for recent overviews. By reparameterizing the low-rank matrix into a

product of factor matrices, also known as the Burer-Monteiro factorization (Burer & Monteiro, 2005), the focus point has

been examining if the factor matrices can be recovered—up to invertible transformations—faithfully using simple iterative

algorithms in a provably efficient manner. However, the majority of prior efforts suffer from the limitations that they assume

an exact parameterization where the rank of the ground truth is given or estimated somewhat reliably, and rely on a carefully

constructed initialization (e.g., using the spectral method (Chen et al., 2021)) in order to guarantee global convergence in a

polynomial time. The analyses adopted in the exact parameterization case fail to generalize when overparameterization

presents, and drastically new approaches are called for.

Overparameterization in low-rank matrix sensing. Li et al. (2018) made a theoretical breakthrough that showed that

gradient descent converges globally to any prescribed accuracy even in the presence of full overparameterization (r = n),

with a small random initialization, where their analyses were subsequently adapted and extended in Stöger & Soltanolkotabi

(2021) and Zhuo et al. (2021). Ding et al. (2021) investigated robust low-rank matrix recovery with overparameterization

from a spectral initialization, and Ma & Fattahi (2022) examined the same problem from a small random initialization with

noisy measurements. Zhang et al. (2022; 2021) developed a preconditioned gradient descent method for overparameterized

low-rank matrix sensing. Last but not least, a number of other notable works that study overparameterized low-rank models

include, but are not limited to, Geyer et al. (2020); Oymak & Soltanolkotabi (2019); Soltanolkotabi et al. (2018); Zhang

(2021; 2022).

Global convergence from random initialization without overparameterization. Despite nonconvexity, it has been

established recently that several structured learning models admit global convergence via simple iterative methods even

when initialized randomly even without overparameterization. For example, Chen et al. (2019) showed that phase retrieval

converges globally from a random initialization using a near-minimal number of samples through a delicate leave-one-out

analysis. In addition, the efficiency of randomly initialized GD is established for complete dictionary learning (Bai et al.,

2018; Gilboa et al., 2019), multi-channel sparse blind deconvolution (Qu et al., 2019; Shi & Chi, 2021), asymmetric low-rank

matrix factorization (Ye & Du, 2021), and rank-one matrix completion (Kim & Chung, 2022). Moving beyond GD, Lee &

Stöger (2022) showed that randomly initialized alternating least-squares converges globally for rank-one matrix sensing,

whereas Chandrasekher et al. (2022) developed sharp recovery guarantees of alternating minimization for generalized

rank-one matrix sensing with sample-splitting and random initialization.

Algorithmic or implicit regularization. Our work is related to the phenomenon of algorithmic or implicit regularization

(Gunasekar et al., 2017), where the trajectory of simple iterative algorithms follows a path that maintains desirable properties

without explicit regularization. Along this line, Chen et al. (2020); Li et al. (2021); Ma et al. (2019) highlighted the implicit

regularization of GD for several statistical estimation tasks, Ma et al. (2021) showed that GD automatically balances the

factor matrices in asymmetric low-rank matrix sensing, where Jiang et al. (2022) analyzed the algorithmic regularization in

overparameterized asymmetric matrix factorization in a model-free setting.

B. Preliminaries

This section collects several preliminary results that are useful in later proofs. In general, for a matrix A, we will denote by

UA the first factor in its compact SVD A = UAΣAV
⊤
A , unless otherwise specified.
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B.1. Proof of Lemma 1

It is a standard result in random matrix theory (Rudelson & Vershynin, 2009; Vershynin, 2012) that an M ×N (M ≥ N )

random matrix G0 with i.i.d. standard Gaussian entries satisfies

P

(
∥G0∥ ≤ 4

(√
M +

√
N
))

≥ 1− exp(−M/C), (25a)

P

(
σmin(G0) ≥ ε

(√
M −

√
N − 1

))
≥ 1− (Cε)M−N+1 − exp(−M/C), (25b)

for some universal constant C > 0 and for any ε > 0. Applying (25a) to the random matrix
√
nG which is an n× r random

matrix with i.i.d. standard Gaussian entries, we have

∥G∥ ≤ 4(
√
n+

√
r)/

√
n ≤ 8

with probability at least 1− exp(−n/C).

Turning to the bound on σ−1
min(Û

⊤G), observe that
√
nÛ⊤G is a r⋆ × r random matrix with i.i.d. standard Gaussian entries,

thus applying (25b) to
√
nÛ⊤G with ε = (2n)−CG+1 yields

σ−1
min(Û

⊤G) ≤ (2n)CG−1(
√
r −

√
r⋆ − 1)−1 ≤ (2n)CG−1(2

√
r) ≤ (2n)CG

with probability at least 1− (2n/C)−(CG−1)(r−r⋆+1) − exp(−n/C). Here, the second inequality follows from

1√
r −√

r⋆ − 1
≤ 1√

r −
√
r − 1

=
√
r +

√
r − 1 < 2

√
r.

Combining the above two bounds directly implies the desired probability bound if we choose c = 1/C and choose a large

CG such that CG ≥ 8 and CG − 1 ≥ CG/2.

B.2. Proof of Proposition 1

Using the definitions of St and Nt, we have

Xt = (U⋆U
⊤
⋆ + U⋆,⊥U

⊤
⋆,⊥)Xt = U⋆St + U⋆,⊥Nt

= U⋆S̃tV
⊤
t + U⋆,⊥Nt(VtV

⊤
t + Vt,⊥V

⊤
t,⊥)

= U⋆S̃tV
⊤
t + U⋆,⊥ÑtV

⊤
t + U⋆,⊥ÕtV

⊤
t,⊥,

where in the second line, we used the relation S̃t = StVt = UtΣtV
⊤
t Vt = UtΣt and thus

St = S̃tV
⊤
t . (26)

B.3. Consequences of RIP

The first result is a standard consequence of RIP, see, for example Stöger & Soltanolkotabi (2021, Lemma 7.3).

Lemma 6. Suppose that the linear map A : Sym2(R
n) → R

m satisfies Assumption 1. Then we have

∥(I −A∗A)(Z)∥ ≤ δ∥Z∥F

for any Z ∈ Sym2(R
n) with rank at most r⋆.

We need another straightforward consequence of RIP, given by the following lemma.

Lemma 7. Under the same setting as in Lemma 6, we have

∥(I −A∗A)(Z)∥ ≤ 2δ
√

(r ∨ r⋆)/r⋆∥Z∥F ≤ 2(r ∨ r⋆)δ√
r⋆

∥Z∥

for any Z ∈ Sym2(R
n) with rank at most r.
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Proof. Without loss of generality we may assume r ≥ r⋆, thus r ∨ r⋆ = r. We claim that it is possible to decompose

Z =
∑

i≤⌈r/r⋆⌉ Zi where Zi ∈ Sym2(R
n), rank(Zi) ≤ r⋆ and ZiZj = 0 if i ̸= j. To see why this is the case, notice the

spectral decomposition of Z gives r rank-one components that are mutually orthogonal, thus we may divide them into

⌈r/r⋆⌉ subgroups indexed by i = 1, . . . , ⌈r/r⋆⌉, such that each subgroup contains at most r⋆ components. Let Zi be the

sum of the components in the subgroup i, it is easy to check that Zi has the desired property.

The property of the decomposition yields

∥Z∥2F = tr(Z2) =
∑

i,j≤⌈r/r⋆⌉
tr(ZiZj) =

∑

i≤⌈r/r⋆⌉
∥Zi∥2F. (27)

But for each Zi, Lemma 6 implies

∥(I −A∗A)(Zi)∥ ≤ δ∥Zi∥F.
Summing up for i ≤ ⌈r/r⋆⌉ yields

∥(I −A∗A)(Z)∥ ≤
∑

i≤⌈r/r⋆⌉
∥(I −A∗A)(Zi)∥ ≤ δ

∑

i≤⌈r/r⋆⌉
∥Zi∥F ≤ δ

√
⌈r/r⋆⌉ ∥Z∥F,

where the last inequality follows from (27) and from Cauchy-Schwarz inequality.

The first inequality in Lemma 7 follows from the above inequality by noting that ⌈r/r⋆⌉ ≤ 2r/r⋆ given r ≥ r⋆ which was

assumed in the beginning of the proof. The second inequality in Lemma 7 follows from ∥Z∥F ≤ √
r∥Z∥.

B.4. Matrix perturbation results

The next few results are all on matrix perturbations. We first present a perturbation result on matrix inverse.

Lemma 8. Assume that A,B are square matrices of the same dimension, and that A is invertible. If ∥A−1B∥ ≤ 1/2, then

(A+B)−1 = A−1 +A−1BQA−1, for some ∥Q∥ ≤ 2.

Similarly, if ∥BA−1∥ ≤ 1/2, then we have

(A+B)−1 = A−1 +A−1QBA−1, for some ∥Q∥ ≤ 2.

In particular, if ∥B∥ ≤ σmin(A)/2, then both of the above equations hold.

Proof. The claims follow from the identity

(A+B)−1 = A−1 −A−1B(I +A−1B)−1A−1 = A−1 −A−1(I +BA−1)−1BA−1.

For the first claim when ∥A−1B∥ ≤ 1/2, we set Q := −(I + A−1B)−1, which satisfies ∥Q∥ = ∥(I + A−1B)−1∥ ≤
1

1−∥A−1B∥ ≤ 2. The second claim follows similarly. Finally, we note that when ∥B∥ ≤ σmin(A)/2, it holds

∥A−1B∥ ≤ 1

σmin(A)
∥B∥ ≤ 1

2
and ∥BA−1∥ ≤ ∥B∥ 1

σmin(A)
≤ 1

2
,

thus completing the proof.

Next, we focus on the minimum singular value of certain matrix of form I +AB.

Lemma 9. If A, B are positive definite matrices of the same size, we have

σmin(I +AB) ≥ κ−1/2(A), where κ(A) :=
∥A∥

σmin(A)
.

Proof. Writing I +AB = A1/2(I +A1/2BA1/2)A−1/2, we obtain

σmin(I +AB) ≥ σmin(A
1/2)σmin(A

−1/2)σmin(I +A1/2BA1/2).

The proof is completed by noting that σmin(A
1/2) = σ

1/2
min(A), σmin(A

−1/2) = ∥A∥−1/2, and that σmin(I+A1/2BA1/2) ≥
1 since A1/2BA1/2 is positive semidefinite.
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The last result still concerns the minimum singular value of a matrix of interest.

Lemma 10. There exists a universal constant c10 > 0 such that if Λ is a positive definite matrix obeying ∥Λ∥ ≤ c10 and

σmin(Y ) ≤ 1/3, then for any η ≤ c10 we have

σmin

((
(1− η)I + η(Y Y ⊤ + Λ)−1

)
Y
)
≥
(
1 +

η

6

)
σmin(Y ). (28)

Proof. Denote Z = Y Y ⊤ and let UΣU⊤ = Z +Λ be the spectral decomposition of Z +Λ. By a coordinate transform one

may assume Z + Λ = Σ. It suffices to show

λmin

((
(1− η)I + ηΣ−1

)
Z
(
(1− η)I + ηΣ−1

))
≥
(
1 +

1

6
η

)2

λmin(Z). (29)

For simplicity we denote ζ = λmin(Z), which is by assumption smaller than 1/9. Fix K = 1/4 so that K ≥ 2ζ + 4c10 by

choosing c10 to be small enough. By permuting coordinates we may further assume that the diagonal matrix Σ is of the

following form:

Σ =

[
Σ≤K

Σ>K

]
, (30)

where Σ≤K , Σ>K are diagonal matrices such that λmax(Σ≤K) ≤ K and λmin(Σ>K) > K. It suffices to consider the case

where Σ>K is not vacuous, because otherwise λmax(Σ) ≤ K ≤ 1/2, and the desired (29) follows as

λmin

((
(1− η)I + ηΣ−1

)
Z
(
(1− η)I + ηΣ−1

))
≥
(
1− η + ηλ−1

max(Σ)
)2
λmin(Z) ≥ (1 + η)2λmin(Z).

For the rest of the proof, we assume the block corresponding to Σ>K is not vacuous.

Divide Z into blocks of the same shape as (30):

Z =

[
Z0 A
A⊤ Z1

]
. (31)

The purpose of such division is to facilitate computation of minimum eigenvalues by Schur’s complement lemma. For

preparation, we make a few simple observations. Since Z = Σ− Λ, we see that A being an off-diagonal submatrix of Z
satisfies ∥A∥ ≤ ∥Λ∥ ≤ c10, and similarly ∥Z0 − Σ≤K∥ ≤ c10, ∥Z1 − Σ>K∥ ≤ c10. In particular, we have

λmin(Z1) ≥ λmin(Σ>K)− c10 > K − c10 ≥ 2ζ + 3c10 > ζ, (32)

which implies Z1 − ζI is positive definite and invertible. Thus by Schur’s complement lemma, Z ⪰ ζI is equivalent to

Z0 − ζI −A(Z1 − ζI)−1A⊤ ⪰ 0, (33)

which provides an analytic characterization for the minimum eigenvalue ζ of Z.

The rest of the proof follows from the following steps: we will first show again by Schur’s complement lemma that

(29) admits a similar analytic characterization. More precisely, denoting ζ ′ = (1 + η
6 )

2ζ, Σ0 = (1 − η)I + ηΣ−1
≤K and

Σ1 = (1− η)I + ηΣ−1
>K , then (29) is equivalent to

Z0 − ζ ′Σ−2
0 −A(Z1 − ζ ′Σ−2

1 )−1A⊤ ⪰ 0. (34)

After proving they are equivalent, we will prove that (34) holds as long as the following sufficient condition holds

Z0 − (1 + 3η)−2ζ ′I −A(Z1 − ζI)−1A⊤ − 10ηζA(Z1 − ζI)−2A⊤ ⪰ 0. (35)

In the last step, we establish the above sufficient condition to complete the proof.
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Step 1: equivalence between (29) and (34). First notice that

(
(1− η)I + ηΣ−1

)
Z
(
(1− η)I + ηΣ−1

)
=

[
Σ0Z0Σ0 Σ0AΣ1

Σ1A
⊤Σ0 Σ1Z1Σ1

]
. (36)

In order to invoke Schur’s complement lemma, we need to verify Σ1Z1Σ1 − ζ ′I ≻ 0. Observe that by definition we have

Σ0 ⪰
(
1 + (K−1 − 1)η

)
I = (1 + 3η)I, Σ1 ⪰ (1− η)I. (37)

Hence

Σ1Z1Σ1 − ζ ′I ⪰ (1− η)2Z1 −
(
1 +

1

6
η

)2

ζI ≻ 2(1− η)2ζI −
(
1 +

1

6
η

)2

ζI ≻ 0,

where in the second inequality we used Z1 − 2ζI ≻ 0 proved in (32), and in the last inequality we used η ≤ cη with cη
sufficiently small. This completes the verification that Σ1Z1Σ1 − ζ ′I ≻ 0. Now, invoking Schur’s complement lemma

yields that (29) is equivalent to

Σ0Z0Σ0 − ζ ′I − Σ0AΣ1(Σ1Z1Σ1 − ζ ′I)−1Σ1A
⊤Σ0 ⪰ 0,

which simplifies easily to (34), as claimed.

Step 2: establishing (35) as a sufficient condition for (34). By (37), it follows that

(Z1 − ζ ′Σ−2
1 )−1 ⪯ (Z1 − (1− η)−2ζ ′I)−1

=
(
Z1 − ζI −

(
(1− η)−2ζ ′ − ζ

)
I
)−1

, (38)

where we used the well-known fact that A ⪯ B implies B−1 ⪯ A−1 for positive definite matrices A and B, cf. Bhatia

(1997, Proposition V.1.6). We aim to apply Lemma 8 to control the above term, by treating ((1 − η)−2ζ ′ − ζ)I as a

perturbation term. For this purpose we need to verify

∣∣(1− η)−2ζ ′ − ζ
∣∣ ≤ 1

2
λmin(Z1 − ζI). (39)

Given η ≤ cη with sufficiently small cη , we have (1− η)−2 ≤ 1 + 3η, (1 + 1
6η)

2 ≤ 1 + η, and (1 + 3η)(1 + η) ≤ 1 + 5η,

thus

0 ≤ (1− η)−2
(
1 +

1

6
η
)2
ζ − ζ = (1− η)−2ζ ′ − ζ ≤ (1 + 3η)(1 + η)ζ − ζ ≤ 5ηζ < ζ/2,

where the last inequality follows from cη ≤ 1/10. On the other hand, invoking (32), we obtain

1

2
ζ ≤ 1

2

(
λmin(Z1)− ζ

)
=

1

2
λmin(Z1 − ζI),

which verifies (39). Thus we may apply Lemma 8 to show

∥∥∥(Z1 − ζI)
(
(Z1 − ζI)−1 −

(
Z1 − ζI − ((1− η)−2ζ ′ − ζ)I

)−1
)
(Z1 − ζI)

∥∥∥ ≤ 2
∣∣(1− η)−2ζ ′ − ζ

∣∣ ≤ 10ηζ,

therefore (
Z1 − ζI − ((1− η)−2ζ ′ − ζ)I

)−1 ⪯ (Z1 − ζI)−1 + 10ηζ(Z1 − ζI)−2.

