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Abstract

We propose ScaledGD(\), a preconditioned gra-
dient descent method to tackle the low-rank ma-
trix sensing problem when the true rank is un-
known, and when the matrix is possibly ill-
conditioned. Using overparameterized factor rep-
resentations, ScaledGD(\) starts from a small
random initialization, and proceeds by gradient
descent with a specific form of damped precon-
ditioning to combat bad curvatures induced by
overparameterization and ill-conditioning. At the
expense of light computational overhead incurred
by preconditioners, ScaledGD()\) is remarkably
robust to ill-conditioning compared to vanilla gra-
dient descent (GD) even with overprameterization.
Specifically, we show that, under the Gaussian
design, ScaledGD(\) converges to the true low-
rank matrix at a constant linear rate after a small
number of iterations that scales only logarithmi-
cally with respect to the condition number and the
problem dimension. This significantly improves
over the convergence rate of vanilla GD which
suffers from a polynomial dependency on the con-
dition number. Our work provides evidence on the
power of preconditioning in accelerating the con-
vergence without hurting generalization in over-
parameterized learning.

1. Introduction

Low-rank matrix recovery plays an essential role in modern
machine learning and signal processing. To fix ideas, let us
consider estimating a rank-r, positive semidefinite matrix
M, € R™ ™ based on a few linear measurements y =
A(M,), where A : R"*™ — R™ models the measurement
process. Significant research efforts have been devoted
to tackling low-rank matrix recovery in a statistically and
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computationally efficient manner in recent years. Perhaps
the most well-known method is convex relaxation (Candes
& Plan, 2011; Davenport & Romberg, 2016; Recht et al.,
2010), which seeks the matrix with lowest nuclear norm to
fit the observed measurements:

min || M|, s.t.
M0

y = A(M).

While statistically optimal, convex relaxation is prohibitive
in terms of both computation and memory as it directly
operates in the ambient matrix domain, i.e., R™*™. To
address this challenge, nonconvex approaches based on low-
rank factorization have been proposed (Burer & Monteiro,
2005):

. 2

coin AKX =l (1)

where 7 is a user-specified rank parameter. Despite noncon-

vexity, when the rank is correctly specified, i.e., r = r,, the

problem (1) admits computationally efficient solvers (Chi

et al., 2019), e.g., gradient descent (GD) with spectral initial-

ization or with small random initialization. However, two

main challenges remain when applying the factorization-
based nonconvex approach in practice.

e Unknown rank. First, the true rank r, is often unknown,
which makes it infeasible to set » = r,. One necessarily
needs to consider an overparameterized setting in which r
is set conservatively, i.e., one sets r > r, or even r = n.

e Poor conditioning. Second, the ground truth matrix M,
may well be ill-conditioned, which is commonly encoun-
tered in practice. Existing approaches such as gradient de-
scent are still computationally expensive in such settings as
the number of iterations necessary for convergence increases
with the condition number.

In light of these two challenges, the main goal of this work
is to address the following question: Can one develop an
efficient method for solving ill-conditioned matrix recovery
in the overparameterized setting?

1.1. Our contributions: a preview

The main contribution of the current paper is to answer
the question affirmatively by developing a preconditioned
gradient descent method (ScaledGD(\)) that converges to
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parameterization reference algorithm init. iteration complexity
Stoger & Soltanolkotabi (2021) GD random k8 + kO log(kn/e)
re Zhang et al. (2021) PrecGD spectral log(1/¢)
Theorem 2 ScaledGD()) | random | logk - log(kn) + log(1/¢)
Tong et al. (2021) ScaledGD spectral log(1/e)
e Stoger & Soltanolkotabi (2021) GD random | k%log(kn) + k2 log(1/e)
Theorem 3 ScaledGD()) | random | logk - log(kn) + log(1/¢)

Table 1. Comparison of iteration complexity with existing algorithms for low-rank matrix sensing under Gaussian designs. Here, n is
the matrix dimension, . is the true rank, r is the overparameterized rank, and & is the condition number of the problem instance. It is
important to note that in the overparameterized setting (r > r.), the sample complexity of Zhang et al. (2021) scales polynomially with
the overparameterized rank 7, while that of Stoger & Soltanolkotabi (2021) and ours only scale polynomially with the true rank r,.

the (possibly ill-conditioned) low-rank matrix in a fast and
global manner, even with overparameterized rank r > r,.
Theorem 1 (Informal). Under overparameterization r >
r« and mild statistical assumptions, ScaledGD(\)—when
starting from a sufficiently small random initialization—
achieves a relative e-accuracy, i.e., || X;X,! — M,|r <
e|| My ||, with no more than an order of

log k - log(kn) + log(1/¢)

iterations, where k is the condition number of the problem.

The above theorem suggests that from a small random initial-
ization, ScaledGD(\) converges at a constant linear rate—
independent of the condition number—after a small logarith-
mic number of iterations. Overall, the iteration complexity
is nearly independent of the condition number and the prob-
lem dimension, making it extremely suitable for solving
large-scale and ill-conditioned problems. See Table 1 for a
summary of comparisons with prior art.

Our algorithm ScaledGD(\) is closely related to scaled gra-
dient descent (ScaledGD) (Tong et al., 2021), a recently pro-
posed preconditioned gradient descent method that achieves
a k-independent convergence rate under spectral initializa-
tion and exact parameterization. Preserving its low com-
putational overhead, we modify the preconditioner design
by introducing a fixed damping term, which prevents the
preconditioner itself from being ill-conditioned under over-
parameterization. In the exact parameterization setting, our
result extends ScaledGD beyond local convergence by char-
acterizing the number of iterations it takes to enter the local
basin of attraction from a random initialization.

Moreover, our results shed light on the power of precondi-
tioning in accelerating the optimization process over vanilla
GD while still guaranteeing generalization in overparam-
eterized learning models (Amari et al., 2020). Remark-
ably, despite the existence of an infinite number of global
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—¥— ScaledGD(A) (k =3)
~m- Vanilla GD (k=5)
—— ScaledGD(A) (k=5)
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Figure 1. Comparison between ScaledGD(A) and GD. The learn-
ing rate of GD has been fine-tuned to achieve fastest convergence
for each r, while that of ScaledGD() is fixed to 0.3. The initial-
ization scale « in each case has been fine-tuned so that the final
accuracy is 107°. The details of the experiment are deferred to
Section 5.

minima in the landscape of (1) that do not generalize,
i.e., not corresponding to the ground truth, starting from
a small random initialization, GD (Li et al., 2018; Stoger &
Soltanolkotabi, 2021) is known to converge to a generaliz-
able solution without explicit regularization. However, GD
takes O(x® + k% log(xn/c)) iterations to reach e-accuracy,
which is unacceptable even for moderate condition numbers.
On the other hand, while common wisdom suggests that
preconditioning accelerates convergence, it is yet unclear if
it still converges to a generalizable global minimum. Our
work answers this question in the affirmative for overpa-
rameterized low-rank matrix sensing, where ScaledGD(\)
significantly accelerates the convergence against the con-
dition number—both in the initial phase and in the local
phase—without hurting generalization, which is corrobo-
rated in Figure 1.

Due to space limits, a summary of notation, related works
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and all proofs are deferred to the appendix.

2. Problem Formulation

Section 2.1 introduces the low-rank matrix sensing prob-
lem, and Section 2.2 provides background on the proposed
ScaledGD(\) algorithm for the overparameterized case.

2.1. Models and assumptions

Suppose that the ground truth M, € R™*" is a positive-
semidefinite (PSD) matrix of rank r, < n, whose (compact)
eigendecomposition is given by M, = U,X2U, . Here, the
columns of U, € R"*"~ specify the set of eigenvectors,
and ¥, € R™*"~ is a diagonal matrix where the diagonal
entries are ordered in a non-increasing order. Setting X, =
U,X, € R" " we can rewrite M, as

M, =X, X]. 2)

We call X, the ground truth low-rank factor matrix, whose
condition number & is defined as
_ Gmax(X*)
O—min(X*) .

Here omax(X«) and omin (X, ) are the largest and the small-
est singular values of X, respectively.

3)

Instead of having access to M, directly, we wish to recover
M, from a set of random linear measurements A(M, ),
where A : Sym,(R™) — R™ is a linear map from the
space of n X n symmetric matrices to R™, namely

y:A(M*), i.e., Y; = <Ai,M*>, 1= 1,...,m.
4)

We are interested in recovering M, based on the measure-

ments y and the sensing operator .4 in a provably efficient

manner, even when the true rank r, is unknown.

2.2. ScaledGD(\) for overparameterized low-rank
matrix sensing

Inspired by the factorized representation (2), we aim to
recover the low-rank matrix M, by solving the following
optimization problem (Burer & Monteiro, 2005):

1 2
i X)=JJAXXT) -], 5
i fX0) = ZAKX ) =yl O
where r is a predetermined parameter, possibly different
from 7. It is evident that for any rotation matrix O € O,.,
it holds that f(X) = f(XO), leading to an infinite number
of global minima of the loss function f.

A prelude: exact parameterization. When r is set to
be the true rank r, of M,, Tong et al. (2021) set forth a
provable algorithmic approach called scaled gradient de-
scent (ScaledGD)—gradient descent with a specific form of

preconditioning—that adopts the following update rule

X1 = X, —n AAX X, — MO)X(X, X)L (6)

=V f(X¢)

Here, X, is the t-th iterate, V f(X;) is the gradient of f
at X = Xy, and n > 0 is the learning rate. Moreover,
A* : R™ — Sym, (R™) is the adjoint operator of .A, that is
A*(y) = 2ot yiAi fory € R™.

At the expense of light computational overhead, ScaledGD
is remarkably robust to ill-conditioning compared with
vanilla gradient descent (GD). It is established in Tong et al.
(2021) that ScaledGD, when starting from spectral initializa-
tion, converges linearly at a constant rate—independent of
the condition number x of X, (cf. (3)); in contrast, the iter-
ation complexity of GD (Tu et al., 2016; Zheng & Lafferty,
2015) scales on the order of k2 from the same initialization,
therefore GD becomes exceedingly slow when the problem
instance is even moderately ill-conditioned, a scenario that
is quite commonly encountered in practice.

ScaledGD()\): overparameterization under unknown
rank. In this paper, we are interested in the so-called
overparameterization regime, where 7, < r < n. From an
operational perspective, the true rank r, is related to model
order, e.g., the number of sources or targets in a scene of
interest, which is often unavailable and makes it necessary
to consider the misspecified setting. Unfortunately, in the
presence of overparameterization, the original ScaledGD
algorithm is no longer appropriate, as the preconditioner
(X, X;)~! might become numerically unstable to calcu-
late. Therefore, we propose a new variant of ScaledGD by
adjusting the preconditioner as

Xy = Xy — AP AX X, — M)X(X, X, + M),
@)

where A > 0 is a fixed damping parameter. The new al-
gorithm is dubbed as ScaledGD()), and it recovers the
original ScaledGD when A = 0. Similar to ScaledGD, a
key property of ScaledGD(\) is that the iterates { X} are
equivariant with respect to the parameterization of the factor
matrix. Specifically, taking a rotationally equivalent fac-
tor X;O with an arbitrary O € O, and feeding it into the
update rule (7), the next iterate becomes X;, 10O which is
rotated simultaneously by the same rotation matrix O. In
other words, the recovered matrix sequence M; = X; X tT
is invariant w.r.t. the parameterization of the factor matrix.

Remark 1. We note that a related variant of ScaledGD,
called PrecGD, has been proposed recently in Zhang et al.
(2022; 2021) for the overparameterized setting, which fol-
lows the update rule

X = X — A AX X, — M)X (X X, + M),
(®)
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where the damping parameters A; = / f(X;) are selected
in an iteration-varying manner assuming the algorithm is
initialized properly. In contrast, ScaledGD()\) assumes a
fixed damping parameter A throughout the iterations. We
shall provide more detailed comparisons with PrecGD in
Section 3.

3. Main Results

Before formally presenting our theorems, let us introduce
several key assumptions that will be in effect throughout
this paper.

Restricted Isometry Property. A key property of the op-
erator A(-) is the celebrated Restricted Isometry Property
(RIP) (Recht et al., 2010), which says that the operator A(-)
approximately preserves the distances between low-rank
matrices. The formal definition is given as follows.

Definition 1 (Restricted Isometry Property). The linear map
A(-) is said to obey rank-r RIP with a constant §, € [0, 1),
if for all matrices M € Sym,(R™) of rank at most 7, it
holds that

(1= 6| MIE < JAM)[f; < (1+6,)|MIE 9

The Restricted Isometry Constant (RIC) is defined to be the
smallest positive ¢, such that (9) holds.

The RIP is a standard assumption in low-rank matrix sens-
ing, which has been verified to hold with high probability
for a wide variety of measurement operators. For example,
if the entries of {A4,}"; are independent up to symme-
try with diagonal elements sampled from A (0,1/m) and
off-diagonal elements from N'(0,1/(2m)), then with high
probability, A(-) satisfies rank-r RIP with constant J,., as
long as m > C'nr /82 for some sufficiently large universal
constant C' > 0 (Candeés & Plan, 2011).

Throughout this paper, we make the following assumption
about the operator A(-).

Assumption 1. The operator A(-) satisfies the rank-(r, +1)
RIP with §,, 41 =: §. Furthermore, there exist a sufficiently
small constant ¢s > 0 and a sufficiently large constant
Cs > 0 such that

§ < cory K%, (10)

Small random initialization. Similar to Li et al. (2018);
Stoger & Soltanolkotabi (2021), we set the initialization X
to be a small random matrix, i.e.,

Xo = oG, (1T)

where G € R™*" is some matrix considered to be normal-
ized and o > 0 controls the magnitude of the initialization.

To simplify exposition, we take G to be a standard Gaus-
sian matrix, that is, G is a random matrix with i.i.d. entries
following N(0,1/n).

Choice of parameters. Last but not least, the parameters
of ScaledGD(\) are selected according to the following
assumption.

Assumption 2. For some sufficiently small constants
¢y, cx > 0 and some sufficiently large constant C, > 0, the
parameters (7, A, «) in ScaledGD(\) satisfy the following
conditions:

n< e, (12a)
1
o5 %imin(Xx) €A < ex0fin (X, (12b)
X C
log ”a—*” > Talog(%:) log(2kn).  (12c)

3.1. The overparameterization case

We begin with our main theorem, which characterizes the
performance of ScaledGD(\) under overparameterization.

Theorem 2. Suppose Assumptions 1 and 2 hold. With high
probability (with respect to the realization of the random
initialization G), there exists a universal constant Cp,in, > 0
such that for some T < Trin = CT log H)i—*”, we have

IX7 X7 — M.lr < oPIX, P77,

In particular, for any prescribed accuracy target € € (0, 1),
by choosing a sufficiently small o fulfilling both (12c) and
a < &3 X, |, we have | X7 X} — M, ||r < g/ M,]|.

A few remarks are in order.

Iteration complexity. Theorem 2 shows that by choosing
an appropriate «, ScaledGD()\) finds an e-accurate solution,
ie., | X; X, — M| < ¢|/M,]|, in no more than

O(log k - log(kn) + log(1/¢))

iterations. Roughly speaking, this asserts that ScaledGD(\)
converges at a constant linear rate after an initial phase
of approximately O(log & - log(xn)) iterations. Most no-
tably, the iteration complexity is nearly independent of the
condition number x, with a small overhead only through
the poly-logarithmic additive term O(log - log(xn)). In
contrast, GD requires O(x® + k5 log(kn/c)) iterations to
converge from a small random initialization to e-accuracy;
see Li et al. (2018); Stoger & Soltanolkotabi (2021). Thus,
the convergence of GD is much slower than ScaledGD(\)
even for mildly ill-conditioned matrices.

