é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Private Proof-of-Stake Blockchains using
Differentially-Private Stake Distortion

Chenghong Wang, David Pujol, Kartik Nayak,
and Ashwin Machanavajjhala, Duke University

https://www.usenix.org/conference/usenixsecurity23/presentation/wang-chenghong

This paper is included in the Proceedings of the
32nd USENIX Security Symposium.
August 9-11, 2023 » Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium
is sponsored by USENIX.

I
+ » e - = =
. JEEEES o -
R W E »

Private Proof-of-Stake Blockchains using Differentially-Private Stake
Distortion

Chenghong Wang
Duke University

David Pujol
Duke University

Abstract

Safety, liveness, and privacy are three critical properties
for any private proof-of-stake (PoS) blockchain. How-
ever, prior work (SP’21) has shown that to obtain safety
and liveness, a PoS blockchain must in theory forgo pri-
vacy. Specifically, to ensure safety and liveness, PoS
blockchains elect parties based on stake proportion, po-
tentially exposing a party’s stake even with private trans-
action processing. In this work, we make two key
contributions. First, we present the first stake inference
attack applicable to both deterministic and randomized
PoS with exponentially less running time in comparison
with SOTA designs. Second, we use differentially private
stake distortion to achieve privacy in PoS blockchains,
and design two stake distortion mechanisms that any
PoS protocol can use. We further evaluate our proposed
methods using Ethereum 2.0, a widely-recognized PoS
blockchain in operation. Results demonstrate effective
stake inference risk mitigation, reasonable privacy, and
preservation of essential safety and liveness properties.

1 Introduction

Nakamoto introduced Bitcoin’s protocol [47], promoting
open, permissionless participation in distributed ledger
maintenance. However, achieving consensus in the per-
missionless setting is hard as the traditional honest major-
ity (or two-thirds majority) assumption no longer hold as
the adversary can create any number of Sybil parties [23]]
Permissionless protocols address safety against Sybils by
leveraging constraint resources, assuming honest parties
hold the majority of such resources. They are classified
into Proof-of-Work (PoW) protocols [47, 51} 54], reliant
on computing power, and Proof-of-Stake (PoS) proto-
cols [[17,1581127.142119.18.110], using monetary stake. While
both protocols mark a major breakthrough in distributed
consensus in a permissionless context, the reliance on
expensive computing power leads to significant energy
wastage in PoW [18]], prompting a trend of shifting from

Kartik Nayak
Duke University

Ashwin Machanavajjhala
Duke University

PoW to PoS blockchains [51)27].

The open setup of the blockchain makes transac-
tion privacy an important issue. Several PoW de-
signs [S1, 49! [13]] have taken the first step toward ad-
dressing this by concealing transaction details using cryp-
tographic primitives while maintaining blockchain func-
tionality. However, in PoS blockchains, merely hiding
transactions is insufficient, as the stake is also sensi-
tive [43]]. Although some efforts [39} 29, 6] address
PoS privacy by hiding both transaction and stake, a re-
cent study [43] theoretically shows that SOTA designs
remain susceptible to side-channel leakages, i.e., the fre-
quency a party adding a new block, which correlates with
the party’s stake. Additionally, they introduce reverse
tagging attacks (RTA), enabling attackers to determine
if a party’s stake exceeds a specified value. The basic
attack primitive has been deemed feasible in real-world
blockchains like Zcash [51]. Kohlweiss et al. [43] also
propose a proof-of-concept stake inference attack (SIA)
that estimates a party’s unknown stake by repeatedly us-
ing RTA with varying comparison values.

This paper tackles the following open questions. The
stake inference attack in [43] is impractical due to simpli-
fying assumptions like deterministic protocols and strict
liveness guarantees. These assumptions do not hold in
real-world executions as PoS blockchains typically oper-
ate under a probabilistic manner [[17,[27]. Hence, the first
open question is whether there are stake inference attacks
that can be launched in a real-world context. Moreover,
we are not aware of any PoS design that can ensure pri-
vacy against attacks like RTA, or the derived SIA. Thus,
the second open question is if there exist private PoS
designs that address SIA risks. Motivated by the open
questions, we elaborate on our contributions as follows:

1.1 Contributions

C-1. Stake inference attacks (SIA) for PoS protocols.
* A general stake inference paradigm. We propose a gen-

eral stake inference paradigm that provides a template

USENIX Association

32nd USENIX Security Symposium

1577

for innovating efficient and accurate SIA that can be run
in practice. Our paradigm captures randomized proto-
cols by formulating liveness in a probabilistic manner
and considers robust inference strategies that tolerate
unreliable feedback, i.e. incorrect comparisons be-
tween a candidate value and the target stake.

* RdBin, a concrete stake inference attack. Following our
inference paradigm, we provide RdBin, the first prac-
tical SIA against randomized PoS protocols. RdBin
combines random walk and binary search to adaptively
approximate the target stake with exponentially more
efficient running time than the SOTA one [43]], i.e. sub-
linear complexity related to the total stake S in contrast
to the linear time ensured by [43].

C-2. Private PoS using DP Stake Distortion.

» Formulating private PoS security model. In the pres-
ence of SIAs, existing PoS protocols under the standard
UC security model [39, 43] are clearly inadequate to
achieve privacy. To address this, we define two desider-
ata that ensures a practical PoS blockchain has rigorous
and well-defined privacy. Based on this, we take the
first attempt to integrate differential privacy (DP) [26]
with previous UC security models of private ledgers
and derive a formal definition for the private PoS ledger.
The improved model inherits key components of UC
private ledger definitions but also formulates provable
stake and transaction privacy.

* Two stake distortion mechanisms that extend standard
PoS to private PoS while balancing liveliness, safety
and privacy. Though naive methods exist, i.e. partition
(disconnect) each party or use equal chance for leader
election, that address the potential privacy violations
(SIA risks). The former completely abandons liveness
while the latter provides no safety. In this work, we
propose two DP stake distortion mechanisms, namely
Timer and Binary mechanism, which can be mounted
to any PoS protocol and extend the ordinary PoS into
a private PoS under our security model. Moreover, the
resulting protocols ensure provable stake and transac-
tion privacy while preserving the original safety and
liveness guarantees at the same time.

* Publicly verifiable protocols that securely realize DP
distortion mechanisms. In addition to the idealized
functionalities, we construct concrete protocols that se-
curely realize the them. To the best of our knowledge,
the protocols are the first attempts to provide publicly
verifiable DP mechanisms over continual observations.

* Case study with real-world blockchains We conduct
case studies on Ethereum 2.0 [27] to show that the stake
distortion imbues real-world blockchains with reason-
able stake privacy while retaining the original safety
and liveness. We also compare the methods and exam-
ine how they differ in ensuring these properties.

e Prototype protocol and efficiency evaluation. We im-
plement prototype stake distortion protocols and eval-
uate their efficiencies. The result indicates evaluating
stake distortions adds small overheads to blockchain
protocols (i.e. less than 13% of Zcash [51]]’s protocol).
Moreover, the distortion occurs over certain intervals,
which causes the amortized cost to be even smaller.

The paper is structured as follows: Section [2] covers
background, SectionE] addresses stake inference attacks,
Sections [4| and [5| present private PoS desiderata and our
privacy model, while Sections|6][7] and8|detail our private
PoS design, case studies, and evaluations.

2 Background

Private ledger. We now examine the private ledger func-
tionality (@]), GpL, considered by this work, which is
adapted from earlier UC formulations [39] 43] of private
ledgers. Given its complexity, we outline the function-
ality concisely, suitable for technical dialogues. For the
extended discussions, please refer to our full version [S7].

—| Functionality 2.1: Gp|

The functionality Gp| manages a general ledger state,
state; a local state state; (a prefix of state) for every
party P;; a buffer of unconfirmed transactions, buffer;
and a sequence of honest inputs 7.

Upon receiving any input / from party P;, record
Iy «— Iyl|(1, P;,t1),if I is not SUBMIT command, then
evaluate the following:

(a) (Add Transaction). If I is (SUBMIT,sid,tx), and
tx is valid. Add tx to buffer, and update Iy =
Iy||(1,blind(tx),r) with the blinded transaction,
i.e. it hides the sender, recipient, and amount of tx

(b) (Read State). Return the blinded version of P;’s
local state, blind(state;), with all non-P; transac-
tions replaced by blind ones. If P; is corrupted,
send (blind(state;), Iy, Lkg) to the adversary.

(¢) (Extend chain). If I is (MAINTAIN_LEDGER,sid),
then perform the ledger maintenance [40, |19, 3]
to add valid transactions in buffer to state.

