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ABSTRACT

Location-based services have brought significant convenience to
people in their daily lives, and trajectory data are also in high de-
mand. However, directly releasing those data raises privacy and
liability (e.g., due to unauthorized distribution of such datasets)
concerns since location data contain users’ sensitive information,
e.g., regular moving patterns and favorite spots. To address this, we
propose a novel fingerprinting scheme that simultaneously identi-
fies unauthorized redistribution of location trajectory datasets and
provides differential privacy guarantees for shared data. Observing
data utility degradation due to differentially private mechanisms,
we introduce a utility-focused post-processing scheme to regain
spatio-temporal correlations between points in a location trajec-
tory. We further integrate this post-processing scheme into our
fingerprinting scheme as a sampling method. The proposed fin-
gerprinting scheme alleviates the degradation in the utility of the
shared dataset due to the noise introduced by differentially private
mechanisms (i.e., adds the fingerprint by preserving the publicly
known statistics of the data). Meanwhile, it does not violate differ-
ential privacy throughout the entire process due to immunity to
post-processing, a fundamental property of differential privacy. Our
proposed fingerprinting scheme is robust against known and well-
studied attacks against a fingerprinting scheme including random
flipping attacks, correlation-based flipping attacks, and collusions
among multiple parties, making it difficult for the attackers to infer
the fingerprint codes and avoid accusation. Through experiments
on two real-life location trajectory datasets and two synthetic ones,
we show that our scheme achieves high fingerprint robustness and
outperforms existing approaches. Furthermore, the proposed fin-
gerprinting scheme increases data utility for differentially private
datasets, which is beneficial to data analyzers.
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1 INTRODUCTION

Location-based services have become one of the most popular ser-
vices in our daily lives thanks to rapid evolution in mobile technolo-
gies and the internet of things. Location-based service providers
often require a large amount of location-based information from
users to support their services. For example, Google Maps [2] col-
lects accurate location data from users in real time and plans optimal
routes during navigation and offers place suggestions while users
search the app. Food delivery services, e.g., Doordash [1], demand
approximate location information from users for restaurant rec-
ommendation and keep track of food couriers for a better user
experience. Most individuals are subtly accustomed to the conve-
nient lifestyles using these location-based services, and hence share
their location data with such location-based service providers vol-
untarily (with consent). Thus, such service providers build large
location datasets.

Datasets of location trajectories are of great use, and sharing
them brings vast benefits. In addition to moving patterns, much
more information is included and can be inferred from these datasets
(e.g., age, job, or home address). By analyzing datasets, data analytics
companies can offer proper suggestions to the service providers in
order to improve their user experience, adjust marketing strategies,
or even determine locations of new facilities. Advertisement com-
panies can learn from these data to accurately promote to specific
customers. Researchers can propose new approaches and validate
them on these datasets.

Location-based service providers (e.g., Google) can share such
trajectory datasets with a limited number of parties, called data ana-
lyzers. Some examples of data analyzers are researchers and analytic
institutions. Access to location datasets is typically restricted within
such analyzers parties as location datasets contain sensitive infor-
mation. Nevertheless, malicious data analyzers, e.g., motivated by
profit, may leak their copies to unauthorized parties, which brings
significant privacy concerns. In order to prevent unauthorized redis-
tribution, service providers should embed a unique fingerprint into
datasets for each data analyzer to enable the traceability of potential
leakage. Such fingerprint should be robust against multiple attacks,
e.g., distortion attacks and collusion attacks, since the attackers
may try distort it by modifying some points or even colluding with
other malicious parties to get rid of accusation. By analyzing the
embedded fingerprint in the leaked dataset, the service provider
can identify the source of the leakage, withdraw its access to the
dataset, and even punish it. Thus, knowing that the leaked dataset
will be traced back to them, attackers become less motivated to leak
the copies of the received datasets.

There are several existing fingerprinting mechanisms, e.g., Boneh-
Shaw codes [5] and Tardos codes [31]. However, those traditional
digital fingerprinting schemes cannot be directly applied to the
location datasets because of correlations in the location datasets
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and their particular utility requirements. In a location trajectory,
i.e., an ordered sequence of location points in a location dataset,
location points are highly correlated with each other, especially
the adjacent location points. For instance, in a walking trajectory,
recorded every 10 seconds, it is not likely to have two contigu-
ous location points one kilometer apart from each other. Also, by
knowing the previous and the following points in a given location
trajectory, one can accurately estimate/infer the intermediate point
with high confidence. Thus, using publicly available correlation
models (constructed from public location datasets), an attacker can
identify the points that violate the expected correlations as the fin-
gerprinted data points. It can then distort or remove such identified
data points (i.e., distort the fingerprint), making it harder for service
providers to detect the source of a leaked dataset. We observed (and
show via experiments) that existing fingerprint codes are vulner-
able to such correlation-based attacks, since they do not consider
pairwise correlations. Therefore, in this paper, we propose a robust
correlation-based fingerprinting scheme that is robust against mul-
tiple attacks, e.g., including correlation attacks, majority collusion
attacks, and probabilistic collusion attacks.

However, in recent years, privacy concerns about sensitive datasets
have attracted massive attention. Researchers have also been in-
vestigating the privacy of trajectory datasets [4, 11]. User identi-
ties have been shown to be deanonymized with high confidence
given only a pattern of four location points [11]. Therefore, sim-
ple anonymization on identifiers/quasi-identifiers is not sufficient
to protect the individuals’ location privacy. Under differential pri-
vacy (DP - a state-of-the-art concept for privacy preservation that
quantifies and limits the information acquired from the attacker’s
perspective), researchers have proposed several solutions to miti-
gate privacy leakage while sharing location data, e.g., PIM [33] and
AdaTrace [16]. However, existing privacy-preserving approaches
for location data and datasets (i) do not provide liability guarantees
against dataset leakage (unauthorized redistribution); and (ii) bring
excessive noise to datasets and thus sacrifice data utility. Some
location-based services (e.g., navigation) that do not tolerate such
low utility may be unwilling to apply privacy protection to their
datasets.

To the best of our knowledge, no existing work can tackle both
issues, i.e., guaranteeing differential privacy and offering finger-
printing robustness, simultaneously. It is true that one can apply
an arbitrary differentially private mechanism followed by an exist-
ing fingerprinting scheme, or vice versa. However, such differen-
tially private mechanisms or fingerprinting schemes have their own
drawbacks for location datasets. For instance, existing methods that
achieve differential privacy on location datasets either omit critical
information [16] or require impractical restrictions [20]. In terms of
fingerprinting, existing schemes [5, 19, 31] are limited in their abil-
ity to account for correlations in location datasets. These schemes
often require specific types of data, and they do not incorporate
such correlations in their methodology, thus resulting in signifi-
cant utility loss in the shared dataset. To solve these problems, we
propose our solution that ensures a differential privacy guarantee
and high fingerprinting robustness along with high data utility at
the same time.

In this work, we introduce a robust fingerprinting scheme for
location datasets that are protected under differential privacy using
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probabilistic sampling. The proposed scheme checks spatial and
temporal correlations along the trajectories and considers highly
probable location points based on public correlations during finger-
printing. The fingerprinting scheme offers high detection accuracy
against multiple attacks against a fingerprinting scheme, e.g., ran-
dom flipping attacks, correlation-based flipping attacks, majority
collusion attacks, and probabilistic collusion attacks [34]. The selec-
tion of the privacy-preserving technique can be arbitrary. We select
the planar isotropic mechanism (PIM) [33] as the building block to
protect trajectory privacy. Other differentially private approaches
can also be used (e.g., AdaTrace [16], a state-of-the-art synthetic
approach to release location datasets under differential privacy).
We demonstrate this flexibility of the proposed scheme through
evaluations in Section 6.4.2. To mitigate data utility degradation
due to privacy-preserving methods, we propose a utility-focused
post-processing scheme that aims to restore correlations between
adjacent points along a trajectory. During this process, we check
the 2-gram transitions in the trajectory and replace each location
point that has a low probability with a highly probable one by
considering the directional information of the transition. We inte-
grate this post-processing scheme into our proposed fingerprinting
scheme such that the fingerprinting scheme can protect unautho-
rized redistribution and boost data utility at the same time.

We implement our proposed scheme using two real-life datasets,
i.e., the GeoLife dataset [37] and the Taxi dataset [25], and two syn-
thetic datasets generated from the Brinkhoff generator [7]. We com-
pare our scheme with state-of-the-art fingerprinting approaches,
i.e., Boneh-Shaw codes and Tardos codes, and evaluate the fin-
gerprint robustness against random flipping attacks, correlation-
based flipping attacks, majority collusion attacks, and probabilistic
collusion attacks. We also evaluate data utility in terms of query
answering of location points and patterns, area popularity, trip
error, diameter error, and trajectory similarity. We observe that our
scheme provides significantly better data utility than the existing
approaches.