Together with (38), this implies

(Z1 − ζ ′Σ−2
1 )−1 ⪯ (Z1 − ζI)−1 + 10ηζ(Z1 − ζI)−2. (40)

Combining (37) and (40), we see that a sufficient condition for (34) to hold is (35).

16
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Step 3: establishing (35). It is clear that (35) is implied by

ζI − (1 + 3η)−2ζ ′I − 10ηζA(Z1 − ζI)−2A⊤ ⪰ 0, (41)

by leveraging the relation Z0 ⪰ ζI +A(Z1 − ζI)−1A⊤ from (33).

Hence, it boils down to prove (41). Recalling ∥A∥ ≤ c10, and from (32), we know λmin(Z1−ζI) ≥ K−c10−ζ ≥ ζ+3c10.

Thus

∥A(Z1 − ζI)−2A⊤∥ ≤ ∥A∥2∥(Z1 − ζI)−2∥ ≤ c210/(ζ + 3c10)
2 ≤ 1/9.

Therefore, to prove (41) it suffices to show

ζ − (1 + 3η)−2ζ ′ ≥ 10

9
ηζ. (42)

It is easy to verify that the above inequality holds for our choice ζ ′ = (1 + 1
6η)

2ζ. In fact, given η ≤ cη for sufficiently

small cη , we have (1 + 3η)−2 ≤ 1− 4η, (1 + 1
6η)

2 ≤ 1 + η. These together yield

ζ − (1 + 3η)−2
(
1 +

1

6
η
)2
ζ ≥ ζ − (1− 4η)(1 + η)ζ = 3ηζ + 4η2ζ ≥ 3ηζ ≥ 10

9
ηζ,

establishing (42) as desired.

C. Decompositions of Key Terms

In this section, we first present a useful bound of a key error quantity

∆t := (I −A∗A)(XtX
⊤
t −M⋆), (43)

where Xt is the iterate of ScaledGD(λ) given in (7).

Lemma 11. Suppose A(·) satisfies Assumption 1. For any t ≥ 0 such that (17) holds, we have

∥∆t∥ ≤ 8δ
(
∥S̃tS̃

⊤
t − Σ2

⋆∥F + ∥S̃t∥∥Ñt∥F + n∥Õt∥2
)
. (44)

In particular, there exists some constant c11 ≲ cδ/c
3
λ such that

∥∆t∥ ≤ 16(C2.a + 1)2cδκ
−2Cδ/3∥X⋆∥2 ≤ c11κ

−2Cδ/3∥X⋆∥2. (45)

Proof. The decomposition (14) in Proposition 1 yields

XtX
⊤
t = U⋆S̃tS̃

⊤
t U⊤

⋆ + U⋆S̃tÑ
⊤
t U⊤

⋆,⊥ + U⋆,⊥ÑtS̃
⊤
t U⊤

⋆ + U⋆,⊥ÑtÑ
⊤
t U⊤

⋆,⊥ + U⋆,⊥ÕtÕ
⊤
t U

⊤
⋆,⊥.

Since M⋆ = U⋆Σ
2
⋆U

⊤
⋆ , we have

XtX
⊤
t −M⋆ = U⋆(S̃tS̃

⊤
t − Σ2

⋆)U
⊤
⋆︸ ︷︷ ︸

=:T1

+U⋆S̃tÑ
⊤
t U⊤

⋆,⊥ + U⋆,⊥ÑtS̃
⊤
t U⊤

⋆︸ ︷︷ ︸
=:T2

+U⋆,⊥ÑtÑ
⊤
t U⊤

⋆,⊥︸ ︷︷ ︸
=:T3

+U⋆,⊥ÕtÕ
⊤
t U

⊤
⋆,⊥︸ ︷︷ ︸

=:T4

. (46)

Note that U⋆ ∈ R
n×r⋆ is of rank r⋆, thus T1 has rank at most r⋆ and T2 has rank at most 2r⋆. Similarly, since Ñt = NtVt

while Vt ∈ R
r×r⋆ is of rank r⋆, T3 has rank at most r⋆. It is also trivial that T4 as an n × n matrix has rank at most n.

Invoking Lemma 7, we obtain

∥(I −A∗A)(T1)∥ ≤ 2δ∥U⋆(S̃tS̃
⊤
t − Σ2

⋆)U
⊤
⋆ ∥F ≤ 2δ∥S̃tS̃

⊤
t − Σ2

⋆∥F,
∥(I −A∗A)(T2)∥ ≤ 2

√
3δ∥U⋆S̃tÑ

⊤
t U⊤

⋆,⊥ + U⋆,⊥ÑtS̃
⊤
t U⊤

⋆ ∥F ≤ 4
√
2δ∥S̃t∥∥Ñt∥F,

∥(I −A∗A)(T3)∥ ≤ 2δ∥U⋆,⊥ÑtÑ
⊤
t U⊤

⋆,⊥∥F ≤ 2δ∥ÑtS̃
−1
t Σ⋆∥∥S̃t∥∥Σ−1

⋆ ∥∥Ñt∥F ≤ δ∥S̃t∥∥Ñt∥F,
∥(I −A∗A)(T4)∥ ≤ 2δn∥U⋆,⊥ÕtÕ

⊤
t U

⊤
⋆,⊥∥ ≤ 2δn∥Õt∥2,
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where the third line follows from ∥Σ−1
⋆ ∥ = κ∥X⋆∥−1 and from (17c) in view that Cδ is sufficiently large and c2 is suffciently

small. The conclusion (44) follows from summing up the above inequalities.

For the remaining part of the lemma, note that the following inequalities that bound the individual terms of (44) can be

inferred from (17): namely,

∥S̃tS̃
⊤
t − Σ⋆∥F ≤

√
2r⋆∥S̃tS̃

⊤
t − Σ⋆∥ ≤

√
2r⋆(C

2
2.aκ

2 + 1)∥X⋆∥2

by (17d), and

∥S̃t∥∥Ñt∥F ≤ √
r⋆∥S̃t∥∥Ñt∥

≤ √
r⋆(C2.aκ∥X⋆∥) · ∥ÑtS̃

−1
t Σ⋆∥ · ∥S̃t∥ · ∥Σ−1

⋆ ∥
≤ √

r⋆(C2.aκ∥X⋆∥) · (c2κ−Cδ/2∥X⋆∥) · (C2.aκ∥X⋆∥) · σ−1
min(Σ⋆)

=
√
r⋆c2C

2
2.aκ

3∥X⋆∥2κ−Cδ/2

≤ √
r⋆C

2
2.a∥X⋆∥2,

where the first inequality uses the fact that Ñt = NtVt contains a rank-r⋆ factor Vt, hence has rank at most r⋆; the second

line follows from (17d), the third line follows from (17c) and (17d), and the last line follows from choosing cδ sufficiently

small such that c2 ≤ 1 (which is possible since c2 ≲ cδ/c
3
λ) and from choosing Cδ ≥ 6 such that κ3κ−Cδ/2 ≤ 1. Finally,

from (17b) and its corollary (19), we have

2n∥Õt∥2 ≤ 2nα3/2∥X⋆∥1/2 ≤ ∥X⋆∥2,

since from (12c) it is easy to show that α ≤ (2n)−2/3∥X⋆∥.

Combining these inequalities and (44) yields

∥∆t∥ ≤ 8δ
√
r⋆(

√
2C2

2.aκ
2 + 1 + C2

2.a + 1)∥X⋆∥2 ≤ 16δ
√
r⋆κ

2(C2
2.a + 1)∥X⋆∥2.

Recalling that by (10) we have δ
√
r⋆κ

2 ≤ cδκ
−Cδ+2 ≤ cδκ

−2Cδ/3 as long as Cδ ≥ 6, we obtain the desired conclusion.

The bound c11 = 16(C2.a + 1)2cδ ≲ cδ/cλ ≲ cδ/c
3
λ follows from C2.a ≲ c

−1/2
λ .

We next present several useful decompositions of the signal term St+1 and the noise term Nt+1, which are extremely useful

in later developments.

Lemma 12. For any t such that S̃t is invertible and (17) holds, we have

St+1 =
(
(1− η)I + η(Σ2

⋆ + λI + Ea
t )(S̃tS̃

⊤
t + λI)−1

)
S̃tV

⊤
t + ηEb

t , (47a)

Nt+1 = ÑtS̃
−1
t

(
(1− η)S̃tS̃

⊤
t + λI + ηEc

t

)
(S̃tS̃

⊤
t + λI)−1S̃tV

⊤
t

+ ηEe
t (S̃tS̃

⊤
t + λI)−1S̃tV

⊤
t + ÕtV

⊤
t,⊥ + ηEd

t , (47b)

where the error terms satisfy

|||Ea
t ||| ≤ 2c2κ

−4∥X⋆∥ · |||ÑtS̃
−1
t Σ⋆|||+ 2|||U⊤

⋆ ∆t|||, (48a)

|||Eb
t ||| ≤

(
∥Õt∥

σmin(S̃t)

)3/4

σmin(S̃t) ≤
1

20
κ−10σmin(S̃t), (48b)

|||Ec
t ||| ≤ κ−4∥X⋆∥ · |||ÑtS̃

−1
t Σ⋆|||, (48c)

|||Ed
t ||| ≤

(
∥Õt∥

σmin(S̃t)

)3/4

σmin(S̃t), (48d)

|||Ee
t ||| ≤ 2|||U⊤

⋆ ∆t|||+ c11κ
−5∥X⋆∥ · |||ÑtS̃

−1
t Σ⋆|||. (48e)
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Moreover, we have

∥Eb
t ∥ ≤ 1

24Cmaxκ
∥Õt∥, (48f)

∥Ed
t ∥ ≤ 1

24Cmaxκ
∥Õt∥. (48g)

Here, ||| · ||| can either be the Frobenius norm or the spectral norm.

To proceed, we would need the approximate update equation of the rotated signal term S̃t+1, and the rotated misalignment

term Ñt+1S̃
−1
t+1 later in the proof. Since directly analyzing the evolution of these two terms seems challenging, we resort to

two surrogate matrices St+1Vt + St+1Vt,⊥Q, and (Nt+1Vt +Nt+1Vt,⊥Q)(St+1Vt + St+1Vt,⊥Q)−1, as documented in

the following two lemmas.

Lemma 13. For any t such that S̃t is invertible and (17) holds, and any matrix Q ∈ R
(r−r⋆)×r⋆ with ∥Q∥ ≤ 2, we have

St+1Vt + St+1Vt,⊥Q = (I + ηE13
t )
(
(1− η)I + η(Σ2

⋆ + λI)(S̃tS̃
⊤
t + λI)−1

)
S̃t, (49)

where E13
t ∈ R

r⋆×r⋆ is a matrix (depending on Q) satisfying

∥E13
t ∥ ≤ 1

200(C2.a + 1)4κ5
.

Here, C2.a > 0 is given in Lemma 2.

Lemma 14. For any t such that S̃t is invertible and (17) holds, and any matrix Q ∈ R
(r−r⋆)×r⋆ with ∥Q∥ ≤ 2, we have

(Nt+1Vt +Nt+1Vt,⊥Q)(St+1Vt + St+1Vt,⊥Q)−1

= ÑtS̃
−1
t (1 + ηE14.a

t )
(
(1− η)S̃tS̃

⊤
t + λI

)(
(1− η)S̃tS̃

⊤
t + λI + ηΣ2

⋆

)−1
(1 + ηE13

t )−1 + ηE14.b
t

where E14.a
t , E14.b

t are matrices (depending on Q) satisfying

∥E14.a
t ∥ ≤ 1

200(C2.a + 1)4κ5
, (50a)

|||E14.b
t ||| ≤ 400c−1

λ κ2∥X⋆∥−2|||U⊤
⋆ ∆t|||+

1

64(C2.a + 1)2κ5∥X⋆∥
|||ÑtS̃

−1
t Σ⋆|||

+
1

64

(
∥Õt∥

σmin(S̃t)

)2/3

. (50b)

Here, ||| · ||| can either be the Frobenius norm or the spectral norm, and C2.a > 0 is given in Lemma 2.

C.1. Proof of Lemma 12

We split the proof into three steps: (1) provide several useful approximation results regarding the matrix inverses utilizing

the facts that ∥Õt∥ and ∥ÑtS̃
−1
t Σ⋆∥ are small (as shown by Lemma 2); (2) proving the claims (47a), (48a), (48b), and (48f)

associated with the signal term St+1; (3) proving the claims (47b), (48c), (48d), (48e), and (48g) associated with the noise

term Nt+1. Note that our approximation results in step (1) include choices of some matrices {Qi} with small spectral norms,

whose choices may be different from lemma to lemma for simplicity of presentation;

C.1.1. STEP 1: PRELIMINARIES

We know from (17) that the overparameterization error Õt is negligible compared to the signals S̃t and σmin(X⋆). This

combined with the decomposition (14) reveals a desired approximation (X⊤
t Xt+λI)−1 ≈ (Vt(S̃

⊤
t S̃t+Ñ⊤

t Ñt)V
⊤
t +λI)−1.

This approximation is formalized in the lemma below.

Lemma 15. If λ ≥ 4(∥Õt∥2 ∨ 2∥Ñt∥∥Õt∥) for some t, then

(X⊤
t Xt + λI)−1 =

(
Vt(S̃

⊤
t S̃t + Ñ⊤

t Ñt)V
⊤
t + λI

)−1
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+
(
Vt(S̃

⊤
t S̃t + Ñ⊤

t Ñt)V
⊤
t + λI

)−1

E15.a
t

(
Vt(S̃

⊤
t S̃t + Ñ⊤

t Ñt)V
⊤
t + λI

)−1

=
(
Vt(S̃

⊤
t S̃t + Ñ⊤

t Ñt)V
⊤
t + λI

)−1 (
I + E15.b

t

)
(51)

where the error terms E15.a
t , E15.b

t can be expressed as

E15.a
t = (Vt,⊥Õ

⊤
t ÕtV

⊤
t,⊥ + VtÑ

⊤
t ÕtV

⊤
t,⊥ + Vt,⊥Õ

⊤
t ÑtV

⊤
t )Q1, (52a)

E15.b
t = λ−1E15.a

t Q2, (52b)

for some matrices Q1, Q2 such that max{∥Q1∥, ∥Q2∥} ≤ 2.

Proof. Expanding X⊤
t Xt according to (14), we have

X⊤
t Xt = Vt(S̃

⊤
t S̃t + Ñ⊤

t Ñt)V
⊤
t + Vt,⊥Õ

⊤
t ÕtV

⊤
t,⊥ + VtÑ

⊤
t ÕtV

⊤
t,⊥ + Vt,⊥Õ

⊤
t ÑtV

⊤
t .

The conclusion readily follows from Lemma 8 by setting therein A = Vt(S̃
⊤
t S̃t+Ñ⊤

t Ñt)V
⊤
t +λI and B = Vt,⊥Õ⊤

t ÕtV
⊤
t,⊥+

VtÑ
⊤
t ÕtV

⊤
t,⊥ + Vt,⊥Õ⊤

t ÑtV
⊤
t , where the condition ∥A−1B∥ ≤ 1/2 is satisfied since

∥A−1B∥ ≤ σmin(A)
−1∥B∥ ≤ λ−1 · (∥Õt∥2 + 2∥Õt∥∥Ñt∥) ≤ 1/2.

Moreover, the dominating term on the right hand side of (51) can be equivalently written as

(
Vt(S̃

⊤
t S̃t + Ñ⊤

t Ñt)V
⊤
t + λI

)−1

=
(
Vt(S̃

⊤
t S̃t + Ñ⊤

t Ñt + λI)V ⊤
t + λVt,⊥V

⊤
t,⊥

)−1

= Vt(S̃
⊤
t S̃t + Ñ⊤

t Ñt + λI)−1V ⊤
t + λ−1Vt,⊥V

⊤
t,⊥. (53)

When the misalignment error ∥ÑtS̃
−1
t Σ⋆∥ is small, we expect (S̃⊤

t S̃t + Ñ⊤
t Ñt + λI)−1 ≈ (S̃⊤

t S̃t + λI)−1, which is

formalized in the following lemma that establishes (S̃tS̃
⊤
t + S̃tÑ

⊤
t ÑtS̃

−1
t +λI)−1 ≈ (S̃tS̃

⊤
t +λI)−1, due to the following

approximation

(S̃⊤
t S̃t + Ñ⊤

t Ñt + λI)−1 = S̃−1
t (S̃tS̃

⊤
t + S̃tÑ

⊤
t ÑtS̃

−1
t + λI)−1S̃t

≈ S̃−1
t (S̃tS̃

⊤
t + λI)−1S̃t = (S̃⊤

t S̃t + λI)−1.