In line with prior formulations [39, 43], we let the
adversary know when corrupted party transactions are
confirmed. Thus, in blind(state;), only non-P; transac-
tions are replaced with blind ones. In addition, Gp|_ is also
parameterized with a leakage profile Lkg, revealing block
proposer (the party who maintains the ledger) identities
perround. Itis noteworthy that Kohlweiss et al. [43]] theo-
retically demonstrated the nonexistence of private ledgers
without leaking block proposer identities (even in pres-
ence of anonymous broadcast channels). We stress that

1578 32nd USENIX Security Symposium

USENIX Association

Lkg is indeed protocol-specific which especially depends
on how the protocol elects the block proposer. However,
in PoS blockchains, block proposers are typically chosen
through a “private lottery” [29]], where the odds of a party
winning ledger maintenance eligibility is proportional to
their stake. Hence, one may nevertheless formulate Lkg
as a function over each party’s stake.

Definition 2.1. Protocol] is said to be a private ledger
with leakage Lkg if it UC-realizes [l15|] Gp\ in the presence
of a p.p.t. adversary.

Private ledger properties. Following the ledger prop-
erties discussed in previous works [40l [19] 39, 43]], we
formulate important properties considered by this work.

Definition 2.2 (Private ledger properties). Let [] to be a
private ledger protocol executed by a set of parties. We
consider the following properties hold when f fraction of
the parties is malicious.

o Safety: No two honest users disagree on confirmed
transactions (i.e., transactions appended to state).

¢ (z,t)-Liveness: Any valid transaction that is input
to at least an honest z < (1-f) fraction of the total
parties, will be appended to state within t time steps.

Consistent with [[17, 14} 145} 159], we consider at least
% fraction of the total stake is owned by the honest par-
ties, and correspondingly f < % is interpreted as mali-
cious corrupted stake fraction. Moreover, for various
reasons, the properties in Definition [2.2|may be ensured
in a probabilistic manner. For example, Algorand [17]
and Ouroboros [40] use randomness for efficiency thus
ensures safety or liveness only with high probability.

Privacy tradeoffs and attacks against PoS. Kohlweiss
et al. [43]] demonstrated that it is theoretically impossi-
ble to have a private ledger ensuring liveness without
revealing the block proposer’s identity. Moreover, recog-
nizing block proposers over time reveals the frequency at
which parties take on the block proposer role. In PoS
blockchains, such frequency correlates with a party’s
stake, potentially leading to stake privacy loss and al-
lowing attackers to deduce an individual’s stake. For
example, Kohlweiss et al. [43|] examined the Reverse
Tagging Attack (RTA), enabling attackers to assess if a
party’s stake surpasses a specified threshold. RTA’s idea
involves creating input disparities between a target and
other nodes, such as by delaying specific transactions.
For example, the attacker delays a self-created transac-
tion tx for a target P,, with stake f,,, and a set of corrupted
nodes with stake femp. If tx isn’t confirmed after ¢ steps,
by (z,t)-liveness, the attacker learns f,, > 1-z- femp.
The delay operation was implemented using the In-
vblock technique, first proposed in [46] and was later
used to infer Bitcoin topology [21]. Kohlweiss et al. [43]

further assessed the validity of Invblock against private
ledgers, i.e. Zcash [51]. Note that, the cost of launching
Invblock is low, as it necessitates the attacker becoming
one of the victim’s peers in the P2P network, rather than
compromising all target node peers.

Additionally, [43] also outlined a stake inference attack
(SIA) design by iteratively applying RTA with adaptive
Jfemp- The attacker starts with femp = 0 and repeats RTA,
increasing femp by % each time until the first fomp satisfies

fv = 1=z fomp, where f, = 1-z= fomp approximates f, .

Differential privacy [26]. guarantees that altering one
input data element in an algorithm or mechanism imposes
minimal impact on the output. More specifically, let D
and D’ be two databases that differ by only a single tuple,
namely neighboring databases, then:

Definition 2.3 (e-differential privacy). Given € > 0, a
randomized mechanism M is e-DP if for all pair of
neighboring databases D,D’, and any possible output
0 C Range(M), the following holds:

Pr[M(D) € o] < e“Pr[M(D’) € o]

An alternative definition, known as approximate DP or
(€,0)-DP, allows a small failure probability ¢ in addition
to the constraints in Definition[2.3| In this paper, the focus
is on e-DP, while an extended discussion that considers
the relaxed (e, §)-DP can be found in our full version [57]].

3 Stake Inference Attack

In this section, we discuss practical stake inference attacks
against PoS protocols. In general, given a target party P,
with stake f,, we consider attack strategies to adaptively
choose f, that minimizes the error |, — f|.

3.1 Issues with the SOTA Approach [43]

I-1. Restricted to deterministic protocols. Kohlweiss et
al. [43] consider rather idealized deterministic protocols,
assuming stringent liveness conditions. However, this
assumption may not align with real-world scenarios, as
most blockchains function probabilistically, with liveness
typically guaranteed at a high probability [[17, [27].

I-2. RTA: One-sided comparison only. Based on (z,7)-
liveness, tx can be confirmed even if less than z fraction of
honest parties receive it. Therefore, the s, + femp < (1-2)
conclusion may not hold when tx is confirmed within ¢
steps, potentially causing f, to be larger than f,. This
one-sided comparison limitation makes RTA-based SIA
less reliable for accurate stake inferences.

I-3. Inefficient search strategy. The linear scan strat-
egy considered by [43] requires a large number of RTA
executions, which is inherently inefficient.

USENIX Association

32nd USENIX Security Symposium

1579

The aforementioned limitations reduce the practicality
of RTA-based STA. In what follows, we focus on develop-
ing a practical SIA that is efficient, accurate, and suitable
for randomized PoS protocols.

3.2 The General Stake Inference Paradigm

In this section, we show that the problem of finding accu-
rate stake inference against probabilistic PoS blockchains
can be reduced to a variant of Noisy Search problem [37]).

Definition 3.1 (Noisy search problem). Given n coins
sorted by head probabilities (p; for the i'" coin) and a
target coin with p < p* < pp, an algorithm must find two
coinsi,i+1 satisfying a given t > O such that [p;, pi+1] in-
tersects [p* -7, p* +71], without knowing exact head prob-
abilities but being allowed to flip coins

The general reduction idea is to map stake to simu-
lated biased coins so that inferring stake values reduces
to locating search coins that is close to a target coin with
heads probability tied to f;,. Details are as follows.

Formulating liveness. To simulate stake-based biased
coins, we rely on the liveness ensured by the blockchain.
To apply to randomized protocols, we adapt the (z,1)-
Liveness definition accordingly.

Definition 3.2 (Probabilistic (z,t)-liveness). For any
transaction X that is input to z fraction of the honest
parties, the probability tx is NOT confirmed after t time
steps equals to q(1-z,t), where g(+) is a monotonically
increasing function related to 1-z.

In general, g(-) is highly related to the protocol spec-
ification. For example, assuming the probability of a
party proposing the next block is determined by a slot
function ¢(-) [29] 39} 43]] over its stake. One may ob-
tain g(1-z,¢) = (1-¢(z))" for any z,¢ > 0. Although, this
probability may differ from the theoretical one in real ex-
ecutions, i.e., due to some other configurations, such as
timeouts, transaction pool size, etc. One may assume that
as long as the protocol specification does not change, the
value of ¢(z,t) remains stable for any z and ¢. Moreover,
the actual value of ¢(-) in real executions may be not
directly computable, but one may evaluate it empirically.

Simulating ‘‘stake-based” biased coins. Given a node
(or a group of nodes) with relative stake fy, we provide
an interface for simulating a biased coin with heads prob-
ability equal to g(fy,t) for any ¢ > 0. Note there are two
types of biased coins, the search coin and the target coin,
for which the simulations are different. In simulating the
search coin, the attacker knows the pre-image fy, while
it is unknown when simulating the target coin.

To simulate a search coin, the attacker first samples a
set of corrupted nodes with total stake fy, then broadcasts
a self-created transaction, tx, to everyone, but removes tx

from the sampled nodes’ transaction pool. The attacker
waits for ¢ time steps to observe if tx is confirmed. By
Definition [3.2| the probability of tx not being confirmed
after ¢ steps is ¢ (fx,t). For the target coin, we utilize the
delay operation considered by previous works [43] 46].
Specifically, the attacker broadcasts tx to everyone but
delays it to the victim, such that tx does not reach P, for
at least ¢ time steps. Similarly, the attacker then waits to
observe if tx is confirmed after ¢ steps, where the “not
confirmed” probability equals g(f,,17).

For demonstration purposes, we consider # =1 to be
the default setting and therefore omit it. In what follows,
we use py to directly denote the heads probability of a
stake-based biased coin with pre-image fx.