Our main contributions can be summarized as follows.

e We propose a probabilistic fingerprinting scheme that uti-
lizes publicly known correlations for location datasets.

e We propose a utility-focused post-processing scheme to im-
prove data utility for the location datasets that are protected
under differential privacy and further integrate it into the
proposed fingerprinting scheme.

o The fingerprinting scheme achieves high fingerprint robust-
ness on differentially private datasets against several known
attacks.

e We evaluate our proposed scheme concerning fingerprint
robustness and data utility on four datasets, and show that
our scheme outperforms state-of-the-art approaches.

The remainder of the paper is organized as follows. We review
the existing work in Section 2 and provide the preliminaries in
Section 3. We present the system and threat models in Section 4. In
Section 5, we introduce the proposed scheme in detail. We evaluate
our proposed scheme in Section 6. In Section 7, we discuss several
topics related to our approach. Section 8 concludes the paper.

2 RELATED WORK

In this section, we introduce some existing works in location privacy
and digital fingerprinting, respectively.
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2.1 Trajectory Privacy

Location data contain sensitive information such as moving pat-
terns and preferred locations. Traditional privacy enhancing tech-
niques, e.g., k-anonymity [30] and I-diversity [24], have been adapted
to the location setting. However, for a location dataset, those tech-
niques have limitations in dealing with data streams with vari-
ous lengths. For instance, some works [3, 14] split the trajectories
into equal-length fragments and achieve privacy on the fragment,
which is not sufficient for privacy protection on trajectories. Dif-
ferential privacy [12] as a popular privacy definition has been
used to protect location datasets in recent years [8, 28, 29, 35].
Geo-indistinguishability [4] defines a variant of differential pri-
vacy based on the distance between the points of interests, but it
only works on location points instead of trajectories. Several meth-
ods [9, 16, 18] provide differential privacy to the statistics of the
original location datasets. He et al. [18] design a hierarchical tree
for storing regional spatial correlations and sample trajectories by
walking along the tree paths. Gursoy et al. [16] extract four sta-
tistical features from a location dataset under differential privacy
and generate a synthetic dataset using those noisy features. These
works completely eliminate moving features of any specific user
while preserving statistics, which improves user’s location privacy
but significantly decreases the usability of the dataset in certain
services, e.g., map navigation and carpooling. Meanwhile, some re-
searchers use perturbation-based approaches instead. [20] releases
differentially private trajectories by sampling and interpolating
them, but the scheme has the additional restriction that starting
and ending locations should be known to the public. PIM [33] dis-
torts each location point in a trajectory based on prior knowledge
from previously released points. This approach is the only exist-
ing one that takes spatio-temporal correlations into consideration
during differentially private release. However, it introduces zig-
zag patterns for lower privacy budgets (i.e., privacy protection is
stronger) in the shared trajectories and loses pairwise correlation
along a trajectory, making it also suffers from utility loss.

2.2 Digital Fingerprinting

Digital fingerprinting embeds a unique identifier, e.g., a sequence of
marks, into the data by adding, removing, or editing partial values
of the data. Several works have been proposed to enable digital
fingerprinting for data distribution [5, 10, 31]. Boneh and Shaw
design a fingerprint code and prevent receivers from colluding [5].
Tardos et al. propose a probability-based fingerprinting scheme that
can catch all suspicious individuals simultaneously [31] and has
less code length than the Boneh and Shaw’s. Wu et al. introduce
a fingerprinting scheme that embeds binary fingerprint codes to-
wards multimedia [32]. However, those methods are designed for
binary streams, where pairwise correlations are omitted in most
cases. Considering correlations, some researchers aim to provide
fingerprint robustness in data with various types, i.e., relational
databases [19, 21-23]. These approaches only work on specific data
types and cannot be applied to location datasets since location tra-
jectories have high pairwise correlations. Considering correlations,
[34] introduces a fingerprinting scheme for sequential data that con-
siders correlations between data points. Still, it requires the possible
states for a data point to be limited, discrete, and inter-transitable.
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3 PRELIMINARIES

In this section, we first introduce the definition of differential pri-
vacy and its key property: immunity to post-processing. We then
introduce two popular collusion-resistant fingerprinting schemes as
the baseline approaches against collusion attacks. We integrate one
of the schemes into our proposed robust fingerprinting scheme (i.e.,
the Boneh-Shaw codes) and compare it with the vanilla versions of
these schemes in Section 6.

3.1 Differential Privacy

Differential privacy (DP) quantifies privacy and limits the inference
of any single individual from observing the query results between
neighboring databases. The formal definition is as follows:

Definition 3.1 (Differential Privacy). [12] For any neighboring
datasets D, D’ that differ only in one data record, a randomized al-
gorithm M satisfies e-differential privacy if for all possible outputs
S C Range(M)

Pr(M(D) € S) < ¢€ + Pr(M(D’) € S).

An important proposition of differential privacy is its immunity
to post-processing. It ensures that the differential privacy guarantee
still holds when a mapping function is performed on the output
from a differentially private mechanism as long as the function
does not utilize the actual value. The formal definition is as follows:

PROPOSITION 3.2 (POST-PROCESSING). [13] Let M be a random-
ized algorithm that is e-differentially private. For any arbitrary ran-
domized mapping f : R1 — R" where p,q € Nt, f o M is e-
differentially private.

Hence, perturbations to the differentially private outputs without
knowing the original values do not violate the privacy guarantee.

3.2 Planar Isotropic Mechanism

The planar isotropic mechanism (PIM) [33] aims to protect each
location point along an individual’s location trajectory under dif-
ferential privacy. It constructs the correlations of a trajectory using
a Markov chain, which is treated as a hidden Markov model from
the attacker’s perspective. Based on adversarial knowledge, i.e., the
probability distribution of the location, the method adds calibrated
noise to the actual location and shares the perturbed location. At
timestamp ¢, let p; and p; respectively represent the prior and
posterior probability distributions, with p; [i] denoting the prior
probability of location s; in the location alphabet G, and p} [i] cor-
responding to s;’s posterior probability. To share a noisy location,
PIM calculates the prior probability distribution p; as p; = py_ | M,
where M denotes the transition matrix. Based on the prior proba-
bilities, it builds a d-location set AX; that contains the minimum
number of locations with the probability sum greater than or equal
to1-6,1e, AXy = min{si| Xs, p; [i] = 1 - 6}, which means that
a subset of locations with a total probability less than § is omitted.
After that, PIM releases the perturbed location given AX; at times-

tamp ¢, and calls it z;. The posterior probability distribution is then
Pr(z:|u;=si)p; [i]
2 Przelui=s;)p; [j]
location s, where uj is the true location at timestamp .
The PIM generation can be summarized as follows:

updated to p; [i] = Pr(u} = si|z;) = for each

(1) Generates a convex hull K’ from AX;;
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Table 1: Symbols and notations.

X = [x1,%2, .., x1x)] A trajectory
X =[xy, %2, ..., ’?\XI] The trajectory released by the differential privacy
mechanism
X' = [x],%x5,..., x‘*X*‘ ] The trajectory released by the post-processing
/\’j’. = [x;j, x;j, ce X\IX’U The fingerprinted trajectory of the data analyzer
J
Y=y vy -yl The leaked trajectory
The location alphabet

The trajectory length, i.e., | X]|
The fingerprinting ratio
The number of data analyzers

IV IQ

(2) Builds a set AV; by

AVy = Uy,,v, € vertices of k' (V1 — v2)

(3) Forms a sensitivity hull (a convex hull) K from AV; , which
is a stricter sensitivity metric in two dimensions than the [;
norm [33];

(4) Converts K into isotropic position Ky [33];

(5) Samples a point z’ from K7 using the k-norm mechanism [17],
i.e., the probability of each point z is

1
Pr(z)=——— exp(—€|lz-x*
"2 = g VoL e P ellr X M)
, where x™* is the true answer, || - || K; is the Minkowski norm

of K7, d is the dimension (d = 2 in the location setting), I'()
is Gamma function and VOL() is the volume, and € is the
privacy budget;

(6) Converts z’ back to the original space as z and releases it as
the final output at timestamp ¢.

By observing the output at each timestamp and knowing the
transition matrix as auxiliary information, the attacker cannot infer
the actual locations since the generation process models the attacker
in the exact same way. This mechanism achieves e-differential
privacy for the trajectories in the location datasets. For further
details, we refer the reader to the original paper [33].

4 PROBLEM STATEMENT

In this section, we describe the system setting, including the data
model, the system model, and the threat model. Table 1 shows the
commonly used notations in the paper.

4.1 Data Model

We introduce the data model for our system, including the format
of trajectories, discretization, and correlations.

4.1.1 Trajectories. A trajectory X = [x1,x2,. ..,X|X|] is an or-
dered sequence of location data points with the same time interval
between any adjacent location points. In our setting, a location
point x consists of GPS coordinates only, since we preprocess the
trajectories to have uniform time interval and thus omit the times-
tamps. Although some secondary metadata, such as velocities and
directions, can occur, we leave these to future work.