Sample complexity. The sample complexity of
ScaledGD()) hinges upon the Assumption 1. When the
entries of {A4;}7, are independent up to symmetry with di-
agonal elements sampled from N'(0, 1/m) and off-diagonal
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elements from A(0,1/2m), this assumption is fulfilled as
long as m = nr2 - poly(x). Our sample complexity depends
only on the true rank r,, but not on the overparameterized
rank » — a crucial feature in order to provide meaningful
guarantees when the overparameterized rank r is close to the
full dimension n. The dependency on « in the sample com-
plexity, on the other end, has been generally unavoidable in
nonconvex low-rank estimation (Chi et al., 2019).

Comparison with Zhang et al. (2022; 2021). As men-
tioned earlier, our proposed algorithm ScaledGD(\) is quite
similar to PrecGD proposed in Zhang et al. (2021) that
adopts an iteration-varying damping parameter. In terms of
theoretical guarantees, Zhang et al. (2021) only provides the
local convergence for PrecGD assuming an initialization
close to the ground truth; in contrast, we provide global
convergence guarantees where a small random initialization
is used. More critically, the sample complexity of PrecGD
(Zhang et al., 2021) depends on the overparameterized rank
r, while ours only depends on the true rank r,. While Zhang
et al. (2022) also studied variants of PrecGD with global
convergence guarantees, they require additional operations
such as gradient perturbations and switching between dif-
ferent algorithmic stages, which are harder to implement
in practice. Our theory suggests that additional perturba-
tion is unnecessary to ensure the global convergence of
ScaledGD(\), as it automatically adapts to different curva-
tures of the optimization landscape throughout the entire
trajectory.

3.2. The exact parameterization case

We now single out the exact parameterization case, i.e.,
when » = r,. In this case, our theory suggests that
ScaledGD()) converges to the ground truth even from a
random initialization with a fixed scale o > 0.

Theorem 3. Assume that r = r,.. Suppose Assumptions I
and 2 hold. With high probability (with respect to the re-
alization of the random initialization G), there exist some
universal constants Cryin > 0 and ¢ > 0 such that for some

T < Tin = C';;i“ log(|| X«||/ ), we have for any t > T

X X," = Mle < (1= en) =T |[ML]].

Exact recovery. Theorem 3 shows that with some fixed
initialization scale «, ScaledGD(\) takes at most

O(log & - log(kn) + log(1/¢))

iterations to converge to e-accuracy for any € > 0 in the
exact parameterization case. Compared with ScaledGD
(Tong et al., 2021) which takes O(log(1/¢)) iterations to
converge from a spectral initialization, we only pay a log-
arithmic order O(log x - log(kn)) of additional iterations
to converge from a random initialization. In addition, once

the algorithms enter the local regime, both ScaledGD(\)
and ScaledGD behave similarly and converge at a fast con-
stant linear rate, suggesting the effect of damping is lo-
cally negligible. Furthermore, compared with GD (Stoger
& Soltanolkotabi, 2021) which requires O(x8log(kn) +
k?log(1/¢)) iterations to achieve e-accuracy, our theory
again highlights the benefit of ScaledGD()) in boosting the
global convergence even for mildly ill-conditioned matrices.

4. Analysis

In this section, we present the main steps for proving Theo-
rem 2 and Theorem 3. The detailed proofs are collected in
the Appendix. All of our statements will be conditioned on
the following high probability event regarding the initializa-
tion matrix G:

€={IG| < Ce} N {omm(@ @) > (20)79}, (13)

where U € R™*™ is an orthonormal basis of the eigenspace
associated with the r, largest eigenvalues of A* A(M,, ), and
C¢ > 01is some sufficiently large universal constant. It is a
standard result in random matrix theory that £ happens with
high probability, as verified by the following lemma.

Lemma 1. With respect to the randomness of G, the event £
happens with probability at least 1 — (cn)~Ce(r=r-+1)/2 _
2 exp(—cn), where ¢ > 0 is some universal constant.

4.1. Preliminaries: decomposition of X,

Before embarking on the main proof, we present a useful
decomposition (cf. (14)) of the iterate X, into a signal term,
a misalignment error term, and an overparameterization
error term. Choose some matrix U, | € R™*(n=74) quch
that [U,, U, 1| is orthonormal. Then we can define

Sy =U] X, e R™*", and N, := U,[ | X; € R("7m)x7,

*

Let the SVD of S; be
Sp = UiV,

where U; € R™*" ¥, € R™*"+ and V;, € R"*"+. Simi-
lar to U, |, we define the orthogonal complement of V; as
Vi1 € RP<(=m+) When r = r, we simply set V; | = 0.

We are now ready to present the main decomposition of X,
which we use repeatedly in later analysis.

Proposition 1. The following decomposition holds:

X, =USV, +U. NV, + U, 10V,], , (14)
N—_——

signal misalignment  overparameterization

where
Sy =8V, €R™ X" Ny = NV, € ROr)xre
and Oy = N,V, | € Rv=r)x(r=ra)  (135)
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Several remarks on the decomposition are in order.

* First, since V; | spans the obsolete subspace arising
from overparameterization, 5t naturally represents the
error incurred by overparameterization; in particular,
in the well-specified case (i.e., 7 = ), one has zero
overparameterization error, i.e., 5t =0.

* Second, apart from the rotation matrix V;, S’; docu-
ments the projection of the iterates X; onto the signal
space U,. Similarly, ]\~]t characterizes the misalign-
ment of the iterates with the signal subspace U,. It is
easy to observe that in order for XtX;r ~ M,, one
must have S;5, ~ 2, and N; ~ 0.

 Last but not least, the extra rotation induced by V; is
extremely useful in making the signal/misalignment
terms rationally invariant. To see this, suppose that
we rotate the current iterate by X; — X, with some
rotational matrix @@ € O,, then Sy — S;Q but §t
remains unchanged, and similarly for IV;.

4.2. Proof roadmap

Our analysis breaks into a few phases that characterize the
dynamics of the key terms in the above decomposition,
which we provide a roadmap to facilitate understanding.
Denote
4C ;i
C!nax — { mins

7> Ty,

00, =Ty,

and o
Tmax = % IOg(HX*”/OZ),

where T}, .« represents the largest index of the iterates that
we maintain error control. The analysis boils down to the
following phases, indicated by time points ¢1, t2, t3, t4 that
satisfy

tl S Tmin/167 tl S t2 S tl + Tmin/16a
to <tz <to+ Tmin/16, t3 <ty <tz + Tinin/16.

* Phase I: approximate power iterations. In the initial
phase, ScaledGD(\) behaves similarly to GD, which
is shown in (Stoger & Soltanolkotabi, 2021) to approx-
imate the power method in the first few iterations up
to t1. After this phase, namely for t € [t1, Trax], al-
though the signal strength is still quite small, it begins
to be aligned with the ground truth with the overparam-
eterization error kept relatively small.

e Phase II: exponential amplification of the signal. In
this phase, ScaledGD(\) behaves somewhat as a mix-
ture of GD and ScaledGD with a proper choice of the
damping parameter A < o2 (X,), which ensures the

min

signal strength first grows exponentially fast to reach
a constant level no later than ¢, and then reaches the
desired level no later than t3, i.e., StStT =~ Zf.

e Phase III: local linear convergence. At the last phase,
ScaledGD(\) behaves similarly to ScaledGD, which
converges linearly at a rate independent of the condi-
tion number. Specifically, for ¢ € [t3, Tmax], the recon-
struction error || X; X,” — M, || converges at a linear
rate up to some small overparameterization error, until
reaching the desired accuracy for any ¢ € [t4, Tinax)-

4.3. Phase I: approximate power iterations

It has been observed in Stoger & Soltanolkotabi (2021)
that when initialized at a small scaled random matrix, the
first few iterations of GD mimic the power iterations on
the matrix A*A(M,). When it comes to ScaledGD()),
since the initialization scale « is chosen to be much
smaller than the damping parameter ), the preconditioner
(X, X;+AI)~! behaves like (A1) ! in the beginning. This
renders ScaledGD(\) akin to gradient descent in the initial
phase. As a result, we also expect the first few iterations of
ScaledGD()) to be similar to the power iterations, i.e.,

t
X ~ (I + gA*.A(M*)) Xo, when ¢ is small.

Such proximity between ScaledGD()) and power iterations
can indeed be justified in the beginning period, which allows
us to deduce the following nice properties after the initial
iterates of ScaledGD(\).

Lemma 2. Under the same setting as Theorem 2, there
exists an iteration number t1 : t1 < Tynin /16 such that

Umin(gtl) Z 042/||X*||, (16)

and that, for any t € [t1, Tinax), gt is invertible and one has

04| < (Capkn) =22 || X, || owmin (£2 + M) 7Y2S,),

(17a)
_ " t—t1
04| < (1+ m) oo/ X, |16, (17b)
max
IN.STIS, || < cor™C52) X, |, (17¢)
S]] < Co.a]| Xall, (17d)

where Cy o, Cop, co are some positive constants satisfying
—~1/2 .

Cra Sy / , c2 S s/, and Ca y, can be made arbitrar-

ily large by increasing C.,.

Remark 2. Let us record two immediate consequences of

(17), which sometimes are more convenient for later analy-
sis. From (17a), we may deduce

O] < (Ca.prn) ™2 | Xollowmin(EF + M) ™ 201min(S)
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< K(Caphn) "2 0,050 (Sy)
< (O 44n) 2001 (Sy), (18)
where C!, , = Cs4/2, provided Cs, > 4. It is clear that

CY, , can also be made arbitrarily large by enlarging C,.
Similarly, from (17b), we may deduce

t—tq
100 < (14 ) @l

n C',r,‘,“" log([| X« |/ ) 5/6 1/6
< (14 —~1 X,
( * 120maxm> X
< (|| Xl /) 2P O X |6 = a3 X | 1
(19)

Lemma 2 ensures the iterates of ScaledGD(\) maintain sev-
eral desired properties after iteration ¢;, as summarized in
(17). In particular, for any t € [t1, Tinax): (i) the overparam-
eterization error ||O; || remains small relatively to the signal
strength measured in terms of the scaled minimum singu-
lar value ouin (52 + AT )~/ 2§t), and remains bounded
with respect to the size of the initialization « (cf. (17a) and
(17b) and their consequences (18) and (19)); (ii) the scaled
misalignment-to-signal ratio remains bounded, suggesting
the iterates remain aligned with the ground truth signal sub-
space U, (cf. (17¢)); (iii) the size of the signal component
§t remains bounded (cf. (17d)). These properties play an
important role in the follow-up analysis.

Remark 3. Tt is worth noting that, the scaled minimum
singular value o, (X2 + )\I)*l/zgt) plays a key role in
our analysis, which is in sharp contrast to the use of the
vanilla minimum singular value amin(g}) in the analysis
of gradient descent (Stoger & Soltanolkotabi, 2021). This
new measure of signal strength is inspired by the scaled
distance for ScaledGD introduced in (Tong et al., 2021;
2022), which carefully takes the preconditioner design into
consideration. Similarly, the metrics NS, s, in (17¢)
and |27 (Si41501 — £2)57 1| (to be seen momentarily)
are also scaled for similar considerations to unveil the fast
convergence (almost) independent of the condition number.

4.4. Phase II: exponential amplification of the signal

By the end of Phase I, the signal strength is still quite small
(cf. (16)), which is far from the desired level. Fortunately,
the properties established in Lemma 2 allow us to establish
an exponential amplification of the signal term S, thereafter,
which can be further divided into two stages.

1. In the first stage, the signal is boosted to a constant
level, ie., Sy = 1552

2. In the second stage, the signal grows further to the
desired level, i.e., S;9, ~ ¥2.

We start with the first stage, which again uses oin ((Ef +
AI)~1/28,) as a measure of signal strength in the following
lemma.

Lemma 3. For any t such that (17) holds, we have

Tmnin (Z24A) Y28, 11) > (1-20) 0min (B2HA) TV2S,).

Moreover, ifamin((Zf + /\I)_1/2§t) < 1/3, then
Omin ((Ei + )\1)71/2§t+1) Z

(1 + é") Tmin (52 + AI)7V28,).

The second half of Lemma 3 uncovers the exponential
growth of the signal strength o, ((Zf + M)~V 2§t) until
a constant level after several iterations, which resembles the
exponential growth of the signal strength in GD (Stoger &
Soltanolkotabi, 2021). This is formally established in the
following corollary.

Corollary 1. There exists an iteration number to : t1 <
to < t1 + Tiin/16 such that for all t € [to, Tiax), we have

5.5 = EEQ (20)

We next aim to show that S, S‘T ~ X2 after the signal
strength is above the constant level. To this end, the behavior
of ScaledGD(\) becomes closer to that of ScaledGD, and it
turns out to be easier to work with ||£1(S,S —£2)5 ! |
as a measure of the scaled recovery error of the 51gnal com-
ponent. We establish the approximate exponential shrinkage
of this measure in the following lemma.

Lemma 4. Forall t € [to, Tinax] With ta given in Corollary
1, one has

=t St+1St+1 S5 <

) |21 (S: S, - £2) —n. (1)

2+ 1o

With the help of Lemma 4, it is straightforward to establish
the desired approximate recovery guarantee of the signal
component, i.e., S¢S, ~ %2,

Corollary 2. There exists an iteration number t3 : to <
ts < to + Tmin/16 such that for any t € [t3, Timax), one has

9 ~ ~ 11
1—023 <SS < EEE. (22)

4.5. Phase III: local convergence

Corollary 2 tells~ us that after iteration t3, we enter a local
region in which S; S, is close to the ground truth 2. In this
local region, the behavior of ScaledGD(\) becomes closer
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to that of ScaledGD analyzed in Tong et al. (2021). We
turn attention to the reconstruction error || X; X, — M, ||r
that measures the generalization performance, and show
it converges at a linear rate independent of the condition
number up to some small overparameterization error.

Lemma 5. There exists some universal constant cs5 > 0
such that for any t : t3 <t < Thax, we have

IX X, = M.l < (1= csm)! =" 7| ML

||~|| 1/2

—1 T

+8c5 || M, c .3
8cs |l *”éﬁ%’é(n;u) (23)

In particular, there exists an iteration number ty : t3 <
ty < t3 + Tinin/16 such that for any t € [t4, Tmax), we
have

IX. X," = Ml < & PIXLPP < el Ml (24)

Here ¢ and o are as stated in Theorem 2.

4.6. Proofs of main theorems

Now we are ready to collect the results in the preceding
sections to prove our main results, i.e., Theorem 2 and
Theorem 3.

We start with proving Theorem 2. By Lemma 2, Corollary 1,
Corollary 2 and Lemma 5, the final ¢4 given by Lemma 5
is no more than 4 X Ti, /16 < Tinin/2, thus (24) holds for
all t € [Tinin/2, Timax), in particular, for some 7' < Ty,ip,
as claimed.

Now we consider Theorem 3. In case that r = r,, it follows
from definition that O; = 0 vanishes for all ¢. It follows
from Lemma 5, in particular from (23), that

1Xe X," = Mule < (1= csm)'™"* /]| M.,

for any ¢t > t3 (recall that T},,,x = oo by definition when
r = ). Note that (1 — ¢sn)'/r < (1 — csn)t =T H= if
T —tz > 4log(rs)/(csn) given that n < ¢, is sufficiently
small. Thus for any ¢t > T we have

1% X," = Mlp < (1= csm)* ™[ M.]).

It is clear that one may choose such 7" which also satisfies
T < t3+8/(csn) < tz+Tmin/16. We have already shown
in the proof of Theorem 2 that t3 < 4 X Tinin/16 < Tinin/4,
thus 7" < T}, as desired.