Reduction. We provide an abstract algorithm for SIA by
assuming the existence of a black-box solver, ns_solver,
for the noisy search problem. Given P, with stake f,,
and n sorted stake values, the algorithm simulates cor-
responding search coins as well as the target coin then
inputs them to ns_solver along with a specified 7. Upon
receiving two coins 7,7 + 1 output from ns_solver, the
algorithm computes ¢! (p;) and, ¢~ (pi41) to obtain the
pre-images f,, and fp, then returns / ”;f L as f. Note
that, in simulating the search coins, the algorithm knows
the pre-image of each stake-based biased coin, and thus
can be obtained within constant time. Therefore,
if ns_solver requires 7'(n) times coins tosses before ter-
mination, then the running time of the SIA is dominated
by T(n) many simulated coin flips. Figure [1| shows a
diagram of the aforementioned reduction.

1
P PiPi+1

II
1 1! Outputs
pn bR T

Party P, " R Tttt " !
with stake £, 1 Ls::n__ta_ig_et__azn_! | ns_solver : : convert_oufputs::
1 ! 1 1
| Target coin p,—%)) : 1 Obtain pre- :I
. 1 1 Given 1 finds i 1 image f,,f, !
Candidates IF------1 Popi+1that : corresponds to !
'
1

1

(Fir faroees fm)_:ﬂ sim_search_coin | : intersects p, + 7
1
1

Figure 1: Reduction diagram.

3.3 Practical Stake Inference Attack

Following our reduction, we provide RdBin, a practical
SIA that combines random walk and binary search. Simi-
lar to [43], we examine a loosely dynamic scenario where
honest parties’ stakes remain stable over short periods but
change over longer durations. RdBin is parametered by
08>0, and 7 € (0,1), and is given a balanced (stake) bi-
nary tree ST with each node labeled with a stake segment
[fa>/p] € [0, f]. Specifically, the root is labeled with
[0, f], and for every internal node v with label [£, f5],
its left and right child is labeled with [fo,m] and [m, fp],
respectively, where m = L%J. Moreover, all leaf nodes
satisfy fp-fq = g. The algorithm starts with a random
walk in ST from the root, and for each round ¢ (assuming

1580 32nd USENIX Security Symposium

USENIX Association

at node v (7)), it evaluates a probabilistic stake compara-
tor, pSC, that compares f, with the pivot of v(7), say
f“;zﬁ’. If f, < % is claimed by pSC, it moves to
the left child, otherwise to the right child. RdBin halts
and outputs f «— f‘szb, if it reaches a leaf node or pSC
asserts min_diff. The details are shown in Algorithm 1]

Algorithm 1 pSC(f,, fomp, 7,6)

1: Sample a set of corrupted users P, with stake fomp

2: fori=1,2,3... do po=p1=0

3: 1, =el2, 6i:6/ei,ni:10g(l/6,~)/ri2

if 7; < 7 then assert min_diff

for j=1,..,n;do (b €{0,1})
Broadcast conflicting transactions’ txg, tx;
Delay tx to P,, and remove tx; from P,.
Pp = pp+1/n;, if tx;, is not confirmed

R AN

if |po—pi1| = 27; then
10 assert f, > femp if po > p1 else f, < fomp

TAs long as one transaction is confirmed, the other one is invalid, this
allow us to flip two biased coins at the same time.

Theorem 1. Given 6, 7 € (0,1), 7 = |q(f,)~-q(femp)l,
and T, = max(t,7.), with probability at least 1-5, pSC
outputs correctly after expected O (Tn_lzln(l /6Tm)) many

simulated coin tosses.

For each round i, the failure probability of testing coins
is at most §;, thus by union bound [32], the failure prob-
ability for the entire testing is bounded by };;6; < §. By
Hoeftding’s inequality, the probability that pSC to con-
tinue running for 7; < %T decreases exponentially in n;.
Thus the expected complexity is dominated by the com-
plexity of round i = log(m), which is consistent
with Theorem |1} We extend this to full proofs in Ap-
pendix [B.1. Overall, pSC provides accurate two-sided
comparisons with a bounded failure probability. More-
over, by setting ¢ = (log %)_1, the random walk ensures
movement towards the correct node with probability at
least 1-(log %)‘1, and by union bound, the failure prob-
ability of RdBin is bounded by a constant factor.

Theorem 2. Letn = %, 6 =0 (1/logn), p, =q(f,), and
n=max (lg~ (py £7) - £,), then RABin satisfies:

1. The running time is O(t>log (logn/7)logn).

2. With constant failure probability, RdBin outputs an
inference f,, with error | f, — f,| < max(%,n).

Note that RdBin represents only one construction un-
der our general inference paradigm, and there exist many
other designs in this space. Due to the simplicity of
RdBin and the fact that its implementation does not re-
quire extra memory, we present it as the default attack.
One may also derive certain extensions on RdBin. First, it
is possible to flip even more simulated coins at once. For
instance, one can create a set of (conflicting) transactions,

tx1,1Xo, ..., tX,,, broadcasting them all at once, but delay-
ing the arrival of each tx; to a specific target P;. This
further enables the attacker to construct a parallelized
RdBin against multiple victims. Second, as the stake is
the additive outcome of a series of transactions. It’s obvi-
ous that one can utilize RdBin to extrapolate transactions
outcome for any victim P, between any two time steps.

4 Private PoS Desiderata

We discuss requirements for achieving a private PoS by
defining two desiderata that are designed to ensure a prac-
tical protocol has rigorous and well-defined privacy.

D-1: Well-defined privacy on leakage. Any private
PoS should provide a rigorous and provable bound on
the leakage of each party’s stake and transactions. To
facilitate this we say that in addition to the standard UC
security model (Definition @, a private PoS should also
meet additional privacy definitions, i.e., Definition [5.4]
which constrains the knowledge that an adversary can
obtain regarding each party’s stake and transactions by
observing the associated leakages.

D-2. Balance privacy, safety and liveness. While safety
and liveness are traditionally ensured through a PoS pro-
tocol, introducing privacy may create tension between
these properties. For instance, one could ensure privacy
by using a consensus protocol that is completely inde-
pendent of the parties’ stake. But such a system would
not be safe, since the fundamental purpose of introducing
stake is to address safety against Sybils. Thus, given all
of safety, liveness, and privacy may not be achievable
simultaneously, we require a practical private PoS ledger
should balance between these three properties.

5 Privacy Model

5.1 Privacy Requirements

PR-1. Limited stake inference. In general, we require
that any attacker should not infer the current stake owned
by a certain party (by observing the protocol leakage)
within an additive bound . We assume that the adver-
sary knows all parties involved in the protocol, as their
participation can be easily identified, for example, when
block proposers broadcast the updated ledger states, it
inevitably indicates their involvement in the ledger main-
tenance. Hence, we do not require stronger privacy in the
form of “the existence of a party cannot be inferred”.

PR-2. Privacy with expiration. Considering that the
parties’ stake changes dynamically, stake privacy should
be ensured under continual observation [25]. Ideally, we
desire to obtain the same degree of privacy for each time
step based on all information disclosed until that time
step. However, providing such strong privacy guarantees

USENIX Association

32nd USENIX Security Symposium 1581

inherently leads to errors accumulating over time [25,124]].
In the context of PoS blockchains, this can result in a large
distorted adversarial stake potentially causing a signifi-
cant decline in safety or liveness guarantees. Therefore,
to balance between these properties, in this work, we
adopt a relaxed “privacy with expiration” model [12}138].
In this model, we aim to achieve strong privacy for par-
ties’ stake within a recent time frame while allowing the
privacy of parties’ past stake to gradually decay over time.

PR-3. Transaction privacy. We also consider transac-
tion privacy, that is, we bound the attacker’s ability to
infer the outcome of any party’s transaction. Typically,
as the stake value directly reflects the additive outcome
of transactions, achieving PR-1 and PR-2 also implies
transaction privacy if the protocol leakage is subject to
parties’ stake, i.e., no information relevant to the trans-
action outcome is disclosed to the adversary, other than
what can be obtained from the parties’ stake at each time.

Putting it all together. Combining PR-1, 2, 3, we for-
mulate our privacy requirements using Pufferfish [41]
framework, a well-known tool that translates common
privacy requirements into formal definitions [35]].

Definition 5.1 (Stake privacy requirement). Let P
{P1,P>,...,P,} denote the set of participants with S
{s‘i ,sé, ...} as the stake history for party P;, where si. is
P;’s stake at time j. We denote 0; € © as the attacker’s
belief about P;’s stake, where © is the set of all possible
adversarial beliefs. Given a private ledger with leak-
age Lkg, and €,a > 0, we require that at any time t the
Jollowing holds for all 0; € ©®, and 0 € Range(LkQ).