4.1.2  Map Discretization. In location settings, a map area is often
discretized into cells for simplicity [9, 15, 18, 33]. Following those
works, we divide the continuous two-dimensional space using a
uniform grid of N X N. Throughout the rest of the paper, we still use
the term "points" to represent a cell of the grid for generalization.
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4.1.3 Correlations. We build our correlations using the Markov
chain. For each location g € G, the transition probability of the
k-gram model is represented as Pr|xp |xg_1, Xg_2, -+ ,x1]. We use
the 2-gram model in our scheme (k = 1). We provide a discussion
of the correlation model in Section 7.2.

4.2 System Model

The general workflow of the framework is shown in Figure 1. There
are two parties in our setting: a service provider and several data
analyzers. The service provider, e.g., Google Maps or a carpooling
application, collects users’ location trajectories while offering the
corresponding service(s) to the users. The service provider stores
the location dataset on their data server and is willing to share them
with other parties. Meanwhile, researchers and businesses, classi-
fied as data analyzers, want to access such location datasets. As
discussed above, the release of location data may raise privacy con-
cerns. Therefore, the service provider aims to ensure users’ location
privacy before sharing. More specifically, it can apply a privacy-
preserving approach that prevents recipients (data analyzers) from
knowing the users’ exact locations. This process inevitably per-
turbs the data and influences data utility, which is not desired by
the analyzers, especially when strong protection is applied. To best
serve the analyzers and keep the user privacy intact simultaneously,
we propose a utility-focused postprocessing scheme at the service
provider to partially regain data utility.

Extraction O
Correlations —
/ Auxiliary Information

Utility-Focused Post-Processing
(section 5.2) ¥P Copy (8
Data Analyzer

(34
< 0" Data Analyzer
Obfuscated

= . I,

Loca(lon i

E=) Data P”‘éactv':;‘esem”g Location Data
22 patasharing | oeeion DA

Data (Section 5.1)

Robust Fingerprinting
Server

(section 5.3)

Service Provider

Data Analyzer

Figure 1: The system model.

As also discussed, a misbehaving data analyzer may distribute
(leak) a copy of the received location dataset to other unauthorized
parties without permission. Therefore, we propose a novel fin-
gerprinting scheme for location trajectories, which embeds unique
fingerprint patterns into each shared location dataset. The proposed
scheme is robust in case the attacker tries to distort the fingerprint
by exploiting the correlations among the location data from public
sources or by colluding with other misbehaving data analyzers
who also receive the same location dataset (with different unique
fingerprint patterns). Furthermore, we convert the utility-focused
post-processing method into a sampling strategy and integrate it
into the fingerprinting scheme. In this way, we manage to mitigate
utility degradation if differentially private mechanisms are applied
in the shared dataset.

The fingerprint detection workflow (for the source of an unautho-
rized redistribution) is shown in Figure 2. Once a location dataset is
found publicly or from unauthorized sources, the service provider
performs an aggregate detection scheme to identify the source of
the leakage. More specifically, it runs the detection scheme for each
trajectory in the leaked dataset. The service provider aggregates
the detection results (a set of accused analyzers), and finally accuses
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Figure 2: Detecting the source of the unauthorized redistri-
bution.

an analyzer of leaking the dataset by majority voting. The details
are given in Section 5.4.

4.3 Threat Model

In this section, we introduce the threat model considering the par-
ties in our system. The service provider is the only entity that has
access to the unperturbed data of the users. We assume that the ser-
vice provider is trusted (i.e., it does not distribute user data to other
unauthorized parties). The proposed scheme can be easily extended
to provide privacy of users’ data during the sharing process with
the service provider (we discuss the practicality of a decentralized
setting in Appendix C).

The analyzers can be malicious. An honest analyzer never shares
the fingerprinted copy that is protected under a privacy-enhancing
mechanism with unauthorized parties, and it does not want to know
about the original dataset. An attacker, i.e., a malicious analyzer,
is curious about the original (non-perturbed) data values in the
received dataset and wants to break the location privacy guarantee.
For this, they can utilize auxiliary information from public sources,
e.g., correlations in the map area of interest. With the help of that
information, they analyze the received trajectories and try to infer
the original location points.

On the other hand, from the perspective of fingerprinting, the
attacker may want to redistribute only one trajectory or a subset of
the location dataset (i.e., multiple trajectories) to other parties, e.g.,
motivated by profit. To avoid tracking, the attacker tries to distort
the fingerprint signature. They can exploit public correlations, col-
lude with other analyzers, or even use both to hide their identities.
In the rest of the section, we discuss all the attacks the analyzers
can perform against the proposed fingerprinting scheme.

4.3.1 Random Flipping Attack. Random flip attacks are the baseline
attack in which the attacker distorts the location points in the
trajectory to distort the fingerprint. For each location point in the
trajectory, the attacker chooses to report another point from the
neighbors of the actual point with probability p,. Otherwise, the
attacker does not change the point and reports the actual point.

4.3.2  Correlation-Based Flipping Attack. The attacker can utilize
public correlations to improve baseline distortion. This attack was
first introduced in [34]. In this attack, the attacker analyzes the
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correlations between contiguous points along the trajectory from
start to end. It checks the 2-gram transition from the previous
point to the current one, i.e., Pr(x; = xj|xo = xj-1) at position
Jj in the trajectory. If the transition probability is lower than a
threshold 7, the attacker considers that the point is fingerprinted
with a high probability. The attacker decides to distort the point
with probability p.. The attacker first constructs a set that contains
all highly probable locations, i.e., the transition probability from
the previous point x;j_1 to each point in the set is at least 7. The
attacker samples an output based on the transition probability from
the last true point x;_1 to each point in the set. By doing so, the
attacker distorts the suspicious positions and avoids being detected.

If multiple parties collude by sharing their copies with each other,
they can perform more powerful attacks. We consider two types of
collusion attacks in our setting, differing in whether the attackers
take auxiliary information into account.

4.3.3  Majority Collusion Attack [5]. In the majority collusion at-
tack, the attackers collude and analyze the merged dataset point by
point. At each position, the attackers always choose the most fre-
quent value as the output. The majority voting causes the trajectory
to lose some fingerprint bits, which may mislead the fingerprint
detection mechanism and result in accusing an innocent party.

4.3.4  Probabilistic Collusion Attack [34]. Similar to correlation-
based flipping attacks, probabilistic collusion attacks [34] exploit
the auxiliary information. The attackers share the datasets and
analyze them using correlations, i.e., transition probabilities. They
also set a probability p, to approximate the actual fingerprinting
probability p. Suppose that the attackers are deciding the output
for the j-th position in a trajectory. The attackers collect all the
location at position j to form an alphabet G = {g1,92,...,9x}
at this position, where K is the number of distinct locations, and
count the occurrence as c; ;. for each location g, k € [1,K]. The
attackers filter those with low transition probabilities from the
last released point y;-1. Among the remaining set, they perform
probabilistic sampling, where the probability is proportional to

(1=pe)ik - ( le;T_l)"—ijk P(xj = glxj—1 = y}_l),where Gj refers

to the alphabet at position j. The first part (1—pe)</-* - |G€T—1 YCik
is the probability of g being the original location at position j based
on the assumed probability pe, and the second part is the transition
probability from the previous location. By combining the two parts,
the attackers are able to calibrate such probability that a location
with a very low probability is barely the true location even if it
occurs multiple times, and a location with a high probability in
the correlation model is more likely to be the true value although
it occurs rarely. The attackers finally sample a location based on
the weighted probability distribution and report that location at
position j.

4.3.5 Re-Fingerprinting Attack. The attacker can execute the pro-
posed fingerprinting scheme on the fingerprinted copy in order
to perturb some embedded fingerprint points. We name this the
re-fingerprinting attack. We consider that the attacker applies the
fingerprinting scheme on the received dataset using a different
fingerprinting ratio pg.
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5 METHODOLOGY

We follow the following steps for each trajectory in the dataset.
First, we protect location datasets using a differentially private
mechanism, i.e., the planar isotropic mechanism (PIM) [33]. After
generating the differentially private dataset, we maximize the data
utility of the shared dataset by applying a post-processing strat-
egy and further integrate it into our probabilistic fingerprinting
scheme. In the rest of this section, we provide the technical de-
tails of these mechanisms. In Section 5.1, we briefly explain the
reason for choosing PIM as the building block and also compare
it with other existing approaches. In Section 5.2, we introduce the
post-processing scheme that regains pairwise correlations in the
differentially private dataset. In Section 5.3, we propose our finger-
printing scheme and show how we integrate the post-processing
scheme into our sampling process. In Section 5.4, we show how we
detect an attacker. In addition, we prove that our scheme does not
violate the privacy guarantee provided by the differentially private
mechanism in Appendix A.