Lemma 16. If ∥ÑtS̃
−1
t Σ⋆∥ ≤ σmin(X⋆)/16 for some t, then

(S̃tS̃
⊤
t + S̃tÑ

⊤
t ÑtS̃

−1
t + λI)−1 = (I + E16

t )(S̃tS̃
⊤
t + λI)−1, (54)

where the error term E16
t is a matrix defined as

E16
t = κ2∥X⋆∥−2∥ÑtS̃

−1
t Σ⋆∥Q1(ÑtS̃

−1
t Σ⋆)Q2, (55)

where Q1, Q2 are matrices of appropriate dimensions satisfying ∥Q1∥ ≤ 1, ∥Q2∥ ≤ 2. In particular, we have

|||E16
t ||| ≤ 2κ2∥X⋆∥−2∥ÑtS̃

−1
t Σ⋆∥ · |||ÑtS̃

−1
t Σ⋆|||, (56)

where ||| · ||| can be either the operator norm or the Frobenius norm.

Proof. In order to apply Lemma 8, setting A = S̃tS̃
⊤
t + λI and B = S̃tÑ

⊤
t ÑtS̃

−1
t , it is straightforward to verify that

∥A−1B∥ = ∥(S̃tS̃
⊤
t + λI)−1S̃tÑ

⊤
t ÑtS̃

−1
t ∥ ≤ ∥ÑtS̃

−1
t ∥2 ≤ ∥ÑtS̃

−1
t Σ⋆∥2∥Σ−1

⋆ ∥2 ≤ (1/16)2,

where we use the obvious fact that ∥(S̃tS̃
⊤
t + λI)−1S̃tS̃

⊤
t ∥ ≤ 1. Applying Lemma 8, we obtain

(S̃tS̃
⊤
t + S̃tÑ

⊤
t ÑtS̃

−1
t + λI)−1 − (S̃tS̃

⊤
t + λI)−1

20



The Power of Preconditioning in Overparameterized Low-Rank Matrix Sensing

= (S̃tS̃
⊤
t + λI)−1S̃tÑ

⊤
t ÑtS̃

−1
t Q(S̃tS̃

⊤
t + λI)−1

= (S̃tS̃
⊤
t + λI)−1S̃tS̃

⊤
t Σ−1

⋆ (ÑtS̃
−1
t Σ⋆)

⊤(ÑtS̃
−1
t Σ⋆)Σ

−1
⋆ Q(S̃tS̃

⊤
t + λI)−1

for some matrix Q with ∥Q∥ ≤ 2. Since one may further write

(S̃tS̃
⊤
t + S̃tÑ

⊤
t ÑtS̃

−1
t + λI)−1 − (S̃tS̃

⊤
t + λI)−1

= ∥Σ−1
⋆ ∥2∥ÑtS̃

−1
t Σ⋆∥(S̃tS̃

⊤
t + λI)−1S̃tS̃

⊤
t

Σ−1
⋆

∥Σ−1
⋆ ∥

(ÑtS̃
−1
t Σ⋆)

⊤

∥ÑtS̃
−1
t Σ⋆∥

(ÑtS̃
−1
t Σ⋆)

Σ−1
⋆

∥Σ−1
⋆ ∥Q(S̃tS̃

⊤
t + λI)−1,

the conclusion follows by setting E16
t as in (55) with

Q1 = (S̃tS̃
⊤
t + λI)−1S̃tS̃

⊤
t

Σ−1
⋆

∥Σ−1
⋆ ∥

(ÑtS̃
−1
t Σ⋆)

⊤

∥ÑtS̃
−1
t Σ⋆∥

, Q2 =
Σ−1

⋆

∥Σ−1
⋆ ∥Q.

The last inequality (56) is then a direct consequence of (55).

C.1.2. STEP 2: A KEY RECURSION

Recall the definition ∆t in (43), we can rewrite the update equation (7) as

Xt+1 = Xt − η(XtX
⊤
t −M⋆)Xt(X

⊤
t Xt + λI)−1 + η∆tXt(X

⊤
t Xt + λI)−1. (57)

Multiplying both sides of (57) by U⊤
⋆ on the left, we obtain

St+1 = St − ηStX
⊤
t Xt(X

⊤
t Xt + λI)−1 + ηΣ2

⋆St(X
⊤
t Xt + λI)−1 + ηU⊤

⋆ ∆tXt(X
⊤
t Xt + λI)−1

= (1− η)St + η(Σ2
⋆ + λI + U⊤

⋆ ∆tU⋆)St(X
⊤
t Xt + λI)−1 + ηU⊤

⋆ ∆tU⋆,⊥Nt(X
⊤
t Xt + λI)−1. (58)

Similarly, multiplying both sides of (57) by U⊤
⋆,⊥, we obtain

Nt+1 = Nt

(
I − ηX⊤

t Xt(X
⊤
t Xt + λI)−1

)
+ ηU⊤

⋆,⊥∆tXt(X
⊤
t Xt + λI)−1

= (1− η)Nt + ηλNt(X
⊤
t Xt + λI)−1 + ηU⊤

⋆,⊥∆tU⋆St(X
⊤
t Xt + λI)−1 + ηU⊤

⋆,⊥∆tU⋆,⊥Nt(X
⊤
t Xt + λI)−1.

(59)

These expressions motivate the need to study the terms St(X
⊤
t Xt + λI)−1 and Nt(X

⊤
t Xt + λI)−1, which we formalize in

the following lemma.

Lemma 17. Under the same setting as Lemma 12, we have

St(X
⊤
t Xt + λI)−1 = (I + E16

t )(S̃tS̃
⊤
t + λI)−1S̃tV

⊤
t + E17.a

t , (60a)

Nt(X
⊤
t Xt + λI)−1 = ÑtS̃

−1
t (I + E16

t )(S̃tS̃
⊤
t + λI)−1S̃tV

⊤
t + λ−1ÕtV

⊤
t,⊥ + E17.b

t , (60b)

where E16
t is given in (55), and the error terms E17.a

t , E17.b
t can be expressed as

E17.a
t = κλ−1∥X⋆∥−1∥Õt∥Q1(ÑtS̃

−1
t Σ⋆)

⊤Q2, (61a)

E17.b
t =

(
Ñt(S̃

⊤
t S̃t + Ñ⊤

t Ñt + λI)−1V ⊤
t + λ−1ÕtV

⊤
t,⊥

)
E15.b

t

= λ−1(∥Ñt∥Q3 + ∥Õt∥Q4)E
15.b
t . (61b)

for some matrices {Qi}1≤i≤4 with spectral norm bounded by 2, and E15.b
t defined in (52b).

Proof. To begin, combining Lemma 15 and the discussion thereafter (cf. (51)–(53)) and the fact that S̃t = StVt, we have

for some matrix Q with ∥Q∥ ≤ 2 that

St(X
⊤
t Xt + λI)−1 = S̃t(S̃

⊤
t S̃t + Ñ⊤

t Ñt + λI)−1V ⊤
t

(
I + E15.b

t

)
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= S̃t(S̃
⊤
t S̃t + Ñ⊤

t Ñt + λI)−1V ⊤
t + S̃t(S̃

⊤
t S̃t + Ñ⊤

t Ñt + λI)−1λ−1Ñ⊤
t ÕtQ

= (S̃tS̃
⊤
t + S̃tÑ

⊤
t ÑtS̃

−1
t + λI)−1S̃tV

⊤
t

+ S̃t(S̃
⊤
t S̃t + Ñ⊤

t Ñt + λI)−1S̃⊤
t (ÑtS̃

−1
t )⊤(Õt/λ)Q. (62)

Note that the condition of Lemma 15 can be verified as follows: since

∥Õt∥ ≤ C−C2.b

2.b κ−3 · ∥X⋆∥ · σmin

(
(Σ2

⋆ + λI)−1/2
)
· ∥S̃t∥ ≤ C−C2.b

2.b C2.aσmin(X⋆),

∥Ñt∥ ≤ ∥ÑtS̃
−1
t Σ⋆∥ · ∥Σ−1

⋆ ∥ · ∥S̃t∥ ≤ c2κ
−Cδ/2∥X⋆∥ ·

C2.aκ∥X⋆∥
σmin(X⋆)

≤ c2C2.aσmin(X⋆)

provided Cδ ≥ 6, the bounds c2 ≲ cδ/c
3
λ and C2.a ≲ c

−1/2
λ imply that when we choose Cα to be large enough (depending

on cλ, cδ),

2∥Ñt∥∥Õt∥ ∨ ∥Õt∥2 ≤ λ/4,

as desired.

Now the first term in (62) can be handled by invoking Lemma 16, since its condition is verified by ∥ÑtS̃
−1
t Σ⋆∥ ≤

c2κ
−(Cδ/2−1)σmin(X⋆) ≤ σmin(X⋆)/16 provided Cδ ≥ 2 and c2 ≤ 1/16 by choosing cδ sufficiently small (depending on

cλ). Namely,

(S̃tS̃
⊤
t + S̃tÑ

⊤
t ÑtS̃

−1
t + λI)−1S̃tV

⊤
t = (I + E16

t )(S̃tS̃
⊤
t + λI)−1S̃tV

⊤
t .

For the second term, by noting that

∥S̃t(S̃
⊤
t S̃t + Ñ⊤

t Ñt + λI)−1S̃⊤
t ∥ ≤ ∥S̃t(S̃

⊤
t S̃t + λI)−1S̃⊤

t ∥ ≤ 1,

it can be expressed as

λ−1∥Õt∥S̃t(S̃
⊤
t S̃t + λI)−1S̃⊤

t (ÑtS̃
−1
t )⊤(Õt/∥Õt∥)Q = κλ−1∥X⋆∥−1∥Õt∥Q1(ÑtS̃

−1
t Σ⋆)

⊤Q2

for Q1 = S̃t(S̃
⊤
t S̃t + λI)−1S̃⊤

t · κ−1∥X⋆∥Σ−1
⋆ with ∥Q1∥ ≤ 1 and Q2 = (Õt/∥Õt∥)Q which satisfies ∥Q2∥ ≤ ∥Q∥ ≤ 2.

Applying the above two bounds to (62) yields (60a).

Similarly, moving to (60b), it follows that

Nt(X
⊤
t Xt + λI)−1 =

(
Ñt(S̃

⊤
t S̃t + Ñ⊤

t Ñt + λI)−1V ⊤
t + λ−1ÕtV

⊤
t,⊥

) (
I + E15.b

t

)

=Ñt(S̃
⊤
t S̃t + Ñ⊤

t Ñt + λI)−1V ⊤
t + λ−1ÕtV

⊤
t,⊥ + E17.b

t , (63)

where we have

E17.b
t =

(
Ñt(S̃

⊤
t S̃t + Ñ⊤

t Ñt + λI)−1V ⊤
t + λ−1ÕtV

⊤
t,⊥

)
E15.b

t

= λ−1(∥Ñt∥Q3 + ∥Õt∥Q4)E
15.b
t

for some matrices Q3, Q4 with ∥Q3∥, ∥Q4∥ ≤ 1. In the last line we used ∥(S̃⊤
t S̃t + Ñ⊤

t Ñt + λI)−1∥ ≤ λ−1. For the first

term of (63), we use Lemma 16 and obtain

Ñt(S̃
⊤
t S̃t + Ñ⊤

t Ñt + λI)−1V ⊤
t = ÑtS̃

−1
t (S̃tS̃

⊤
t + S̃tÑ

⊤
t ÑtS̃

−1
t + λI)−1S̃tV

⊤
t

= ÑtS̃
−1
t (I + E16

t )(S̃tS̃
⊤
t + λI)−1S̃tV

⊤
t .

This yields the representation in (60b).
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C.1.3. STEP 3: PROOFS ASSOCIATED WITH St+1 .

With the help of Lemma 17, we are ready to prove (47a) and the associated norm bounds (48a), (48b), and (48f). To begin

with, we plug (60a), (60b) into (58) and use St = S̃tV
⊤
t to obtain

St+1 =
(
(1− η)I + η(Σ2

⋆ + λI + Ea
t )(S̃tS̃

⊤
t + λI)−1

)
S̃tV

⊤
t + ηEb

t ,

where the error terms Ea
t and Eb

t are

Ea
t := U⊤

⋆ ∆tU⋆ + (Σ2
⋆ + U⊤

⋆ ∆tU⋆ + λI)E16
t + U⊤

⋆ ∆tU⋆,⊥ÑtS̃
−1
t (I + E16

t ),

Eb
t := (Σ2

⋆ + U⊤
⋆ ∆tU⋆ + λI)E17.a

t + U⊤
⋆ ∆tU⋆,⊥(λ

−1ÕtV
⊤
t,⊥ + E17.b

t ).

This establishes the identity (47a). To control |||Ea
t |||, we observe that

|||Ea
t ||| ≤ |||U⊤

⋆ ∆t|||+ ∥Σ2
⋆ + U⊤

⋆ ∆tU⋆ + λI∥ · |||E16
t |||+ |||U⊤

⋆ ∆t||| · ∥ÑtS̃
−1
t Σ⋆∥ · ∥Σ−1

⋆ ∥ · (1 + ∥E16
t ∥)

≤
(
1 + c11κ

−2Cδ/3 + cλ

)
∥X⋆∥2 · |||E16

t |||+ |||U⊤
⋆ ∆t|||+ c2κ

−Cδ/2∥X⋆∥ · σ−1
min(X⋆) · (1 + ∥E16

t ∥) · |||U⊤
⋆ ∆t|||

≤ 2∥X⋆∥2 · |||E16
t |||+

(
1 + c2(1 + ∥E16

t ∥)
)
|||U⊤

⋆ ∆t|||,

where the second line follows from Lemma 11 and Equations (12b), (17c); the last line holds since c11, cλ are sufficiently

small and Cδ is sufficiently large. Now we invoke the bound (56) in Lemma 16 to see

|||E16
t ||| ≤ 2κ2∥X⋆∥−2∥ÑtS̃

−1
t Σ⋆∥|||ÑtS̃

−1
t Σ⋆||| ≤ 2c2κ

2κ−Cδ/2∥X⋆∥−1|||ÑtS̃
−1
t Σ⋆|||

≤ 2c2κ
−4∥X⋆∥−1|||ÑtS̃

−1
t Σ⋆|||,

where the last line follows again by choosing sufficiently large Cδ ≥ 12. Furthermore, since ∥ÑtS̃
−1
t Σ⋆∥ ≤ c2κ

−Cδ/2∥X⋆∥
for small enough c2, we obtain ∥E16

t ∥ ≤ 1. Combining these inequalities yields the claimed bound

|||Ea
t ||| ≤ 2c2κ

−4∥X⋆∥ · |||ÑtS̃
−1
t Σ⋆|||+ 2|||U⊤

⋆ ∆t|||.

The bound of |||Eb
t ||| and ∥Eb

t ∥ can be proved in a similar way, utilizing the bound for ∥Õt∥ in (19). In fact, a computation

similar to the above shows

|||Eb
t ||| ≤ 2∥X⋆∥2 · |||E17.a|||+ λ−1∥∆t∥ · |||Õt|||+ ∥∆t∥ · |||E17.b|||

≤ 2κλ−1 · ∥X⋆∥ · ∥Õt∥ · ∥Q1∥ · ∥Q2∥ · |||ÑtS̃
−1
t Σ⋆|||+ 100c−1

λ σ−1
min(M⋆)c11κ

−2Cδ/3∥X⋆∥2 · |||Õt|||
+ 8λ−2c11κ

−2Cδ/3(∥Ñt∥+ ∥Õt∥)∥Ñt∥ · |||Õt|||

≤ 800κ3c−1
λ ∥X⋆∥−1∥Õt∥ · |||ÑtS̃

−1
t Σ⋆|||+

1

48(Cmax + 1)κ
|||Õt|||.

Here, Cmax is the constant given by Lemma 2. Similarly, we have

∥Eb
t ∥ ≤ 800κ3c−1

λ ∥X⋆∥−1∥Õt∥ · ∥ÑtS̃
−1
t Σ⋆∥+

1

48(Cmax + 1)κ
∥Õt∥.

The bound (48f) now follows directly from the bound of ∥ÑtS̃
−1
t Σ⋆∥ in Lemma 2, provided cδ is sufficiently small and Cδ

is sufficiently large. To prove (48b), we note that

|||A||| ≤ n∥A∥ (64)

for any unitarily invariant norm ||| · ||| and real matrix A ∈ R
p×q with p ∨ q ≤ n (which can be easily verified when

||| · ||| = ∥ · ∥ or ∥ · ∥F). Thus

|||Eb
t ||| ≤

(
800κ3c−1

λ c2κ
−Cδ/2 +

1

24(Cmax + 1)κ

)
n∥Õt∥ ≤

(
∥Õt∥

σmin(S̃t)

)3/4

σmin(S̃t)

where the last inequality follows from the control of ∥Õt∥ given by (18) provided c2 is sufficiently small and C2.b therein is

sufficiently large. This establishes the first inequality in (48b), and the second inequality therein follows directly from (18).
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C.1.4. STEP 4: PROOFS ASSOCIATED WITH Ñt+1 .