Pry, [s’] =x|Lkg= 0] Pry, [S’J =x] _
/ < e@l=De (1)

Prg, [s; =y|Lkg= o] Pro, [s’} = y]

where j € [1,t] and x,y € R such that Pr[s;'. =x] =0,

Pr[s’j =y] >0, and x <y < x+a. w is the privacy decay
multiplier, which is a monotonically increasing function
related to (t — j) with w(0) = 1.

As in Definition|5.1] the privacy requirement limits the
maximum Bayes factor that an attacker can learn, after
observing the leakage Lkg, regarding the stake owned
by any party at any point of time. Such a factor with
respect to the most recent stake s; is bounded by e€.
Furthermore, for any stake s; that is (f — j) time steps
away from current time, such a factor is bounded by
e®(t=7)%€ which captures the notion of privacy decay
(PR-2). Note that, Definition also addresses transac-
tion privacy (PR-3). More specifically, let tx;.;+1 as P;’s
additive transactions outcome between time j and j + 1.
Since tXj. ;41 = 5741 — 5 and by Equationm the attacker’s
posterior odds (after observing the leakage Lkg) about

tX;.j41 = x rather thantx;. ;41 =y (x <y < x+a)is at most
e@(1=J)%€ times the attacker’s prior odds.

5.2 Formal Privacy Definition

In this section, we discuss the formal privacy model con-
sidered by this work. First, we formulate the leakage
privacy following the notion of differential privacy [26].

Definition 5.2 ((«@,u)-neighbors). Let S; = {s1,...,5:}
and S; = {s/,...,s;} be the any two stake histories up
to time t. Sy and S are («,u)-neighbors if the following
holds: (i) @ >0, and u € (0,t]; (ii) 5; = s}for all j <u;
and (iii) s; < s;. <sj+aforall j>u.

Definition 5.3 ((a, €)-private leakage). Given Lkg that
depends on stake, LKg is said to be (a,€)-private, if for
any two (a,u)-neighbor stake histories Sy, and S;, any
output o C Range(Lkg), and any P;, the following holds

Pr[Lkg“D"’S'):o Sew“—“)f-Pr[Lkg“’f’sﬁ=o)

where Lkg“‘p"’sr> (resp. Lkg<P"’Sfl>) denotes the leakage
when P;’s stake history is activated by S, (resp. S}), and
w is the decay function related to t —u with w(0) = 1.

Theorem 3. [fLkg is (a, €) private (Definition|5.3), then
Lkg satisfies all privacy requirements (Definition[5.1).

We stress that DP is a special case of Pufferfish pri-
vacy [41], and applying DP on party’s stake history
ensures all privacy requirements listed in Section [5.1]
For complete proofs, interested readers can refer to Ap-
pendix [B.3. Next, we formally define the private PoS
ledger under the UC framework [[15]].

Definition 5.4 ((a, €)-private PoS ledger). A PoS ledger
protocol is said to be (a,e)-private (resp. (a,€,0)-
private), if: (i) it UC realizes [Sl] GpL with leakage Lkg in
the presence of a p.p.t. adversary A and (ii) the leakage
Lkg is (@, €)-private (resp. (a, €,8)-private).

We stress that private ledger protocols are allowed to
interact with auxiliary functionalities (hybrids), which
captured the resources that are available to parties. The
composability property [S] of UC states that if 7 interacts
with ¥ to UC realize functionality G, and n# UC realizes
¥, then substituting calls to ¥ in 7 with calls to 7#
results in a secure protocol for G in the hybrid world.
This also provides the flexibility to analyze the security
of complex protocols in a modular manner. In this paper,
we primarily focus on the ledger maintenance protocol
(i.e., the sub-protocol that UC realizes MANTAIN_LEDGER
command in Gp), as this is the main component that
leaks stake-related information [19} 29, [39].

1582 32nd USENIX Security Symposium

USENIX Association

6 Private PoS with Stake Distortion

To mitigate SIA risks, naive approaches exist. For in-
stance, one may consider each party to maintain the ledger
with the same chance, but clearly, this provides no safety
at all. Although this can be improved by letting one party
own multiple nodes, each contributing independently to
ledger maintenance, it requires a single party running the
private lottery protocol multiple times, causing signifi-
cant overhead for large stakeholders. Another option is
to disconnect or impose long delays for each party to
produce new blocks, but this severely impacts liveness.
Steered by our privacy model, we propose our private
PoS design, which not only ensures provable privacy but
also strikes a balance between safety and liveness.

6.1 Design Overview

We first provide a brief overview of the general design
pattern (Protocol|6.1) for a PoS-based ledger maintenance
protocol, from the view of a party P. This pattern is
abstracted from previous constructions [43} [29]].

—| Protocol 6.1: Ledger Maintenance, [[\

1: Get lottery inputs: (in,comin,r) < Fei
//'in obtained from Fgq is the true stake
(In our design, [+, lottery inputs are obtained
via interacting with (in,comi,, r) < %44, where in
returned by Fgq is the distorted stake)
2: Evaluate a private lottery: ret « priv_lottery(in)
3: if ret==WIN then

4: Generate zero-knowledge proof, 7, proving:
(a) the party wins the lottery with input in
(b) lottery input in is consistent with comjy.
5: Perform the ledger maintenance activities.

In general, ledger maintenance execution occurs in dis-
crete time slots, during which slot leaders are elected
through private lotteries to update ledger states. Specifi-
cally, in each round, each party P interacts with a func-
tionality s [29]] to obtain the lottery input in and par-
takes in a private lottery with winning odds tied to in. If
P wins, then she contributes to ledger maintenance along
with a zero-knowledge proof of eligibility. Typically, to
implement such a proof, other parties should also access
a hiding commitment com;, to P’s lottery input from Fg
(while in practice, such commitments can efficiently be
computed from the blockchain[39]]). However, the actual
value of in and the opening r for com;, remain exclusive
to P. In a PoS blockchain, the lottery input in returned
by Fsi is P’s true stake at the current time.

However, as mentioned before, the standard PoS de-
sign unavoidably reveals the frequency of each party’s
lottery wins, closely linked to the party’s true stake and
enabling accurate stake inferences. To mitigate this, our
design modifies how parties acquire lottery inputs while

imposing no changes to other components. Specifically,
we consider parties interacting with a new functionality,
Fsd>» Which produces a distorted stake as the lottery in-
put for each party at every time. This suggests that one
may directly derive an actual protocol under our design
from the standard one by mounting functionality Fgq,
i.e., replacing how the parties obtain private lottery in-
puts with a subroutine call to F¢q. As the input retrieval
is completely independent of the core protocol, the de-
rived protocol thus retains the security guarantees of the
original protocol [29]. Moreover, the leakage for the de-
rived protocol is no longer related to users’ true stake, but
rather tied to their distorted stake.

Theorem 4. Given protocol []y that UC-emulates
MAINTAIN.LEDGER in Gp. with Fex and Lkg =
¢ ({S'}1<i<n). replacing Feu in [Ium with Fsg yields
a protocol [that UC-emulates MAINTAIN_LEDGER
with Lkg = ¢ ({S"}1<i<n), where ¢ is a slot leader func-
tion mapping parties’ stake distribution over time to a
sequence of slot leaders, and S* and S’ denote P;’s true
and distorted (by Fsq) stake history, respectively.

We provide complete proof of Theorem W] in Ap-
pendix [B.4. As stake-related leakage occurs solely in
leader election [40, 39, [19], we consider the distorted
stake to be used exclusively for the private lottery. For
instance, to issue and validate payment transactions, one
should keep using the true stake. This further suggests
that other protocols of the standard design, i.e., the trans-
action submission and validation, undergo no alterations.
In addition, by the composability of UC, if [[- realizes
GpL through calls to Feq, and [[¢q realizes Feq, then sub-
stituting calls to Feq with subroutine calls to []g4 leads
to a secure protocol for Gp| . This enables us to explicitly
establish our design objectives as designing practical Fgq
that produces noisy stake satisfying Definition [5.3] and
devising protocols that securely realize Feq.

6.2 Differentially Private Stake Distortion

We start with two different designs of F¢q, namely, the
timer (FTimer) and the binary mechanism (¥gjn).

Timer mechanism Fjner. In general, the mechanism
periodically (every T time steps) distorts each party’s
stake with fresh Laplace noise drawn from Lap(¢). For
other times between two distortions, it reuses the noisy
stake in the previous round. The rationale for distorting
stake in a periodic manner (as opposed to distorting every
time) is twofold. First, parties’ stake generally exhibits
stability over short intervals. Insignificant stake changes
exert negligible effects on their lottery winning odds,
rendering the release of a new distorted stake each time
unwarranted. Second, distorting stake in a less frequent
manner yields a smoother privacy decay (Section [6.3),
otherwise stake privacy may drop significantly over a

USENIX Association

32nd USENIX Security Symposium

1583

short time. Note that the distorted stake can be negative
due to the symmetry of the Laplace noise. We stress that
a party with a negative stake is treated the same as no
stake, and thus the corresponding party has no chance of
winning the following private lottery.