5.1 Privacy-Preserving Trajectory Data Sharing

We choose the planar isotropic mechanism [33] (PIM) as the build-
ing block to ensure trajectory privacy considering its three main
advantages. First, PIM publishes trajectories with timestamps, while
other approaches (e.g., [16]) do not. By preserving timestamps, PIM
is able to provide more meaningful location trajectories, enhancing
their overall value. Second, PIM and our proposed scheme share
the same public information model, i.e., a correlation model gener-
ated from public sources. Third, as a perturbation-based method,
PIM provides greater flexibility in selecting an appropriate noise
level to balance privacy and utility. For instance, a user can either
generate a noisy output with low data utility to services that have
low utility requirements or release a less noisy one with high data
utility to utility-sensitive services. Synthetic methods, in contrast,
only preserve statistical features and omit other essential aspects
(e.g., user-specific details), which leads to a significant loss of data
utility even if a high privacy budget is allocated. Note that PIM
ensures differential privacy in an area by eliminating low probable
points (5% in total) at each timestamp, thus achieving a relaxation
of differential privacy. We use this mechanism as our building block
because other mechanisms suffer from significant limitations, e.g.,
lack of temporal information or trajectory-length restrictions, and
thus are unable to be used for actual trajectory sharing in real-
world scenarios. In addition, we show that our scheme is robust
to a differentially private method (i.e., AdaTrace [16] after simple
preprocessing) in Section 6.4.2.

Note that we do not generate a differentially private copy for
each data analyzer. In our scheme, we apply the planar isotropic
mechanism (PIM) only once for each trajectory in the dataset. After
that, the same noisy dataset generated from the differentially private
mechanism is used throughout the entire fingerprinting process.
This is because sharing multiple outputs on the same input under
differential privacy results in cumulative privacy loss [13], and this
may be exploited if the attackers collude and perform averaging
attacks to recover the original dataset. As a result, we choose to
apply PIM once for each trajectory and then use the same noisy
copy in our proposed fingerprinting scheme.
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Similar to other perturbation-based approaches that ensure event-
level differential privacy, PIM generates a large amount of noise
for each location point under high privacy protection. This leads to
significant utility loss in the shared location dataset, and the pair-
wise correlations inside are mostly very low for common e values.
Influenced by the two aforementioned factors, the data utility of
the entire trajectory decreases significantly. In other words, the tra-
jectories before and after perturbations differ considerably in terms
of shape and point-wise relations. As a result, the dataset is almost
unusable for the data analyzers as they can hardly infer meaningful
pieces of information, e.g., moving trends and statistics, from the
trajectories. To solve this problem, we propose our post-processing
scheme, called utility-focused post-processing.

5.2 Utility-Focused Post-Processing

The utility-focused post-processing scheme utilizes the auxiliary
information that is also used in PIM and from public sources to
boost the data utility of the released trajectory data. We start with
the definition of the 7-probable set in Definition 5.1.

Definition 5.1 (t-Probable Set). Let € [0,1] and G be the set
of discrete map areas. M is the 2-gram Markov model. Given a
location point g* € G, the r-probable set of g* is defined as

(1)

, where Pr[x; = g|xo = ¢g*] is the transition probability obtained
from the correlation model M.

prob;(g*) « {g|Pr[x1 =glxo =gl 21}ge G

The idea of 7-probable set origins from [34], where the authors
only consider pairwise data points with a transition probability
larger than or equal to 7. We build the correlations using the 2-
gram Markov chain (following [34]) and consider the transitions
based on the previous locations in the trajectory.

In the post-processing scheme, we iterate the location points in
the trajectory in sequential order. While post-processing the j-th
location point of a differentially private trajectory, named x;, we
first obtain the (j—1)-th output x;f_l that is generated from the post-
processing scheme and calculate its 7-probable set prob; (x;f_l), If
Xjisin probf(x;f_l), the correlations are preserved between the
two points, and thus we do not modify the points. Otherwise, the
correlations do not exist. In this case, we choose the closest one
to Xj within the 7-probable set as the output. The new point x7 is
treated as the original value of the corresponding data point during
the fingerprinting process.

Note that selecting the points in the 7-probable set depends on
the transition probability from the correlation model. Thus, it is not
guaranteed that the r-probable set is a circle-like shape that covers
all the directions of the previous location x. Due to the insufficiency
of the correlations generated from publicly available datasets, in
some extreme cases, there exist no suitable location points in the
set that are closer to X; compared with the previous location x;f_l.
If this happens and the trajectory trend continues, i.e., no turning
back, the following outputs will fall into a pit. Figure 3 is an example
of pit falling. x}ll is the post-processed output at position j—1, and
the 7 probable set is marked using a dashed square. When deciding
x*, the scheme finds that j is outside of the r-probable set, and thus
it should choose the closest point to report. As the closest location
is identical to the previous release x;f_l, the algorithm still reports



Robust Fingerprint of Privacy-Preserving Location Trajectories

x% =x_,.x" and the remaining points x’; - remain in the

J T X% a1 g
same position following the same process, causing the trajectory to
fall into a pit. Our solution is to let x;f = %; in this case. By doing so,
we force the scheme to jump out of the pit so that the generation
still follows the temporary trend of the trajectory. The complete
algorithm of the post-processing scheme is shown in Algorithm 2

in Appendix D.

X, N
I Ry

probe (x7_1)

Figure 3: Pit falling. x}?_l is the last smoothed point. The
following outputs x;f, Xj+1%, - - will stay at the same position

as x°

1 forming a pit.

5.3 Robust Fingerprinting

Traditional fingerprinting approaches [5, 31] do not consider spa-
tial/temporal correlations and treat each point independently. How-
ever, the location points in a trajectory are highly correlated, es-
pecially the neighboring ones. Thus, modifying a location point
without following the correlation model will make a point far away
from its neighboring points such that the attacker can easily identify
most of the fingerprint bits by checking pairwise correlations. The
probabilistic fingerprinting scheme (PFS) [34] is the only existing
approach that takes correlations into account during fingerprinting.
However, the scheme in [34] requires that the states of the data
be limited and intertransitable. If the number of states is large and
they have sparse correlations, i.e., transitions only exist between a
small portion of the state pairs, [34] starts having limitations. Addi-
tionally, PFS does not consider the privacy of shared data streams.
In the following, we first briefly introduce PFS.

5.3.1 The Probabilistic Fingerprinting Scheme (PFS). PFS embeds
fingerprint codes from the start to the end of a data stream, i.e., xg
to x| x|-1- Suppose that we are generating the j-th position in a data
stream X, and the fingerprinting ratio, i.e., probability of a point
being fingerprinted (perturbed), is p. While determining the output
xJ’., PFS checks the transition probability Pr[x; = g|xj_1 = x]’._l] for
each g in the alphabet and filters those with low probability (i.e., less
than a threshold o). PFS then forms a probability distribution among
the remaining values. If the original value is not eliminated, Pr[x;]
is set to 1—p with the remaining p proportionally assigned to the rest
according to their transition probabilities. If the original value of
the corresponding data point at position j is eliminated, the scheme
only generates the output proportionally from the remaining values.

However, PFS cannot be applied to location datasets even without
privacy protection. The most critical problem is forced deviation.
PFS process normally works in location fingerprinting, but when
the correlations are low between the data points, it starts to show
limitations. According to PFS, the scheme eliminates the original
value of the corresponding data point if the correlations do not
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probz (x;) :\ ,

probr (%)

Figure 4: Forced deviation. The generated point x]’. at times-
tamp j is sampled inside the r-probable set of the previous
release xj/>1' However, the next original value of the corre-
sponding data point x;f +1 is outside its 7-probable set. Follow-
ing FPS, the next points will be sampled among probT(xJ’.)
only.

Original PFS

170 170 {— 170

Sample A

160 160 160

155 155 155

150 150 150
175 200 225 250 275 175 200 225 250 275

175 200 225 250 275

150 150 150

140 140 140

Sample B

120 120 120

220 240 260 280 20 240 260 280 220 240 260 280

Figure 5: Visualization of two fingerprinting schemes, i.e.,
(i) PFS [34] and (ii) our scheme, on two trajectory samples.
Forced deviation is clearly shown in the copies using PFS.

hold. Then, the scheme proportionally samples a point from the
remaining 7-probable set consisting of highly probable points and
reports that one. In trajectory fingerprinting, once the sampled
output appears outside of the next point’s r-probable set, the rest
of the points will wander around the z-probable set forever. We
show this in Figure 4 as an example. Here, PFS fingerprints the
Jj-th position in the trajectory, while x]f_l is the last fingerprinted
location and the dashed circular area in black is the z-probable
set of xJ’._l. x;f is the actual location at position j, and it is in the
-probable set of x’;_,. PFS wants to sample a point among the 7-
probable set and releases that point. If the sampled point is located
as x]’. in Figure 4, we realize that the next original value of the

corresponding data point x;f .1 is not in the r-probable set of x”.