S. Numerical Experiments

In this section, we conduct numerical experiments to demon-
strate the efficacy of ScaledGD(\) for solving overparame-
terized low-rank matrix sensing. We set the ground truth ma-
trix X, = U, X, € R"*"™ where U, € R™"*"* is a random

1074 4 Yl
1075 el

107 4 -
1077 4 .

1078 4 -

Relative reconstruction error
\

-9 J
10 »

10-10

10710 10-° 1078 1077 107 107 1074
Initialization scale a

Figure 2. Relative reconstruction error vs. initialization scale .

orthogonal matrix and ¥, € R™*" is a diagonal matrix
whose condition number is set to be k. We set n = 150
and r, = 3, and use random Gaussian measurements with
m = 10nr,.

Comparison with overparameterized GD. In this ex-
periment we set the overparameterization rank » = 5. We
run ScaledGD(\) and GD with random initialization and
compare their convergence speeds under different condition
numbers x of the ground truth X, ; the result is depicted in
Figure 1. Even for a moderate range of «, GD slows down
significantly while the convergence speed of ScaledGD(\)
remains almost the same with an almost negligible initial
phase, which is consistent with our theory. The advantage
of ScaledGD()\) becomes more apparent as « increase, and
is already more than 10x times faster than GD when xk = 7.

Effect of initialization scale. We study the effect of the
initialization scale « on the reconstruction accuracy of
ScaledGD()\). We fix the learning rate 7) to be a constant
and vary the initialization scale. We run ScaledGD(\) until
it converges.! The resulting reconstruction errors and their
corresponding initialization scales are plotted in Figure 2. It
can be inferred that the reconstruction error increases with
respect to «, which is consistent with our theory.

Comparison with Zhang et al. (2021). We compare
ScaledGD(\) with the algorithm PrecGD proposed in
Zhang et al. (2021), which also has a k-independent con-
vergence rate assuming a sufficiently good initialization
using spectral initialization. However, PrecGD requires RIP
of rank r, thus demanding O(nr?) many samples instead
of O(nr?) as in GD and ScaledGD(\). This can be trou-
blesome for larger . To demonstrate this point, we run
ScaledGD(\) and PrecGD with different overparameteriza-

"More precisely, in accordance with our theory which requires
early stopping, we stop the algorithm once we detected that the
training error no longer decreases significantly for a long time
(e.g., 100 iterations).
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Figure 3. Reconstruction error with different overparameterization
rank r for ScaledGD(\) and PrecGD.

tion rank 7 while fixing all other parameters. The results are
shown in Figure 3. It can be seen that the convergence rate
of PrecGD and ScaledGD(\) are almost the same when the
rank is exactly specified (r = r, = 3), though ScaledGD(\)
requires a few more iterations for the initial phases’>. When
r goes higher, ScaledGD(\) is almost unaffected, while
PrecGD suffers from a significant drop in the convergence
rate and even breaks down with a moderate overparameteri-
zation = 20.

Noisy setting. Though our theoretical results here are for-
mulated in the noiseless setting, empirical evidence indi-
cates our algorithm ScaledGD()\) also works in the noisy
setting. Modifying the equation (4) for noiseless observa-
tions, we assume the noisy observations y; = (A;, M) + ¢;
where &; ~ N(0, 0?) are i.i.d. Gaussian noises. It is known
that Eqar = /02nry /m is the information-theoretic lower
bound for the reconstruction error | X; X,' — M,||¢ (Can-
des & Plan, 2011). We compare the reconstruction error of
ScaledGD()) with Eg, under different noise levels o. The
results are shown in Figure 4. It can be seen that the final
error of ScaledGD () matches the optimal error Egor Within
a small multiplicative factor for all noise levels. To prove
this theoretically is left for future research.

6. Discussions

This paper demonstrates that an appropriately precondi-
tioned gradient descent method, called ScaledGD(\), guar-
antees an accelerated convergence to the ground truth low-

*Usually this has no significant implication on the computa-
tional cost: the amount of computations required in the initial
phases for ScaledGD()\) is approximately the same as that re-
quired by the spectral initialization for PrecGD.

—¥— ScaledGD(A) (Etor=1€-02)  ~¥~ Estar (=1€-02)
—8— ScaledGD(A) (Exar=1€-04)  —M- Egar (=1e-04)
—e— ScaledGD(A) (&ax=1€-06)  =o= Exar (=1€-06)
—A— ScaledGD(A) (Ear=1€-08)  —A-= Extor (=1e-08)

o \\

o 100 200 300 400 500 600 700 800
Number of iterates

Relative reconstruction error

Figure 4. Reconstruction error of ScaledGD(\) in the noisy set-
ting.

rank matrix over GD (Stoger & Soltanolkotabi, 2021) in
overparameterized low-rank matrix sensing, when initial-
ized from a sufficiently small random initialization. Fur-
thermore, in the case of exact parameterization, our analy-
sis guarantees the fast global convergence of ScaledGD(\)
from a small random initialization. Our work provides
evidence on the power of preconditioning in accelerating
the convergence without hurting generalization in overpa-
rameterized low-rank matrix sensing, which is one kind
of overparameterized learning models. It will be greatly
desirable to extend the insights developed herein to other
overparameterized learning models.
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Notation. The singular values of a matrix A € R™ *"2 sorted in descending order are denoted by opax(A) = 01(A) >
02(A) > -+ > 0,(A) = omin(A), where n = min(ny, ns). Let Sym,(R™) be the set of symmetric n x n matrices.
The eigenvalues of a symmetric matrix A € Sym,(R™) are denoted by A1 (A) > A2(A4) > -+ > A (A) = Anin(A).
For a matrix A, its operator norm is denoted by ||A[| := sup,_, || Az||/||z[|, while its Frobenius norm is denoted by

[lAllg == \/tr(AT A). In general, we denote by || - || a unitraily invariant norm of matrices, though in this paper we will
always take || - ||| = ||-|| or ||-||e- Weuse ¢, ¢, C, C’, ... to denote constants that may vary upon each occurrence. The symbols
of constants are subscripted, e.g. ¢y, ¢1, Cs, when their values are fixed globally. The meanings of O(-), Q(+), <, >, < are
standard, and hence omitted.

A. Related Work

Significant efforts have been devoted to understanding nonconvex optimization for low-rank matrix estimation in recent
years, see (Chi et al., 2019) and (Chen & Chi, 2018) for recent overviews. By reparameterizing the low-rank matrix into a
product of factor matrices, also known as the Burer-Monteiro factorization (Burer & Monteiro, 2005), the focus point has
been examining if the factor matrices can be recovered—up to invertible transformations—faithfully using simple iterative
algorithms in a provably efficient manner. However, the majority of prior efforts suffer from the limitations that they assume
an exact parameterization where the rank of the ground truth is given or estimated somewhat reliably, and rely on a carefully
constructed initialization (e.g., using the spectral method (Chen et al., 2021)) in order to guarantee global convergence in a
polynomial time. The analyses adopted in the exact parameterization case fail to generalize when overparameterization
presents, and drastically new approaches are called for.

Overparameterization in low-rank matrix sensing. Li et al. (2018) made a theoretical breakthrough that showed that
gradient descent converges globally to any prescribed accuracy even in the presence of full overparameterization (r = n),
with a small random initialization, where their analyses were subsequently adapted and extended in Stoger & Soltanolkotabi
(2021) and Zhuo et al. (2021). Ding et al. (2021) investigated robust low-rank matrix recovery with overparameterization
from a spectral initialization, and Ma & Fattahi (2022) examined the same problem from a small random initialization with
noisy measurements. Zhang et al. (2022; 2021) developed a preconditioned gradient descent method for overparameterized
low-rank matrix sensing. Last but not least, a number of other notable works that study overparameterized low-rank models
include, but are not limited to, Geyer et al. (2020); Oymak & Soltanolkotabi (2019); Soltanolkotabi et al. (2018); Zhang
(2021; 2022).

Global convergence from random initialization without overparameterization. Despite nonconvexity, it has been
established recently that several structured learning models admit global convergence via simple iterative methods even
when initialized randomly even without overparameterization. For example, Chen et al. (2019) showed that phase retrieval
converges globally from a random initialization using a near-minimal number of samples through a delicate leave-one-out
analysis. In addition, the efficiency of randomly initialized GD is established for complete dictionary learning (Bai et al.,
2018; Gilboa et al., 2019), multi-channel sparse blind deconvolution (Qu et al., 2019; Shi & Chi, 2021), asymmetric low-rank
matrix factorization (Ye & Du, 2021), and rank-one matrix completion (Kim & Chung, 2022). Moving beyond GD, Lee &
Stoger (2022) showed that randomly initialized alternating least-squares converges globally for rank-one matrix sensing,
whereas Chandrasekher et al. (2022) developed sharp recovery guarantees of alternating minimization for generalized
rank-one matrix sensing with sample-splitting and random initialization.

Algorithmic or implicit regularization. Our work is related to the phenomenon of algorithmic or implicit regularization
(Gunasekar et al., 2017), where the trajectory of simple iterative algorithms follows a path that maintains desirable properties
without explicit regularization. Along this line, Chen et al. (2020); Li et al. (2021); Ma et al. (2019) highlighted the implicit
regularization of GD for several statistical estimation tasks, Ma et al. (2021) showed that GD automatically balances the
factor matrices in asymmetric low-rank matrix sensing, where Jiang et al. (2022) analyzed the algorithmic regularization in
overparameterized asymmetric matrix factorization in a model-free setting.

B. Preliminaries

This section collects several preliminary results that are useful in later proofs. In general, for a matrix A, we will denote by
U 4 the first factor in its compact SVD A = Us¥ 4 VAT , unless otherwise specified.

12
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B.1. Proof of Lemma 1

It is a standard result in random matrix theory (Rudelson & Vershynin, 2009; Vershynin, 2012) thatan M x N (M > N)
random matrix G with i.i.d. standard Gaussian entries satisfies

P (||Go|| < 4(VM + \/N)) > 1 — exp(—M/C), (252)
P (omin(Go) > (VM - /N = 1)) >1— (Ce)M=N+1 _oxp(—M/C), (25b)

for some universal constant C' > 0 and for any € > 0. Applying (25a) to the random matrix +/nG which is an n X r random
matrix with i.i.d. standard Gaussian entries, we have

1G]l < 4(Vn+Vr)/vn <8

with probability at least 1 — exp(—n/C).

Turning to the bound on amm(U T@), observe that \/nU UTGisar, x r random matrix with i.i.d. standard Gaussian entries,
thus applying (25b) to \/nU T G with & = (2n)~Cc+1 yields

0 (U7G) < 2n)% 7 (Vr = Vr = 1) < (2n)%e T (2v) < (2n)7¢

with probability at least 1 — (2n/C)~(€a=D(=r++1) _ exp(—n/C). Here, the second inequality follows from

— Vi< 2

1 1
VRN SN NS

Combining the above two bounds directly implies the desired probability bound if we choose ¢ = 1/C and choose a large
Cg suchthat Cg > 8and Cg — 1 > Cg /2.

B.2. Proof of Proposition 1

Using the definitions of S; and N, we have
= (U, U + U, LU, L)Xt U.S: + Uy, 1 Ny
= U5V, + Ut NV, + Vi1V,
=U.SV," + U, LNV, + U, 10V, ,
where in the second line, we used the relation §t =SV, = UtZtVtTVt = U;X; and thus
Sy =S, V,". (26)
B.3. Consequences of RIP

The first result is a standard consequence of RIP, see, for example Stoger & Soltanolkotabi (2021, Lemma 7.3).

Lemma 6. Suppose that the linear map A : Sym,(R™) — R™ satisfies Assumption 1. Then we have
(Z-A"A)(2)]| <ol Z]r
Sor any Z € Sym,(R™) with rank at most r..

We need another straightforward consequence of RIP, given by the following lemma.

Lemma 7. Under the same setting as in Lemma 6, we have

A 7“\/7‘*
T -4 (@) < 2TVl 2ls < X2 2

forany Z € Sym,(R™) with rank at most r.

13
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Proof. Without loss of generality we may assume r > r,, thus r V r, = r. We claim that it is possible to decompose
7 = Eig[r/r*] Z; where Z; € Sym,(R™), rank(Z;) < r, and Z;Z; = 0if i # j. To see why this is the case, notice the
spectral decomposition of Z gives r rank-one components that are mutually orthogonal, thus we may divide them into
[r/r.] subgroups indexed by i = 1, ..., [r/r], such that each subgroup contains at most ., components. Let Z; be the
sum of the components in the subgroup ¢, it is easy to check that Z; has the desired property.

The property of the decomposition yields
1ZIF=t(2%) = > w(ZZ)= >, |Zl# 27)
B3 <[r/re] i<[r/r,]

But for each Z;, Lemma 6 implies

I(Z —A"A)(Z)|l < 8[| ZilF-
Summing up for ¢ < [r/r,| yields
IZ-A A< Y I@T-AANZ) <6 Y e <sVTr/rTIZ]F
i<[r/r] i<[r/r]

where the last inequality follows from (27) and from Cauchy-Schwarz inequality.

The first inequality in Lemma 7 follows from the above inequality by noting that [r/r,] < 2r/r, given r > r, which was
assumed in the beginning of the proof. The second inequality in Lemma 7 follows from || Z||r < /|| Z]]. O
B.4. Matrix perturbation results

The next few results are all on matrix perturbations. We first present a perturbation result on matrix inverse.
Lemma 8. Assume that A, B are square matrices of the same dimension, and that A is invertible. If | A= B|| < 1/2, then

(A+B) ' =A"1+ A'BQA™,  forsome ||Q| < 2.
Similarly, if || BA™|| < 1/2, then we have

(A+B) ' =A"1+ A71QBA™Y, forsome | Q| < 2.
In particular, if || B|| < omin(A)/2, then both of the above equations hold.

Proof. The claims follow from the identity
(A+B)'=A"1-A'BU+A'B) A=A — AN T+ BA ) ' BATL

For the first claim when ||A7'B|| < 1/2, we set Q := —(I + A~ B)~!, which satisfies | Q| = [|(I + A7'B)7}| <
m < 2. The second claim follows similarly. Finally, we note that when || B|| < omin(A)/2, it holds

1
|A7'B| < |B|| < <z,
2

|~

1 1
—_— d BA7Y| < |B|———
-0y an | <l Hgmin<A)

thus completing the proof. O

Next, we focus on the minimum singular value of certain matrix of form I + AB.

Lemma 9. If A, B are positive definite matrices of the same size, we have

A
Omin(I + AB) > k71/%(A),  where k(A) = ”(”A)_
Omin

Proof. Writing [ + AB = A1/2 I+ A1/2BA1/2 A 1/2, we obtain
f g
Omin(l AlB) 2 Umin(lll/2)omin(11 1/2)0min(-Z 411/2B411/2)'

The proof is completed by noting that oy, (AY/?) = ol/2 (A), omin(A=/2) = ||A||='/2, and that o, (I+ A2 BAY?)

min

>
1 since A'/2BA/? is positive semidefinite. O

14
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The last result still concerns the minimum singular value of a matrix of interest.

Lemma 10. There exists a universal constant c19 > 0 such that if A is a positive definite matrix obeying |A|| < ¢19 and
omin(Y) < 1/3, then for any n < c10 we have

amin<((1 I +n(YYT +A)7Y) Y) > (1 n g) Tmin(Y). (28)

Proof. Denote Z =YY " andlet USU T = Z + A be the spectral decomposition of Z + A. By a coordinate transform one
may assume Z + A = X. It suffices to show

For simplicity we denote ¢ = A\in(Z), which is by assumption smaller than 1/9. Fix K = 1/4 so that K > 2{ + 4¢1o by
choosing c1¢ to be small enough. By permuting coordinates we may further assume that the diagonal matrix X is of the
following form:

M =

FSK (30)

E>K:| ’

) < K and \pin(Es k) > K. It suffices to consider the case

where ¥« i, ¥s i are diagonal matrices such that Apax (X< x
< K < 1/2, and the desired (29) follows as

where X5 k is not vacuous, because otherwise Apax (%)
Amin (((1 —mI+nE ) Z (1 —n)+ nz—l)) >(1-n+ nA;;X(z))QAmin(Z) > (1 +1)*Amin(2).