Now we move on to prove the identity (47b), and the norm controls (48c), (48d), (48e), and (48g) associated with the

misalignment term Ñt+1. Plugging (60a), (60b) into (59) and using the decomposition Nt = ÑtV
⊤
t + ÕtV

⊤
t,⊥, we have

Nt+1 = ÑtS̃
−1
t

(
(1− η)S̃tS̃

⊤
t + λI + ηEc

t

)
(S̃tS̃

⊤
t + λI)−1S̃tV

⊤
t

+ ηEe
t (S̃tS̃

⊤
t + λI)−1S̃tV

⊤
t + ÕtV

⊤
t,⊥ + ηEd

t ,

where the error terms are defined to be

Ec
t := λE16

t ,

Ed
t := (λI + U⊤

⋆,⊥∆tU⋆,⊥)E
17.b
t + λ−1U⊤

⋆,⊥∆tU⋆,⊥ÕtV
⊤
t,⊥ + U⊤

⋆,⊥∆tU⋆E
17.a
t ,

Ee
t := U⊤

⋆,⊥∆tU⋆(I + E16
t ) + U⊤

⋆,⊥∆tU⋆,⊥ÑtS̃
−1
t (I + E16

t ).

This establishes the decomposition (47b). The remaining norm controls follow from the expressions above and similar

computation as we have done for St+1. For the sake of brevity, we omit the details.

C.2. Proof of Lemma 13

Use the identity (47a) in Lemma 12 and the fact that Vt and Vt,⊥ have orthogonal columns to obtain

St+1Vt + St+1Vt,⊥Q =
(
(1− η)I + η(Σ2

⋆ + λI + Ea
t )(S̃tS̃

⊤
t + λI)−1

)
S̃t + ηEb

t (Vt + Vt,⊥Q)

= (I + ηE13
t )
(
(1− η)I + η(Σ2

⋆ + λI)(S̃tS̃
⊤
t + λI)−1

)
S̃t

= (I + ηE13
t )
(
(1− η)S̃tS̃

⊤
t + λI + ηΣ2

⋆

)
(S̃tS̃

⊤
t + λI)−1S̃t, (65)

where E13
t is defined to be

E13
t :=

(
Ea

t (S̃tS̃
⊤
t + λI)−1 + Eb

t (Vt + Vt,⊥Q)S̃−1
t

)(
(1− η)I + η(Σ2

⋆ + λI)(S̃tS̃
⊤
t + λI)−1

)−1

= Ea
t

(
(1− η)(S̃tS̃

⊤
t + λI) + η(Σ2

⋆ + λI)
)−1

+ Eb
t (Vt + Vt,⊥Q)S̃−1

t

(
(1− η)I + η(Σ2

⋆ + λI)(S̃tS̃
⊤
t + λI)−1

)−1

=: T1 + T2,

where the invertibility of S̃t follows from Lemma 2, and the invertibility of (1− η)I + η(Σ2
⋆ + λI)(S̃tS̃

⊤
t + λI)−1 follows

from (106).

Since (1− η)(S̃tS̃
⊤
t + λI) + η(Σ2

⋆ + λI) ⪰ λI and λ ≥ 1
100cλσmin(M⋆) by (12b), we have

∥T1∥ ≤ λ−1∥Ea
t ∥ ≤ 100c−1

λ σ−1
min(M⋆)∥Ea

t ∥.

In view of the bound (48a) on ∥Ea
t ∥ in Lemma 12, we further have

∥T1∥ ≤ 100c−1
λ σ−2

min(X⋆)(κ
−4∥X⋆∥ · ∥ÑtS̃

−1
t Σ⋆∥+ ∥∆t∥)

≤ 100c−1
λ κ2∥X⋆∥−2(κ−4c2κ

−Cδ/2 + c11κ
−2Cδ/3)∥X⋆∥2

≤ 1

400(C2.a + 1)4κ5
,

where the second inequality follows from (17c) in Lemma 2 and Lemma 11, and the last inequality holds as long as c2 and

c11 are sufficiently small and Cδ is sufficiently large (by first fixing cλ and then choosing cδ to be sufficiently small).

The term T2 can be controlled in a similar way. Since ∥AB∥ ≤ ∥A∥ · ∥B∥, one has

∥T2∥ ≤ ∥Eb
t ∥ · (∥Vt∥+ ∥Vt,⊥∥∥Q∥) · ∥S̃−1

t ∥ · σ−1
min

(
(1− η)I + η(Σ2

⋆ + λI)(S̃tS̃
⊤
t + λI)−1

)
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(i)

≤ 3∥Eb
t ∥ · σ−1

min(S̃t) ·
κ

1− η

(ii)

≤ 6κ

(
∥Õt∥

σmin(S̃t)

)3/4
(iii)

≤ 1

400(C2.a + 1)4κ5
.

Here, (i) follows from the bound (106) and the facts that ∥Vt∥ ∨ ∥Vt,⊥∥ ≤ 1, ∥Q∥ ≤ 2; (ii) arises from the control (48b) on

∥Eb
t ∥ in Lemma 12 as well as the condition η ≤ cη ≤ 1/2; and (iii) follows from the implication (18) of Lemma 2.

The proof is completed by summing up the bounds on ∥T1∥ and ∥T2∥.

C.3. Proof of Lemma 14

Similar to the proof of Lemma 13, we can use the identity (47b) in Lemma 12 and the fact that Vt and Vt,⊥ have orthogonal

columns to obtain

Nt+1Vt +Nt+1Vt,⊥Q = ÑtS̃
−1
t

(
(1− η)S̃tS̃

⊤
t + λI + ηEc

t

)
(S̃tS̃

⊤
t + λI)−1S̃t + ηE14.c

t

= ÑtS̃
−1
t (I + ηE14.a

t )
(
(1− η)S̃tS̃

⊤
t + λI

)
(S̃tS̃

⊤
t + λI)−1S̃t + ηE14.c

t , (66)

where the error terms are defined to be

E14.c
t := Ee

t (S̃tS̃
⊤
t + λI)−1S̃t + η−1ÕtQ+ Ed

t (Vt + Vt,⊥Q), (67)

E14.a
t := Ec

t

(
(1− η)S̃tS̃

⊤
t + λI

)−1
. (68)

Combine (66) and (65) to arrive at

(Nt+1Vt +Nt+1Vt,⊥Q)(St+1Vt + St+1Vt,⊥Q)−1

= ÑtS̃
−1
t (I + ηE14.a

t )
(
(1− η)S̃tS̃

⊤
t + λI

)(
(1− η)S̃tS̃

⊤
t + λI + ηΣ2

⋆

)−1
(I + ηE13

t )−1 + ηE14.b
t , (69)

where, using

(S̃tS̃
⊤
t + λI)

(
(1− η)S̃tS̃

⊤
t + λI + ηΣ2

⋆

)−1
=
(
(1− η)I + η(Σ2

⋆ + λI)(S̃tS̃
⊤
t + λI)−1

)−1
,

we have

E14.b
t := E14.c

t S̃−1
t (S̃tS̃

⊤
t + λI)

(
(1− η)S̃tS̃

⊤
t + λI + ηΣ2

⋆

)−1
(I + ηE13

t )−1

= Ee
t

(
(1− η)S̃tS̃

⊤
t + λI + ηΣ2

⋆

)−1
(I + ηE13

t )−1

+ η−1ÕtQS̃−1
t

(
(1− η)I + η(Σ2

⋆ + λI)(S̃tS̃
⊤
t + λI)−1

)−1

(I + ηE13
t )−1

+ Ed
t (Vt + Vt,⊥Q)S̃−1

t

(
(1− η)I + η(Σ2

⋆ + λI)(S̃tS̃
⊤
t + λI)−1

)−1

(I + ηE13
t )−1

=: T1 + T2 + T3.

It remains to bound ∥E14.a∥ and |||E14.b|||. By (48c), we have

∥E14.a∥ ≤ λ−1∥Ec
t ∥ ≤ 100c−1

λ σ−2
min(X⋆) · κ−4∥X⋆∥∥ÑtS̃

−1
t Σ⋆∥

≤ 100c−1
λ c2κ

−2κ−Cδ/2

≤ 1

200(C2.a + 1)4κ5
,

where the penultimate inequality follows from (17c) and the last inequality holds with the proviso that c2 is sufficiently

small and Cδ is sufficiently large.

Now we move to bound |||E14.b|||. To this end, the relation ∥(I + ηE13
t )−1∥ ≤ 2 is quite helpful. This follows from

Lemma 13 in which we have established that ∥E13
t ∥ ≤ 1/2. As a result of this relation, we obtain

|||T1||| ≤ 2λ−1|||Ee
t |||,
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|||T2||| ≤ 2|||Õt||| · ∥Q∥ · ∥S̃−1
t ∥ ·

∥∥∥∥
(
(1− η)I + η(Σ2

⋆ + λI)(S̃tS̃
⊤
t + λI)−1

)−1
∥∥∥∥ ,

|||T3||| ≤ 2|||Ed
t ||| · (1 + ∥Q∥) · ∥S̃−1

t ∥ ·
∥∥∥∥
(
(1− η)I + η(Σ2

⋆ + λI)(S̃tS̃
⊤
t + λI)−1

)−1
∥∥∥∥ .

Similar to the control of T1 in the proof of Lemma 13, we can take the condition λ ≥ 1
100cλσ

2
min(X⋆) and the bound (48e)

collectively to see that

|||T1||| ≤ 400c−1
λ κ2∥X⋆∥−2|||U⊤

⋆ ∆t|||+
1

64(C2.a + 1)2κ3∥X⋆∥
|||ÑtS̃

−1
t Σ⋆|||.

Regarding the terms T2 and T3, we see from (106) that

∥∥∥∥
(
(1− η)I + η(Σ2

⋆ + λI)(S̃tS̃
⊤
t + λI)−1

)−1
∥∥∥∥ ≤ κ

1− η
≤ 2κ,

as long η is sufficiently small. Recalling the assumption ∥Q∥ ≤ 2, this allows us to obtain

|||T2||| ≤ 8η−1κ
|||Õt|||

σmin(S̃t)
≤ 8η−1κn

∥Õt∥
σmin(S̃t)

,

|||T3||| ≤ 12κ|||Ed
t |||/σmin(S̃t),

where the first inequality again uses the elementary fact |||Õt||| ≤ n∥Õt∥ in (64).

The desired bounds then follow from plugging in the bounds (48d) and (19).

D. Proofs for Phase I

The goal of this section is to prove Lemma 2 in an inductive manner. We achieve this goal in two steps. In Section D.1,

we find an iteration number t1 ≤ Tmin/16 such that the claim (17) is true at t1. This establishes the base case. Then in

Section D.2, we prove the induction step, namely if the claim (17) holds for some iteration t ≥ t1, we aim to show that (17)

continues to hold for the iteration t+ 1. These two steps taken collectively finishes the proof of Lemma 2.

D.1. Establishing the base case: Finding a valid t1

The following lemma ensures the existence of such an iteration number t1.

Lemma 18. Under the same setting as Theorem 2, we have for some t1 ≤ Tmin/16 such that (16) holds and that (17) hold

with t = t1.

The rest of this subsection is devoted to the proof of this lemma.

Define an auxiliary sequence

X̂t :=
(
I +

η

λ
A∗A(M⋆)

)t
X0, (70)

which can be viewed as power iterations on the matrix A∗A(M⋆) from the initialization X0.

In what follows, we first establish that the true iterates {Xt} stay close to the auxiliary iterates {X̂t} as long as the

initialization scale α is small; see Lemma 19. This proximity then allows us to invoke the result in Stöger & Soltanolkotabi

(2021) (see Lemma 20) to establish Lemma 18. For the rest of the appendices, we work on the following event given in (13):

E = {∥G∥ ≤ CG} ∩ {σ−1
min(Û

⊤G) ≤ (2n)CG}.

Step 1: controlling distance between Xt and X̂t. The following lemma guarantees the closeness between the two iterates

{Xt} and {X̂t}, with the proof deferred to Appendix D.1.1. Recall that CG is the constant defined in the event E in (13),

and cλ is the constant given in Theorem 2.
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Lemma 19. Suppose that λ ≥ 1
100cλσ

2
min(X⋆). For any θ ∈ (0, 1), there exists a large enough constant K =

K(θ, cλ, CG) > 0 such that the following holds: As long as α obeys

log
∥X⋆∥
α

≥ K

η
log(2κn) ·

(
1 + log

(
1 +

η

λ
∥A∗A(M⋆)∥

))
, (71)

one has for all t ≤ 1
θη log(κn):

∥∥Xt − X̂t

∥∥ ≤ t
(
1 +

η

λ
∥A∗A(M⋆)∥

)t α2

∥X⋆∥
. (72)

Moreover, ∥Xt∥ ≤ ∥X⋆∥ for all such t.

Step 2: borrowing a lemma from Stöger & Soltanolkotabi (2021). Compared to the original sequence Xt, the behavior

of the power iterates X̂t is much easier to analyze. Now that we have sufficient control over ∥Xt−X̂t∥, it is possible to show

that Xt has the desired properties in Lemma 18 by first establishing the corresponding property of X̂t and then invoking

a standard matrix perturbation argument. Fortunately, such a strategy has been implemented by Stöger & Soltanolkotabi

(2021) and wrapped into the following helper lemma.

Denote

sj := σj

(
I +

η

λ
A∗A(M⋆)

)
= 1 +

η

λ
σj

(
A∗A(M⋆)

)
, j = 1, 2, . . . , n

and recall that Û (resp. UX̃t
) is an orthonormal basis of the eigenspace associated with the r⋆ largest eigenvalues of

A∗A(M⋆) (resp. X̃t).

Lemma 20. There exists some small universal c20 > 0 such that the following hold. Assume that for some γ ≤ c20,

∥(I −A∗A)(M⋆)∥ ≤ γσ2
min(X⋆), (73)

and furthermore,

ϕ :=
α∥G∥str⋆+1 + ∥Xt − X̂t∥

ασmin(Û⊤G)str⋆
≤ c20κ

−2. (74)

Then there exists some universal C20 > 0 such that the following hold:

σmin(S̃t) ≥
α

4
σmin(Û

⊤G)str⋆ , (75a)

∥Õt∥ ≤ C20ϕασmin(Û
⊤G)str⋆ , (75b)

∥U⊤
⋆,⊥UX̃t

∥ ≤ C20(γ + ϕ), (75c)

where X̃t := XtVt ∈ R
n×r⋆ .

Proof of Lemma 20. This follows from the claims of Stöger & Soltanolkotabi (2021, Lemma 8.5) by noting that ∥Õt∥ =
∥U⊤

⋆,⊥XtVt,⊥∥ ≤ ∥XtVt,⊥∥ for (75b).3

Step 3: completing the proof. Now, with the help of Lemma 20, we are ready to prove Lemma 18. We start with verifying

the two assumptions in Lemma 20.

Verifying assumption (73). By the RIP in (9), Lemma 7, and the condition of δ in (10), we have

∥∥(I −A∗A)(M⋆)
∥∥ ≤ √

r⋆δ∥M⋆∥ ≤ cδκ
−(Cδ−2)σ2

min(X⋆) =: γσ2
min(X⋆). (76)

Here γ = cδκ
−(Cδ−2) ≤ c20, as cδ is assumed to be sufficiently small.

3The equation (31) in Stöger & Soltanolkotabi (2021, Lemma 8.5) is stated in a weaker form than what they actually proved, and
our (75b) indeed follows from the penultimate inequality in the proof of Stöger & Soltanolkotabi (2021, Lemma 8.5).
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Verifying assumption (74). By Weyl’s inequality and (76), we have

∣∣∣sj − 1− η

λ
σj(M⋆)

∣∣∣ ≤ η

λ

∥∥(I −A∗A)(M⋆)
∥∥ ≤ η

λ
cδκ

−(Cδ−2)σ2
min(X⋆) ≤

100cδ
cλ

η,

where the last inequality follows from the condition λ ≥ 1
100cλσ

2
min(X⋆). Furthermore, using the condition λ ≤ cλσ

2
min(X⋆)

assumed in (12b), the above bound implies that, for some C = C(cλ, cδ) > 0,

s1 ≤ 1 +
η

λ
∥M⋆∥+

100cδ
cλ

η ≤ 1 + Cηκ2, (77a)

sr⋆ ≥ 1 +
η

λ
σ2
min(X⋆)−

100cδ
cλ

η ≥ 1 +
η

2cλ
, (77b)

sr⋆ ≤ 1 +
η

λ
σ2
min(X⋆) +

100cδ
cλ

η ≤ 1 +
2η

cλ
, (77c)

sr⋆+1 ≤ 1 +
100cδ
cλ

η ≤ 1 +
η

4cλ
, (77d)

where we use the fact that σr⋆+1(M⋆) = 0, and cδ ≤ 1/400. Consequently we have sr⋆/sr⋆+1 ≥ 1 + c′η for some

c′ = c′(cλ) > 0, assuming cη ≤ cλ. Thus for any large constant L > 0, there is some constant c′′ = c′′(c′) > 0 such that,

setting L′ = c′′L log(L) we have

(sr⋆/sr⋆+1)
t ≥ (Lκn)L, ∀t ≥ L′

η
log(κn).

On the event E given in (13), we can choose L large enough so that L ≥ 2CG, hence ∥G∥ ≤ L and σ−1
min(Û

⊤G) ≤ (2n)L/2.