1
In this case, the scheme will sample a location only among the
set, regardless of the distance from the original value. The next
original value x7 , will be more likely to occur outside of the 7-
probable set (marked by a red dashed circle) as well since the actual
trajectory moves forward and the sampled output sticks to the area
close to the first separation, i.e., x’. If the generation continues, the
fingerprinted locations will be sampled around the first deviated
location x]’., and this will finally result in a forced deviation. We show
some examples for this scenario for better clarification by applying
PFS and our proposed scheme on two trajectory samples in Figure 5.
As shown, PFS falls into forced deviation at the very beginning for
each sample, while our approach generates fingerprints along the
trajectory (i.e., the right figures).
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5.3.2 Direction-Sensitive Fingerprinting Scheme For Location Tra-
jectories. To solve the aforementioned challenges, we propose a
new sampling scheme, called the direction-sensitive fingerprint-
ing scheme (see Algorithm 1 for details). For a released point xJ’._l,
we first form a set containing all locations closer to or equal to
x; than xj’._1 in the r-probable set, called the r-closer set, which

can be expressed as probg(x;_l) — {g|||g, x;f||2 < ||x}_1,x;||2,g €

probr(x]'._l)}. Normally, if the original value of the correspond-
ing data point x7% is in the 7-closer set, we sample the output
among it by setting the probability of choosing the original value
as 1 — p and the rest are assigned proportionally based on the
transition probability to the destination. We improve the sampling
process to avoid forced deviation during generation. There are
four cases in which the original value is selected at the j-th po-
sition. If the original value x;f is in the 7-closer set of the previ-
ously released location x]’.il, there is no difference between ours
and in PFS. If x;f is not in the 7-closer set, we check its member-
ship in the 7-probable set and sample from the same distribution
as above, but among the r-probable set instead. If not, we check
the closest point x to the original value x;f in probT(xJ’._l). If x
is the same as x]’._l, which means that there is no such location
closer to x;f, we let the true temporary value be x;. Otherwise, we
choose x as the temporary original value at this timestamp and
perform the proportional sampling scheme. For the first location
x3 in the trajectory, we do not have conditional probabilities. In-
stead, we use the emission probability of x;’s neighboring locations,

. _ (# of points at g)
L€, Pr(g) - Zgr(# of points at ¢’),g’ €neigh(x;)’

neigh(x) denotes a set of all neighbors of x; (including xj itself),
in the sampling process.

In order to offer fingerprint robustness and data usability at the
same time, we integrate the proposed post-processing scheme in
Section 5.2 into our fingerprinting. In particular, if the next original
value x* is not in the 7-probable set, we follow the post-processing
scheme to choose the closest point as the surrogate, and assume
it to be the original value. This post-processing integration does
not take effect if we work on not differentially private trajectories,
as pairwise correlations are preserved along those trajectories. If
dealing with noisy trajectories, i.e., protected under differential
privacy, the post-processing step will regain pairwise correlations
and thus improve data utility for location datasets.

In addition, we follow [34] and use the balancing strategy. During
the fingerprint generation, some positions are perturbed, while
some remain the same as the original values. We use FPs and NoFPs
to represent them, respectively. PFS balances the distribution of
the FPs by using the balancing factor 6. The scheme checks the
FP count every |'%'| points. If the actual FP count is larger than

g € neigh(xy), where

expected, then the temporary fingerprint ratio is changed to p = (1—
0). If the number of FP is not enough, the ratio becomes p * (1 +6).
The complete algorithm is shown in Algorithm 1.

5.4 Detecting the Source of the Unauthorized
Redistribution

We use similarity-based detection [34] with our improvement. Dur-
ing traditional similarity-based detection, data points in leaked
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Algorithm 1: Direction-Sensitive Fingerprinting Scheme

input :Trajectory X* = [x],xJ,...,x},], location alphabet G,
emission probability Pr[gy | and transition probability
Pr[gqlgr] for any locations gy, g4, gr € G, probability
threshold 7, fingerprinting ratio p, ratio balancing factor 6,

the first fingerprinted trajectory X' = [x7, x5, ....x5,]
output:Fingerprinted trajectory X’ = [x],x},...,x,,]
1 PD «
’ * ’ P.
Pr[x1:x1]:1_Pcurrentspr[x1:g]: " rlgl gEg?
g

G\, PITT

2 x7 < sample from PD;

3 Pcurrent = P;
4 forall j € 2,3,...,mdo

5 prob: (x}_l) « 7-probable set of x}_l;

s | probi(x;_) < {glllg. x}ll2 < llxj_p, x}ll2.9 €
prob; (x;._l) IR

7| if x} € probi(x)_,) and |prob$(x;_;)| > 1then

o | | Dl =x1=1-prly =gl -

’_ ’
Prix}=glx_,]

T %P9 € probz(x) )

—
Ly eprobr (x_ )\ PrIx;=g'1xj

9 x}. « sample from PD;
10 else if x; € prob, (x}il) and |prob$ (x}71)| == 1then
11 PD<—Pr[x;.=x;‘.]=1—p,Pr[x}=g]=

’

,_
Prixj=glx;_;|
—
Ly eprobe (x/_)\x; Prix;=g'lxj

1*P9g € prob,(x}il);

12 x}. « sample from PD;

13 else

1 Xclosest < closet point to x7 in probz (x}_;);

15 if |prob-,(x}._1)| <=1then

16 ‘ x} - x;‘.;

17 else

18 PDHPr[x}=xclosest]=1_p)Pr[x}:g]:

Pr[x}.:g\x]’. .1
*p,g €
Pr[x}.:g’lx}. 1]

Zg’epmbr(x},l)\xclosest

prob,(x}.il);

19 x;. « sample from PD;

20 if j mod [%] == 0 then

21 count « # of fingerprinted positions;
22 if count > p * j then

23 ‘ Peurrent < p* (1-0);

24 else if count < p = j then

25 ‘ Pcurrent < P * (1+6);

26 else

27 ‘ Pcurrent < P;

28 end

data are compared with distributed copies. At each position, if the
leaked data point matches some data analyzers, each of them will
be assigned a score ﬁ where |X| is the length of the data. After
inspecting all data points, the analyzer with the highest cumulative
score is considered malicious. In location data, slight perturbation is
enough to invalidate those exact matches and thus influence the de-
tecting accuracy. Thus, we replace it with a distance-based match in
similarity-based detection. For each location point in the trajectory,
we assign ﬁ to all points that have the shortest distance from the
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leaked location point instead of exact matches, which significantly
improves our detection.

The described detection works on a single trajectory leakage
from a shared trajectory dataset. For a multi-trajectory leakage, we
implement an aggregate detection scheme to identify the source
of the unauthorized redistribution. We first use distance-based
detection to analyze leaked trajectories one by one in the leaked
dataset and accuse one of being malicious for each leaked trajectory.
Among all the accused data analyzers, we do majority voting on
them and choose the most frequent one as the final malicious data
analyzers. The evaluation results of multi-trajectory leakage are in
Appendix E.2.

6 EVALUATION

We implemented the proposed fingerprinting scheme and provide
the experimental results. We first evaluate the fingerprint robust-
ness of our scheme against multiple attacks. After that, we evaluate
it on the datasets protected by an alternative privacy-preserving
method (i.e., AdaTrace [16]) and show that we still achieve simi-
lar performance against the considered attacks. In terms of data
utility, we evaluate fingerprinted datasets using five utility metrics
mentioned in Section 6.3.2. Furthermore, we performed parametric
experiments on trajectory length (in Section 6.4.4) and time com-
plexity (in Section 6.5.1). For the experiments, we used a rack server
with 64GB memory (DDR4, 2666Mhz) and an Intel Xeon E5-2650
@ 2.20GHz with 40 cores. We run all experiments more than 1,000
times with 20 dataset shuffles and take the average, and the 95%
confidence intervals represented as shaded areas in the figures.

6.1 Datasets

We used 4 datasets during evaluation: 1) the GeoLife dataset (Ver-
sion 1.3) [37], 2) the Taxi dataset [25], 3) the Oldenburg dataset [7],
and 4) the San Joaquin dataset [7]. The GeoLife and Taxi datasets
are real-life ones, and the Oldenburg and San Joaquin datasets are
synthetic ones from the Brinkhoff generator. The GeoLife dataset
contains 17, 621 trajectories generated by 182 users using different
GPS devices over five years (April 2007-August 2012), including
1,292, 951 kilometers in distance and 50, 176 hours in time, where
most of the locations are in Beijing, China. The Taxi dataset is used
in the Taxi Service Prediction Challenge at ECML-PKDD 2015 [25],
including 1,710, 670 taxi trajectories in Porto, Portugal. The re-
maining two datasets are synthesized from the Brinkhoff generator
for moving objects [7] in the cities of Oldenburg and San Joaquin,
respectively. We generate 5, 000 trajectories for each dataset.

6.1.1 Data Pre-Processing. We preprocessed the trajectories to
avoid various data intervals. We smoothed the trajectories to have
similar time intervals, i.e., around 60 seconds. For each dataset, we
defined an area of interest that covers most of the trajectories and
cut and filtered out the trajectory fragments outside the area. We
picked 1, 000 trajectories as our fingerprinting targets and used the
remaining ones to build public correlations.