For the rest of the proof, we assume the block corresponding to ¥+ i is not vacuous.

Divide Z into blocks of the same shape as (30):

7 = [j% éﬂ (31)

The purpose of such division is to facilitate computation of minimum eigenvalues by Schur’s complement lemma. For
preparation, we make a few simple observations. Since Z = ¥ — A, we see that A being an off-diagonal submatrix of Z
satisfies ||A]| < ||A]] < ¢10, and similarly || Zy — Z<k|| < 10, [|Z1 — Es k|| < ¢10. In particular, we have

)\min(Zl) Z )\min(E>K) — C10 > K- C10 Z 2C + 3clO > <7 (32)
which implies Z; — ([ is positive definite and invertible. Thus by Schur’s complement lemma, Z > (I is equivalent to
Zo— (I —A(Zy - ¢I)'AT =0, (33)

which provides an analytic characterization for the minimum eigenvalue ¢ of Z.

The rest of the proof follows from the following steps: we will first show again by Schur’s complement lemma that
(29) admits a similar analytic characterization. More precisely, denoting ¢' = (1 + £)2¢, 3o = (1 —n)I + 772;}( and
S1=01-nI+ nE;}(, then (29) is equivalent to
Zo— (%02 = A(Zy - 5737 AT = 0. (34)
After proving they are equivalent, we will prove that (34) holds as long as the following sufficient condition holds
Zo— (1430)720T — A(Zy — ¢I)PAT —10nCA(Z, — ¢I)2AT = 0. (35)

In the last step, we establish the above sufficient condition to complete the proof.

15
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Step 1: equivalence between (29) and (34). First notice that

Y0Zo%0 DoAY,

TS ATYSy 2245 (36)

(1=n)I+ 7)2’1) Z (1 =nI+ 7}2’1)

In order to invoke Schur’s complement lemma, we need to verify X171 %; — ¢’T > 0. Observe that by definition we have
Yo = (L+ (K ' —=1)n)I=1+3pI, %= (1-nl (37)

Hence
2

1\? 1
$i1Z:8 =T = (1—-n)*Z; — (1 + 6”) CI = 2(1—n)*¢I - (1 + 6”) ¢I =0,

where in the second inequality we used Z; — 2¢I >~ 0 proved in (32), and in the last inequality we used 1 < ¢, with ¢,
sufficiently small. This completes the verification that ¥1.71%; — ¢'I > 0. Now, invoking Schur’s complement lemma
yields that (29) is equivalent to

Y0 Z0%0 — ('T — $oAY (512,51 — ()78 1ATSg =0,
which simplifies easily to (34), as claimed.

Step 2: establishing (35) as a sufficient condition for (34). By (37), it follows that

(Z =)' = (2 - (=) 3D
1

= (zr-cr= (-2 = Q1) (38)

where we used the well-known fact that A < B implies B~—! < A~! for positive definite matrices A and B, cf. Bhatia
(1997, Proposition V.1.6). We aim to apply Lemma 8 to control the above term, by treating ((1 — 7)72¢’ — ¢()I as a
perturbation term. For this purpose we need to verify

(L=n)"2¢ = ¢| < %Amm(zl — ). (39)

Given 1) < ¢, with sufficiently small ¢;), we have (1 —n)™2 < 1+43n, (1+ ¢7)> <1+mn,and (1+3n)(1+n) < 145,
thus

0<(1—n)2(1+ én)24—4= (1=m) 2 =< (1+3n)A+n)C—¢<n¢ < /2,

where the last inequality follows from ¢,, < 1 /10. On the other hand, invoking (32), we obtain

€< 2 0mm(Z1) =€) = Sam(Z1 — CI),

2

N
N

which verifies (39). Thus we may apply Lemma 8 to show

@ —cn(@-cn = (z-ca—(-n7¢ -0n ™)z - < 2] -2 - ¢ < 10,

therefore
-1

(Zi =T — (1 =) = QI = (Z1 — <)~ +100¢(Z1 — ¢I) 72

Together with (38), this implies
(Z1 = ¢S = (20 = ()T 10020 - ¢ (40)
Combining (37) and (40), we see that a sufficient condition for (34) to hold is (35).

16
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Step 3: establishing (35). It is clear that (35) is implied by
CI— (1+3n) 72T = 100CA(Z1 — ¢(I)"*AT = 0, (41)

by leveraging the relation Zo = (I + A(Z; — ¢I)~*AT from (33).

Hence, it boils down to prove (41). Recalling || A|| < ¢19, and from (32), we know Apin(Z1 —CI) > K —c19—¢ > ¢+ 3c10.
Thus
|A(Zy — D) 2AT || < JJAIPI(Z1 = ¢D) 72| < €30/ (C + 3e10)? < 1/9.

Therefore, to prove (41) it suffices to show

10
C— (143072 = e (42)

It is easy to verify that the above inequality holds for our choice ¢’ = (1 + %7])2( . In fact, given n < ¢, for sufficiently
small ¢, we have (1+3n)72 <1 —4n, (1+ $n)? < 1+ n. These together yield

10
C—(1+3n)72(1+ 77) ¢=(— (1—477)(1+77)C=377C+4772C2377(25?)67
establishing (42) as desired. O

C. Decompositions of Key Terms

In this section, we first present a useful bound of a key error quantity
Ay = (T-A*A)(X X, — M), 43)

where X is the iterate of ScaledGD(\) given in (7).
Lemma 11. Suppose A(-) satisfies Assumption 1. For any t > 0 such that (17) holds, we have

180 < 86 (1887 = 2l + 1Sl Nolle + 1Ol (“4)
In particular, there exists some constant c11 < ¢5/ ci such that
A < 16(Ca.q + 1)2¢557 293 X, 1% < 11k 2973 X, |2 (45)
Proof. The decomposition (14) in Proposition 1 yields
XX =085 U] +U.SN U, +U. . NS'U +U. . NNU], +U, 100U,
Since M, = U,X2U,”, we have

XX, - M, =U.(S.S] -=)U] +U.SN U], +U, NS U] +U, .NN U +U, 10,0[U], . (46)

=:T4 =:Ts =:T3 =Ty

Note that U, € R™*"~ is of rank r,, thus 73 has rank at most r, and 75 has rank at most 2r,. Similarly, since Nt =NV,
while V; € R"*"+ is of rank r,, T3 has rank at most r,. It is also trivial that T, as an n X n matrix has rank at most n.
Invoking Lemma 7, we obtain

(T —AA) (D) < 20|U(S,S] = 32U [le < 26]15,S — B2,

I(Z A A) (Do) < 2V3S|US, N, US|+ Us L NS U (e < 4v/265)1 81| N [,

I(Z —A*A)(T3)|| < 26U, LN N U e < 20| NoSy SISl N e < SIS 1IN le,
I(Z —A*A)(Ty)|| < 20n||U, OO0 U, ||| < 26n]|O4%,

17
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where the third line follows from |2} = || X||~! and from (17c) in view that Cj is sufficiently large and c3 is suffciently
small. The conclusion (44) follows from summing up the above inequalities.

For the remaining part of the lemma, note that the following inequalities that bound the individual terms of (44) can be
inferred from (17): namely,

19:57 = Sulle < V21508 — Sl < V2r(C3 67 + 1)1 X, |1
by (17d), and

< VR (Coah | Xll) - NS Sl - 196 - 1125

<V (Coah| X)) - (2™ @2 X)) - (Coarl| Xall) - 0 (54)

= Ve C3 K| X PR

< VGl XP,
where the first inequality uses the fact that Nt = N,;V, contains a rank-r, factor V;, hence has rank at most r,; the second
line follows from (17d), the third line follows from (17c) and (17d), and the last line follows from choosing c; sufficiently

small such that co < 1 (which is possible since ¢ < ¢5/ c‘f\) and from choosing Cs > 6 such that K3k™C8/2 < 1, Finally,
from (17b) and its corollary (19), we have

2n)|O4|* < 2na®?(| X, 17 < X1,

since from (12c) it is easy to show that a < (2n)~%/3| X, ||.
Combining these inequalities and (44) yields
1A < 80y/T (V205 (1% + 1+ CF , + DI X.|* < 165\/rw?(CF, + 1| X1
Recalling that by (10) we have &,/7, k% < csk~¢+2 < ¢5572%/3 as long as C; > 6, we obtain the desired conclusion.

The bound ¢1; = 16(Ca.4 + 1)%cs S c5/cx < ¢5/c3 follows from Co 4 < 6;1/2. O

We next present several useful decompositions of the signal term Sy and the noise term N1, which are extremely useful
in later developments.

Lemma 12. For any t such that §t is invertible and (17) holds, we have

Siir = (L= +n(Z2+ A1+ E(EST + D7) 5V, +nEY, (47a)
Nip1 =N, S ((1 — )8 S+ A+ nEf) (SiS + AN SV,
+nEL(S, S +ADTISV,T + OV, +nEY, (47b)
where the error terms satisfy
IEL < 2eom™ 41X - IINeST Sl + 20T, Al (48a)
~ /
O -1 -
nEd < (9 ) B < S r 00 (5, (48b)
Umin( t) 20
IESI < & 1 Xl - INeS7 S0l (48¢)
o 3/4
e < (A2 )o@, (48d)
Umin(St)
IELN < 20U, Al + ernw ™)Xol - [Ny Sl (48e)

18
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Moreover, we have

1 ~
Bl < —— 4
188 < 57— 1G] s
1B < = |5l (48g)
~ 24Cpaxk
Here, ||| - ||| can either be the Frobenius norm or the spectral norm.

To proceed, we would need the approximate update equation of the rotated signal term §t+1, and the rotated misalignment
term Nyiq S;rll later in the proof. Since directly analyzing the evolution of these two terms seems challenging, we resort to

two surrogate matrices Sy11V; + Si11Vi 1 Q, and (Ney1V; + Ney1 Vi1 Q)(Se1Vi + Si+1Vi, 1 Q) 1, as documented in
the following two lemmas.

Lemma 13. For any t such that S, is invertible and (17) holds, and any matrix Q € RU=")%"« with Q|| < 2, we have
StV + Sia1VinQ = (L+nEP) (L= mI +n(Z2 + A)(SST +A)7) S, (49)

where E}3 € R™*" is a matrix (depending on Q) satisfying

1
(CZ‘a + 1)4Ii5 '

ERB| <
1E2) < 5o
Here, C5., > 0 is given in Lemma 2.
Lemma 14. For any t such that S, is invertible and (17) holds, and any matrix Q € RUT)X" with ||Q|| < 2, we have
(Nex1 Vi + Neza Vi 1 Q) (Sea Vi + Sy Va1 Q)71
= NS7H (L 4+ 0B (1= m)SiS] + AL (1= )38 + A +152) " (1 +nER) " + B

where E}*2, E1*Y are matrices (depending on Q) satisfying

1
Efte| < 50
|| t || — 200(02.a 4 1)4I€5, ( a)
1 -
B < 400ey K21 XL 73U A N.S;7's,
I < 40065 21X 10T Al + e praar IS S
1 9] 23
+ — M ) (50b)
64 Umin(St)
Here, || - ||| can either be the Frobenius norm or the spectral norm, and Cs., > 0 is given in Lemma 2.

C.1. Proof of Lemma 12

We split the proof into three steps: (1) provide several useful approximation results regarding the matrix inverses utilizing
the facts that ||6t || and Hﬁtgf 53, || are small (as shown by Lemma 2); (2) proving the claims (47a), (48a), (48b), and (48f)
associated with the signal term S;41; (3) proving the claims (47b), (48c), (48d), (48e), and (48g) associated with the noise
term Ny, 1. Note that our approximation results in step (1) include choices of some matrices {Q; } with small spectral norms,
whose choices may be different from lemma to lemma for simplicity of presentation;

C.1.1. STEP 1: PRELIMINARIES

We know from (17) that the overparameterization error 6t is negligible compared to the signals §t and oppin (X,). This
combined with the decomposition (14) reveals a desired approximation (X,” X;+\I)~1 ~ (Vi(S,! S;+N,” N))V,T +\I)~L.
This approximation is formalized in the lemma below.

Lemma 15. If A > 4(||O4||2 V 2||N.||[|O¢ ) for some t, then

o L —1
(X)X 4+ )7 = (Vt(StTSt + NNV, + M)
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SNBSS -1 SN -1
+ (Vt(sj S+ NNV + AI) El5a (vt(stT S+ NNV + M)

IR -1
= (Vi(ST 8+ NS R)VT + A1) (1+E[™) 51)
where the error terms E}>%, E%° can be expressed as

E}" = (V, .0/ OV, + VN OV, + Vi1 O] NyV,")Qu, (52a)

Etlo.b _ A—lEtl&aQZ’ (52b)

Sor some matrices Q1, Q2 such that max{||@1]|, |Q2||} < 2.
Proof. Expanding X, X; according to (14), we have
X[ Xy = V(S Se + NS N)V," + Vi 10] OV, + ViN OV, +V; 1O/ NV,

The conclusion readily follows from Lemma 8 by setting therein A = V; (gtT §t+l\~ftT ]\th)VtT+/\I and B =V, Lé: 6t Vt,TJ_Jr
Vtﬁjétvtl + w,ﬁjﬁtvj, where the condition || A~ BJ| < 1/2 is satisfied since

IA™ Bl < omin(A) MBI < A" (1067 + 2/ 0| N]]) < 1/2.

O
Moreover, the dominating term on the right hand side of (51) can be equivalently written as
(Vi(STS, + NT NV, + Al)fl = (V88 + NI N+ ADY,T + AVt,Lth)fl
= V(S Se + N N, + MD)W A7, VT (53)
When the misalignment error || N;S; 'S, || is small, we expect (S St + NTNt + )\I) ~ (5] S, + A\I)~1, which is

formalized in the following lemma that establishes (S;.S,” + S, N,;” N;S; ' +AI)~* =~ (5,5, + )%, due to the following
approximation

(S;Si + NN, + A"t = §7(S,8, + SeN] NS + AI)7LS,
~ S7NSST + AD)TS, = (S] S, + AI) !
Lemma 16. If | N;S; 'S, || < omin(X,)/16 for some t, then
(SeS] + SeNJS NS+ MDY = (I + E/%)(SeS] + D)7, (54)
where the error term E[° is a matrix defined as
E® = &%) X, ?INoS;  SllQu(Ne Sy ) Qe (55)

where QQ1, Q2 are matrices of appropriate dimensions satisfying ||Q1

|| < 2. In particular, we have
BN < 2621 X | 2N Sy Sl - IINeS Sl (56)
where || - ||| can be either the operator norm or the Frobenius norm.
Proof. In order to apply Lemma 8, setting A = S, §tT + X and B = §tNtT ]\thgf !, itis straightforward to verify that
IAT B = [[(SeS, + A1) M SN NoSTH| < INSTH 1P < NSy BP0 < (1/16)%,
where we use the obvious fact that ||(S,S + A\)~15,5,"|| < 1. Applying Lemma 8, we obtain
(S:S) + SN, NS+ AD™E — (8,5, + AD)~
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= (5,8, + \)"'S,N, NS, 1Q(S, S + AI)~*
= (58] + AD)718,8, SN (NS TINST ISR Q(S, S + AT
for some matrix @ with ||@]| < 2. Since one may further write

(S:S) + SN, NS+ AD™E = (8,5, + AD)

i (/e M LIPS Ve P
= |I=7 P INST S, (S8, 4+ AL 7185, (NeS;718)—=2—Q(S,S] + \I)

IS NS e T

the conclusion follows by setting E/° as in (55) with
ot (~§*12 )T ot

Q1 = (S,S] +A1)715,5] Qo= ——Q.