Summarizing these inequalities, we see for t ≥ L′

η log(κn),

α∥G∥str⋆+1

ασmin(Û⊤G)str⋆
≤ Lσ−1

min(Û
⊤G)(sr⋆+1/sr⋆)

t

≤ L(2n)L/2(Lκn)−L ≤ (Lκn)−L/2. (78)

Furthermore, invoking Lemma 19 with θ = 1/(2L′) (note that (71) is implied by the assumption (12c), where Cα is

assumed sufficiently large, considering λ ≥ 1
100cλσ

2
min(X⋆) and ∥A∗A(M⋆)∥ ≤ ∥M⋆∥+ γσ2

min(X⋆) ≤ 2∥X⋆∥2 by (76)),

we obtain for any t ≤ 1
θη log(κn) = 2L′

η log(κn) that ∥Xt − X̂t∥ ≤ tst1α
2/∥X⋆∥. This implies

∥Xt − X̂t∥
ασmin

(
Û⊤G

)
str⋆

≤ (s1/sr⋆)
tσ−1

min

(
Û⊤G

)
α/∥X⋆∥

≤ st1σ
−1
min(Û

⊤G)α/∥X⋆∥
≤ exp(t log(s1) + L log(Lκn))α/∥X⋆∥ ≤ (Lκn)−L/2 (79)

where the second inequality follows from (77b), the penultimate inequality follows from our choice of L which ensured

σ−1
min(Û

⊤G) ≤ (2n)L/2, and the last inequality follows from (77a), our choice t ≤ 2L′

η log(κn) and our assumption (12c)

on α which implies α/∥X⋆∥ ≤ (2κn)−Cα , given that Cα is sufficiently large, e.g. Cα ≥ C(L, cλ, cη). It may also be

inferred from the above arguments that L can be made arbitrarily large by increasing Cα.

Combining the above arguments, we conclude that for any t ∈ [(L′/η) log(κn), (2L′/η) log(κn)], both of (78), (79) hold,

hence the condition in (74) can be verified by

ϕ =
α∥G∥str⋆+1 + ∥Xt − X̂t∥

ασmin(Û⊤G)str⋆
≤ 2(Lκn)−L/2 (80)

≤ c20κ
−2,

by choosing L sufficiently large.

This completes the verification of both assumptions of Lemma 20. Upon noting that the upper threshold of t satisfies

(2L′/η) log(κn) ≤ Tmin/16, we will now invoke the conclusions of Lemma 20 to prove Lemma 18 for some t ∈
[(L′/η) log(κn), Tmin/16].
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Proof of bound (16). This can be inferred from (75a) in the following way. Recalling that σmin(Û
⊤G) ≥ (2n)−CG on

the event E , and sr⋆ ≥ 1 by (77b), we obtain from (75a) that

σmin(S̃t1) ≥
1

4
α(2n)−CG ≥ α2/∥X⋆∥,

given the condition (12c) which guarantees

α

∥X⋆∥
≤ (2n)−Cα/η ≤ 1

4
(2n)−CG ,

as long as η ≤ cη ≤ 1 and Cα ≥ CG + 2. The proof is complete.

Proof of bound (17a). We combine (75a), (75b), and (80) to obtain

∥Õt1∥
σmin(S̃t1)

≤ 4C20ϕ ≤ 4C20(Lκn)
−L/2 ≤ (Lκn/2)−L/2,

where the last inequality follows from taking L sufficiently large. We further note that (12b) implies

σmin(S̃t1) ≤ ∥Σ2
⋆ + λI∥1/2σmin

(
(Σ2

⋆ + λI)−1/2S̃t1

)
≤ (cλ + 1)1/2∥X⋆∥σmin

(
(Σ2

⋆ + λI)−1/2S̃t1

)

≤ 2∥X⋆∥σmin

(
(Σ2

⋆ + λI)−1/2S̃t1

)
,

assuming cλ ≤ 1, hence

∥Õt1∥
σmin

(
(Σ2

⋆ + λI)−1/2S̃t1

) ≤ 2∥X⋆∥(Lκn/2)−L/2 ≤ (C2.bκn)
−C2.b∥X⋆∥,

as desired, with C2.b = L/4 as long as L is sufficiently large. It is also clear that C2.b can be made arbitrarily large by

enlarging Cα as L can be.

Proof of bound (17b). We apply (75b) to yield

∥Õt1∥ ≤ C20ϕασmin(Û
⊤G)st1r⋆ ≤ CGC20(Lκn)

−L/2

(
1 +

2η

cλ

)t1

α ≤ α5/6∥X⋆∥1/6,

where the second inequality follows from σmin(Û
⊤G) ≤ ∥G∥ ≤ CG by assumption and from (77c); the last inequality

follows from t1 ≤ (2L′/η) log(κn) and from the condition (12c) on α, provided that Cα is sufficiently large.

Proof of bound (17c). We apply (75c) to yield that

∥U⊤
⋆,⊥UX̃t+1

∥ ≤ C20(γ + ϕ) ≤ cδ
c3λ

κ−2Cδ/3,

using the bounds of γ and ϕ in (76) and (80), provided that c3λ ≤ 1
2 min(1, C20) and L ≥ 2(Cδ + 1). To further bound

∥Ñt+1S̃
−1
t+1Σ⋆∥ we need the following lemma.

Lemma 21. Assume S̃t is invertible, and at least one of the following is true: (i) ∥U⊤
⋆,⊥UX̃t

∥ ≤ 1/4; (ii) ∥ÑtS̃
−1
t Σ⋆∥ ≤

κ−1∥X⋆∥/4. Then

κ−1∥X⋆∥∥U⊤
⋆,⊥UX̃t

∥ ≤ ∥ÑtS̃
−1
t Σ⋆∥ ≤ 2∥X⋆∥∥U⊤

⋆,⊥UX̃t
∥.

The proof is postponed to Section D.1.2. Returning to the proof of bound (17c), the above lemma yields

∥Ñt+1S̃
−1
t+1Σ⋆∥ ≤ 2cδ

c3λ
∥X⋆∥κ−2Cδ/3 ≤ c2∥X⋆∥κ−2Cδ/3,

for some c2 ≲ cδ/c
3
λ, as desired.
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Proof of bound (17d). We have

∥S̃t1∥ = ∥U⊤
⋆ Xt1Vt1∥ ≤ ∥Xt1∥ ≤ ∥X⋆∥,

where the last step follows from Lemma 19.

D.1.1. PROOF OF LEMMA 19

We prove the claim (72) by induction and also show that ∥Xt∥ ≤ ∥X⋆∥ follows from (72). For the base case t = 0, it holds

by definition. Assume that (72) holds for some t ≤ 1
θη log(κn)− 1. We aim to prove that (i) ∥Xt∥ ≤ ∥X⋆∥ and that (ii) the

inequality (72) continues to hold for t+ 1.

Proof of ∥Xt∥ ≤ ∥X⋆∥. By the induction hypothesis we know

∥∥Xt − X̂t

∥∥ ≤ t
(
1 +

η

λ
∥A∗A(M⋆)∥

)t α2

∥X⋆∥
.

In view of the constraint (71) on α and the restriction t ≤ 1
θη log(κn), we have

t
α

∥X⋆∥
≤ 1

θη
log(κn) · η

K

1

log(κn)
=

1

Kθ
≤ 1

as long as K = K(θ, cλ, CG) is sufficiently large. This further implies

∥Xt − X̂t∥ ≤
(
t

α

∥X⋆∥

)(
1 +

η

λ
∥A∗A(M⋆)∥

)t
α ≤

(
1 +

η

λ
∥A∗A(M⋆)∥

)t
α.

On the other hand, since ∥X0∥ ≤ CGα under the event E (cf. (13)), in view of (70), we have

∥X̂t∥ ≤
(
1 +

η

λ
∥A∗A(M⋆)∥

)t
∥X0∥ ≤ CG

(
1 +

η

λ
∥A∗A(M⋆)∥

)t
α.

Thus for a large enough K = K(θ, cλ, CG), we have

∥Xt∥ ≤ ∥Xt − X̂t∥+ ∥X̂t∥ ≤
(
1 +

η

λ
∥A∗A(M⋆)∥

)t
(CG + 1)α ≤

√
cλ/200 · κ−1∥X⋆∥, (81)

where the last inequality follows from the condition on t and the choice of α in (71):

log
∥X⋆∥
α

≥ log

√
200(CG + 1)κ√

cλ
+ t log

(
1 +

η

λ
∥A∗A(M⋆)∥

)
.

The inequality (81) clearly implies ∥Xt∥ ≤ ∥X⋆∥.

Proof of (72) at the induction step. The proof builds on a key recursive relation on
∥∥Xt+1 − X̂t+1

∥∥, from which the

induction follows readily from our assumption.

Step 1: building a recursive relation on
∥∥Xt+1 − X̂t+1

∥∥. By definition (70), we have X̂t+1 =
(
I + η

λA∗A(M⋆)
)
X̂t,

which implies the following decomposition:

Xt+1 − X̂t+1 =
[
Xt+1 −

(
I +

η

λ
A∗A(M⋆)

)
Xt

]

︸ ︷︷ ︸
=:T1

+
(
I +

η

λ
A∗A(M⋆)

)
(Xt − X̂t)

︸ ︷︷ ︸
=:T2

. (82)

We shall control each term separately.

• The second term T2 can be trivially bounded as

∥T2∥ =

∥∥∥∥
(
I +

η

λ
A∗A(M⋆)

)
(Xt − X̂t)

∥∥∥∥ ≤
(
1 +

η

λ
∥A∗A(M⋆)∥

)∥∥Xt − X̂t

∥∥. (83)
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• Turning to the first term T1, by the update rule (7) of Xt+1 and the triangle inequality, we further have

∥T1∥ =
∥∥∥Xt+1 −

(
I +

η

λ
A∗A(M⋆)

)
Xt

∥∥∥ ≤
∥∥ηA∗A(XtX

⊤
t )Xt(X

⊤
t Xt + λI)−1

∥∥

+
∥∥ηA∗A(M⋆)Xt

(
(X⊤

t Xt + λI)−1 − λ−1I
)∥∥ . (84)

Since ∥(X⊤
t Xt + λI)−1∥ ≤ λ−1, it follows that the first term in (84) can be bounded by

∥∥ηA∗A(XtX
⊤
t )Xt(X

⊤
t Xt + λI)−1

∥∥ ≤ η

λ
∥A∗A(X⊤

t Xt)∥∥Xt∥.

In addition, since
√
cλ/200 · κ−1∥X⋆∥ =

√
cλσ2

min(X⋆)/200 ≤
√
λ/2 by the condition λ ≥ 1

100cλσ
2
min(X⋆), we

have by (81) that ∥Xt∥ ≤
√
λ/2. Therefore, invoking Lemma 8 implies that

(X⊤
t Xt + λI)−1 − λ−1I = λ−2X⊤

t XtQ, for some Q with ∥Q∥ ≤ 2.

As a result, the second term in (84) can be bounded by

∥∥ηA∗A(M⋆)Xt

(
(X⊤

t Xt + λI)−1 − λ−1I
)∥∥ ≤ 2

η

λ2
∥A∗A(M⋆)∥∥Xt∥3.

Combining the above two inequalities leads to

∥T1∥ ≤ η

λ

(
∥A∗A(X⊤

t Xt)∥+
2

λ
∥A∗A(M⋆)∥∥Xt∥2

)
∥Xt∥.

In view of Lemma 7, we know ∥A∗A(M⋆)∥ ≲ r⋆∥M⋆∥ and ∥A∗A(XtX
⊤
t )∥ ≲ r∥Xt∥2. Plugging these relations

into the previous bound leads to

∥T1∥ ≲
ηr

λ

(
1 +

∥M⋆∥
λ

)
∥Xt∥3 ≲

ηκ2r

∥M⋆∥
κ2∥Xt∥3, (85)

where the last inequality follows from λ ≳ σ2
min(X⋆) = κ−2∥M⋆∥ (cf. (12b)).

Putting the bounds on T1 and T2 together leads to

∥∥Xt+1 − X̂t+1

∥∥ ≤
(
1 +

η

λ
∥A∗A(M⋆)∥

)∥∥Xt − X̂t

∥∥ +
Cηκ4r

∥M⋆∥
∥Xt∥3 (86)

for some universal constant C = C(cλ) > 0.

Step 2: finishing the induction. By the bound of ∥Xt∥ in (81), it suffices to prove

t
(
1 +

η

λ
∥A∗A(M⋆)∥

)t+1 α2

∥X⋆∥
+

C(CG + 1)3ηκ4r

∥X⋆∥2
(
1 +

η

λ
∥A∗A(M⋆)∥

)3t
α3

≤ (t+ 1)
(
1 +

η

λ
∥A∗A(M⋆)∥

)t+1 α2

∥X⋆∥
.

This is equivalent to

C(CG + 1)3ηκ4r
(
1 +

η

λ
∥A∗A(M⋆)∥

)2t−1

≤ ∥X⋆∥
α

,

which again follows readily from our assumption t ≤ 1
θη log(κn) and the assumption (71) on α which implies

log

(∥X⋆∥
α

)
≥ (2t− 1) log

(
1 +

η

λ
∥A∗A(M⋆)∥

)
+ 4 log κ+ log n+K

≥ (2t− 1) log
(
1 +

η

λ
∥A∗A(M⋆)∥

)
+ log(ηκ4r) + log(C(CG + 1)3)

provided K = K(θ, cλ, CG) is sufficiently large. The proof is complete.
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D.1.2. PROOF OF LEMMA 21

We begin with the following observation:

ÑtS̃
−1
t = U⊤

⋆,⊥UX̃t
ΣX̃t

V ⊤
X̃t

VX̃t
Σ−1

X̃t

(U⊤
⋆ UX̃t

)−1

= U⊤
⋆,⊥UX̃t

(U⊤
⋆ UX̃t

)−1 (87)

where we use: (i) Ñt = U⊤
⋆,⊥(UX̃t

ΣX̃t
V ⊤
X̃t

) and S̃t = U⊤
⋆ UX̃t

ΣX̃t
V ⊤
X̃t

; (ii) X̃t is invertible since S̃t is invertible, and hence

VX̃t
has rank r⋆ and ΣX̃t

, U⊤
⋆ UX̃t

are also invertible. We will show that the above quantity is small if (and only if) U⊤
⋆,⊥UX̃t

is small.

Turning to the proof, we first show that (ii) implies (i), thus it suffices to prove the lemma under the condition (i). In fact, in

virtue of (87) we have

∥U⊤
⋆,⊥UX̃t

∥ ≤ ∥ÑtS̃
−1
t ∥∥U⊤

⋆ UX̃t
∥ ≤ ∥ÑtS̃

−1
t ∥ ≤ σmin(X⋆)

−1∥ÑtS̃
−1
t Σ⋆∥,

where we used ∥U⊤
⋆ UX̃t

∥ ≤ ∥U⋆∥∥UX̃t
∥ ≤ 1. Consequently, ∥U⊤

⋆,⊥UX̃t
∥ ≤ 1/4 if ∥ÑtS̃

−1
t Σ⋆∥ ≤ κ−1∥X⋆∥/4, as

claimed.

We proceed to show that the conclusion holds assuming condition (i). The first inequality has already been established

above. For the second inequality, using (87) again, it suffices to prove ∥(U⊤
⋆ UX̃t

)−1∥ ≤ 2, which is in turn equivalent to

σmin(U
⊤
⋆ UX̃t

) ≥ 1/2. Now note that UX̃t
= U⋆U

⊤
⋆ UX̃t

+ U⋆,⊥U⊤
⋆,⊥UX̃t

, thus

σmin(U
⊤
⋆ UX̃t

) = σr⋆(U
⊤
⋆ UX̃t

)

≥ σr⋆(U⋆U
⊤
⋆ UX̃t

)

≥ σr⋆(UX̃t
)− ∥U⋆,⊥U

⊤
⋆,⊥UX̃t

∥
≥ 1− ∥U⊤

⋆,⊥UX̃t
∥ ≥ 3/4.

In the last line, we used σr⋆(UX̃t
) = 1, which follows from UX̃t

being a n× r⋆ orthonormal matrix, and the assumption (i).

This completes the proof.

D.2. Establishing the induction step

The claimed invertibility of S̃t follows from induction and from Lemma 3. In fact, by (16) we know S̃t1 is invertible, and by

Lemma 3 we know that if S̃t is invertible, S̃t+1 would also be invertible since S̃t (resp. S̃t+1) has the same invertibility as

(Σ2
⋆ + λI)−1S̃t (resp. (Σ2

⋆ + λI)−1S̃t+1). For the rest of the proof we focus on establishing (17) by induction.

For the induction step we need to understand the one-step behaviors of ∥Õt∥, ∥ÑtS̃
−1
t Σ⋆∥, and ∥S̃t∥, which are supplied by

the following lemmas.