6.2 Experimental Settings

We compare our fingerprinting scheme with two traditional ones,
i.e., the Boneh-Shaw codes and the Tardos codes. We evaluate de-
tection accuracy of the three schemes on both non-differentially
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private and differentially private datasets. The Boneh-Shaw codes
and the Tardos codes do not support detection of multiple trajec-
tories, so we use the same detection logic as ours, i.e., working
on trajectories one by one and then majority voting, to fit our
experiments.

The following experiments assume that the attacker(s) will only
leak one trajectory from the entire dataset. As we mentioned in
Section 5.4, we perform detection one by one on each leaked trajec-
tory and do majority voting for the final accusation. The detection
processes of leaked trajectories are independent from each other,
which makes the problem become a combination problem (ie.,
given detection accuracy for a single trajectory equal to p, what is
the detection accuracy of k trajectories using majority voting?). As
we will show in the following sections, our approach significantly
outperforms existing schemes and maintains 90% detection accu-
racy in most cases. If multiple trajectories are leaked, the overall
detection accuracy increases and reaches 99.99%. We show this in
Appendix E.2. For simplicity, we consider only the leakage of one
trajectory in the following.

6.2.1 Parameter Settings. If not specified, we use the following
parameter setting throughout the experiments. An original dataset
contains 100 randomly selected trajectories, and each has 100 lo-
cations. We assume that 100 SPs get the copies by default. We set
7 = 0.005 as the correlation threshold concluded from our exper-
iments and the fingerprint balancing factor § = 0.5. The Tardos
codes use w = 0.01 as the error probability. The Boneh-Shaw code-
word consists of |X| blocks and 1 location points in each block. For
PIM, we follow [33] and set § = 0.01 for the §-location set. The
fingerprint ratio is set to 0.4. We assume that the attacker(s) uses
pec = 0.8 and p, = 0.8 in random and correlation-based flipping
attacks, respectively, and 3 service providers collude by default.

6.3 Evaluation Metrics

6.3.1 Fingerprint Robustness Metric. We define a successful accu-
sation as correctly identifying the attacker who leaks the data. Our

evaluation metric of fingerprint robustness is then represented as

(# of successful accusation)
(# of trials)

we consider catching one of the colluding attackers. Since the Tar-

dos codes focus on catching all those who leak the data, we adjust
the accusation process for alignment. More specifically, we only
consider the one with the highest scores in the Tardos detection
instead of using the threshold 20ck (in Appendix B.2).

Accuracy = . If multiple attackers collude,

6.3.2  Utility Metrics. Following the existing work [16, 18, 33], we
introduce our utility metrics as follows.

Query Answering of Location Points. The count query is one of
the most frequent usages for location datasets.

Let Q;(D, g) denote the query “how many trajectories pass a
circular area represented by a center ¢ and a radius r in the dataset
D”. Then, we define the relative error as

10:(D,g) — Q:(D’, )]
max(Q¢(D, g), b)

, where D is the original dataset and D’ is the output of our scheme.
We set b = 0.01 X |D| according to [9, 16, 26, 36].

AuRE =
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Query Answering of Patterns. We also implement another query
answering metric for patterns. As discussed in Section 4.1.3, we
only focus on the 2-gram patterns. Given a 2-gram pattern P, the
count query on P is Qp (P, D) that counts P in the dataset D. We
also evaluate the utility using relative error.

Area Popularity. We follow [16] and evaluate the divergence of
the popularity rankings by area. Based on the number of location
points within each area, we generate the popularity ranking for each
fingerprinting scheme. We compare the ranking with that of the
original data set and calculate the Kendall-tau coefficient, which

is defined as KT = (# of concordant palrs)f(# of discordant pairs) The
(# of pairs)
Kendall-Tau coefficient measures the ordinal association between

sequences. A higher coefficient represents a better utility.

Trip Error. Trip error [16] measures trip length. We calculate
the lengths of all the trajectories in the dataset and put them into
11 bins, i.e., [0, 1L_0 s [1L—0, %), cee [%,L), and [L, o), where L is
the maximum trip length in the original dataset. We calculate the
Jensen-Shannon divergence (JSD) between the fingerprinted dataset

and the original dataset.

Diameter Error. Diameter error [16] is similar to the trip error,
but considers the distances between contiguous location points
along the trajectories. We use the 11 bins and then evaluate the
Jensen-Shannon divergence.

Trajectory Similarity. In services like carpooling, the shape of the
trajectory is an important feature that can be used by the service
to design an optimal strategy. We use 2-dimensional dynamic time
wrapping (DTW) [27] to evaluate the similarity between the original
and fingerprinted datasets.

6.4 Fingerprint Robustness

We show the experiment results of fingerprint robustness against
five attacks in Section 4.3, i.e., random flipping attacks, correlation-
based flipping attacks, majority collusion attacks, probabilistic col-
lusion attacks, and re-fingerprinting attacks. Here, we represent
four of the attacks using abbreviations for simplicity. In partic-
ular, "RF" denotes random flipping attacks, and "CF" represents
correlation-based flipping attacks. "MJR" and "PROB" are majority
collusion attacks and probabilistic collusion attacks, respectively.
Due to page limitation, we defer several experiments, i.e., 1) finger-
print robustness on three datasets (i.e., Taxi [25], OldenBurg [7],
and San Joaquin [7]), 2) fingerprint robustness when an alternative
differentially private method (i.e., AdaTrace ][16]) is used, and 3)
parameterized experiments regarding the number of leaked trajec-
tories to the appendix E.

6.4.1 Fingerprint Robustness on Datasets Protected by PIM. Our
scheme performs significantly better (shown in Figure 6) compared
with the existing methods. The proposed scheme achieves around
99.9% detection accuracy against random flipping attacks, majority
collusion attacks (with a slight drop for a larger collusion count),
and probabilistic collusion attacks. In terms of correlation-based
flipping attacks, our scheme achieves 99.9% accuracy when p, < 0.8,
and it achieves 98% accuracy if p. = 0.8. Note that a large finger-
print ratio does not mean high detection accuracy for our scheme.
This is because we leverage pairwise correlations. If we choose
to embed a fingerprint digit at a position, we distort the original
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point. However, the new point has lower pairwise correlations in
most cases, which eventually influences the internal correlations
among the trajectory and thus decreases the detection accuracy.
Based on our experiments, a fingerprint ratio around 0.4 is optimal.
Meanwhile, Boneh-Shaw codes and Tardos codes are not as robust
as our proposed scheme. In conclusion, our scheme outperform
those methods.

6.4.2  Fingerprint Robustness on Datasets Protected by an Alternative
Method. In order to show that our framework works with different
differentially private mechanisms on location datasets, we imple-
ment an alternative DP mechanism, i.e., AdaTrace [16]. However,
AdaTrace is a synthetic mechanism that does not preserve any tem-
poral information in the released dataset. Thus, we post-process the
output dataset from AdaTrace using the Bresenham’s algorithm, a
line drawing algorithm, to traverse all passed points between two
points and add time-sequenced indexes to each point. By using the
Bresenham’s algorithm and then assigning timestamps manually,
we generated a synthetic dataset with high pairwise correlations
but a fake version. As shown in Figure 8, we achieve similar results
compared to those in the original datasets (i.e., in Figure 13) in gen-
eral, which proves that our scheme can work on other differentially
private mechanisms.

6.4.3  Fingerprint robustness against re-fingerprinting attack. The
attacker can distort the embedded fingerprint by applying the pro-
posed fingerprinting scheme on the received dataset, namely re-
fingerprinting attacks. To evaluate our scheme against such attacks,
we design the experiment as follows. We build small data sets of
different sizes for evaluation. We assume that the attacker, based
on the experiment results in Sections 6.4.1, and 6.4.2, chooses the
optimal parameters, i.e., 7 = 0.005,6 = 0.5, and applies the pro-
posed fingerprinting scheme to the received dataset (which is also
fingerprinted by the data owner). The attack ratio in this attack
refers to the fingerprint ratio that the attacker uses. As shown in
Figure 7, our scheme offers high fingerprint robustness against
re-fingerprinting attacks regardless of the number of trajectories
in the dataset, while larger datasets (with more trajectories) lead to
higher detection accuracy. When the trajectory count exceeds 10,
the detection accuracy reaches 98% for any fingerprint ratio that is
not greater than 0.8 and remains above 60% even if the attack ratio
reaches 0.9. For higher attack ratios, similar to correlation-based
attacks discussed in Section 6.4.1, the resulting low data utility
limits the attacker from executing such attacks.

6.4.4 Fingerprinting Robustness on Differentially Private Datasets
for Trajectories with Different Lengths. We evaluate the performance
of fingerprint robustness on trajectories of different lengths and
show the results in Figure 9. Our scheme significantly outperforms
existing methods in all aspects, except for a high fingerprint ratio
p=07.