(Dol T ACHS N 1=

The last inequality (56) is then a direct consequence of (55). O]

C.1.2. STEP 2: A KEY RECURSION

Recall the definition A; in (43), we can rewrite the update equation (7) as
X=Xt — (X X, — M)X (X, Xy + XD 7+ 090X, (X, X, + M) 7L (57
Multiplying both sides of (57) by U, on the left, we obtain

Sip1 =8 — 0S8 X, Xy (X, X, + M)+ 0228, (X Xy + MD) T4 qU ALK (X X, + 0D
= (1=0)S; + (X2 + X+ U AU)S(X, Xy + M) 4 U] AU, L N(X[] X + ML (58)

Similarly, multiplying both sides of (57) by U: |» We obtain

Nipr =Ny (I =X X (X X+ AD7Y) + U, AXe (X[ Xy + A7

= (1= )Ny + nAN(X, Xy + A7 49U, AU (X Xy + M)+ U] AU NG(X Xy + MDY
(59)

These expressions motivate the need to study the terms S (X," X; + AI)~! and N;(X," X; + AI)~1, which we formalize in
the following lemma.

Lemma 17. Under the same setting as Lemma 12, we have

Sy (X Xy + M) = (I+ B9)(S,S] +A)7'S,V," + BT, (60a)
Ny X[ X + M) 7H = N.STHI + E)(S.S] +AD 7SV, + A0V, + BT, (60b)

where E}S is given in (55), and the error terms E}7%, E}"* can be expressed as

E™ = kA7 X IO Q1 (Ne Sy S) T Qo (61a)
BTt = (Nt(STSt FNTN, MDY 4 /\‘1@1@1) Bl
INQs + 10 1Qu) L. (61b)

Sfor some matrices {Q; }1<i<4 with spectral norm bounded by 2, and E}>? defined in (52b).

Proof. To begin, combining Lemma 15 and the discussion thereafter (cf. (51)-(53)) and the fact that gt = S;V;, we have
for some matrix @ with ||Q]| < 2 that

ST X+ AT = BBT B Ry Ry DT (14 BE5)
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= S5:(8, Sy + N Ny + MD)W, + 5,(5] S, + N N, + AI)"'A"'N, 0,Q
= (5,8, + SN NS  + A8, v,T
+ 5,(S] S, + NNy + AI)718, (N.S7H T (04/0)Q. (62)
Note that the condition of Lemma 15 can be verified as follows: since

1Ol < Coy k™2 - 1Xull - 0min (3 + A1) 2) - 15| < Coy ™" Coa0min(X.),
Co.ak]| Xl

IVl < INeSy Sl - IS - 1] < eon™ @2 X - Omin(X4)

S CQOZ.aUmin(X*)
provided Cs > 6, the bounds ¢y < ¢5/c3 and Ca 4 < 0;1/ 2 imply that when we choose C,, to be large enough (depending
on ¢y, Cs),

2 N[OV ([O:]* < A/4,

as desired.

Now the first term in (62) can be handled by invoking Lemma 16, since its condition is verified by ||J\~ft§; <
02/1’(05/2*1)0mm(X*) < Omin(X4)/16 provided Cs > 2 and ¢ < 1/16 by choosing c;s sufficiently small (depending on
cy). Namely,

(58] + S,N, N, S7 + AD)7L1S, VT = (I + Ef9)(S,S] + AI)7'S,V,".
For the second term, by noting that
I1S0(S St + NN+ AD TS| < 1SS S+ DTS < 1,
it can be expressed as
ATHOISH(ST S+ AD TSI (NS T (O1/110:)Q = kAT [ X TH IO Q1 (N2 S 54) T Qo

for Q1 = S:(S] Sy + AI)7LST - k7| X, |27t with [|Q1 ]| < 1and Q2 = (O4/]|O¢||)@ which satisfies || Q2| < ||Q|| < 2.
Applying the above two bounds to (62) yields (60a).

Similarly, moving to (60b), it follows that
N(X[ X+ M) = (Nt(gjgt + NN, + 2DV, + )\71515‘/;1) (I + E)
=Ni(8/ St + NN+ ANV, + A0V + BT (63)
where we have
B = (NuS] 5+ NT N+ ATV, + 2710V, ) B
A

HINQs + (|04 Qa) ELE

for some matrices Qs, Q4 with [|Qs|, [|Qa4]| < 1. In the last line we used || (S, S; + N,” Ny + AI)~!|| < A~L. For the first
term of (63), we use Lemma 16 and obtain

NS S, + NN, + XD ~'V," = NS 1SS, + SN, NSt + AI)~1 8, v, "
= N.S7HI + ES)(S,S] + ADLS, v,

This yields the representation in (60b).
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C.1.3. STEP 3: PROOFS ASSOCIATED WITH S} 1.
With the help of Lemma 17, we are ready to prove ~(47a) and the associated norm bounds (48a), (48b), and (48f). To begin
with, we plug (60a), (60b) into (58) and use S; = S;V,' to obtain
Siir = (L= mI +n(Z2+ AL+ ED(SST + D)7 SV, +nEy,

where the error terms E{ and E? are

B =U AU, + (22 4+ U] AU, + \XE!S + U AU, L N,S7HI + EJ9),

E} = (22 4+ U AU+ ADET™ + U AU, L (A0, + EFT).
This establishes the identity (47a). To control || E¢|||, we observe that

BN < MU A+ 152 + U AU+ A - B+ T Al - NS Sl - 1S - (L + 1B
< (1 eomw™20 7 e VX2 B+ 0T Al + 2052 X, - ok () - (1+ B - U7 Al

<20 X1 B+ (14 ca(L+1E:ID) TS Al

where the second line follows from Lemma 11 and Equations (12b), (17c¢); the last line holds since c;1, ¢y are sufficiently
small and C is sufficiently large. Now we invoke the bound (56) in Lemma 16 to see

BN < 262 | X | 2 INeS  SllllNeSy Sl < 2% m /2| X | 71N Sy HE |
< 2e0m | X THING S S

where the last line follows again by choosing sufficiently large Cy > 12. Furthermore, since || N;S; 'S, || < cor=C5/2|| X, |
for small enough c,, we obtain || E}¢|| < 1. Combining these inequalities yields the claimed bound

IEL < 2e0r™ | Xl - IINeS Sl + 21T, Al

The bound of || E?||| and || E?|| can be proved in a similar way, utilizing the bound for ||O;| in (19). In fact, a computation
similar to the above shows

I < 20X - B+ A A - O + 1A - B
< 2A - X 1O - Q1 - 1Qall - [INLS, Sl + 10065 o b (M. )eran ™%X, |- Ol
+8A e n 2SN+ 1O IV - O]

1 ~
< 800K I XL 7Ol - NS Bl + | O]
< 800x7e5 X 10U - NS Bl + gy IO
Here, Ciyax is the constant given by Lemma 2. Similarly, we have
1 ~
EY|| < 800&°c; | Xk |7 O - || NS + e 0
IEZ| P I Xl O] - N | (Cmax+1)n” al

The bound (48f) now follows directly from the bound of || N;.S; '3, || in Lemma 2, provided ¢ is sufficiently small and Cj
is sufficiently large. To prove (48b), we note that

AN < n]lA] (64)
for any unitarily invariant norm || - || and real matrix A € RP*? with p V ¢ < n (which can be easily verified when
AP = 11~ IFor [ [|F). Thus

1 1o "
B < (800s%cy tear™Co/2 O < = min (S
|H t”' N < " CA 2 * 24(Cmax + 1)/43 n” t” B Umin( t) ’ ( t)

where the last inequality follows from the control of ||5t || given by (18) provided cs is sufficiently small and Cs j therein is
sufficiently large. This establishes the first inequality in (48b), and the second inequality therein follows directly from (18).
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C.1.4. STEP 4: PROOFS ASSOCIATED WITH Nt+1-
Now we move on to prove the identity (47b), and the norm controls (48c), (48d), (48e), ang (482) as~sociated with the
misalignment term N, ;. Plugging (60a), (60b) into (59) and using the decomposition Ny = N;V," + OtV;]_, we have
Newr = NoS7t (1= m)8,ST + ML+ nEg) (S5 + D51,
+nEL(S, S +A)TISV,T + OV, +nEY,

where the error terms are defined to be

Ef = \E}°,

Bl =\ + U AU BT + 27U AU OV, + U AULET

Ef =U ANU.(I+E%) + U AU, NS + E}°).

This establishes the decomposition (47b). The remaining norm controls follow from the expressions above and similar
computation as we have done for S; . For the sake of brevity, we omit the details.

C.2. Proof of Lemma 13

Use the identity (47a) in Lemma 12 and the fact that V; and V; | have orthogonal columns to obtain
Sis1Ve+ 8141V 1 Q = ((1 — ) + (22 + M+ E2)(S,:S] + Az)—l) St +nE}(Vi+ Vi1 Q)
= (T +nEP) (1= )T+ 052+ ADSST +A07) §,
= (I +0EB)((1 =SS, + X +1%2) (5,5 + \I)7LS,, (65)

where E/? is defined to be

~ ~ ~ ~ ~ —1
B = (BHEST + A0 + B+ Vi @571) (1= mI +n(S2 +AD(SS] + 1))

— B8 ((1 — (S8 + A + (22 + )\I)) o

- . -1
+ BV + Vit QS (= mI + (S + AN ES] + D7)
= Tl + TQa
where the invertibility of S follows from Lemma 2, and the invertibility of (1 — )1 + n(22 4 AI)(S,S; + AI)~! follows
from (106).
Since (1 — 1) (S¢S, + M) +7(52 + ) = A and A > 1isca0min(M,) by (12b), we have

I < ATHIER | < 100cy  opi, (MO)|EF .

In view of the bound (48a) on || Ef|| in Lemma 12, we further have

11 < 10065 o, () (51X - INGST S| + (1A

< 100cy 62| X || 72 (K ean ™92 4 e 2931 X |12
1

< )

~ 400(Cy.q + 1)*K5

where the second inequality follows from (17c) in Lemma 2 and Lemma 11, and the last inequality holds as long as cs and
c11 are sufficiently small and Cs is sufficiently large (by first fixing ¢ and then choosing c¢;s to be sufficiently small).

The term T3 can be controlled in a similar way. Since ||AB|| < ||A]| - || B]|, one has
Il < VB (VAL + 1Ve QI - 157 H - o (1= )T+ 0(S2 4+ AD(ELST + 1))
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~ 3/4
(i) . o (i) 10| (iii) 1
= 3||Et ” Umm(St) 1-— n on (Umin(st> N 400(02.a + 1)4/%5

Here, (i) follows from the bound (106) and the facts that | V|| V ||V; || < 1, [|Q| < 2; (ii) arises from the control (48b) on
| EY|| in Lemma 12 as well as the condition i < ¢y < 1/2; and (iii) follows from the implication (18) of Lemma 2.

The proof is completed by summing up the bounds on ||7}]| and || T3]

C.3. Proof of Lemma 14

Similar to the proof of Lemma 13, we can use the identity (47b) in Lemma 12 and the fact that V; and V; | have orthogonal
columns to obtain

Nep1Vi+ Nepl Vi 1 Q = thfl((l - n)gtgt—r + A+ TIEtC)(gtgtT + )\I)_lgt +nE{te
= N, S7H I+ nEHY (1 —0)SeS] + M) (SeS, + AI)7LS, + nEfe, (66)

where the error terms are defined to be

Bl = B{(S,8T +AD T8, + 07 0,Q + B{(Vi +V,.1Q), ©n
B = B (L= )88 + A1) ©®

Combine (66) and (65) to arrive at

(NexaVe + Neya Vi 1. Q) (Se1 Ve + St+1‘/t,J_Q)_1
= NS +nEM ) (1= )8, 8T + M) (1= m)SeS] + AT +n52) (T +nER) ' + B, (69)

where, using

(SeS, + A ((1—n)S,S] + A + nzz)‘l = ((1 =T + (22 + AI)(S,S, + ADH T

we have

B = EM ST SST + AD((1— )88 + M +nE2) " (I +9E)~!

= E{ (1= n)S8,S] + M +n2) " (I +pE) ™!
~  ~ -~ -1 .
+ 7105 (L =m) I +n(Z2 + ADSST +AD7H) (L +nER) !
-1

+ BV + Vi @S (L= m)I +0(52 + AD(SST +AD7Y) (1 +nEF) ™
= T1 + T2 + Tg.

It remains to bound ||E14¢|| and || E*?||. By (48c), we have
B < AT < 10063 g, (Xo) - m XAV S S
< 1000;102%;_25_05/2
1

<
= 200(Ch.q + 1)45

where the penultimate inequality follows from (17¢) and the last inequality holds with the proviso that c5 is sufficiently
small and Cj is sufficiently large.

Now we move to bound || E'*?|||. To this end, the relation ||(I + nE}3)~!|| < 2 is quite helpful. This follows from
Lemma 13 in which we have established that || E}?|| < 1/2. As a result of this relation, we obtain

T < 227122,
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-1

b

7l < 2100 11371 - (1 = mr 4002+ ADEST + A0

~ ~ ~ —1
ITsll < 20BN - (L + Q) - 18- H (=T +0(22 + ADES] +A1 )

Similar to the control of 77 in the proof of Lemma 13, we can take the condition A > ﬁc >\012nin (X,) and the bound (48¢)
collectively to see that

1

Tyl < 400e 62| X, || 72U A
T3] < 400y "= [| X || = U, t|||+64(02‘a+1)2ﬁ3”X*H

[N W

Regarding the terms 75 and T35, we see from (106) that

K
< <o,

H((l—n)l+n(zf+/\1)(§t§+>\1)1)_1 —

as long 7 is sufficiently small. Recalling the assumption ||Q|| < 2, this allows us to obtain

3 5
Il < 8-t MOML g1y, 1104

Omin t) a'min(gt) ’
ITs ) < 1260 B /omin(Se),
where the first inequality again uses the elementary fact [|O¢||| < n||Oq]| in (64).

The desired bounds then follow from plugging in the bounds (48d) and (19).

D. Proofs for Phase 1

The goal of this section is to prove Lemma 2 in an inductive manner. We achieve this goal in two steps. In Section D.1,
we find an iteration number t; < Ty,i,/16 such that the claim (17) is true at ¢1. This establishes the base case. Then in
Section D.2, we prove the induction step, namely if the claim (17) holds for some iteration ¢ > ¢;, we aim to show that (17)
continues to hold for the iteration ¢ 4+ 1. These two steps taken collectively finishes the proof of Lemma 2.

D.1. Establishing the base case: Finding a valid ¢,

The following lemma ensures the existence of such an iteration number ;.

Lemma 18. Under the same setting as Theorem 2, we have for some t1 < Tiin/16 such that (16) holds and that (17) hold
with t = t;.

The rest of this subsection is devoted to the proof of this lemma.

Define an auxiliary sequence
~ n t
K= (1+3A"A(L)) Xo, (70)

which can be viewed as power iterations on the matrix A* A(M,) from the initialization X.

In what follows, we first establish that the true iterates {X;} stay close to the auxiliary iterates {)/(\'t} as long as the

initialization scale « is small; see Lemma 19. This proximity then allows us to invoke the result in Stoger & Soltanolkotabi

(2021) (see Lemma 20) to establish Lemma 18. For the rest of the appendices, we work on the following event given in (13):
€ ={lIGll < Ca} N {oin(U7G) < (2m)°}.