Lemma 22. For any t such that (17) holds,

∥Õt+1∥ ≤
(
1 +

1

12Cmaxκ
η

)
∥Õt∥. (88)

Lemma 23. For any t such that (17) holds, setting Zt = Σ−1
⋆ (S̃tS̃

⊤
t + λI)Σ−1

⋆ , there exists some universal constant

C23 > 0 such that

|||Ñt+1S̃
−1
t+1Σ⋆||| ≤

(
1− η

3(∥Zt∥+ η)

)
|||ÑtS̃

−1
t Σ⋆|||+ η

C23κ
2

cλ∥X⋆∥
|||U⊤

⋆ ∆t|||+ η

(
∥Õt∥

σmin(S̃t)

)1/2

∥X⋆∥. (89)

In particular, if c2 = 100C23(C2.a + 1)4cδ/cλ, then ∥ÑtS̃
−1
t Σ⋆∥ ≤ c2κ

−Cδ/2∥X⋆∥ implies ∥Ñt+1S̃
−1
t+1Σ⋆∥ ≤

c2κ
−Cδ/2∥X⋆∥.

Lemma 24. For any t such that (17) holds,

∥S̃t+1∥ ≤
(
1− η

2

)
∥S̃t∥+ 100c

−1/2
λ ηκ∥X⋆∥. (90)

In particular, if C2.a = 200c
−1/2
λ , then ∥S̃t∥ ≤ C2.aκ∥X⋆∥ implies ∥S̃t+1∥ ≤ C2.aκ∥X⋆∥.
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We now return to the induction step. Recall that we need to show (17a)–(17d) hold for t+ 1. It is obvious that (17b)–(17d)

hold for t + 1 by the induction hypothesis and the above lemmas. It remains to prove (17a). To this end we distinguish

two cases: σmin((Σ
2
⋆ + λI)−1/2S̃t) ≤ 1/3 and σmin((Σ

2
⋆ + λI)−1/2S̃t) > 1/3. In the former case, (17a) for t+ 1 follows

from Lemma 22 and Lemma 3 (to be proved in Appendix E.1), which imply (provided Cmax ≥ 2)

∥Õt+1∥
σmin((Σ2

⋆ + λI)−1/2S̃t+1)
≤

(
1 + η

4Cmaxκ

)

(1 + η/8)

∥Õt∥
σmin((Σ2

⋆ + λI)−1/2S̃t)
≤ ∥Õt∥

σmin((Σ2
⋆ + λI)−1/2S̃t)

,

as desired. In the latter case where σmin((Σ
2
⋆ + λI)−1/2S̃t) > 1/3, one may apply the first part of Lemma 3 to deduce that

σmin((Σ
2
⋆ + λI)−1/2S̃t+1) ≥ 1/10 (given that η ≤ cη for some sufficiently small constant cη). This combined with (17b)

for t+ 1 (already proved) yields desired inequality (17a) for t+ 1, given our assumption (12c) on the smallness of α. This

completes the proof.

D.2.1. PROOF OF LEMMA 22

If r = r⋆, then we have ∥Õt∥ = 0 for all t ≥ 0. The conclusion follows trivially. Therefore, we only consider the case when

r > r⋆. By definition, we have

Õt+1 = Nt+1Vt+1,⊥ = Nt+1VtV
⊤
t Vt+1,⊥ +Nt+1Vt,⊥V

⊤
t,⊥Vt+1,⊥

= −Nt+1Vt(St+1Vt)
−1St+1Vt,⊥V

⊤
t,⊥Vt+1,⊥ +Nt+1Vt,⊥V

⊤
t,⊥Vt+1,⊥,

where the last inequality uses the fact that V ⊤
t Vt+1,⊥ = −(St+1Vt)

−1St+1Vt,⊥V ⊤
t,⊥Vt+1,⊥. To see this, note that

St+1Vt+1,⊥ = 0 =⇒ St+1VtV
⊤
t Vt+1,⊥ = −St+1Vt,⊥V

⊤
t,⊥Vt+1,⊥.

Left-multiplying both sides by (St+1Vt)
−1 yields the desired identity. Note that the invertibility of St+1Vt follows from the

invertibility of S̃t by inserting Q = 0 in Lemma 13.

By Lemma 12, we immediately obtain that St+1Vt,⊥ = ηEb
tVt,⊥, and Nt+1Vt,⊥ = Õt + ηEd

t Vt,⊥, where ∥Eb
t ∥ ∨ ∥Ed

t ∥ ≤
1

24Cmaxκ
∥Õt∥. Assume for now that

∥Nt+1Vt(St+1Vt)
−1∥ ≤ 1. (91)

In addition, notice that ∥V ⊤
t,⊥Vt+1,⊥∥ ≤ 1 since both factors are orthonormal matrices, we have

∥Õt+1∥ ≤ ∥Õt∥+ η∥Nt+1Vt(St+1Vt)
−1∥∥Eb

t ∥+ η∥Ed
t ∥

≤
(
1 +

1

12Cmaxκ
η

)
∥Õt∥,

as desired. It remains to prove (91).

Proof of bound (91). This can be done by plugging Q = 0 into Lemma 14 and bounding the resulting expression. This

(in fact, a much stronger inequality) will be done in detail in the proof of Lemma 23, to be presented soon in Section D.2.2.

In fact, the resulting expression is the same as (96) there (albeit with different values of E13.a
t , E14.a

t , E14.b
t , which do not

affect the proof). Following the same strategy to control (96) there, we may show that ∥Nt+1Vt(St+1Vt)
−1Σ⋆∥ enjoys the

same bound (101) as ∥Ñt+1S̃
−1
t+1Σ⋆∥, the right hand side of which is less than κ−1∥X⋆∥ = ∥Σ−1

⋆ ∥−1 given (17c) and (17d).

Thus ∥Nt+1Vt(St+1Vt)
−1∥ ≤ ∥Nt+1Vt(St+1Vt)

−1Σ⋆∥∥Σ−1
⋆ ∥ ≤ 1 as claimed.

D.2.2. PROOF OF LEMMA 23

Denoting X̃t := XtVt, we have Ñt = U⊤
⋆,⊥X̃t and S̃t = U⊤

⋆ X̃t. Suppose for the moment that

∥(V ⊤
t Vt+1)

−1∥ ≤ 2, (92)

whose proof is deferred to the end of this section. We can write the update equation of X̃t as

X̃t+1 = Xt+1Vt+1 = Xt+1VtV
⊤
t Vt+1 +Xt+1Vt,⊥V

⊤
t,⊥Vt+1
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=
(
Xt+1Vt +Xt+1Vt,⊥V

⊤
t,⊥Vt+1(V

⊤
t Vt+1)

−1
)
V ⊤
t Vt+1. (93)

Left-multiplying both sides of (93) with U⋆,⊥ (or U⋆), we obtain

Ñt+1 = (Nt+1Vt +Nt+1Vt,⊥Q)V ⊤
t Vt+1, (94a)

S̃t+1 = (St+1Vt + St+1Vt,⊥Q)V ⊤
t Vt+1, (94b)

where we define Q := V ⊤
t,⊥Vt+1(V

⊤
t Vt+1)

−1. Consequently, we arrive at

Ñt+1S̃
−1
t+1 = (Nt+1Vt +Nt+1Vt,⊥Q)(St+1Vt + St+1Vt,⊥Q)−1. (95)

Since ∥Q∥ ≤ 2 (which is an immediate implication of (92)), we can invoke Lemma 14 to obtain

Ñt+1S̃
−1
t+1Σ⋆ =ÑtS̃

−1
t (I + ηE14.a

t )At(At + ηΣ2
⋆)

−1(I + ηE13
t )−1Σ⋆ + ηE14.b

t Σ⋆

=ÑtS̃
−1
t Σ⋆(I + ηΣ−1

⋆ E14.a
t Σ⋆)Ht(Ht + ηI)−1(I + ηΣ−1

⋆ E13
t Σ⋆)

−1 + ηE14.b
t Σ⋆, (96)

where for simplicity of notation, we denote

At := (1− η)S̃tS̃
⊤
t + λI, and Ht := Σ−1

⋆ AtΣ
−1
⋆ .

In addition, we have

∥E13
t ∥+ ∥E14.a

t ∥ ≤ 1

64κ5
,

|||E14.b
t ||| ≤ 800c−1

λ κ2∥X⋆∥−2|||U⊤
⋆ ∆t|||+

1

64(C2.a + 1)2κ5∥X⋆∥
|||ÑtS̃

−1
t Σ⋆|||+

1

64

(
∥Õt∥

σmin(S̃t)

)2/3

.

Moreover, it is clear that η ≤ cη ≤ 1 ≤ κ4 since κ ≥ 1, and that ∥Ht∥ ≤ κ2(1 + ∥S̃t∥2/∥X⋆∥2) ≤ (C2.a + 1)2κ4. Hence

we have

∥Ht∥+ η ≤ 2(C2.a + 1)2κ4

which implies

∥E13
t ∥+ ∥E14.a

t ∥ ≤ 1

24κ

1

∥Ht∥+ η
. (97)

Similarly we may also show

|||E14.b
t ||| ≤ 800c−1

λ κ2∥X⋆∥−2|||U⊤
⋆ ∆t|||+

1

12(∥Ht∥+ η)∥X⋆∥
|||ÑtS̃

−1
t Σ⋆|||+

1

2

(
∥Õt∥

σmin(S̃t)

)2/3

. (98)

Since Ht is obviously positive definite, we have

∥Ht(Ht + ηI)−1∥ ≤ 1− η

∥Ht∥+ η
. (99)

Thus

|||Ñt+1S̃
−1
t+1Σ⋆||| ≤

(
1− η

∥Ht∥+ η

)
(1− ηκ∥E13

t ∥)−1(1 + ηκ∥E14.a
t ∥)|||ÑtS̃

−1
t Σ⋆|||+ η|||E14.b

t |||∥X⋆∥.

≤
(
1− η

∥Ht∥+ η

)(
1 +

1

12

η

∥Ht∥+ η

)2

|||ÑtS̃
−1
t Σ⋆|||

+ η
800κ2

cλ∥X⋆∥
|||U⊤

⋆ ∆t|||+
1

12

η

∥Ht∥+ η
|||ÑtS̃

−1
t Σ⋆|||+

1

2
η

(
∥Õt∥

σmin(S̃t)

)2/3

∥X⋆∥

≤
(
1− 5

6

η

∥Ht∥+ η

)
|||ÑtS̃

−1
t Σ⋆|||+

1

12

η

∥Ht∥+ η
|||ÑtS̃

−1
t Σ⋆|||
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+ η
800κ2

cλ∥X⋆∥
|||U⊤

⋆ ∆t|||+
1

2
η

(
∥Õt∥

σmin(S̃t)

)2/3

∥X⋆∥

≤
(
1− 3

4

η

∥Ht∥+ η

)
|||ÑtS̃

−1
t Σ⋆|||+ η

800κ2

cλ∥X⋆∥
|||U⊤

⋆ ∆t|||+
1

2
η

(
∥Õt∥

σmin(S̃t)

)2/3

∥X⋆∥

≤
(
1− 3

4

η

∥Zt∥+ η

)
|||ÑtS̃

−1
t Σ⋆|||+ η

800κ2

cλ∥X⋆∥
|||U⊤

⋆ ∆t|||+
1

2
η

(
∥Õt∥

σmin(S̃t)

)2/3

∥X⋆∥, (100)

where in the second inequality we used (1− x)−1 ≤ 1 + x for x < 1, in the penultimate inequality we used the elementary

fact (1− x)(1 + 1
16x)

2 ≤ 1− 5
6x for x ∈ [0, 1], and in the last inequality we used the obvious fact

∥Ht∥ = ∥Σ−1
⋆ ((1− η)S̃tS̃

⊤
t + λI)Σ−1

⋆ ∥ ≤ ∥Σ−1
⋆ (S̃tS̃

⊤
t + λI)Σ−1

⋆ ∥ = ∥Zt∥.

The desired inequality (89) follows from the above inequality by setting C23 = 800.

For the remaining claim, we need to apply the conclusion of the first part with ||| · ||| = ∥ · ∥. Then we note the following

bounds:

(i) ∥Zt∥ ≤ ∥Σ−1
⋆ ∥2(∥S̃t∥2 + λ) ≤ (C2.a + 1)2κ4 by (17d) and (12b) (since we may choose cλ ≤ 1);

(ii) η ≤ cη ≤ (C2.a + 1)2κ4;

(iii) ∥U⊤
⋆ ∆t∥ ≤ ∥∆t∥ ≤ 16(C2.a + 1)2cδκ

−2Cδ/3∥X⋆∥2 by Lemma 11;

(iv) (∥Õt∥/σmin(S̃t))
1/2 ≤ cδκ

−2Cδ/3 by (17a), if we choose Cα ≥ 3c−1
δ + 3Cδ + 3.

These together imply

∥Ñt+1S̃
−1
t+1Σ⋆∥ ≤

(
1− η

6(C2.a + 1)2κ4

)
∥ÑtS̃

−1
t Σ⋆∥+ η

16C23κ
2

cλ
(C2.a + 1)2cδκ

−2Cδ/3∥X⋆∥+ ηcδκ
−2Cδ/3∥X⋆∥.

(101)

The conclusion follows easily by plugging in ∥ÑtS̃
−1
t Σ⋆∥ ≤ c2κ

−Cδ/2∥X⋆∥ and using κ6κ−2Cδ/3 ≤ κ−Cδ/2 when Cδ is

sufficiently large.

Proof of bound (92). First, we observe that it is equivalent to show that σmin(V
⊤
t Vt+1) ≥ 1/2. But from Vt+1V

⊤
t+1 +

Vt+1,⊥V ⊤
t+1,⊥ = I we have

σmin(V
⊤
t Vt+1) = σr⋆(V

⊤
t Vt+1) ≥ σr⋆(V

⊤
t Vt+1V

⊤
t+1) = σr⋆(V

⊤
t − V ⊤

t Vt+1,⊥V
⊤
t+1,⊥)

≥ σr⋆(V
⊤
t )− ∥V ⊤

t Vt+1,⊥V
⊤
t+1,⊥∥

≥ 1− ∥V ⊤
t Vt+1,⊥∥,

where the last inequality follows from σr⋆(V
⊤
t ) = 1 (since Vt ∈ R

r×r⋆ is orthonormal) and from that ∥V ⊤
t Vt+1,⊥V ⊤

t+1,⊥∥ ≤
∥V ⊤

t Vt+1,⊥∥. This implies that, to show σmin(V
⊤
t Vt+1) ≥ 1/2, it suffices to prove ∥V ⊤

t Vt+1,⊥∥ ≤ 1/2.

Next we prove that ∥V ⊤
t Vt+1,⊥∥ ≤ 1/2. Recall that by definition we have St+1Vt+1,⊥ = 0. Right-multiplying both sides

of (47a) by Vt+1,⊥, we obtain

0 =
(
(1− η)I + η(Σ2

⋆ + λI + Ea
t )(S̃tS̃

⊤
t + λI)−1

)
S̃t(V

⊤
t Vt+1,⊥) + ηEb

tVt+1,⊥,

hence

∥V ⊤
t Vt+1,⊥∥ ≤ η∥Eb

tVt+1,⊥∥∥S̃−1
t ∥

∥∥∥∥
(
(1− η)I + η(Σ2

⋆ + λI + Ea
t )(S̃tS̃

⊤
t + λI)−1

)−1
∥∥∥∥ .

By (48b) we have

∥Eb
tVt+1,⊥∥∥S̃−1

t ∥ ≤ ∥Eb
t ∥

σmin(S̃t)
≤ 1

10κ
,
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thus it suffices to show

η

∥∥∥∥
(
(1− η)I + η(Σ2

⋆ + λI + Ea
t )(S̃tS̃

⊤
t + λI)−1

)−1
∥∥∥∥ ≤ 5κ, (102)

or equivalently,

σmin

(
(1− η)I + η(Σ2

⋆ + λI + Ea
t )(S̃tS̃

⊤
t + λI)−1

)
≥ η

5κ
. (103)

To this end, we write

(1− η)I + η(Σ2
⋆ + λI + Ea

t )(S̃tS̃
⊤
t + λI)−1

=

(
I + ηEa

t

(
(1− η)(S̃tS̃

⊤
t + λI) + η(Σ2

⋆ + λI)
)−1

)(
(1− η)I + η(Σ2

⋆ + λI)(S̃tS̃
⊤
t + λI)−1

)
(104)

and control the two terms separately.

• To control the first factor, starting from (48a) we may deduce

∥Ea
t ∥ ≤ κ−4∥X⋆∥∥ÑtS̃

−1
t Σ⋆∥+ ∥U⊤

⋆ ∆t∥
≤ κ−4∥X⋆∥c2κ−Cδ/2∥X⋆∥+ c11κ

−2Cδ/3∥X⋆∥2

≤ κ−2∥X⋆∥2/2 = σ2
min(X⋆)/2,

where the second inequality follows from (17c) and Lemma 11; the last inequality follows from choosing cδ sufficiently

small (recall that c2, c11 ≲ cδ/c
3
λ) and Cδ sufficiently large. Furthermore, since S̃tS̃

⊤
t is positive semidefinite, we have

∥∥∥∥
(
(1− η)(S̃tS̃

⊤
t + λI) + η(Σ2

⋆ + λI)
)−1

∥∥∥∥ ≤ η−1σ−2
min(Σ⋆) = η−1σ−2

min(X⋆),

hence

σmin

(
1 + ηEa

t

(
(1− η)(S̃tS̃

⊤
t + λI) + η(Σ2

⋆ + λI)
)−1

)

≥ 1− η∥Ea
t ∥
∥∥∥∥
(
(1− η)(S̃tS̃

⊤
t + λI) + η(Σ2

⋆ + λI)
)−1

∥∥∥∥

≥ 1− η · σ
2
min(X⋆)

2
· η−1σ−2

min(X⋆) = 1/2. (105)

• Now we control the second factor. By Lemma 9 we have

σmin

(
1− η + η(Σ2

⋆ + λI)(S̃tS̃
⊤
t + λI)−1

)
= (1− η)σmin

(
I +

η

1− η
(Σ2

⋆ + λI)(S̃tS̃
⊤
t + λI)−1

)

≥ (1− η)

( ∥Σ2
⋆ + λI∥

σmin(Σ2
⋆ + λI)

)−1/2

= (1− η)

( ∥X⋆∥2 + λ

σ2
min(X⋆) + λ

)−1/2

.