6.5 Utility Evaluation

Table 2 shows the data utility of the proposed scheme and compares
it with the original dataset. For € = 0.9, 1.7, and 2.5, our proposed
method is better than Boneh-Shaw codes and Tardos codes in most
cases. Meanwhile, our scheme is not the best for query answering
(when € = 2.5) on the Taxi and San Joaquin datasets and for popu-
larity analysis (when € = 0.9) on the Oldenburg dataset. On the Taxi
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Figure 6: Fingerprint robustness of the proposed scheme on the differentially private GeoLife [37] dataset by PIM [33]
compared with two existing methods, i.e., the Boneh-Shaw codes [5] and the Tardos codes [31], under different fingerprint
ratio p.

Table 2: Utility Evaluation. "DSFS" is the proposed scheme in this paper, "BS" denotes the Boneh-Shaw codes, and "Tardos"
refers to the Tardos codes. Better results are marked in bold. For Popularity KT coefficient, higher values are better. For the rest
of the metrics, lower is better. We show 95% confidence intervals for all results.

€=0.9 e=17 €=25
DSFS BS [5] Tardos [31] DSFS BS [5] Tardos [31] DSFS BS [5] Tardos [31]
QA Area AVRE 9.6 £3.6 122+33  187+53 2.8+09 39+ 16 33+ 14 0.9=04 1607 13+03
QA Pattern AVRE 2.5+04 43+05 48+05 1.0 0.2 20+03 1.8+ 04 0.5+0.1 1.0 +0.2 0.9+0.2
Geolife[37] ~ PoPularity KT[16] | 0.62£0.01  056£001 057002 | 0.74%0.01 068002 069001 | 0.83£0.02 079002 078001
Trip Error [16] 0.75+0.01 081+001 081+001 | 0.66=0.01 078+001 079+001 | 0.54+0.02 0.71+001  0.69 % 0.01
Diameter Error [16] | 0.14£0.00  031+0.00 031£0.00 | 0.12+0.00 024+0.00 024+0.00 | 0.11£0.00 0.21+0.00  0.20 % 0.00
DTW Distance 308 + 10 409 +9 400 £ 11 146 £5 182+ 6 180 +7 78+3 1013 101+4
QA Area AVRE 84£35 9.6 £ 4.0 137 5.1 0.7 0.4 2114 18+13 | 034+025 033023 053 £0.29
QA Pattern AVRE 7.5+ 2.0 93+ 17 92+14 | 0.85+044 183+069 299+139 | 0.25£0.07 074+022  0.66 % 0.20
Taxd [25] Popularity KT [16] | 0.54+0.03 053002  0.51+0.03 | 0.69+0.04 0.68=0.03 0.68+0.02 | 0.83+0.05 0.80+0.03 0.77 +0.04
Trip Error [16] 0.69+001 080+001 080+001 | 045+0.02 077+001 077+001 | 0.36+0.02 0.64+001  0.63 % 0.02
Diameter Error [16] | 0.11£0.00 030 £0.00  0.29+0.00 | 0.07+0.00 021+0.00 0.21+0.00 | 0.06+0.00 0.17+0.00  0.17 % 0.00
DTW Distance 196 + 4 257+ 6 249 %5 75+ 3 98 + 2 100 + 3 421 54 %2 56 + 2
QA Area AVRE 1403 2.0 £ 0.6 27£06 | 034=0.13 037+0.10 041+0.11 | 0.13+0.04 0.18+0.07  0.16 % 0.07
QA Pattern AVRE 34£05 63+03 65+0.5 1.6 +0.2 33+02 3.0+0.2 0.8+0.1 20+02 1.9+0.1
Oldenburg [7] ~ PoPularityKT[16] | 069£001  0.70£001 070001 | 0.84:£001 083001 083001 | 0.90£001 089:+001  0.89%0.01
Trip Error [16] 070 £0.01  0.80+0.01 0.80+001 | 053+0.02 076+0.01 076+001 | 0.44+0.02 0.67£0.02 0.6 % 0.01
Diameter Error [16] | 0.11+0.00  0.28£0.00 028 £0.00 | 0.08+0.00 0.19+0.00 0.19+0.00 | 0.07+0.00 0.15+0.00  0.14 % 0.00
DTW Distance 234+ 6 264 £7 265+ 6 86+ 3 97+1 96 + 2 48+ 1 55+ 1 56 % 1
QA Area AVRE 2.0 £ 0.6 23£06  212%060 | 04%0.1 05%02 06%02 | 017%0.07 0.14=004 021 0.6
QA Pattern AVRE 34+05 6.6+ 0.5 6.2+03 1.1+0.2 3.1+03 2.8 +0.4 0.7 0.1 17 +0.2 1.5+0.1
SanJoaquin [7]  POPularity KT[16] | 0.68£0.01  065£002 065002 | 081001 080£001 079001 | 0.89£001 087001 087001
Trip Error [16] 0.65+0.02 081+001 081+001 | 047001 075+001 076+001 | 0.39+0.02 0.66+001 0.5+ 0.01
Diameter Error [16] | 0.09+0.00  0.28£0.00 028 £0.00 | 0.07+0.00 0.18+0.00 0.18+0.00 | 0.05+0.00 0.14+0.00  0.14 % 0.00
DTW Distance 238 + 8 277 £ 6 2715 97 £2 107 +£3 110 + 4 53 +2 60 + 1 59+2
10 Table 3: Execution time of generating a fingerprinted dataset
(n = 100)
Zo8
g 1 100 200 300 400 500
Bos time(s)  0.5177 1.0229 1.5268  2.0407 _ 2.5779
5 # of trajectories
g 04 — s
% . 0.01 worse than the two existing methods for popularity analysis
on the Oldenburg dataset. On the San Joaquin dataset, the query
0.0 answering error on location points of our scheme is 0.17, while the
0.5 0.6 0.7 0.8 09 1.0

Attack Ratio

Figure 7: Fingerprint robustness against re-fingerprinting
attacks on differentially private datasets of different sizes.
The attack ratio denotes the fingerprint ratio that the attacker
uses during the attack.

dataset when € = 2.5, the error for query answering on location
points is 0.34, which is slightly higher than 0.33 for the Boneh-Shaw
codes. Similarly, the performance of our scheme when € = 0.9 is
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error is 0.14 if the Boneh-Shaw codes are used. For the majority of
the metrics, our scheme outperforms the Boneh-Shaw codes and
the Tardos’ code. For a few metrics, our scheme is slightly worse
but still comparable with the existing methods.

6.5.1 Computation Time. We present the computation time of the
proposed scheme in Table 3. For a dataset of 100 trajectories with a
length equal to 500, the proposed scheme only takes 2.5779 seconds
to generate one fingerprinted copy. We observe that the computa-
tion time increases linearly with increasing trajectory length. In
conclusion, our scheme shows practical time efficiency for finger-
print generation and scales well for large datasets.
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Figure 8: Fingerprint robustness on the differentially private Geolife [37] dataset protected by an alternative method
(AdaTrace [16]) compared with two existing methods, i.e., Boneh-Shaw codes [5] and Tardos codes [31] with different
fingerprint ratio p.
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Figure 9: Fingerprint robustness on the differentially private Geolife [37] dataset protected by PIM [33] with different lengths
of leaked trajectories compared with two existing methods, i.e., Boneh-Shaw codes [5] and Tardos codes [31] with different

fingerprint ratio p.
7 DISCUSSION a reliable transition distribution for a prefix X, which results in
Here, we compare PIM with other differentially private mechanisms an inaccurate transition matrix. For instance, GeoLife dataset [37]
and discuss the correlation model. consists of 17, 621 trajectories in Beijing. However, we can hardly
construct a reliable 3-gram model out of it, especially if we use a
7.1 Comparison Between PIM and Other dense grid for services like Google Maps that collects location data
Diﬂ-'erentially Private Mechanisms frequently. Some approaches use a sparse grid to overcome this

problem [9, 33] (around 400 * 400m?), but the location points are
too general for analytical purposes. On the other hand, our target
applications, e.g., Google Maps and outdoor exercises, cannot bear
such general locations. As a result, we compromise with the 2-gram
Markov chain.

Compared with PIM, other existing works have more or less their
limitations for realistic location dataset sharing. Jiang et al’s ap-
proach [20] requires that the starting and finishing points of all
the trajectories should be fixed, making it only work on specific
types such as ship or flight trajectories. [16] and [18] need accu-
rate statistical features of the input datasets. Thus, the size of the 8 CONCLUSION AND FUTURE WORK
dataset should be comparably large. In other words, they cannot
handle datasets with only a few trajectories. In addition, adding
and removing trajectory is one of the most common requests from
users as they become more concerned with their data privacy [6].
Synthetic methods [16, 18] cannot perform such operations simply
by working on the protected dataset and they have to regenerate
the entire dataset. Meanwhile, PIM is executed on each trajectory
instead of on the whole data set. It can easily achieve this by adding
or removing generated copies of a specific trajectory to/from the
shared dataset.

In this paper, we design a system that achieves both privacy preser-
vation and robust fingerprinting for location datasets. We first apply
a differentially private mechanism to the dataset and then imple-
ment a fingerprinting scheme that considers pairwise correlations
in the location data and prevents the attackers from unauthorized
leakage of the dataset. With the integration of a utility-boosting
post-processing, our proposed direction-sensitive fingerprinting
scheme provides high data utility for data analyzers.