Theorem 5. Protocol [] - mounted with Frimer IS
(@, €)-private with privacy decay w(t —u) = | 5* |.

By the theory of the the Laplace mechanism [26], the
privacy loss for all stake values within the latest 7 time
steps is bounded by €. Moreover, due to multiple releases
of the noisy stake at different times, the privacy loss of
any historical stake follows the privacy loss under k-fold
composition rules [26]. Thus, one can obtain a linear
decay function such that w(r —u) = [5*|. We defer the
complete proof of Theorem 5|in Appendix B.5.

Binary mechanism ¥gj,. We improve upon Frimer and
provide the binary (tree) mechanism, ¥gj,, which pro-
vides a smoother (logarithmic) privacy decay over time.
In general, the mechanism relies on the fact that any
party’s stake is the additive outcome of all her trans-
actions. For each party P;, the functionality internally
groups all P;’s transactions based on transaction time,
wherein the additive outcome of each group represents a
partial sum (p-sum) of P;’s current stake. Subsequently,
Fgin distorts each p-sum using Laplace noises, and for
each time, the noisy stake is obtained by aggregating a
set of noisy p-sums. Moreover, a single noisy p-sum may
be reused to derive multiple noisy stake at different times,
which further leads to less privacy loss over time.

unique_cover(t',t' + 7T)
[1,8] [1,8]
g E]

Last phase 1

Illll

Serr =t
+v[14 + ¥[5,6] + 7[7]

Noisy p-sum

Last phasel t Notsy stake
8><Tmterva|s Next phase 1 Noisy stake: tx* v

(a) Binary interval tree (b) Determine noisy p-sums

Figure 2: Example of Binary Mechanism with L = 8T

Specifically, Fgin features two distortion phases. In
phase one, Fgi, releases anew distorted stake every L > T
time steps acting as a single noisy p-sum, reused for the
next L steps. Phase two occurs between phase one dis-
tortions, with a new stake released every T time steps.
Precisely, gin employs a binary interval tree, with leaf
nodes representing time intervals of length 7 and in-
ternal nodes integrating their children’s time intervals.
Figure [2a shows an example. For every 7' time steps,
FBin identifies a set of disjoint tree nodes that uniquely
cover the interval from the last phase one distortion to
the current time. More specifically given the last phase
one distortion time ¢ and the current time j, we use the
following algorithm to cover [z, j]: (i) Set index a =1t’,

identify the sub-interval (tree node) [a,b] C [a,] en-
compassing T - 2F time steps, with T-2%*1 > |j —al; (ii)
Update a = b+ 1 and repeat step (i) until the entire interval
is covered. For better illustration, we show an example
in Figure 2b] Note that, by running the aforementioned
strategy, at most logz(%) nodes are required to uniquely
any intervals. Subsequently, ¥gi, groups transactions
based on selected nodes, computes noisy p-sums, and
aggregates them into a new noisy stake.

For any stake s, with u < ¢ (current time), the total
privacy loss of s, under ¥gjn comes from both distortion
phases. By Theorem|5] the phase one privacy loss com-
poses linearly. In phase two, the transaction outcome at
time u impacts at most logz(w) noisy p-sums,
thus leading to a logarithmic privacy decay. Combining
the two we conclude the overall privacy decay as follows.

Theorem 6. Protocol [[- mounted with Frimer is
(a, €)-private with privacy decay

w(t—u)s{LtTuJ”ng(%)’ if(t—u)>L 3)

log, (154), otherwise
Proof. Please refer to Appendix [B.6. O

6.3 Analysis of the Stake Distortion

Resilience to SIA attacks. We first analyze how SIA
errors change when stake distortion is employed. Theo-
rem [2| implies that in standard protocols where no stake
distortion is present, the SIA error can be made arbitrarily
small as long as the attacker can flip the stake-based coins
unlimited times over a long period of time (this allows the
attackers to set 6 and 7 arbitrarily small). When switch-
ing to distorted stake, SIA only finds the interval where
the distorted stake is located. At this point, the errors are
based on two factors, namely, the errors inherent in the
attack, and the errors due to the injected DP noises.

Theorem 7. Given protocol []y with SIA error Err. Ex-
tending it to | [y with Frimer and Fgin yields SIA errors in
Err+0, (¢)H and Err+0 (%\/logZ(%)), respectively.
Theorem [7| is the direct application of Chernoff
bound [36] (complete proofs in Appendix [B.7) to the
injected Laplace noises. Note that the SIA error bounds
now rely on both the attacker-selected parameters (6 and
7) and the privacy parameters (@ and €), indicating that
one may not achieve arbitrary precision in stake infer-
ences with an unlimited number of simulated coin flips.

Safety analysis. It is possible that the adversary’s stake
after distortion, say f, is larger than the pre-distortion
value f. However, as long as there is a limited number
of parties (existing protocols typically bound this by im-
posing a minimum staking amount [17} 27]], say v), the

10, is the Big O in its probability notion [22]]

1584 32nd USENIX Security Symposium

USENIX Association

bounded variance property of Laplace noise [26] enables
the derivation of a slack, i.e. by Chernoff inequalities,
that bounds the stake increment f — f with a high proba-
bility. By setting the target as f < %, and with the derived
slack, one can obtain another threshold & such that as long
as f <&, then f < £ with high probability, i.e., the safety
remains valid after stake distortion. We summarize the
safety bounds in Theorem [8 and show in Section [7] that
they are reasonable through a case study.
Theorem 8. Assuming0<p<1,T'=LHa/S logé <1,
and f = I_Ty withl <y <1 (ory> \/logz(%) xT), the
adversary’s stake after distortion, f, is less than % with a
probability of at least 1 — B under Fimer (07 FBin)-
Theorem |[8|demonstrates that for a protocol, [Ty, tol-
erating up to % malicious stake, employing stake dis-
tortion with Frimer and g, results in a modified pro-
tocol, [m+, which tolerates up to %—0 p (E‘—’S\/g), and
%—0 p (6—"5\/ % logz(%)) malicious controlled stake, re-
spectively (complete proofs in Appendix|B.8). Moreover,
Theorem [8] highlights a safety-privacy trade-off, where
weaker privacy guarantees (small € or large @) result in
smaller y, allowing for greater malicious tolerance. This
offers practitioners the flexibility to balance safety and
privacy, opting to exchange some safety for enhanced
privacy, or vice versa.

Liveness analysis. Typically, the liveness guarantee of
PoS ledgers is directly tied with the honest majority as-
sumption (same as the safety guarantee) if no changes
are made to the networking layer. For instance, by [19}
Theorem 9] and [17, Theorem 4] the liveness is ensured
for PoS protocols as long as the honest parties control
more than a certain fraction of the total stake (i.e., > %).
Note that our stake distortion does not alter the network
assumptions (i.e., a network of authenticated multicast
channels with bounded delayed [29]), and by Theorem@],
the honest majority assumption still holds after stake dis-
tortions. Therefore, without loss of generality, in what
follows we focus on the safety analysis and assume that
once safety is preserved, liveness is also retained.

Impact on individual party. The noise introduced to
each party’s stake has a distinct effect on their odds of
winning the slot leader election. Given the uniform vari-
ance of injected noise, smaller stakeholders might face
evident stake distortion or changes in their winning odds
for a single election round. Conversely, for larger stake-
holders, the change in their winning odds might not be
as prominent. Nevertheless, as the added noises possess
zero means, for long-term execution, the expected num-
ber of election wins aligns with each party’s true stake.

6.4 Stake Distortion Protocol Design

Building blocks. We build the protocols in a hybrid world
where the following auxiliary functionalities are avail-

able: (i) There exists a hiding commitment scheme [51]]
that given randomness r and message x, an algorithm
Com,.(x) commits x to com, with opening r; (ii) We
utilize pseudorandom functions [39], PRFy(x) with in-
put x and the evaluation key k, for deriving DP noises
and rely on an unpredictable random oracle, %o, to pro-
duce randomness. An instantiation of %, is the random
beacon [11]; (iii) There exists a non-interactive zero-
knowledge functionality [39], Tnék, that allows proving
of statements in an NP language £; (iv) There is a “de-
termine stake” functionality, Fgs, allows parties to ac-
cess their stake, committed stakes, and stake commitment
opening at any time. Additionally, s allows for query-
ing a list, L, containing: (a) all registered users with their
respective committed stake, and (b) each party’s noise
generation key. In practice, the aforementioned informa-
tion can be efficiently computed from the blockchain [29].