It is easy to check that the function λ 7→ (a+ λ)/(b+ λ) is decreasing on [0,∞) for a ≥ b > 0, thus

∥X⋆∥2 + λ

σ2
min(X⋆) + λ

≤ ∥X⋆∥2
σ2
min(X⋆)

= κ2,

which implies

σmin

(
(1− η)I + η(Σ2

⋆ + λI)(S̃tS̃
⊤
t + λI)−1

)
≥ 1− η

κ
. (106)

Plugging (106) and (105) into (104) yields

σmin

(
(1− η)I + η(Σ2

⋆ + λI + Ea
t )(S̃tS̃

⊤
t + λI)−1

)
≥ 1− η

2κ
≥ η

5κ
, (107)

where the last inequality follows from the assumption η ≤ cη . This shows (103) as desired, thereby completing the proof.
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D.2.3. PROOF OF LEMMA 24

Combine (94b) and Lemma 13 to see that

∥S̃t+1∥ ≤ ∥St+1Vt + St+1Vt,⊥Q∥
≤ ∥1 + ηE13

t ∥ ·
∥∥∥(1− η)(S̃tS̃

⊤
t + λI)1/2 + η(Σ2

⋆ + λI)(S̃tS̃
⊤
t + λI)−1/2

∥∥∥ ·
∥∥∥(S̃tS̃

⊤
t + λI)−1/2S̃t

∥∥∥

≤ (1 + η∥E13
t ∥)

(
(1− η)(∥S̃t∥2 + λ)1/2 + 4ηλ−1/2∥X⋆∥2

)
(∥S̃t∥2 + λ)−1/2∥S̃t∥

≤
(
1 +

η

4

)

(1− η)∥S̃t∥+ 4η

∥X⋆∥2∥S̃t∥√
λ(∥S̃t∥2 + λ)




≤
(
1− η

2

)
∥S̃t∥+ 5η

∥X⋆∥2√
λ

, (108)

where the third line follows from ∥Σ2
⋆+λI∥ ≤ (1+λ)∥X⋆∥2 ≤ 2∥X⋆∥2 assuming cλ ≤ 1 and from the fact that the singular

values of (S̃tS̃
⊤
t + λI)−1/2S̃t are (σ2

j (S̃t) + λ)−1/2σj(S̃t), j = 1, . . . , r⋆,4 which is bounded by (∥S̃t∥2 + λ)−1/2∥S̃t∥
since σ 7→ (σ2 + λ)−1/2σ is increasing and since ∥S̃t∥ is the largest singular value of S̃t. In the fourth line, we used the

error bound ∥E13
t ∥ ≤ 1/4 and the last line follows from the elementary inequalities 1 + η/4 ≤ (1− η/2)(1− η)−1 ≤ 5/4

given that η ≤ cη for sufficiently small constant cη > 0. The conclusion readily follows from the above inequality and the

assumption λ ≥ 1
100cλσ

2
min(X⋆).

E. Proofs for Phase II

This section collects the proofs for Phase II.

E.1. Proof of Lemma 3

Since ∥V ⊤
t+1Vt∥ ≤ 1, we have

σmin((Σ
2
⋆ + λI)−1/2S̃t+1) ≥ σmin((Σ

2
⋆ + λI)−1/2S̃t+1V

⊤
t+1Vt)

= σmin((Σ
2
⋆ + λI)−1/2St+1Vt),

where the second equality follows from St+1 = S̃t+1V
⊤
t+1 (cf. (26)). Apply Lemma 13 with Q = 0 to see that

St+1Vt = (I + ηE13
t )
(
(1− η)I + η(Σ2

⋆ + λI)(S̃tS̃
⊤
t + λI)−1

)
S̃t, (109)

where E13
t ∈ R

r⋆×r⋆ satisfies ∥E13
t ∥ ≤ 1

200(C2.a+1)4κ5 . To simplify the notation, we denote

Yt := (Σ2
⋆ + λI)−1/2S̃t,

which allows us to write (109) as

(Σ2
⋆ + λI)−1/2St+1Vt

=
(
I + η(Σ2

⋆ + λI)−1/2E13
t (Σ2

⋆ + λI)1/2
)(

(1− η)I + η
(
YtY

⊤
t + λ(Σ2

⋆ + λI)−1
)−1
)
Yt. (110)

Note that

∥(Σ2
⋆ + λI)−1/2E13

t (Σ2
⋆ + λI)1/2∥ ≤ ∥(Σ2

⋆ + λI)−1/2∥ · ∥(Σ2
⋆ + λI)1/2∥ · ∥E13

t ∥
≤ κ∥X⋆∥−1 · (2∥X⋆∥) · ∥E13

t ∥

≤ 2κ · 1

200(C2.a + 1)4κ5
≤ 1/32, (111)

4This can be seen from plugging in S̃t = UtΣt by definition which implies (S̃tS̃
⊤

t + λI)−1/2
S̃t = Ut(Σt + λI)−1/2Σt.
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where in the second inequality we used λ ≤ cλ∥M⋆∥ ≤ ∥X⋆∥2 as cλ ≤ 1, and in the third inequality we used the claimed

bound of ∥E13
t ∥. Therefore, it follows that

σmin

(
I + η(Σ2

⋆ + λI)−1/2E13
t (Σ2

⋆ + λI)1/2
)
≥ 1− η/32. (112)

On the other hand, using σmin(AB) ≥ σmin(A)σmin(B) for any matrices A,B, it is obvious that

σmin

((
(1− η)I + η(YtY

⊤
t + λ(Σ2

⋆ + λI)−1)−1
)
Yt

)
≥ (1− η)σmin(Yt),

which in turn implies that

σmin

(
(Σ2

⋆ + λI)−1/2St+1Vt

)
≥ (1− η/32)(1− η)σmin(Yt) ≥ (1− 2η)σmin(Yt),

as long as η ≤ cη for some sufficiently small constant cη . This proves the first part of Lemma 3.

Now we move to the second part assuming σmin(Yt) ≤ 1/3. Using the assumption λ ≤ cλσmin(M⋆), we see that

∥λ(Σ2
⋆ + λI)−1∥ ≤ cλ.

Given that cλ is sufficiently small (such that cλ ≤ c10, where c10 is the positive constant in Lemma 10), one may apply

Lemma 10 with Y = Yt and Λ = λ(Σ2
⋆ + λI)−1 to obtain

σmin

(
(Σ2

⋆ + λI)−1/2St+1Vt

)
≥ σmin

(
I + η(Σ2

⋆ + λI)−1/2E13
t (Σ2

⋆ + λI)1/2
)(

1 +
1

6
η

)
σmin(Yt)

(i)

≥ (1− η/32)

(
1 +

1

6
η

)
σmin(Yt)

(ii)

≥
(
1 +

1

8
η

)
σmin(Yt),

where (i) uses (112), and (ii) follows as long as η ≤ cη for some sufficiently small constant cη. The desired conclusion

follows.

E.2. Proof of Corollary 1

We will prove a strengthened version of (20), that is

σmin

(
(Σ2

⋆ + λI)−1/2S̃t

)
≥ 1/

√
10. (113)

It is clear that (113) implies (20). Indeed, for each u ∈ R
r⋆ , by taking v = (Σ2

⋆ + λI)1/2u, we have

u⊤S̃tS̃
⊤
t u = v⊤(Σ2

⋆ + λI)−1/2S̃tS̃
⊤
t (Σ2

⋆ + λI)−1/2v ≥ 1

10
∥v∥2 ≥ 1

10
u⊤Σ2

⋆u,

which implies (20). It then boils down to establish (113).

Step 1: establishing the claim for a midpoint t2. From Lemma 2 we know that

σmin

(
(Σ2

⋆ + λI)−1/2S̃t1

)
≥ ∥Σ2

⋆ + λI∥−1/2σmin(S̃t1)
(i)

≥ (cλ + 1)−1/2∥X⋆∥−1 · α2/∥X⋆∥ ≥ 1

3
(α/∥X⋆∥)2,

where (i) follows from the assumption (12b) and Lemma 2, and the last inequality follows by choosing cλ ≤ 1. By

the second part of Lemma 3, starting from t1, whenever σmin((Σ
2
⋆ + λI)−1/2S̃t) < 1/

√
10 < 1/3, it would increase

exponentially with rate at least (1 + η
8 ). On the other end, it is easy to verify, given that η ≤ cη is sufficiently small,

(
1 +

η

8

) 16
η

log
(

3√
10

∥X⋆∥2
α2

)
≥ 3∥X⋆∥2√

10α2
≥ 1√

10

1

σmin

(
(Σ2

⋆ + λI)−1/2S̃t1

) .

Therefore, it takes at most 16
η log

(
3√
10

∥X⋆∥2

α2

)
≤ Tmin/16 more iterations to make σmin((Σ

2
⋆ + λI)−1/2S̃t) grow to at

least 1/
√
10. Equivalent, for some t2 : t1 ≤ t2 ≤ t1 + Tmin/16, we have

σmin

(
(Σ2

⋆ + λI)−1/2S̃t2

)
≥ 1/

√
10.
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Step 2: establishing the claim for all t ∈ [t2, Tmax]. It remains to show that (113) continues to hold for all t ∈ [t2, Tmax].
We prove this by induction on t. Assume that (113) holds for some t ∈ [t2, Tmax − 1]. We show that it will also hold for

t+ 1. We divide the proof into two cases.

Case 1. If σmin((Σ
2
⋆ + λI)−1/2S̃t) ≤ 1/3, we deduce from the second part of Lemma 3 that

σmin

(
(Σ2

⋆ + λI)−1/2S̃t+1

)
≥
(
1 +

η

8

)
σmin

(
(Σ2

⋆ + λI)−1/2S̃t

)
≥ σmin

(
(Σ2

⋆ + λI)−1/2S̃t

)
,

which by the induction hypothesis is no less than 1/
√
10, as desired.

Case 2. If σmin((Σ
2
⋆ + λI)−1/2S̃t) > 1/3, the first part of Lemma 3 yields

σmin

(
(Σ2

⋆ + λI)−1/2S̃t+1

)
≥ (1− 2η)σmin

(
(Σ2

⋆ + λI)−1/2S̃t

)
≥ (1− 2η)/3,

which is greater than 1/
√
10 provided η ≤ cη ≤ 1/100, as desired.

Combining the two cases completes the proof.

E.3. Proof of Lemma 4

For simplicity, in this section we denote

Γt := Σ−1
⋆ S̃tS̃

⊤
t Σ−1

⋆ − I = Σ−1
⋆ (S̃tS̃

⊤
t − Σ2

⋆)Σ
−1
⋆ . (114)

It turns out that Lemma 4 follows naturally from the following technical lemma, whose proof is deferred to the end of this

section.

Lemma 25. For any t : t2 ≤ t ≤ Tmax, one has

|||Γt+1||| ≤ (1− η)|||Γt|||+ η
C25κ

4

∥X⋆∥2
|||U⊤

⋆ ∆t|||+
1

16
η∥X⋆∥−1|||ÑtS̃

−1
t Σ⋆|||+ η

(
∥Õt∥
∥X⋆∥

)7/12

, (115)

where C25 ≲ c
−1/2
λ is some positive constant and ||| · ||| can either be the Frobenius norm or the spectral norm.

From Lemma 11, we know that ∥U⊤
⋆ ∆t∥ ≤ ∥∆t∥ ≤ ∥X⋆∥2

300C25κ4 as cδ is sufficiently small. Similarly, ∥ÑtS̃
−1
t Σ⋆∥ ≤

∥X⋆∥/100 and (∥Õt∥/∥X⋆∥)7/12 ≤ 1/300 by Lemma 2. Applying Lemma 25 with the spectral norm, we prove Lemma 4

as desired.

Proof of Lemma 25. We start by rewriting (47a) as

St+1 =
(
(1− η)I + η(Σ2

⋆ + λI)(S̃tS̃
⊤
t + λI)−1

)
S̃tV

⊤
t + ηEg

t

=
(
I − η(S̃tS̃

⊤
t + λI)(S̃tS̃

⊤
t + λI)−1 + η(Σ2

⋆ + λI)(S̃tS̃
⊤
t + λI)−1

)
S̃tV

⊤
t + ηEg

t

=
(
I − η(S̃tS̃

⊤
t − Σ2

⋆)(S̃tS̃
⊤
t + λI)−1

)
S̃tV

⊤
t + ηEg

t , (116)

where

Eg
t = Ea

t (S̃tS̃
⊤
t + λI)−1S̃tV

⊤
t + Eb

t . (117)

By Corollary 1, we have σmin(S̃t)
2 ≥ 1

100σmin(M⋆) for t ∈ [t2, Tmax], so

∥(S̃tS̃
⊤
t + λI)−1S̃tV

⊤
t ∥ ≤ ∥(S̃tS̃

⊤
t + λI)−1/2∥∥(S̃tS̃

⊤
t + λI)−1/2S̃t∥ ≤ σ−1

min(S̃t) ≲ 1/σmin(X⋆).

Combined with the error bounds (48a), (48b), we have for some universal constant C > 0 that

|||Eg
t ||| ≤ |||Ea

t |||+ η|||Eb
t ||| ≤

Cκ

∥X⋆∥
|||U⊤

⋆ ∆t|||+ Cc12κ
−3|||ÑtS̃

−1
t Σ⋆|||+ C∥Õt∥3/4∥X⋆∥1/4. (118)
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Step 1: deriving a recursion of Γt. Define

At :=
(
I − η(S̃tS̃

⊤
t − Σ2

⋆)(S̃tS̃
⊤
t + λI)−1

)
S̃tV

⊤
t .

Then we can rewrite (116) as At = St+1 − ηEg
t , and by rearranging AtA

⊤
t = (St+1 − ηEg

t )(St+1 − ηEg
t )

⊤ in view of

(26), it follows that

S̃t+1S̃
⊤
t+1 = St+1S

⊤
t+1 = AtA

⊤
t + η(∥St+1∥+ ∥Eg

t ∥)(Eg
t Q1 +Q2E

g
t
⊤
)

=: AtA
⊤
t + ηEf

t

for some matrices Q1, Q2 with ∥Q1∥, ∥Q2∥ ≤ 1. By mapping both sides of the above equation by (·) 7→ Σ−1
⋆ (·)Σ−1

⋆ − I ,

we obtain

Γt+1 =
(
I − ηΓt(I + Γt + λΣ−2

⋆ )−1
)
(Γt + I)

(
I − η(I + Γt + λΣ−2

⋆ )−1Γt

)
− I + ηΣ−1

⋆ Ef
t Σ

−1
⋆ , (119)

where we recall the definition of Γt in (114).

Step 2: simplify the recursion. Note that σmin(Σ
−1
⋆ S̃t) ≥ 1/10 implies I + Γt ⪰ 1

100I . From our assumption

λ ≤ cλσmin(M⋆), it follows that ∥λΣ−2
⋆ ∥ ≤ cλ ≤ 1/200 ≤ 1

2σmin(I + Γt), thus in virtue of Lemma 8 we have

(I + Γt + λΣ−2
⋆ )−1 = (I + Γt)

−1 + (I + Γt)
−1(cλQ

′)(I + Γt)
−1,

for some matrix Q′ with ∥Q′∥ ≤ 2. Plugging this into (119) yields

Γt+1 =
(
I − ηΓt(I + Γt)

−1
)
(Γt + I)

(
I − η(I + Γt)

−1Γt

)
+ ηEh

t + ηΣ−1
⋆ Ef

t Σ
−1
⋆

= (1− 2η)Γt + η2Γ2
t (1 + Γt)

−1 + ηEh
t + ηΣ−1

⋆ Ef
t Σ

−1
⋆ , (120)

where the additional error term Eh
t is defined by

Eh
t :=Γt(I + Γt)

−1(cλQ
′)(1− ηΓt(I + Γt)

−1) + (1− ηΓt(I + Γt)
−1)(cλQ

′)(I + Γt)
−1Γt

+ ηΓt(I + Γt)
−1(cλQ

′)(I + Γt)
−2(cλQ

′)(I + Γt)
−1Γt. (121)

Step 3: controlling the error terms. We now control the error terms in (120) separately.