Step 1: controlling distance between X; and X ¢t The following lemma guarantees the closeness between the two iterates

{X,} and {X,}, with the proof deferred to Appendix D.1.1. Recall that C; is the constant defined in the event € in (13),
and c, is the constant given in Theorem 2.
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Lemma 19. Suppose that X > 1s50x02,,(X.). For any 0 € (0,1), there exists a large enough constant K =
K(0,cx,Cq) > 0 such that the following holds: As long as o obeys

[ X o K N g
logT > o log(2kn) - (1 + log (1 + XHA A(M*)H)), (71)

one has for all t < % log(kn):

o

X1

~ t
1% = %if| < ¢(1+ 214" AL ) (72)

Moreover, || X¢|| < || X for all such t.

Step 2: borrowing a lemma from Stoger & Soltanolkotabi (2021). Compared to the original sequence X, the behavior
of the power iterates )?t is much easier to analyze. Now that we have sufficient control over || X; — )A(t |I, it is possible to show
that X, has the desired properties in Lemma 18 by first establishing the corresponding property of )A(t and then invoking
a standard matrix perturbation argument. Fortunately, such a strategy has been implemented by Stéger & Soltanolkotabi
(2021) and wrapped into the following helper lemma.

Denote

s = 0y (I+ JAADL)) =1+ 0, (AADL)),  j=1.2,....m

and recall that U (resp. U)?t) is an orthonormal basis of the eigenspace associated with the r, largest eigenvalues of
A* A(M,) (resp. X))

Lemma 20. There exists some small universal cog > 0 such that the following hold. Assume that for some v < ca,

(T A" A)(M,)]| < 702 (X.0), (73)
and furthermore,
Gllst X, - X
¢ = ol HST*Hi_ 1X: — Xl < coor 2 74
aamin(UTG)sf“*

Then there exists some universal Cyy > 0 such that the following hold:

O'min(gt) Z %Umin(ﬁTG)Sﬁ»*, (753)
10| < Coopaomin(UT G)st., (75b)
UL Ug I < Caoly + 9), (75¢)

where )N(t = X, V; € R,

Proof of Lemma 20. This follows from the claims of Stoger & Soltanolkotabi (2021, Lemma 8.5) by noting that ||O, || =
IUTL XV || < 1 X Vi, 1| for (75b).3 O

Step 3: completing the proof. Now, with the help of Lemma 20, we are ready to prove Lemma 18. We start with verifying
the two assumptions in Lemma 20.

Verifying assumption (73). By the RIP in (9), Lemma 7, and the condition of § in (10), we have
T A AL < VAL < o™ 20%,,(X.) =2 702 (X0). (76)

Cs—2)

Here v = cm_( < 90, as cs is assumed to be sufficiently small.

3The equation (31) in Stoger & Soltanolkotabi (2021, Lemma 8.5) is stated in a weaker form than what they actually proved, and
our (75b) indeed follows from the penultimate inequality in the proof of Stoger & Soltanolkotabi (2021, Lemma 8.5).
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Verifying assumption (74). By Weyl’s inequality and (76), we have

100
Sj -1- Qaj(M*) é QH(I_A* || 76 fu (06 2)012ni11(X*) S 0677,
A A C)\
where the last inequality follows from the condition A > 5502, (X.). Furthermore, using the condition A < cyo2,;, (Xy)
assumed in (12b), the above bound implies that, for some C' = C(cy, ¢5) > 0,
100c¢
51<1+7||M | + 5n<1+C’77f1 (77a)
100
Sr. 2 14 202, () = —2n > 1+ o1, (77b)
A C) 20)\
100 2
sp. <1+ 202 (X)) 4+ —2p <1+ 21, (77¢)
A C) )\
100
Srop1 ST+ —2p <1y (77d)
C) 4C>\

where we use the fact that o, 11 (M,) = 0, and ¢s < 1/400. Consequently we have s, /s, 11 > 1+ ¢/n for some
¢ = (ex) > 0, assuming ¢,, < cy. Thus for any large constant L > 0, there is some constant ¢’ = ¢”’(¢’) > 0 such that,
setting L’ = ¢ Llog(L) we have

/

L
(5, /5, 11)t > (Len)t, ¥Vt > —log(kn).
n

UTG) < (2n)-/2.

min (

On the event £ given in (13), we can choose L large enough so that L. > 2C¢, hence ||G|| < Land o
Summarizing these inequalities, we see for £ > e) log(kn),
al|Gllsy, 41
aomin(UTG)st,
< L(2n)Y2(Len) =t < (Lkn) =22 (78)

mln(U G (87‘ +1/87‘*)

Furthermore, invoking Lemma 19 with § = 1/(2L’) (note that (71) is implied by the assumption (12c), where C, is
assumed sufficiently large, considering A > 155¢x02%;, (X,) and || A*A(M,)|| < ||M. || 4+ yo 2, (X)) < 2| X.||? by (76)),

min (

we obtain for any ¢ < % log(kn) = % log(kn) that || X; — )?t|| < tsta?/||X,|. This implies

mll’l(

1X; — Xy ot (BTG
o (TGt = /5T 0 (U7 G)a/| X, |

< 510 (U G)a/||1X.|

min

< exp(tlog(s1) + Llog(Lkn))a/|| X« < (Llin)iL/Z (79)

Where the second inequality follows from (77b), the penultimate inequality follows from our choice of L which ensured
(U T@) < (2n)%/2, and the last inequality follows from (77a), our choice ¢ < % log(xn) and our assumption (12c)

on « which implies /|| X, || < (2kn)~C=, given that C,, is sufficiently large, e.g. C,, > C(L,cy,cy). It may also be
inferred from the above arguments that L can be made arbitrarily large by increasing C,.

Combining the above arguments, we conclude that for any ¢ € [(L'/n) log(kn), (2L’ /n) log(kn)], both of (78), (79) hold,
hence the condition in (74) can be verified by

Al Glisr, 1 + 11X = Xl _

= _ 2(Lkn)~L/? 80
¢ aamin(UTG)Sf“* =2 ) 0

< cook 2,

by choosing L sufficiently large.

This completes the verification of both assumptions of Lemma 20. Upon noting that the upper threshold of ¢ satisfies
(2L /n)log(kn) < Tmin/16, we will now invoke the conclusions of Lemma 20 to prove Lemma 18 for some ¢ €

[(L'/n)log(kn), Timin/16].
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Proof of bound (16). This can be inferred from (75a) in the following way. Recalling that oy, (U T G) > (2n)~C¢ on
the event £, and s,., > 1 by (77b), we obtain from (75a) that

Umm(sh) (2n)—cc Z CY2/||X*H,

NH

given the condition (12c) which guarantees

< (2n)~C/1 < < (2n)~C¢,

»Jk\P—‘

IIX =
aslongasn < ¢, < land C, > Cg + 2. The proof is complete.
Proof of bound (17a). 'We combine (75a), (75b), and (80) to obtain

o]
Umln(Stl)

where the last inequality follows from taking L sufficiently large. We further note that (12b) implies

< 405 ¢ < 4Co0(Lrn) 1% < (Lkn/2)~ /2,

Umirl<§t1) S ||Ei + AIHl/QUmiH ((Ei + AI) 1/2St ) (C/\ + 1)1/2||X ||Urr1111 ((23 + )\I)_1/2§t1>
< 20X lowin (52 4+ A1) 725,
assuming c) < 1, hence

104, |
_— ((zz ¥ M)—l/?iq}l)

< 2| X.|(Lrn/2)"F2 < (Coprn) =P || X,

as desired, with Co;, = L/4 as long as L is sufficiently large. It is also clear that C;, can be made arbitrarily large by
enlarging C', as L can be.

Proof of bound (17b). We apply (75b) to yield
t1
104, | < C2000min(UTG)stt < CgCao(Lrn) /2 (1 - 2”) a < a0 X, |8,
Cx

where the second inequality follows from amin(ﬁTG) < |G| € Cg by assumption and from (77¢); the last inequality
follows from ¢; < (2L /n) log(xn) and from the condition (12¢) on «, provided that C,, is sufficiently large.

Proof of bound (17c). We apply (75¢) to yield that

V1 Us, | < Conlty +9) < Zon* %,

using the bounds of v and ¢ in (76) and (80), provided that ¢§ < % min(1, Cy) and L > 2(Cs + 1). To further bound
[ Ne+15;., 24 || we need the following lemma.

Lemma 21. Assume S, is invertible, and at least one of the following is true: (i) |U lUXtH < 1/4; (ii) ||N:STY S, || <
kY| X, ]| /4. Then
KUXANTL LUg, < INeST S0 < 21 XU LU, D

The proof is postponed to Section D.1.2. Returning to the proof of bound (17c), the above lemma yields

2¢;5 _ _
1M1 SEA B < T IX 57207 < call Xalm™20512,

for some c2 < ¢5/c3, as desired.
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Proof of bound (17d). We have
||St1|| = ”UIXHV;H” < ||Xt1|| < ||X*H’

where the last step follows from Lemma 19.

D.1.1. PROOF OF LEMMA 19

We prove the claim (72) by induction and also show that || X;|| < || X, || follows from (72). For the base case ¢ = 0, it holds
by definition. Assume that (72) holds for some ¢ < Ln log(kn) — 1. We aim to prove that (i) || X;|| < || X,|| and that (ii) the
inequality (72) continues to hold for ¢ 4 1.

Proof of || X;|| < ||X.]||. By the induction hypothesis we know

()t2

~ n N t

In view of the constraint (71) on a and the restriction ¢ < # log(kn), we have

1 1
<1

log(kn) A =—
Klog(kn) K6 —

. a < 1
HX*H ~On

as long as K = K (0, ¢y, Cg) is sufficiently large. This further implies

X0 %l < (17 ) (1 HanA0n) o < (14 F1aca0n)]) o

e
X
On the other hand, since || Xy|| < Cga under the event £ (cf. (13)), in view of (70), we have
v n * t n * t
1%l < (1+ T4 AQL)]) 1Kol < Ca(1+ FIA AML)]) a.
Thus for a large enough K = K (0, cx, Cg), we have
~ ~ ¢
tl] <l Xe — X tl < N * €] a < /ey KX
126 < 11X = Kol + 1%l < (14 A" AGL)]) (Co +Da < v/er/200- 57X, (81)

where the last inequality follows from the condition on ¢ and the choice of « in (71):

1 X, || V200(Cq + 1)k
« Ve

log > log

+ tlog (1+ 14" AL ).
The inequality (81) clearly implies || X || < || X.]|.

Proof of (72) at the induction step. The proof builds on a key recursive relation on HXt+1 - X t+1
induction follows readily from our assumption.

, from which the

Step 1: building a recursive relation on || X; ;1 — X;||. By definition (70), we have X, = (I + ZA*A(M,))X,,
which implies the following decomposition:

Xi1 — Xpar = [Xm _ (I n gA*A(M*))Xt} i (1 n gA*A(M*)) (X, — X,). (82)

=T =T

We shall control each term separately.

* The second term 75 can be trivially bounded as

I7all = | (7 A AL ) (x: - R0

<(1+ §||A*A(M*)||) 1%, — X4|. (83)
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Turning to the first term 77, by the update rule (7) of X, ; and the triangle inequality, we further have

Il = | X = (1+ Lav Ao x,

< |nA*AX X)X (X, X+ A7
+ [ AT AMO) X (X X+ M) TE= AT ] (84)
Since ||(X,” Xy + M)~ < A7L, it follows that the first term in (84) can be bounded by

A A X)X (X X+ 2D 7| < TIAAC X)X

In addition, since \/cx/200 - £ | X, || = v/eao2,,(X4)/200 < /A/2 by the condition A > 5ca02,;, (X)), we

have by (81) that || X;|| < \/\/2. Therefore, invoking Lemma 8 implies that

(XX, + 2D = X7 = 272X, X,Q, for some Q with ||Q|| < 2.
As a result, the second term in (84) can be bounded by

AT AQL) X (X7 X+ AD 7 = A7) || < 255 A AGL) X

Combining the above two inequalities leads to
* 2 *
i) <™ (nA AKX+ 24 A(M*>||Xt||2) 1.

In view of Lemma 7, we know || A*A(M,)|| < 7,||M,|| and || A*A(X: X, )| < 7||X:||%. Plugging these relations
into the previous bound leads to

nr IIM I KT
173l S 5 (1 5 )1l S g1, (85)
*

X,) = k72| M,]| (cf. (12b)).

where the last inequality follows from A > 2. (

Putting the bounds on T} and 75 together leads to

Cnkr

3

X1 = K| < (14 FIAAQL) )| Xe = Ko +

for some universal constant C' = C(cy) > 0.

Step 2: finishing the induction. By the bound of || X, || in (81), it suffices to prove

e 1 oa?  C(Co+DPnstro m . 3 g
(14 SIAAOL)) e+ = e (L ATAOL)]) e

a2

e t
< e+ (1 JIAALN) e

This is equivalent to

2t—1 X,
C(Cq + 1)3nrtr (1+}||A*A(M*>H) < I

«

which again follows readily from our assumption ¢ < 7~ log(nn) and the assumption (71) on o which implies

log<| |> (t—l)log(l—i—gHA"A(M*)H)+410g”+log”+K

> (2t —1)log (1 + gHA*A(M*)H) +log(nk*r) +log(C(Cq + 1))

provided K = K (0, ¢, Cg) is sufficiently large. The proof is complete.
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D.1.2. PROOF OF LEMMA 21
We begin with the following observation:

NS =U U 25, Vi Vi, 25 L wlug)!

=U Ug, (U Uz )™ (87)
where we use: (i) N; = U*TL(U IS VT ) and S; = UlUs Tz V~ : (ii) X, is invertible since S; is invertible, and hence

Vg, hasrank r,and X , LU Ug, are also invertible. We will show that the above quantity is small if (and only if) UI 1Ug,
is small.

Turning to the proof, we first show that (ii) implies (i), thus it suffices to prove the lemma under the condition (i). In fact, in
virtue of (87) we have

UL U, I S INSTHIT U, Il < NS < 0min (X) NSy S

where we used ||U*TU)~Q | < [[U[IU%, | < 1. Consequently,
claimed.

Ul Ug |l < 1/4if NS || < kY| XL /4, as

We proceed to show that the conclusion holds assuming condition (i). The first inequality has already been established
above. For the second inequality, using (87) again, it suffices to prove ||(U] U )?t)’l || < 2, which is in turn equivalent to

Umin(U;rU)}) > 1/2. Now note that U, = U*U*TU);t + U, LU, LU » thus
Umin(U*TU)}t) =0r, (UIU)N(,)
> o, (UU[] Ug,)
> or, (Ug,) = U« U/ L Uz,
>1—||U/ Uz, || > 3/4.

In the last line, we used o, (U )?t) = 1, which follows from U X, being a n X r, orthonormal matrix, and the assumption (i).
This completes the proof.

D.2. Establishing the induction step

The claimed invertibility of St follows from induction and from Lemma 3. In fact, by (16) we know Stl is invertible, and by
Lemma 3 we know that if St is invertible, St+1 would also be invertible since St (resp. St+1) has the same invertibility as
(22 4+ \)~18, (resp. (X2 + AI)~1S,41). For the rest of the proof we focus on estabhshlng (17) by induction.