Timer protocol [[;ne- We provide the design of timer
protocol [[ymer that securely realizes Frimer. Initially, we
consider all parties agree on a global clock and each party
derives a pair of noise generation keys (Npk,Nsk) upon
joining the system. Such key pair is sampled by selecting
a random private key ngx and setting ng < PRF,, (0).
The parties manage ngk themselves, which remains un-
known to others, but np is accessible to other parties (i.e.,
through Fg). Parties can join at any time, while stake
distortion occurs every T steps, thus we restrict each new
party to wait until the next distortion schedule to acquire
the first distorted stake before it can participate in the
ledger maintenance. Protocol|6.2|shows details from the
viewpoint of party P with identifier pid.

| Protocol 6.2: Timer protocol []1imer

Upon receiving DISTORT from pid
Obtain current time j from the global clock
if j mod T ==0 then (s;,comj;,r) « Fs
(I’a, rb) A ro(j): (ZO’ZI) A PRFnSk(I’a, rb)
§jesj+ %(ln(zo) —In(z"))
Sample 7 and comg; < Com;(5;)
Get proof: m; « f}ﬁf‘m”(prove,x, W)
return §; broadcast (pid,coms,,7;)
else §;=3;_; return5;
Upon receiving (GET_COMM, pid)
9: Get (coms;, ;) for pid from the network.
10: if accept « 7 i (verify, ;) then
11: Record comys; for pid

A A T o e

In order to distort the stake, [[timer first acquires nec-
essary information from Fgy (or from the blockchain)
and obtains the current public randomness from .
The protocol then evaluates a PRF to derive private ran-
dom seed 20, 7!, which are subsequently converted into

2We treat random seeds as fixed-point values in (0, 1).

USENIX Association

32nd USENIX Security Symposium

1585

an instance of Laplace noise drawn from Lap(<) [S0]. —

Protocol 6.3: Binary protocol [[g;,
Given that ng, remains concealed from other parties, no
entity can gain knowledge about the derived DP noise.
Furthermore, provided the output of %, is unpredictable, Upon receiving DISTORT from pid
the adversary is unable to adaptively select Ngx to max- 1: Obtain current time j from the global clock.
imize the derived DP noise. Lastly, [Ttimer returns the 2: if j mod L =0 then
distorted stake to party P and broadcasts a hiding com- 3 Follow []rimer steps 2-10, and cache §; as tx*
mitment to the distorted stake, accompanied by a zero- 4: if t mod T = 0, where ¢ < j mod L then
knowledge proof demonstrating that the committed stake 5. (sj,€0my,.r), (5j-7,C0My, ;. 1) — Fae
has been accurately distorted to all other parties. Next, 6: (ra,rb) « Fro(j), (2°,z') « PRFp (ra,rb)
we define the statements by their corresponding NP lan- 7: Express in binary form: 7 = 3, 2% - bin (1)
guages: A tuple (X, W) € Liimer if all the following holds: 8: ¢ «— min{k : bing (z) # 0}
« Instance: X = (€, @, Npk, COMy;,COMy, 1a, rb) 90 X[l] « Do tX[k]+(s;—sj-7)
* Witness: w = (s;,5;,Nsk, 2%, 21,7, 7) 10 for k < ¢ override tx[k] =tx[k] =0
» Correct noise generation key: PRF, (0) = npk 11 tx[£] = tx[€] + %(ln(zoz—ln(zl))
» Correct randomness: PRFy, (ra,rb) = (z,z!) 120 57— X+ Xkping (1)=1 XLK];
« Correct stake distortion: §; = s;+ < (In(z°) - In(z")) 13 Sample 7 and coms; < Com;(§;)
¢ 3r,7s.t. comy, = Com, (s;) and coms, = Com;(3;) 14: Sample ':5 and comyy, « Com,, (t~x[€])
: : 15: Sample 7, and comg,, < Comy, (ix[£])
For any other times between two distortion schedules, 16: Get proof: 71; « F. 5" (prove, x, w)
the protocol simply reuses the distorted stake from the 17: return 3,
last distortion round. Furthermore, when a party receives 18: broadcast (pid, comy, , COMy, ,COMg .,)
?1 broadcast. stakeﬁcommitr'nent from. o'thers, the proto'col 19: else §;=35;_; return §;
interacts Wlth F ok to.Verlfy the Valldlt}f of 7, accepting Upon receiving (GET_COMM, pid)
the commitment only if 7 is deemed valid. 20: Get coms, , oMy, comg, ,; for pid
Binary protocol []g;,. To implement [[g;, that securely 21: Override Vi<, COMy, = comg, = Com(0) for pid
realizes Fgin, we utilize the same strategy as [[timer tO 22: if accept « ¥ fzi'” (verify,7r;) then
obtain randomness and transform DP noises. The tricky 23: Record comy, ,comy,,, and comg, , for pid

part is dealing with the DP interval tree and deriving noisy
p-sums. In our design, we use the binary representation
of time to implicitly track the tree structure [[16], which
simplifies the NP statements for generating proofs. The
details are provided in Protocol 6.3

Phase one distortion in our design follows the same im-
plementation as [[timer, €Xcept the noisy stake is cached
in tx*. In phase two, the protocol derives a new noisy
p-sum every T time steps based on the current time’s bi-
nary representation (6.3;5-11). []gj, then aggregates a
subset of previously computed (cached) noisy p-sums to
determine the noisy stake (6.3}12). Note that, [[yjmer can
safely recycle a subset of “old” p-sums (6.3{10), requir-
ing it to track at most log(%) noisy p-sums. Similarly,
[1gin generates proof for validating the stake distortion
process, with NP statements defined as follows: A tuple
(x,w) € Ly if all the following holds:
* x = (€,@, gk, ra, rb,coms;, coms; ,.,COM;;, COMiy, COM;)
* W= (Sj,Sj_T,gj,tX,t&, nsk,zo,zl,r,f,7)
* PRFy,, (0) = no and PRF, (ra,rb) = (z%,z")

Observe that [[g;, requires verifying nodes to cache ad-
ditional objects per party, i.e., the commitments to tx, £x.
However, one needs to keep track of at most log(%) p-
sums(commitments). Hence, the storage blowup in con-
trast to [[imer is bounded by 0(log(%)).

Theorem 9. [[timer and [1gin UC emulates [15] FTimer,
and Fgin, respectively, in the (Fsi,Fro 7 iﬁzk)-hybrid
world with the presence of a p.p.t. adversary.

Proof. Please refer to the Appendix |A O

7 Case Study with Real-World System

In this section, we perform case studies on our stake
distortion protocols using a real-world PoS blockchain,
Ethereum 2.0 [27]], and examine its impact on original
guarantees. We explore the practicality of stake distortion
by addressing several key questions.

e Q1. Will the ledger still provide safety guarantees after

* Correct new p-sum: rx[{] = Zizotx[k] +5j—8j-T

Noisy p-sum: x[£] « tx[€] + £(In(z°) - In(z"))
Correct noisy stake: §; < tX" + X t.pin, (1)=1 tx[k]

3 opening r, 7 s.t. opens coms;,comg; to s;,5;.

Vi (3 ri.Fi s.t. opens CoMyy, ,comg,, to tx[k],tx[k])

adopting stake distortion? What privacy level can be
achieved given certain safety requirements?

* Q2. How does Fimer compare to Fgjn in privacy decay?
How one can benefit from a smoother decay?

* Q3. Does stake distortion mitigate the SIA risks?

1586

32nd USENIX Security Symposium

USENIX Association

Total stake, S 13,488,174 Eth
Minimum stake, v 32 Eth
Slot time (delay) 12 seconds
Distortion interval, T’ 4 days
Fgin Phase 1 interval, L 45xT

Table 1: Ethereum 2.0 parameters setup

Setup. We implement simulations based on Ethereum
2.0’s phase O specification [27] and utilize key statis-
tics from the beacon chain [28]. With an average daily
transaction volume per unique address below 0.25, it’s
reasonable to assume that Ethereum 2.0 parties’ stakes
remain stable over a 4-day period. Consequently, we set
the distortion schedule T = 4 days and Fgjn’s phase 1 in-
terval L =457 (6 months). Table|l|summarizes the setup.

7.1 Safety Guarantee

We plot safety curves in Figure 4 based on Theorem [3|
with § = 107° (safety failure probability)E and assume
f< % as the general safety requirement. Given a (resp.
€), the additive bound for distinguishing two stake values,
the curves imply the minimum privacy loss, € (resp. the
maximum «), achievable at certain safety levels. For each
mechanism, we plot three curves, which correspond 20%,
25%, and 30% of malicious tolerance, respectively.

