To attract or to oscillate: Validating dynamics with behavior
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Recurrent neural networks (RNNs) have driven significant ad-
vancements in computational neuroscience, as evidenced by studies
showcasing their ability to emulate observed neural dynamics in
behaving animals [1]-[4]. These findings substantiate RNNs as robust
models for neural systems and reinforce the efficacy of an opti-
mization framework within computational neuroscience. Recently, it
has been shown that RNNs trained with large regularizations learn
low-dimensional dynamics that appear to explain how the RNNs
solve their respective task [2], [5], [6]. We took inspiration from
this research direction to investigate the low-dimensional dynamics
learned by regularized RNNs trained on a simple pattern recognition
task inspired by the card game SET [7].
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The regularizations imposed during training were an L2 regular-
ization on the weights defined in (1) and an L2 regularization on the
rates defined in (2).

We found that the learned low-dimensional dynamics resembled
operations on a finite-state automaton (FSA) [8]. Surprisingly, we also
found that the dynamical implementation of the learned FSA changed
depending on the time constant, 7, used in (1). RNNs with higher
time constants learned FSA as a network of fixed-point attractors in
state space [9]. RNNs with lower time constants learned FSA as a
network of phase-angle transitions in the space of phase angles of

a limit cycle [10]. Theoretically, RNNs with a slow time constant
can respond on a quicker timescale [11]; however, the effect of the
imposed regularizations and the selected time constant created a large
bias on the types of dynamics learned—attractive or oscillatory.

Previous research often selected the time constant, considered to
be a hyperparameter, without extensive justification [5], [6]. Our
findings challenge the biological realism of the previously discov-
ered dynamics, as they may result from arbitrary hyperparameter
selection—a topic further explored in [12]. To validate the choice
of the time constant without relying on experimentally gathered
neural data, we propose using behavioral data. We observed that
different time constants produced varying false positive error rates
for ambiguous patterns in our task. We found this relationship to be
a bell-curve shaped psychometric function unique to each RNN. By
comparing psychometric data from humans to those from RNNs, we
could potentially justify the selected time constants and the learned
dynamics. This methodology resembles the approach used in [13].

In summary, our study demonstrates that regularized RNNs trained
on a simple pattern recognition task can identify patterns through
operations on a FSA, but the dynamical implementation of the FSA,
either attractive or oscillatory, is dependent on the chosen time
constant. To validate the selection of this constant and the learned
dynamics, we suggest comparing psychometric data from humans
to data from RNNs. RNNs mirroring human psychometric data
most closely could be considered more biologically plausible. This
approach could potentially provide a means to infer the timescales
of cortical areas without single-neuron spike train data [14].

A. » B
. .
. " o L >
: s ¢
3 =0 o} E — o

@

Principal Component 2
Time (s)

%6 -4 -2 0 2 4 6 8 10
Principal Component 1

Fig. 1.

— Tau:40ms
Tau: 70 ms
Tau: 100 ms

Effects of 7 variation on RNN dynamics and behavior. The task used to train RNNs involved presenting three random vectors, called colors, at

randomly selected times and tasking the RNN to determine if the colors were all the same or all different. (A) Dynamics of an RNN (7 = 100 ms) projected
onto the first two PCs showing attractive dynamics. Red and green dots indicate invalid and valid patterns, respectively. (B) Corresponding FSA for dynamics
from (A). Note the unique encoding directions for each color. Empty and full states represent invalid and valid patterns, respectively. (C) Dynamics for an
RNN (7 = 10 ms) showing oscillatory dynamics. (D) Corresponding FSA for dynamics from (C). Note that the FSA is realized in the space of phase angles
in the limit cycle identified in (C). Note the unique phase-angle contribution by each color. The starting state is the accepting state. (E) Modulation of 7 in a

RNN affects false positive error rates for ambiguous patterns, determined by /5.
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