For the induction step we need to understand the one-step behaviors of ||6t 12 ||, and || CALR
the following lemmas.
Lemma 22. For any t such that (17) holds,
~ 1 ~
o < (14 —=—— O] 88
1Ol < (14 5o—n) 104 9

Lemma 23. For any t such that (17) holds, setting Z, = 2:1(§t§t"' + M), there exists some universal constant
Co3 > 0 such that

ngli2
X

.
3([12el +m)

~ 1/2
o %)
Ntﬂst;lmns(l— )|||Nt DN |U3At|||+n<t)> X ©9)

Umin(St

In particular, if ¢c; = 100C53(Ca.q + 1)*cs/cr, then |N.S7IE,|| < o= C5/2|| X, || implies ||Nt+1St+1E I <
cak” S| Xl

Lemma 24. For any t such that (17) holds,

181l < (1= 3) 1S4l + 1006w . ©0)
In particular, if Co.q = 2000;1/2, then ||Sy|| < Co.qk|| X, || implies ||Seq1]| < Co.ar|| Xl
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We now return to the induction step. Recall that we need to show (17a)—(17d) hold for ¢ + 1. It is obvious that (17b)—(17d)
hold for ¢ 4+ 1 by the induction hypothesis and the above lemmas. It remains to prove (17a). To this end we distinguish
two cases: omin (52 + AI)~/25,) < 1/3 and omin (52 + M) ~1/28,) > 1/3. In the former case, (17a) for ¢ + 1 follows
from Lemma 22 and Lemma 3 (to be proved in Appendix E.1), which imply (provided C\,ax > 2)

~ 17 ~ ~
|Gl () 1] _ 1G]
Omin(B2 + M)71/28,1) — (140/8) 000 (52 4+ M)7Y28,) ~ omin((52 + A)=2/28,)
as desired. In the latter case where o (X2 + AI)"1/2S,) > 1/3, one may apply the first part of Lemma 3 to deduce that
Omin (X2 + A)71/28, 1) > 1/10 (given that 1) < ¢, for some sufficiently small constant c,)). This combined with (17b)

for t + 1 (already proved) yields desired inequality (17a) for ¢ 4+ 1, given our assumption (12c) on the smallness of «.. This
completes the proof.

D.2.1. PROOF OF LEMMA 22

If » = r,, then we have ||6t || = 0 for all ¢ > 0. The conclusion follows trivially. Therefore, we only consider the case when
r > r,. By definition, we have

Orp1 = Niv1Vivra = Neyi ViV, Vi 1 + Nt+1Vt,LVt71Vt+1,L
= *Nt—&-lVt(St—i-lvt)ilst—&-l‘/t,LVt:ert—&-l,L + Nt+1vt,LVf,:1‘/t+l,L7

where the last inequality uses the fact that V," Vi1 1 = —(Si41 Vi) "1Si+1Vi, 1V, Vit1,1. To see this, note that
SeriVirr,t =0 = SeViVi Visrn = =S Vi1 Vi Vi

Left-multiplying both sides by (S;1V;) ™! yields the desired identity. Note that the invertibility of S;,1V; follows from the
invertibility of .S; by inserting () = 0 in Lemma 13.

By Lemma 12, we immediately obtain that Sy, V; | = nEPV, |, and Ny 1V, = Oy + nE2V, |, where | EY|| v || EZ| <
1

510 |O; | Assume for now that
A

[ NeaVa(SeaVa) M < 1. (C29)

In addition, notice that ||V, Vi11,1 || < 1 since both factors are orthonormal matrices, we have

1Ots1ll < IOl + | Nega Ve (Sera Ve) “HIIEL |+ mll B

1 ~
< -
< (1+ ) 1011

as desired. It remains to prove (91).

Proof of bound (91). This can be done by plugging () = 0 into Lemma 14 and bounding the resulting expression. This
(in fact, a much stronger inequality) will be done in detail in the proof of Lemma 23, to be presented soon in Section D.2.2.
In fact, the resulting expression is the same as (96) there (albeit with different values of E}3¢, E}*-¢, El1*? which do not
affect the proof). Following the same strategy to control (96) there, we may show that || Ny 1 V;(S;41V;) 13, || enjoys the
same bound (101) as || Ny1.1.5;.%, .|, the right hand side of which is less than £~ 1[| X, || = |27 | ~* given (17¢) and (17d).
Thus [ Net1Ve(Se41Ve) 7 < 1N Vi(Sia Vi) TS lIZ0 ] < 1 as claimed.

D.2.2. PROOF OF LEMMA 23

Denoting X, := X, V;, we have N, = U*Tl)?t and S, = U, X,. Suppose for the moment that
IV Vo) M < 2, (92)
whose proof is deferred to the end of this section. We can write the update equation of X, as
Xiy1 = Xen1Virr = Xed ViV, Vs + Xt+1Vt,J_Vt,TJ_Vt+1
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= (Xe41Vi + Xe1 Vi, LV, Vit (VT Vi) ™) Vi Vi, (93)
Left-multiplying both sides of (93) with U, | (or U,), we obtain
Neyt = (Nesa Vi + Nesa Vi 1 Q)V; Vi (94a)
§t+1 = (S Vi + StJrIV;f,J_Q)‘/tTV;erh (94b)
where we define () := th Vis1 (VtTVtH)_l. Consequently, we arrive at
New1Sih = (Nepa Ve + Newa Vi Q) (Sea Vi + Sen Vi1 Q) (95)
Since ||@Q]] < 2 (which is an immediate implication of (92)), we can invoke Lemma 14 to obtain
Nis1834 8. =NSTHI + 0B ) A(Ac+ 023) 7 (L +0B) 'S, +nBE,
=N Sy 'S (I + S B S Hy(Hy + ) "N (I + 02 EPSL) ! + 9B, (96)
where for simplicity of notation, we denote
A= (1—n)8S  + A, and H, =% 'A%

In addition, we have

1
64K5’

1B )+ (2 <

~ /

- - 1 L 1%
EP < 800cy K2 IXL U, Al + NSTIS A+ = = :
IEEI < 800w XL Adl+ G — e 1V I+ & (50

Moreover, it is clear that ) < ¢, < 1 < x* since x > 1, and that || H,|| < (1 + \|§t|\2/HX*||2) < (Cy.4 +1)%k*. Hence
we have
| Hy|| + 7 < 2(Caq +1)%6%

which implies
1 1

EPB|+|BM*Y) < o= (97)
1B+ N2 24k || Hyl| 4+
Similarly we may also show
! (o0 Y
Il < 800y " w2 X[ 721U Al + IN:S; Sl +3 = : (98)
' A i N 12(|| Hel| +n) [ Xl Tmin (St)
Since H; is obviously positive definite, we have
_ n
Hy(H;+n) Y <1 - —1—. 99
Thus
N7 o— Ui a
INe 1 SEL Bl < (1— T o )(1—77F»E33|) Y1+ el EPDINGS, Sl + nll BE Xl
[ Hell + 7
n 1 ) 1
<(1- T ) (14— ) NS
< HHM+n>< 12 [[He| +1n '

~ 2/3

800k | » 1 {10l

+17 Al + — NS, ||+ 51— X
C)\HX || |H * t||| 12 ||H || + ||| t |H O'min(St) || *”

5 )
<({l——-7F—7— NS 'y, +7
(1 S ) IS

N,S7is,
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_ 2/3
800x2 1 0]
O UT Al + 3 (””)> I

x| Xl omin(gt
3 800k2 1 (oAl 2
n 7 a-1 K T t
<(1-2—L1 )NS5 s, + UTA| + = | /L X
( 4|Ht+n) ISl eI A 2"<amin<st>> e
3 8002 1 O] 2
n T o1 KE T ¢
<(1-2—L— ) |INS; s, || + UTA| + =n [ ——— X, (100)
< 4 HZtH +77) |H tt *H| TIC,\”X*H ||| * tH| 277 (O’min(st)> || *”

where in the second inequality we used (1 — z)~! < 1 + 2 for x < 1, in the penultimate inequality we used the elementary
fact (1 — 2)(1 + 15#)? < 1— 2z for z € [0,1], and in the last inequality we used the obvious fact

I = 1= (1 =) SeST + AN < 2SS + ADE | = (1 Zll-

The desired inequality (89) follows from the above inequality by setting Ca3 = 800.

For the remaining claim, we need to apply the conclusion of the first part with ||| - || = || - ||. Then we note the following
bounds:

W Z < IZ2HP IS + A) < (Cag + 1)26* by (17d) and (12b) (since we may choose ¢y < 1);
(11) n S Cn S (CQ.a + 1)254;
Git) U A < |A¢|| < 16(Ca.q + 1)2c5x2%/3|| X, ||? by Lemma 11;

(V) (/|O]l/omin(Se))/2 < c5572C5/3 by (17a), if we choose C,y > 3¢5 ' +3Cs + 3.
These together imply

(Coa 4 1)2es57 2953 || X, || + ness 2953 X, .

s (101)
The conclusion follows easily by plugging in | N;S; ', || < con~/2|| X, || and using 6k ~2C3/3 < x=C5/2 when Cj is
sufficiently large.

~ ~_1 n ~ 5 16C23I<02
[ N1, 2] < (1 - W) | VeSSl + UT

Proof of bound (92). First, we observe that it is equivalent to show that amin(VtTVtH) > 1/2. But from WHVtL +
Viy1,.V,hy , = I we have
Tmin(V Vig1) = 00, (V; Vir1) 2 0, (V; Vi1 Vida) = 00, (V' = Vi Vi1 Vil 1)

>0, (V') - HVtTVH-LthIl,L”

> 1=V, Verral,
where the last inequality follows from o, (V,") = 1 (since V; € R"*"* is orthonormal) and from that ||V, V;41 | VtL <
|V;" Vii1,1 || This implies that, to show omin(V," Viy1) > 1/2, it suffices to prove | V,TViyq 1 || < 1/2.
Next we prove that ||V," V;41 1 || < 1/2. Recall that by definition we have S;;1V;11,1 = 0. Right-multiplying both sides
of (47a) by V41,1, we obtain

0= ((L=m)I +n(E2 4+ A+ E)(SS] +AD ™) Si(V Vigr,) +nEfVisa, 1,

hence
1

IV Vern < Vi LIS (0= 400524 A+ E2)CGST 40

By (48b) we have

- B 1
EV, ST < _IEEN et =
£ Vigr, 1 [IS; [ < (S = 107
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thus it suffices to show

~ ~ —1
n H (U= + 02+ A1+ ESS] +AD7Y) | < 55, (102)
or equivalently,
2 ay (S aT -1 n
Frmin ((1 — ) + (52 + M+ E9)(8,8] + \I) ) > L (103)
To this end, we write
(1 =) +1(32 + M + E) (S5 + A1)~}
~ ~ —1 ~ ~
- (1 +nES ((1 —)(SeST + AI) + (2% + AI)) ) ((1 — ) + (22 + M)(S,S] + /\I)*l) (104)

and control the two terms separately.

* To control the first factor, starting from (48a) we may deduce
1B < 61X NSy Sl + U, Al
< &YX lear™ X+ ennw 2O XL 12
S _2||X || /Q_Jmm( *)/23

where the second inequality follows from (17c) and Lemma 11; the last inequality follows from choosing ¢5 sufficiently
small (recall that 2, c11 < ¢s/¢3) and Cj sufficiently large. Furthermore, since .Sy S, is positive semidefinite, we have

((1 — ) (S8 + AI) + (22 + )\I))

min

] <y (5 = 1ok (X))

hence
1
Omin (1 + nEa ( StST + )\]) + 7’](22 + )\I)) >
1
> 1— || B¢ ’( WSS + AL + (2 + A1)
>1—-n- mm(X*) n_la;uzn( X,)=1/2. (105)

* Now we control the second factor. By Lemma 9 we have

Omin (1= 1+ 0(E2+ AD(ES] +AD ™) = (1= n)omin (I + 1f(E2 FAD(SS] + D)™ >

o1y (A T
- a'min(zz + /\I)

B X2+ A 2
(1n><02.(X*)+)\> :

It is easy to check that the function A — (a + \)/(b+ ) is decreasing on [0, o) for a > b > 0, thus
2 2
|2\X 1 i AP ©.€Y Y
Umin( ) + A mln(X*)

which implies

Frmin ((1 )+ (=2 AD(S.ST + AI)—l) > (106)
K
Plugging (106) and (105) into (104) yields
o3 _ I—-n_mn
. _ 2 a T 1 > > L
Tonin ((1 I +1(S2 + M + E)(S,5) + AI) ) > > L (107)

where the last inequality follows from the assumption 1 < ¢,,. This shows (103) as desired, thereby completing the proof.
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D.2.3. PROOF OF LEMMA 24

Combine (94b) and Lemma 13 to see that
I1Sesall < [1Ses1Ve + Sea Vi, L Q|
<UL+ BRI (1= ) EST +ADY2 + (52 4 ADSS] + A1) - (88T + D125

< (Ll BRI (= U8 + A2 4+ 432X 12) (U812 + )75

- X, 112115,
< (1+0) (@ - S+ ap— IS
A(IISe][2 + )
N 3 [| X, ]2
< .
_(1 2)||St||+5n o (108)

where the third line follows from |32 +)\IH < (1T4+N)[[ X2 < 21X, 12 assummg cx < 1 and from the fact that the singular

values of (5,5, + \I)~1/285, are (o (St) +A)~ 1/20J(St) j=1,...,r.,* which is bounded by (|| S;||2 + A)~/2|| S|

since 0 — (02 + A\)~1/2¢ is increasing and since || S| is the largest smgular value of S;. In the fourth line, we used the

error bound || E}?|| < 1/4 and the last line follows from the elementary inequalities 1+ 7/4 < (1 —n/2)(1 —n)~1 < 5/4
given that ) < ¢, for sufficiently small constant ¢, > 0. The conclusion readily follows from the above inequality and the
assumption A > tscxo2. (X,).

E. Proofs for Phase 11

This section collects the proofs for Phase II.
E.1. Proof of Lemma 3
Since ||V;},V4]| < 1, we have
Tmin(B2 + A1) 7285 41) > omin(52 + A1) 25,4V, 1, V)
= owin((Z3 + M) 71250 Va),
where the second equality follows from S;y1 = §t+1 VJH (cf. (26)). Apply Lemma 13 with @ = 0 to see that
StrVe = I+ 0B (1 =mI+n(2 + M)(SS] + 1)) 8, (109)
where E}3 € R™*" satisfies || E}3|| < m. To simplify the notation, we denote

Y= (23 + 07125,
which allows us to write (109) as
(Z2+AD)728V,
_ (I F (22 4+ AD)"V2EB(R2 + AI)1/2) ((1 — ) +n(V2Y, + A2+ AI)*)*I)Yt. (110)
Note that
12+ ADTVZEP (SR + MDY < IS+ AD T2 - (2 + ADV2) - |12
< w[IXT @IXD - 1
1

< 2k- <1/32 111
S 2R 200(02.(1_’_1)4&5 = / ) ( )

“This can be seen from plugging in gt = U by definition which implies (§t§t-r + )\1)71/2@ = U (2 + )\1)71/22,5.
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where in the second inequality we used A < ¢y || M, || < || X,||? as ¢x < 1, and in the third inequality we used the claimed
bound of || E}3||. Therefore, it follows that

Trmin (I P (52 £ N )TY2EB(52 + AI)1/2) >1—1n/32. (112)
On the other hand, using o iy (AB) > 0min(A)omin (B) for any matrices A, B, it is obvious that
Omin ( (L= +0(VYT +AE2+AD™H) ™) Y2) = (1= n)omin(Ve),
which in turn implies that
Oumin (22 + )\I)il/QSt—HV;S) > (1—=n/32)(1 = n)omin(Yz) = (1 = 20)omin(Y),

as long as < ¢;, for some sufficiently small constant c,,. This proves the first part of Lemma 3.

Now we move to the second part assuming oy, (Y;) < 1/3. Using the assumption A < ¢)omin (M), we see that
IAEZ +AD)7H < e

Given that ¢, is sufficiently small (such that ¢y < ¢19, where cjq is the positive constant in Lemma 10), one may apply
Lemma 10 with Y = Y; and A = A\(22 + A\I)~? to obtain

- 1
Owin (52 4+ A1) 728041V2) = o (14 0(52 + A1) T V2EP (52 4 A1)1V2) (1 + 6”> min (V)

i) 1 (i) 1

where (i) uses (112), and (ii) follows as long as 1 < ¢, for some sufficiently small constant c,,. The desired conclusion
follows.