Parameter a
=
Parameter a
.
\
\
\

1
3

0.0 05 1.0 15 2.0 0.0 05 1.0 15 2.0
Privacy parameter Privacy parameter €

(@) Timer, FTimer (b) Binary, Fgin
Figure 3: Safety upper bounds

Observation-1. Both mechanisms provide reasonable
stake privacy while retaining safety at the same time.
In general, even with a relatively small € and a large
malicious threshold, i.e., € =0.5}* and f = 30%, a can
be set up to 175 and 86, respectively, for Frimer and Fgin.
By the latest blockchain data [20], only less than 0.05%
of accounts have more than 80 Eth, which suggests that
privacy is ensured for at least 99.95% of total users.

Observation-2. There is a trade-off between privacy
and safety guarantees. Apparently, one can achieve a
larger @ or a smaller privacy loss when considering a rel-
atively weaker safety (smaller malicious tolerance). This
suggests a trade-off between privacy and safety which
provide flexibility for practitioners to better configure the
protocols. For example, if there is a slashing mecha-
nism [2] to help reduce the malicious fraction, one may
choose to gain better privacy by trading off some safety.

3Similar to a practical bound chosen by Algorand [17]]
4In comparison with Google community mobility report which uses
€ =2.4 per user per day, € =0.5 is quite small.

H
°_
b

. o — Ti
& Timer 8 .30 = Timer S
—& Binary < —4— Binary

s
ol
o
N
5
"
[
»
»
»
Bl

Privacy loss €
o
<
>
'S

22 3
T $0.10 7
e 20.05{ ¢

MR 14d 30d 90d 180d ly MR 14d 30d 90d 180d 1y
Privacy decay Privacy decay

(a) Privacy loss vs. Time (b) Safety vs. privacy decay

Figure 4: Safety upper bounds

Given that the two mechanisms have different privacy
decay, to better study them, we compare Frimer and Fgin
under different privacy decay goals, i.e., privacy loss for
the most recent (MR) time, the last 14, 30, 90, 180 and
365 days. First, we bound the malicious tolerance, i.e.
20%, and set @ =200 then plot their privacy loss over
time in Figure 4a Next, we compare them in a different
angle in Figure [4b| where we keep the configurations of
FTimer Unchanged but modify ¥gi, to enforce it reaches
the same privacy loss as FTimer under the different privacy
decay goals. We then compare the malicious tolerance
(safety) ensured by two mechanisms.

Observation-3. For short-term privacy, ¥7imer outper-
forms ¥gj,, while the result is reversed when focusing
on long-term privacy. As shown in Figure 4a, Frimer
exhibits lower short-term privacy loss than ¥gj, when
fixing the safety level. This occurs since Frimer adds a
single instance of DP noise, leading to smaller adver-
sary stake growth and enabling the configuration under
a smaller e. However, due to logarithmic privacy de-
cay, Fgin offers better long-term privacy loss even with a
larger €. Figure 4b|shows that if one is more concerned
about long-term privacy, it is better to employ Fgi, as it
ensures a larger malicious tolerance, which up to 1.63x
that of FTimer. Overall, this observation provides prac-
titioners with a sense of how they would benefit from a
stake distortion that has a smoother privacy decay.

7.2 Safety Simulation

To further validate the safety bounds we conduct stake
distortion simulations. Specifically, we simulate a set of
stakeholders and assume the attacker corrupts different
fractions of them. Subsequently, we configure €, « as
per Theorem [§] and run stake distortion over each party.
Finally, we investigate whether the corrupted stake af-
ter distortion, f , exceeds 1/3. Additionally, to max out
the attacker’s stake increment, we consider each individ-
ual stakeholder to hold a minimum staking, and thus the
number of parties is maxed out as n = % Table [2| sum-
marizes the result over 10K repeated runs.

Observation-4. With proper setups as per the safety
bounds, f < % with overwhelming probability. Ac-
cording to Table [2| the corrupted stake, f, after distor-
tion for all testing groups does not exceed 0.3314, which

USENIX Association

32nd USENIX Security Symposium

1587

Timer Frimer Binary 7gin
£ (%) (e, @) max f (e,@) max f
10% | (0.5, 1214) | 0.33082 | (0.5,552) | 0.33078
15% | (0.5,963) | 0.32952 | (0.5,475) | 0.32869
20% (0.5,701) | 0.33055 | (0.5,346) | 0.33132
25% (0.5,438) | 0.32858 | (0.5,216) | 0.32336
30% | (0.5,175) | 0.32309 | (0.5,86) | 0.32626

Table 2: Simulation of stake distortion

is consistent with the primary safety requirement, i.e.,
f < 1/3. Consider that stake distortions occur every 4
days, thus the 10K repeated runs can actually simulate a
109-year operation of the blockchain coupled with stake
distortion. The simulation implies in those 109 years of
operation, there has not been even one violation of the
safety requirement. In fact, as 3 is set to 1077, the proba-
bility of even one violation happens should smaller than
10~ (taking union bound). In general, we conclude that
the simulations validate our safety upper bounds.

7.3 Resilience to SIA

We investigate whether stake distortion helps mitigate
SIA risk, which is achieved by initiating RdBin on sim-
ulated Ethereum 2.0’s ledger maintenance protocol with
and without stake distortion, then compare their relative
inference errors. Moreover, we are also interested in the
SIA resistance of FTimer and Fgin under different safety
requirements. To address these, we simulate the protocol
for 1.29 x 10° steps (6 months in the real world) and issue
one RdBin attack every 4 days. By default, we configure
RdBin with § = v, 7 =0.01, and run the attack against
a target with random stake f, € (0, f). When simulat-
ing Ethereum 2.0 with stake distortion, we assume the
protocol tolerates different malicious fractions, i.e., from
10% to 30%, configure related parameters accordingly,
and run attacks against each group independently. We
report the relative inference errors of RdBin in Figure[5]

= 06 7.6x Non-private
© 0.5 : = Timer

2

@ 0.4 ,7- 6.2 I Binary

205 (08 i s
| 31,

B \ <
252 N O

10% 15% 20% 25% 30%

L

Malicious tolerance %

Figure 5: Privacy loss vs. Time

Observation-5. Both 77imer and 7gi, mitigate SIA risk,
and the simulation result suggests a trade-off between
safety guarantees and SIA resistance. According to
Figure[5| when stake distortion is employed, the relative
SIA inference error is at least twice that of the standard
protocol and can reach up to 7.8%. This further implies
the practicability of stake distortion in mitigating SIA
risks. Moreover, the relative error of both Frimer and Fgin
decreases when the malicious tolerance increases, i.e., the

Timer Binary
Setup time 19.64 s 20.63 s
Setup Proving key size 38 Mb 38 Mb
Verification key size 4 Kb 4 Kb
Prove Proof time 7.07s 7325
Proof size 4 Kb 4 Kb
Verify Verification time 11 ms 10ms
Time 1.33s 1.89s
Other Storage 272Mb 6221 Mb

Table 3: Evaluation result for the prototype protocol

weaker the safety demanded, the stronger the resistance
to SIA obtained, and vice versa.

7.4 Key Takeaways

The first two observations address Q1, where we learn
that our mechanisms provide reasonable privacy while
preserving safety (liveness). Moreover, we are aware of a
privacy-safety tradeoff in our mechanisms. Observation
3 compares the two mechanisms and addresses Q2, from
which we learn that one should choose Frimer When fo-
cusing on short-term privacy goals, while Fgj is a better
option for long-term goals. The safety simulations (Sec-
tion validate our theoretical bounds while the SIA
experiments (Section |7_31) address Q3 and demonstrate
our mechanisms indeed mitigate SIA risks.

8 Performance Evaluation

Implementation and configuration. We utilize the
same method as [51]] to implement PRF and Com us-
ing SHA256 compression functions. Fractional numbers
are stored as 32-bit fixed-point values with a scaling factor
of 2'6, and we consider the public randomness as 16-bit
unsigned fixed-point values with a scaling factor of 21,
ensuring the randomness is spread across (0,1). We use
the Remez algorithm [53]] to create approximated polyno-
mials for the In(x) circuit. Alternative techniques [48,52]
and engineering optimizations exist for implementing the
In(x) circuit, potentially improving approximation accu-
racy or computational efficiency. Developing optimized
protocols is not the primary focus of this work, but may be
of independent interest. Nevertheless, even without these
optimizations, our evaluations still show a reasonable
overhead associated with the stake distortion protocols.
To implement the NIZK proof, we utilize zk-SNARK li-
brary Zokrates-0.8.5 (Rust implementation) [1] under the
proving scheme Groth16 [34]. In addition, we assume
the existence of the parties’ stake commitments and their
integrity have been verified, as in practice such commit-
ments can be effectively obtained and verified [51]] from
the blockchain. The protocols are evaluated over ma-
chines with 2.6GHz CPU and 16Gb RAM.