• By (17d) we have ∥St+1∥ ≤ C2.aκ∥X⋆∥, and by controlling the right hand side of (118) using (17c), (19), and (45) in

Lemma 11, it is evident that ∥Eg
t ∥ ≤ κ∥X⋆∥. Hence, the term Ef

t obeys

|||Ef
t ||| ≤ (C2.a + 1)κ∥X⋆∥ · |||Eg

t |||
≤ C ′C2.a

(
κ2|||U⊤

⋆ ∆t|||+ c12κ
−2∥X⋆∥|||ÑtS̃

−1
t Σ⋆|||+ κ∥Õt∥3/4∥X⋆∥5/4

)
, (122)

where C ′ > 0 is again some universal constant.

• Since Γt ⪰ 1
100I − I = − 99

100I as already proved, it is easy to see that ∥(1 + Γt)
−1∥ ≤ C and ∥Γt(1 + Γt)

−1∥ ≤ C
for some universal constant C > 0. Thus,

|||Eh
t ||| ≤ 2cλC(1 + ηC)∥Q′∥ · |||Γt|||+ ηc2λC

4∥Q′∥2|||Γt||| ≤
1

2
|||Γt|||, (123)

where the last line follows by using ∥Q′∥ ≤ 2 and by choosing cλ, cη sufficiently small.

• We still need to control η2Γ2
t (1 + Γt)

−1. This can be accomplished by invoking ∥Γt(1 + Γt)
−1∥ ≤ C again. In fact,

we have

η2|||Γ2
t (1 + Γt)

−1||| ≤ η · η∥Γt(1 + Γt)
−1∥ · |||Γt||| ≤ η · ηC|||Γt||| ≤

η

2
|||Γt||| (124)

provided that η ≤ cη is sufficiently small.
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Plugging (122), (123), (124) into (120), we readily obtain

|||Γt+1||| ≤ (1− 2η)|||Γt|||+
η

2
|||Γt|||+

η

2
|||Γt|||+ ηκ2∥X⋆∥−2|||Ef

t |||

≤ (1− η)|||Γt|||+ η
C ′C2.aκ

4

∥X⋆∥2
|||U⊤

⋆ ∆t|||+ ηc12C
′C2.a∥X⋆∥−1|||ÑtS̃

−1
t Σ⋆|||+ ηC ′C2.aκ

3∥Õt∥3/4∥X⋆∥−3/4

≤ (1− η)|||Γt|||+ η
C25κ

4

∥X⋆∥2
|||U⊤

⋆ ∆t|||+
1

16
η∥X⋆∥−1|||ÑtS̃

−1
t Σ⋆|||+ η

(
∥Õt∥
∥X⋆∥

)7/12

,

where in the last line we set C25 = C ′C2.a, chose c12 sufficiently small and used (19). Finally note that C25 ≲ C2.a ≲ c
−1/2
λ

as desired.

E.4. Proof of Corollary 2

From Lemma 4, it is elementary (e.g., by induction on t) to show that

∥∥Σ−1
⋆ (S̃tS̃

⊤
t − Σ2

⋆)Σ
−1
⋆

∥∥ ≤ (1− η)t−t2
∥∥Σ−1

⋆ (S̃t2 S̃
⊤
t2 − Σ2

⋆)Σ
−1
⋆

∥∥+ 1

100
, ∀t ∈ [t2, Tmax]. (125)

Suppose for the moment that ∥∥Σ−1
⋆ (S̃t2 S̃

⊤
t2 − Σ2

⋆)Σ
−1
⋆

∥∥ ≤ C2
2.aκ

4, (126)

where C2.a is given in Lemma 2. Then given that η ≤ cη for some sufficiently small cη, we have log(1 − η) ≥ −η/2.

As a result, if t3 − t2 ≥ 8 log(10C2.aκ)/η ≥ log(C−2
2.aκ

−4/100)/ log(1 − η), we have (1 − η)t3−t2 ≤ C−2
2.aκ

−4/100.

When Cmin is sufficiently large we may choose such t3 which simultaneously satisfies t3 ≤ t2 + Tmin/16 ≤ Tmax since

8 log(10C2.aκ)/η ≤ Cmin

32η log(∥X⋆∥/α) = Tmin/32. Invoking (125), we obtain

∥∥Σ−1
⋆ (S̃t3 S̃

⊤
t3 − Σ2

⋆)Σ
−1
⋆

∥∥ ≤ (C−2
2.aκ

−4/100)(C2
2.aκ

4) +
1

100
=

1

50
≤ 1

10
, (127)

which implies the desired bound (22).

Proof of inequality (126). It is straightforward to verify that

∥∥Σ−1
⋆ (S̃t2 S̃

⊤
t2 − Σ2

⋆)Σ
−1
⋆

∥∥ ≤ max
(
∥Σ−1

⋆ S̃t2∥2 − 1, 1− σ2
min(Σ

−1
⋆ S̃t2)

)
,

which combined with (17d) implies that

∥Σ−1
⋆ S̃t2∥2 − 1 ≤ ∥Σ−1

⋆ ∥2∥S̃t2∥2 ≤ σ−2
min(X⋆)C

2
2.aκ

2∥X⋆∥2 = C2
2.aκ

4.

In addition, by Corollary 1 we have

1− σ2
min(Σ

−1
⋆ S̃t2) ≤ 1− 1

10
=

9

10
.

Choosing C2.a sufficiently large (say C2.a ≥ 1) yields C2
2.aκ

4 ≥ 9/10, and hence the claim (126).

F. Proofs for Phase III

To characterize the behavior of ∥XtX
⊤
t −M⋆∥F, it is particularly helpful to consider the following decomposition into

three error terms related to the signal term, the misalignment term, and the overparameterization term.

Lemma 26. For all t ≥ t3, as long as ∥Σ−1
⋆ (S̃tS̃

⊤
t − Σ2

⋆)Σ
−1
⋆ ∥ ≤ 1/10, one has

∥XtX
⊤
t −M⋆∥F ≤ 4∥X⋆∥2

(
∥Σ−1

⋆ (S̃tS̃
⊤
t − Σ2

⋆)Σ
−1
⋆ ∥F + ∥X⋆∥−1∥ÑtS̃

−1
t Σ⋆∥F

)
+ 4∥X⋆∥∥Õt∥.

Note that the overparameterization error ∥Õt∥ stays small, as stated in (17b) and (19). Therefore we only need to focus on

the shrinkage of the first two terms ∥Σ−1
⋆ (S̃tS̃

⊤
t − Σ2

⋆)Σ
−1
⋆ ∥F + ∥X⋆∥−1∥ÑtS̃

−1
t Σ⋆∥F, which is the focus of the lemma

below.
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Lemma 27. For any t : t3 ≤ t ≤ Tmax, one has

∥Σ−1
⋆ (S̃t+1S̃

⊤
t+1 − Σ2

⋆)Σ
−1
⋆ ∥F + ∥X⋆∥−1∥Ñt+1S̃

−1
t+1Σ⋆∥F

≤
(
1− η

10

)(
∥Σ−1

⋆ (S̃tS̃
⊤
t − Σ2

⋆)Σ
−1
⋆ ∥F + ∥X⋆∥−1∥ÑtS̃

−1
t Σ⋆∥F

)
+ η

(
∥Õt∥
∥X⋆∥

)1/2

. (128)

In particular, ∥Σ−1
⋆ (S̃t+1S̃

⊤
t+1 − Σ2

⋆)Σ
−1
⋆ ∥ ≤ 1/10 for all t such that t3 ≤ t ≤ Tmax.

We now show how Lemma 5 is implied by the above two lemmas. To begin with, we apply Lemma 27 repeatedly to obtain

the following bound for all t ∈ [t3, Tmax]:

∥Σ−1
⋆ (S̃tS̃

⊤
t − Σ2

⋆)Σ
−1
⋆ ∥F + ∥X⋆∥−1∥ÑtS̃

−1
t Σ⋆∥F

≤
(
1− η

10

)t−t3 (
∥Σ−1

⋆ (S̃t3 S̃
⊤
t3 − Σ2

⋆)Σ
−1
⋆ ∥F + ∥X⋆∥−1∥Ñt3 S̃

−1
t3 Σ⋆∥F

)
+ 10 max

t3≤τ≤t

(
∥Õτ∥
∥X⋆∥

)1/2

, (129)

which motivates us to control the error at time t3.

We know from Corollary 2 that ∥Σ−1
⋆ (S̃t3 S̃

⊤
t3 − Σ2

⋆)Σ
−1
⋆ ∥ ≤ 1/10. Since Σ−1

⋆ (S̃t3 S̃
⊤
t3 − Σ2

⋆)Σ
−1
⋆ is a r⋆ × r⋆ matrix, we

have ∥Σ−1
⋆ (S̃t3 S̃

⊤
t3 − Σ2

⋆)Σ
−1
⋆ ∥F ≤ √

r⋆/10. In addition, we infer from (17c) that

∥Ñt3 S̃
−1
t3 Σ⋆∥F ≤ √

r⋆∥Ñt3 S̃
−1
t3 Σ⋆∥ ≤ √

r⋆c2κ
−Cδ/2∥X⋆∥ ≤ √

r⋆∥X⋆∥/10,
as long as c2 is sufficiently small. Combine the above two bounds to arrive at the conclusion that

∥Σ−1
⋆ (S̃t3 S̃

⊤
t3 − Σ2

⋆)Σ
−1
⋆ ∥F + ∥X⋆∥−1∥Ñt3 S̃

−1
t3 Σ⋆∥F ≤

√
r⋆
10

+ ∥X⋆∥−1

√
r⋆∥X⋆∥
10

=

√
r⋆
5

. (130)

Combining the two inequalities (129) and (130) yields for all t ∈ [t3, Tmax]

∥Σ−1
⋆ (S̃tS̃

⊤
t − Σ2

⋆)Σ
−1
⋆ ∥F + ∥X⋆∥−1∥ÑtS̃

−1
t Σ⋆∥F ≤ 1

5

(
1− η

10

)t−t3 √
r⋆ + 10 max

t3≤τ≤t

(
∥Õτ∥
∥X⋆∥

)1/2

.

We can then invoke Lemma 26 to see that

∥XtX
⊤
t −M⋆∥F ≤ 4∥X⋆∥2

5

(
1− η

10

)t−t3 √
r⋆ + 40∥X⋆∥2 max

t3≤τ≤t

(
∥Õτ∥
∥X⋆∥

)1/2

+ 4∥X⋆∥∥Õt∥

≤
(
1− η

10

)t−t3 √
r⋆∥M⋆∥+ 80∥M⋆∥ max

t3≤τ≤t

(
∥Õτ∥
∥X⋆∥

)1/2

,

where in the last line we use ∥Õt∥ ≤ ∥X⋆∥—an implication of (19). To see this, the assumption (12c) implies that

α ≤ ∥X⋆∥ as long as η ≤ 1/2 and Cα ≥ 4, which in turn implies ∥Õt∥ ≤ α2/3∥X⋆∥1/3 ≤ ∥X⋆∥. This completes the proof

for the first part of Lemma 5 with c5 = 1/10.

For the second part of Lemma 5, notice that

8c−1
5 max

t3≤τ≤Tmax

(∥Õτ∥/∥X⋆∥)1/2 ≤ 1

2

(
α

∥X⋆∥

)1/3

by (19), thus

∥XtX
⊤
t −M⋆∥F ≤ (1− c5η)

t−t3
√
r⋆∥M⋆∥+

1

2

(
α

∥X⋆∥

)1/3

for t3 ≤ t ≤ Tmax. There exists some iteration number t4 : t3 ≤ t4 ≤ t3 +
2

c5η
log(∥X⋆∥/α) ≤ t3 + Tmin/16 such that

(1− c5η)
t4−t3 ≤

(
α

∥X⋆∥

)2

≤ 1

2
√
r⋆

(
α

∥X⋆∥

)1/3

,

where the last inequality is due to (12c). It is then clear that t4 has the property claimed in the lemma.
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F.1. Proof of Lemma 26

Starting from (46), we may deduce

∥XtX
⊤
t −M⋆∥F ≤ ∥S̃tS̃

⊤
t − Σ2

⋆∥F + 2∥S̃t∥∥Ñt∥F + ∥Ñt∥∥Ñt∥F + ∥Õt∥∥Õt∥F

≤ ∥X⋆∥2

∥Σ−1

⋆ S̃tS̃
⊤
t Σ−1

⋆ − I∥F + 2∥Σ−1
⋆ S̃t∥2∥X⋆∥−1∥ÑtS̃

−1
t Σ⋆∥F +

√
n

(
∥Õt∥
∥X⋆∥

)2



≤ 4∥X⋆∥2
(
∥Σ−1

⋆ S̃tS̃
⊤
t Σ−1

⋆ − I∥F + ∥X⋆∥−1∥ÑtS̃
−1
t Σ⋆∥F +

∥Õt∥
∥X⋆∥

)
, (131)

where the penultimate line used ∥Õt∥F ≤ √
n∥Õt∥, and the last line follows from ∥Σ−1

⋆ S̃t∥2 = ∥Σ−1
⋆ S̃tS̃

⊤
t Σ−1

⋆ ∥ ≤
1 + ∥Σ−1

⋆ S̃tS̃
⊤
t Σ−1

⋆ − I∥ ≤ 2 (recall that ∥Σ−1
⋆ S̃tS̃

⊤
t Σ−1

⋆ − I∥ ≤ 1/10 by assumption) and from (19).

F.2. Proof of Lemma 27

Recall the definition of Γt from (114):

Γt := Σ−1
⋆ S̃tS̃

⊤
t Σ−1

⋆ − I.

Fix any t ∈ [t3, Tmax], if (128) were true for all τ ∈ [t3, t], taking into account that ∥Õτ∥/∥X⋆∥ ≤ 1/10000 for all

τ ∈ [t3, Tmax] by (19), we could show by induction that ∥Γτ∥ ≤ 1/10 for all τ ∈ [t3, t]. Thus it suffices to assume

∥Γt∥ ≤ 1/10 and prove (128).

Apply Lemma 25 with Frobenius norm to obtain

∥Γt+1∥F ≤ (1− η)∥Γt∥F + η
C25κ

4

∥X⋆∥2
∥U⊤

⋆ ∆t∥F +
1

16
η∥X⋆∥−1∥ÑtS̃

−1
t Σ⋆∥F + η

(
∥Õt∥
∥X⋆∥

)7/12

, (132)

In addition, Lemma 23 tells us that

∥Ñt+1S̃
−1
t+1Σ⋆∥F ≤

(
1− η

3(∥Zt∥+ η)

)
∥ÑtS̃

−1
t Σ⋆∥F + η

C23κ
2

cλ∥X⋆∥
∥U⊤

⋆ ∆t∥F + η

(
∥Õt∥

σmin(S̃t)

)2/3

∥X⋆∥,

where Zt = Σ−1
⋆ (S̃tS̃

⊤
t + λI)Σ−1

⋆ . It is easy to check that ∥Zt∥ ≤ 1 + ∥Γt∥ + cλ ≤ 2 as ∥Γt∥ ≤ 1/10 and cλ is

sufficiently small. In addition, one has σmin(S̃t)
2 ≥ (1−∥Γt∥)σmin(X⋆)

2 and ∥Õt∥/σmin(S̃t) ≤ (2κ)−24. Combine these

relationships together to arrive at

∥Ñt+1S̃
−1
t+1Σ⋆∥F ≤

(
1− η

8

)
∥ÑtS̃

−1
t Σ⋆∥F + η

C23κ
2

cλ∥X⋆∥
∥U⊤

⋆ ∆t∥F +
1

2
η∥X⋆∥

(
∥Õt∥
∥X⋆∥

)7/12

. (133)

Summing up (132), (133), we obtain

∥Γt+1∥F + ∥X⋆∥−1∥Ñt+1S̃
−1
t+1Σ⋆∥F

≤
(
1− η

8

)
(∥Γt∥F + ∥X⋆∥−1∥ÑtS̃

−1
t Σ⋆∥F) + η

2(C23 + C25cλ)κ
4

cλ∥X⋆∥2
∥U⊤

⋆ ∆t∥F + 2η

(
∥Õt∥
∥X⋆∥

)7/12

. (134)

This is close to our desired conclusion, but we would need to eliminate ∥U⊤
⋆ ∆t∥F. To this end we observe

∥U⊤
⋆ ∆t∥F ≤ √

r⋆∥∆t∥
≤ 8δ

√
r⋆

(
∥S̃tS̃

⊤
t − Σ2

⋆∥F + ∥S̃t∥∥Ñt∥F + n∥Õt∥2
)
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≤ 16cδκ
−4∥X⋆∥2


∥Γt∥F + ∥X⋆∥−1∥ÑtS̃

−1
t Σ⋆∥F +

(
∥Õt∥
∥X⋆∥

)2/3

 ,

where the first line follows from U⋆ being of rank r⋆, the second line follows from Lemma 11, and the last line follows

from (10) and from controlling the sum inside the brackets in a similar way as (131).

The conclusion follows from plugging the above inequality into (134), noting that cδ can be chosen sufficiently small and

that ∥Õt∥/∥X⋆∥ is sufficiently small due to (19).
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