E.2. Proof of Corollary 1
We will prove a strengthened version of (20), that is

Tonin ((Ei n AI)*W@) > 1///10. (113)
It is clear that (113) implies (20). Indeed, for each v € R"+, by taking v = (X2 + AI)'/?u, we have

~ ~ . 1 1
u' S8 u=0v" (22 4+ XI)7V25,5, (22 + A\I)"V%0 > 1—0||v||2 > EUTZEU,

which implies (20). It then boils down to establish (113).

Step 1: establishing the claim for a midpoint 5. From Lemma 2 we know that

e _ NG - _ 1
Omin (22 +AD 725, ) = 152+ A7 20min(Sh,) = (ex + V72X 7 a2/ IIXu ] > S (a/ 1K),

=

where (i) follows from the assumption (12b) and Lemma 2, and the last inequality follows by choosing ¢y < 1. By
the second part of Lemma 3, starting from ¢;, whenever o, (X2 + A\I)~1/25;) < 1/4/10 < 1/3, it would increase
exponentially with rate at least (1 4 ). On the other end, it is easy to verify, given that n < ¢, is sufficiently small,

2
(1 . 17)1,,61%(}0’;*2" ) JBIx? 1 1
8 a \/EQQ a mo—min ((23+)\I)71/2§t1)

3 X2 ) : : _ 2 ~1/23
AR < Thnin/ 16 more iterations to make oy (X2 + A1) S¢) grow to at

least 1/4/10. Equivalent, for some to : t1 < t3 < t1 + Tinin/16, we have

Therefore, it takes at most % log (

Omin ((22 + )\I)‘l/2§t2) > 1/+/10.
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Step 2: establishing the claim for all ¢ € [¢to, Th,ax]. It remains to show that (113) continues to hold for all ¢ € [ta, Tynax]-
We prove this by induction on ¢. Assume that (113) holds for some ¢ € [t2, Tynax — 1]. We show that it will also hold for
t + 1. We divide the proof into two cases.

Case 1. If 00 (X2 + M)~V 258,) <1 /3, we deduce from the second part of Lemma 3 that
Omin (B2 4+AD72541) = (14 L) omin (S22 4 AD728,) = oin (224 201)7/25,)
which by the induction hypothesis is no less than 1/4/10, as desired.
Case2. If ouin((S2 + AI)"Y/285,) > 1/3, the first part of Lemma 3 yields
Fmin (524 A1)725000) = (1= 20)omin (524 A1)7V25,) = (1 - 20)/3,

which is greater than 1/+/10 provided n < ¢,, < 1/100, as desired.

Combining the two cases completes the proof.

E.3. Proof of Lemma 4
For simplicity, in this section we denote
T,=319,5 5 — 1 =%71(5,5, —2?)u; L. (114)

It turns out that Lemma 4 follows naturally from the following technical lemma, whose proof is deferred to the end of this
section.

Lemma 25. Foranyt :ty <t < Thax, one has

el £ 0l 57 5T A+ g 17w+ (100 (115)
SR ' PR T e X ’
where Cos < C;l/ % is some positive constant and || - ||| can either be the Frobenius norm or the spectral norm.

2
From Lemma 11, we know that [|[U] As|| < [|[A¢]| < 3(‘)5{52&,{4

1 X, [1/100 and (]|O]|/|| X |)7/*2 < 1/300 by Lemma 2. Applying Lemma 25 with the spectral norm, we prove Lemma 4
as desired.

as ¢y is sufficiently small. Similarly, | N,S; 'S, | <

Proof of Lemma 25. We start by rewriting (47a) as
Sevr = (L= + (B2 + XSS + MY SV, +nEf
= (I =SS + AD)(S,S] + XD+ (22 + AD)(S, S, + A1) SV, +nEY
= (I —n(S:S] —22)(S:S] + A\)"H)S,V," +nEY, (116)
where
EY = BX(S,S + A\I)71S,V," + EV. (117)
By Corollary 1, we have crmin(gt)2 > ﬁamin(M*) for t € [to, Tinax), SO

15:57 + AN TSV < (58] + ADT2I(EST + A28, < 0k (50) S 1/0min(X.).

Combined with the error bounds (48a), (48b), we have for some universal constant C' > 0 that

Ck

B9 < ||E® EY|| <
NEZN < NEL +nll 2 < X

U Adll + Ceran™ [Nt S Sl + CLO X1, (118)
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Step 1: deriving a recursion of I';. Define
A= (I=n(SiS] =588 + AN~ SV,

Then we can rewrite (116) as A; = S; 1 — nEY, and by rearranging A; A = (Siy1 — nE?)(Si11 — nEY) T in view of
(26), it follows that

Q Q T
Ser15541 = Se18 1 = AAT + (S|l + IIBYIN(E Q1 + Q2B )
= A A] +nE]

for some matrices Q1, Q2 with ||Q1]], ||Q2|| < 1. By mapping both sides of the above equation by (-) — X71(-)2; ! — 1,
we obtain

Tip1 = (I =TI+ Ty + A2 )@+ D) (I — (I + Ty + A273)7I0) — T+ 92 B2 (119)
where we recall the definition of I'; in (114).

Step 2: simplify the recursion. Note that amin(Z*_lgt) > 1/10 implies I + I'; = 1}5I. From our assumption

A < exOmin (M), it follows that || AX 2] < ey < 1/200 < %Umin(f + I'}), thus in virtue of Lemma 8 we have
(T4+T+ A =T +T) P+ (T+T) Hex@ )T +Ty) 71,
for some matrix Q" with ||Q’|| < 2. Plugging this into (119) yields

L1 = (I =Ly + 1) (T + I)(I —n(I +Ty)'Ty) + nE! + S e vt
= (1 =2y + 7?21+ 1) +nE! + n2 ' Ef 51, (120)

where the additional error term E! is defined by

Ep =Ty(I +Ty) N (exQ )X = nLe(I +Ty) ") + (1 = nle(I +Te) ™) (ex@)(I +Ty) ' T
+ T (I 4+T) N eaQ )T +Ty) 2 (ex@)(I +Ty)7'Ty. (121)

Step 3: controlling the error terms. We now control the error terms in (120) separately.

* By (17d) we have ||Si41|| < C2.4k|| X« ]|, and by controlling the right hand side of (118) using (17c¢), (19), and (45) in
Lemma 11, it is evident that | EY|| < x||X,]||. Hence, the term Ej obeys

B < (Coa+ Drl Xl - NEL]
< C'Coa (WIUT Al + exan | X NS 2] + 6O/ X P4 (122)

where C’ > 0 is again some universal constant.

* Since I'; = 1551 — I = — 551 as already proved, it is easy to see that [|(1+ ') 7!|| < C'and [|Ty(1 +Ty) 7| < C

for some universal constant C' > 0. Thus,
h / 2 4 /(12 1
IEZ < 2exC L +nCOQ - ITell +nexCHQITITA < ST (123)

where the last line follows by using ||Q’|] < 2 and by choosing cy, ¢, sufficiently small.

 We still need to control n?T'?(1 + T';)~!. This can be accomplished by invoking || T';(1 + I';) || < C again. In fact,
we have n
PITE @+ L) < e nlCe(+T) 7 - ITl < 9 nClTl < ST (124)

provided that < ¢, is sufficiently small.
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Plugging (122), (123), (124) into (120), we readily obtain

n " -
e ll < (1= 2Tl + S IEell + STl + s | X2 ET )

C Cg a/’i
< A =Tl +n—=77— X, TS Al + ne12C’ Co.al| X || T INS; Sl 4+ nC' Coari® | Ol P41 X 75/
Cosk* T 1 -1 ||6t||
< @ =Tl + ni=—z U Al + 17||X 17N S S+ :
1 X2 [ Xl
where in the last line we set Ca5 = C'Cs 4, chose c¢12 sufficiently small and used (19). Finally note that Cos < Cy., < c_l/ 2
as desired.
E.4. Proof of Corollary 2
From Lemma 4, it is elementary (e.g., by induction on ¢) to show that
157887 — S2st < (1 — )= |51 (88 — 528 + - 100 Vit € [t2, Toax)- (125)
Suppose for the moment that
12718, — 222! < €3 k%, (126)

where Cy ,, is given in Lemma 2. Then given that n < c77 for some sufficiently small ¢,,, we have log(1 — 1) > —n/2.
As aresult, if t3 — to > 8log(10Cs 4k)/n > log(Cy 2k~*/100)/log(1 — n), we have (1 — n)'~t < Cy 2k~*/100.
When Cipiy is sufficiently large we may choose such t3 which simultaneously satisfies t3 < to + Tinin/16 < Tiax since

81og(10C3 4k)/n < % log(|| X«||/&) = Tmin/32. Invoking (125), we obtain

15718, 8T — S35 < (C32/100) (O 45h) + — = — <

1
< 127)
100 50 — 10

which implies the desired bound (22).
Proof of inequality (126). It is straightforward to verify that

175,57 — £2)571|| < max (||z 15,112~ 1,102, (2 ;1§t2)) ,
which combined with (17d) implies that

120 Skl = 1< IS P80 < 008 (X)C5 o m2 1 X )? = €3 o

min (

In addition, by Corollary 1 we have
1 9
Choosing C , sufficiently large (say C5 , > 1) yields 022_ an4 > 9/10, and hence the claim (126).

1—0’ 1St2)

min (

F. Proofs for Phase 111

To characterize the behavior of || X;X,” — M,||F, it is particularly helpful to consider the following decomposition into
three error terms related to the signal term, the misalignment term, and the overparameterization term.

Lemma 26. Forall t > ts, as long as |7 (S,S; — %2)S7Y|| < 1/10, one has
15XT = Mle < X2 (157 B8] = S50 e+ 1L INST IS ) + 41X 100
Note that the overparameterization error ||6t || stays small, as stated in (17b) and (19). Therefore we only need to focus on

the shrinkage of the first two terms || 27 1(5,S — S2)S7 g + || X, |71 || NS, 1, ||, which is the focus of the lemma
below.
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Lemma 27. Foranyt :t3 <t < Tyax one has
IS (Se1 SNy = SO e + 12X N2 Sy el

~ 1/2
_ 1 S QT _ y2\y—1 1 -1 ||Ot||
< (1= 15) (IS8T = S8 e + 1K INS Sl ) + (X*” . (128)

In particular, |37 (St+1St+1 SHY Y| < 1/10 for all t such that t3 <t < Tiax.

We now show how Lemma 5 is implied by the above two lemmas. To begin with, we apply Lemma 27 repeatedly to obtain
the following bound for all ¢ € [t3, Tax]:

=188 = SDE e + 1 X7 ING ST Sl

~ 1/2
A (D A R G 10-1
<(1-qg) (I GuS = 2 e + 16 NG5G ) +10 ma () (129)

which motivates us to control the error at time ¢3.
We know from Corollary 2 that |2, (S, S — £2)21|| < 1/10. Since ¥;'(Sy, S, — £2)S; ! is ar, x r, matrix, we
have |21 (S;, S — 257 | < /7%/10. In addition, we infer from (17¢) that

INe Sy Sl < Vel Ney S5, Sl < Vrwear™ @2 X | < V| X110,

as long as c; is sufficiently small. Combine the above two bounds to arrive at the conclusion that

1/85 & _ _ =~ &— Tx _ T*||X*|| T
A N B e B - L LN (E

Combining the two inequalities (129) and (130) yields for all ¢ € [t3, Tiax]

10 ta<t<t

-1/Q Q@ 1 t—t3 67—
IS EET — SHE e + X RS S < 2 (1= 1) U7+ 10 ma (”X ||>
*

We can then invoke Lemma 26 to see that

~ 1/2
X2 et 10| ~
XX, — Mg < 120 (11— L L+ 40 X, T 4| X,
126XT = Mufle < S5 (1 g) v OIXGIP max (5] AIX0
: 100\
7])*
<(1-—-— Ty || M, 80| M,
< ( 10 7’*” || + || H <||X ||> ’

where in the last line we use ||Oy]| < ||X,||—an implication of (19). To see this, the assumption (12c) implies that
a < ||X,| aslongasn < 1/2 and C,, > 4, which in turn implies ||O; || < a?/3||X,||*/? < || X,||. This completes the proof
for the first part of Lemma 5 with ¢; = 1/10.

For the second part of Lemma 5, notice that
1 a 1/3
-1
X, il
st s (101102 < 5 ()

by (19), thus
1 lo' 1/3
IXXT = bl < (o~ + 5 (g )
for t3 <t < Tiax. There exists some iteration number ¢4 : t3 < t4 < 3+ ﬁ log(|| X«||/@) < t3 4+ Tinin/16 such that

(1—csm)™ t3<( a >2< L ( e >1/3
Xl = 2ym NIIX

where the last inequality is due to (12c). It is then clear that ¢4 has the property claimed in the lemma.
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F.1. Proof of Lemma 26

Starting from (46), we may deduce

1X: X," = Mulle < 158, = 2[le + 2lISelINele + [Nl Nelle + 1010t e

o 101
< ||X*H2 ||E*1StStTE*1 I + 2|57 1StH 1 Xl 1HNt Sy, |F+f<” tH

s 5
< 41X, (m SSTE e+ X IS+ 'l'Xt'|'|) , (131
where the penultimate line used [|[O||f < +/n]|O||, and the last line follows from ||£;15,[2 = ||£715,.5 £ <

1+||S718,57 7 — I|| < 2 (recall that || ;15,5 £ — I|| < 1/10 by assumption) and from (19).

F.2. Proof of Lemma 27
Recall the definition of I'; from (114):

I, =%155 %' —1.

Fix any t € [t3, Tmax)» if (128) were true for all 7 € [ts, t], taking into account that [|O,||/||X,|| < 1/10000 for all
T € [t3, Tmax] by (19), we could show by induction that ||I';|| < 1/10 for all 7 € [t3,¢]. Thus it suffices to assume
IT¢|| < 1/10 and prove (128).

Apply Lemma 25 with Frobenius norm to obtain

0251‘-? 6
Tl < (= m)ITull+ 0 T2 10T Al + gl X~ 18515, ||F+n<|'|'Xt”> S aw)
In addition, Lemma 23 tells us that
: Cst? 100\
||Nt+1slz*||ps(1—) NS S+ 025 T A [ 12} X,
e AED VA N (50

where Z; = £71(S,S] + ASL. Itis easy to check that [|Z,[| < 14 [[I'] + cx < 2 as [[I]| < 1/10 and ¢y is

sufficiently small. In addition, one has omin (S¢)2 > (1 — ||T¢||)omin (X, )2 and [| O] /omin(S¢) < (2k)~2%. Combine these
relationships together to arrive at

~ 7/12
CozK2 1 o)
RSl < (1= D) IS Sl + 0 S ol ae + Lol (191) 0 o
NpH| 2

Summing up (132), (133), we obtain

ITea e+ 12X M N1 S el

_n 1 —1 (023+025€>\)H4 T (oAl
< (1 §) Ul + 1RSS40 == g 0 Al 20 ( gy ) 039

This is close to our desired conclusion, but we would need to eliminate ||U,” A;||¢. To this end we observe

HU*TAtHF < VT A|
< 86y (1857 — 22 + 1SNl +nl O
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o\ 2/3
_ i~ o~ @)

< 16esm %02 | [T + 171950 12*F+(”Xt'|'|> 7
*

where the first line follows from U, being of rank r,, the second line follows from Lemma 11, and the last line follows
from (10) and from controlling the sum inside the brackets in a similar way as (131).

The conclusion follows from plugging the above inequality into (134), noting that cs can be chosen sufficiently small and
that ||O¢|| /|| X || is sufficiently small due to (19).
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