There are several directions for further research. First, we plan to
improve our correlation model to a higher-order model (e.g., using
road structures) and analyze the performance of the scheme. In addi-

7.2 Correlation Model tion, a non-uniform grid in discretization can be used and different
In this work, we use 2-gram Markov chain to model correlations. types of collusion attacks can be defined and studied. Moreover, our
If we use a higher-order model, each pattern X’s occurrence will approach provides differential privacy and fingerprint robustness in
decrease significantly since longer prefixes are harder to find intu- two separate steps. Combining those two steps is another potential
itively. Therefore, we cannot collect enough patterns Xg to form future work.
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example, if 001-011-111 is leaked, the 2nd user who owns 000-111-
111 will be accused of leaking the data since the 2nd block is the
first block with a majority of 1’s.

B.2 The Tardos Codes

The Tardos codes [31] are another binary fingerprinting technique
under the marking assumption. The codes utilize randomization in
construction and provide similar security against majority collusion
attacks while requiring a shorter code length than the Boneh-Shaw
codes. The construction of Tardos codes requires the number of
sharings n, the number of colluding units c, and the expected secu-
rity w. The minimum length of binary code to ensure w-security
is m = 100c’k, where k = [log(1/w)]. Let t = 1/(300c) and
sin®t’ = 1,0 < t’ < 7/4. p; denotes the probability of 1 at position
i,ie., Pr(X; = 1) = p;, and is calculated independently. To select
the probability for each position i, we sample r; € [t/,7/2 — t’]
uniformly and then acquire p; = sin’r;. Let X ji denote the i-th
digit of the user j and ¥ = {y1,y2, ..., ym} denote the leaked data.
While accusing the colluders, the codes use a scoring function as

[1=pi ; -
Ui = T leji =1
Jit pi .
_1,1*_17i leji =0

and accuse the user j if

@)

m

>yl > 200k
i=1

C DECENTRALIZED SETTING

We build our system in the centralized setting, i.e., users’ location
points are collected by a centralized data server (service provider)
and then processed by our scheme. This relies on an honest party
involved in the system, since the centralized data server (i.e., the
service provider) has direct access to the collected dataset. If no
such party exists, we can alternatively set up a decentralized system,
where the privacy is protected before sending location data to the
centralized server. In such a decentralized setting, users can apply
DP protection locally on their devices by setting the desired privacy
level they want to achieve. The protected data are then transmitted
to the centralized server. Every time the service provider collects
real-time location information from the users, users immediately
protect their locations under differential privacy (e.g., using PIM)
and send the noisy locations to the centralized server. The server
collects these locations sequentially and applies our proposed fin-
gerprinting scheme to the location data. In this case, real locations
are not exposed to any party, including the centralized server, thus
protecting users’ location privacy in a better way. However, this set-
ting sacrifices users’ experience while using location-based servers,
and thus some service providers may offer poor services due to the
inaccuracy of the location information. While using Google Maps
for navigation, one does not want to report incorrect locations.
But if one uses Google Maps to find nearby restaurants, they often
accept a vague or slightly deviated localization. Service providers
can choose either setting based on the services they provide.
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D TRAJECTORY POST-PROCESSING SCHEME

Algorithm 2 shows the steps of the post-processing scheme de-
scribed in Section 5.2, where ||-||2 denotes the l;-norm.

Algorithm 2: Trajectory Post-Processing Scheme

input :Noisy trajectory X = [%1, %2, . .., Xm ], location alphabet
G, conditional probability in the correlations Pr(x;|x;-1)
for any j € [1, m], probability threshold 7

output:Smoothed trajectory X* = [x],x},...,xp,]

1 X] & x1

2 forall j € {2,3,...,m} do

3 prob, (x;f_l) « 7-probable set of x}f_l;

4 Xclosest < closet point to X; in prob, (x;_l);
5 if X; ¢ prab.,(x;_l) then

6 if ”x;'_p fcj Iz < Hx;-_l» Xclosest ||2 then

* -

7 ‘ xj e X;

8 else

9 ‘ x; € Xclosest

10 else

N .

1 ‘ xj e X;
12 end

E ADDITIONAL EXPERIMENTAL RESULTS

In this section, we show additional experimental results. First, we
evaluate fingerprint robustness on other datasets apart from Ge-
oLife [37]. Then we show how length impacts fingerprinting per-
formance. Also, we extend Section 6.4.1 and evaluate our scheme’s
performance when multiple trajectories are leaked.

E.1 Fingerprinting Robustness on Other
Datasets Under Differential Privacy

As is shown in Figure 10, 11, and 12, the results are almost identical
to GeoLife [37]’s (in Section 6.4.1. It proves that our fingerprinting
scheme is robust and consistent for all location datasets.

E.1.1  Fingerprint Robustness on Datasets Without Differential Pri-
vacy. We evaluate the fingerprint robustness of our proposed scheme
without privacy-preserving mechanisms. Figure 13 shows the per-
formance of the proposed scheme against multiple attacks. For
random flipping attacks, our scheme achieves almost 100% accu-
racy if the attacker does not perturb more than 60% of the location
points, and it decreases to 90% if the attacker distorts 80% of the
location points. In terms of correlation-based flipping attacks, the
scheme has high accuracy when the flipping ratio p is less than
or equal to 0.6, and the accuracy drops significantly for larger p,.
The reason is almost the same as why the probabilistic fingerprint-
ing scheme (PFS) [34] does not work on location datasets, i.e., the
forced deviation (shown in Figure 4). For an acceptable data utility,
the attacker does not prefer a large p. in practice. For majority
collusion attacks, the detection accuracy of our scheme is greater
than 80%. In terms of probabilistic collusion attacks, our scheme
achieves 99% detection accuracy if ¢ = 3 and still gets around 60%
if ¢ increases to 12.

Note that the scheme does not benefit from higher fingerprint
ratio against two correlation-based attacks (i.e., correlation-based
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Figure 10: Fingerprint robustness of the proposed scheme on the differentially private Taxi [25] dataset by PIM [33] compared
with two existing methods, i.e., Boneh-Shaw codes [5] and Tardos codes [31], with different fingerprint ratio p.
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Figure 11: Fingerprint robustness of the proposed scheme on the differentially private OldenBurg [7] dataset by PIM [33]
compared with two existing methods, i.e., Boneh-Shaw codes [5] and Tardos codes [31], with different fingerprint ratio p.
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Figure 12: Fingerprint robustness of the proposed scheme on the differentially private Joaquin [37] dataset by PIM [33]
compared with two existing methods, i.e., Boneh-Shaw codes [5] and Tardos codes [31], with different fingerprint ratio p.
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Figure 13: Fingerprint robustness of the proposed scheme on the non-differentially private dataset (the GeoLife dataset [37])
compared with two existing methods, i.e., Boneh-Shaw codes [5] and Tardos codes [31], with different fingerprint ratio p.

flipping attacks and probabilistic collusion attacks) for non-noisy high. In that case, if we fingerprint (modify) two consecutive points,
datasets, and the accuracy becomes even worse for probabilistic the pairwise correlation between the modified values mostly de-
collusion attacks, which can be explained as follows. In a non-noisy creases. When fingerprint ratio, i.e., probability of a point being
trajectory, pairwise correlations mostly hold, i.e., the transition fingerprinted (perturbed), is high (i.e., p > 0.5), such scenarios oc-
probability from the previous point to the current point remains cur more commonly and can be exploited by the attacker, resulting
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Figure 14: Fingerprint robustness on the differentially private Geolife [37] dataset protected by PIM [33] with different number
of trajectories in the leaked dataset compared with two existing methods, i.e., Boneh-Shaw codes [5] and Tardos codes [31],
with different fingerprint ratio p.

in a decrease in detection accuracy. On the other hand, when the
fingerprint ratio is low, e.g., p = 0.1, our scheme does not have too
few fingerprinted points to provide fingerprint robustness against
collusion attacks, resulting in a degradation in accuracy. This en-
sures high data utility and high fingerprint robustness in the shared
dataset simultaneously.

Compared to our scheme, the two existing methods are not
equally robust. Boneh-Shaw codes achieve around 50% detection
accuracy in majority collusion attacks and have at most 20% chance
to identify the attacker against other attacks, where the wavy style
in Figure 13c results from its own design. The detection accuracy
of the Tardos codes is 100% against the two flipping attacks if the
flipping ratio is 0.1, but it quickly drops to below 40% and 20%
for random flipping attacks and correlation-based flipping attacks,
respectively. For collusion attacks, their detection accuracy is at
most 70% if 3 attackers collude and 40% when 12 are involved.
Overall, our scheme achieves better performance against all the
attacks considered.

E.2 Fingerprinting Robustness on Differentially
Private Datasets While Multiple
Trajectories are Leaked

Figure 14 shows the fingerprint robustness on differentially private
datasets while multiple trajectories are leaked.
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