Evaluation result. Table [3| summarizes the evaluation
results, apparently, the performance overhead is domi-
nated by the costs associated with the NIZK proof. Nev-
ertheless, the adoption of our protocol may not impose

1588 32nd USENIX Security Symposium

USENIX Association

an excessive performance overhead, for example, Zcash
requires more than 120 seconds of proof time (without
optimization) per block [31]. Thus, adopting our proto-
cols only increase the proof overhead by at most 5.8%.
Furthermore, since stake distortion doesn’t transpire at
every time step, the amortized overhead may be reduced.
For example, assuming stake distortion occurs every 4
days, the amortized overhead in the Zcash case could be
less than 0.002%. Note that stake distortion proofs can
be combined with other ledger-specified proofs, enabling
the verifier to validate all SNARK arguments via a single
verification. For the storage overhead, both protocols re-
quire parties to cache additional data objects, i.e., noisy
stake, commitments, etc. However, the storage volume
does not exceed 63 Mb, which represents a slight over-
head compared to storing the full blockchain data (i.e.,
895 Gb for Ethereum [28])).

9 Discussion

Mitigating privacy decay. One can create a stake distor-
tion strategy without cumulative privacy loss over time.
For example, for every T time steps, the party generates a
noisy p-sum representing all transaction outcomes from
the last T steps, and the noisy stake is derived by summing
up all released noisy p-sums. This approach guarantees
that distortion takes place across distinct transactions,
and the extraction of the noisy stake is simply a post-
processing step involving noisy p-sums. As per parallel
composition and post-processing theorems [26]] of DP, the
total privacy loss is bounded by €. Although privacy loss
doesn’t accumulate, injected noise variance does, lead-
ing to reduced safety guarantees over time, i.e., the upper
bound of adversarial stake increment increases. Another
alternative is adopting the relaxed (e,6)-DP guarantee,
allowing unbounded privacy loss with a small failure
probability 6. This allows injecting Gaussian noises (of-
fer tighter composition bounds than Laplace noises) that
optimize privacy decay.

Permissionless clock synchronization. This work con-
siders the globally synchronized setting in line with
SOTA designs [40, [19} 39] such that all parties can re-
trieve time from a global clock (functionality). We say
that one can also adopt permissionless clock synchroniza-
tion protocols [4], i.e. if some (honest) party believes the
global time as j, all parties believe it as j + 9., with a
small d., if a global clock is not accessible. Although,
there might be small chances for a party that fails the slot
leader election due to the use of outdated noisy stake, i.e.
within & right after a (globally defined) distortion sched-
ule. Since d.. is typically small [4] and the stake distortion
interval T is relatively large, thus for the majority of time
slots, all parties agree on the most recent distorted stake.
While integrating our design with permissionless clock

synchronization is not this paper’s focus, it is considered
an important future enhancement.

10 Related Works

Proof-of-Stake private ledgers. The first PoS design
appears in [42]. Followed by this, there has been a series
of efforts [9] [17, (10} 140, [19] 31 311 27, IS8, 14} 130} [60]
on formulating PoS models as well as providing proto-
cols with provable security guarantees. Recently, several
works have been proposed to address the stake and trans-
action privacy of PoS ledgers, which include Ouroborous
Crypsinous [39], Ganesh et al. [29], and Baldimtsi et
al. [6]. However, the stake privacy is typically ensured
at the cost of assuming complete anonymity of parties’
identity [29, [39]. Unfortunately, [43]] demonstrates the
existence of a tension between liveness and anonymity.
In this work, we provide the first-of-its-kind solution that
provides provable stake privacy for PoS private ledgers
in a manner that does not assume anonymity.

Stake inference attacks. Both [|39] and [29] state that the
parties’ stake information may be revealed with the execu-
tion of the PoS protocols, no specific attacks for inferring
stake have been proposed until the publication of [43].
However, their proposed attack considers only determin-
istic protocols and requires linear time complexity. In
this work, we provide practical stake inference attack that
is proven to be valid against randomized protocols with
probabilistic liveness. Moreover, our attack only yields
sublinear time complexity.

Differential privacy. Differential privacy (DP) intro-
duced by Dwork et.al. [26] is currently the “de-facto”
standard for achieving data privacy. Since 2010, cou-
ple of efforts have been proposed to address DP under
dynamic setting [25) 24} [16} 138} |55, 156]. Among these
works, [12} [38]] employs a relaxed privacy with decay
model to ensure better utility, which is similar to our for-
mulation. Nevertheless, as far as we know, we are the
first to incorporate DP with private PoS blockchains.

11 Conclusion

In this paper, we present the first practical stake inference
attack against randomized PoS protocols. The existence
of such an attack further implies the inadequacy of SOTA
PoS designs in achieving stake and transaction privacy.
To formulate a rigorous privacy definition, we incorporate
DP with the standard UC definition of private ledgers.
Guided by the derived privacy model, we design DP stake
distortion protocols that assist existing PoS protocols in
resolving stake and transaction privacy.

Acknowledgments

This paper is supported in part by NSF Awards 2016393
and 2237814.

USENIX Association

32nd USENIX Security Symposium

1589

References

[1]

[2]

[3]

[4]

[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

A toolbox for zksnarks on ethereum. https://github.com/
Zokrates/ZoKrates, 2022.

AumAassoN, J.-P., KoLecov, D., aND StaTtHOPOULOU, E. Se-
curity review of ethereum beacon clients. arXiv preprint
arXiv:2109.11677 (2021).

BADERTSCHER, C., GaZ1, P., Kiayias, A., RUSSELL, A., AND ZIKAS,
V. Ouroboros genesis: Composable proof-of-stake blockchains
with dynamic availability. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security
(2018), pp. 913-930.

BADERTSCHER, C., Gazi, P., Kiayias, A., RUSSELL, A., AND ZIKAS,
V. Ouroboros chronos: Permissionless clock synchronization via
proof-of-stake. Cryptology ePrint Archive (2019).

BADERTSCHER, C., MAURER, U., TscHuDI, D., AND ZikAs, V. Bit-
coin as a transaction ledger: A composable treatment. In Annual
international cryptology conference (2017), Springer, pp. 324—
356.

BavLpimtst, F., MADATHIL, V., SCAFURO, A., AND ZHOU, L. Anony-
mous lottery in the proof-of-stake setting. In 2020 IEEE 33rd
Computer Security Foundations Symposium (CSF) (2020), IEEE,
pp- 318-333.

BELLARE, M. Lectures on nizks: A concrete security treatment.

Bentov, 1., GaBizoN, A., AND MizraHi, A. Cryptocurrencies
without proof of work. In International conference on financial
cryptography and data security (2016), Springer, pp. 142-157.

Bentov, 1., LEg, C., M1zrAHI, A., AND ROSENFELD, M. Proof of
activity: Extending bitcoin’s proof of work via proof of stake [ex-
tended abstract] y. ACM SIGMETRICS Performance Evaluation
Review 42, 3 (2014), 34-37.

BenTOV, L, Pass, R., aND SHi, E. Snow white: Provably secure
proofs of stake. JACR Cryptol. ePrint Arch. 2016, 919 (2016).

BHAT, A., KATE, A., NAaYAK, K., AND SHRESTHA, N. Optrand: Op-
timistically responsive distributed random beacons. Cryptology
ePrint Archive (2022).

Bovror, J., Fawaz, N., MUTHUKRISHNAN, S., NIKOLOV, A., AND
TaFr, N. Private decayed predicate sums on streams. In Proceed-
ings of the 16th International Conference on Database Theory
(2013), pp. 284-295.

Bowe, S., CHiEsA, A., GREEN, M., MiERrs, 1., MisHrA, P., AND
Wu, H. Z: Enabling decentralized private computation. In 2020
IEEE Symposium on Security and Privacy (2019), pp. 947-964.

BucumaN, E. Tendermint: Byzantine fault tolerance in the age of
blockchains. PhD thesis, University of Guelph, 2016.

CanerTl, R. Universally composable security: A new paradigm
for cryptographic protocols. In Proceedings 42nd IEEE Sympo-
sium on Foundations of Computer Science (2001), IEEE.

Cuan, H., SHi, E., Song, D., ET AL. Private and continual re-
lease of statistics. In International Colloquium on Automata,
Languages, and Programming (2010), Springer, pp. 405-417.

CHEN, J., AND MicaLl, S.
arXiv:1607.01341 (2016).

Croman, K., DEckER, C., EvaL, 1., GENCER, A. E., JUELs, A.,
KosBa, A., MILLER, A., SAXENA, P., Sui, E., GUN SIRER, E.,
ET AL. On scaling decentralized blockchains. In International
conference on financial cryptography and data security (2016),
Springer, pp. 106-125.

Algorand. arXiv preprint

Davip, B., Gazi, P., Kiayias, A., aND RusseLL, A. Ouroboros
praos: An adaptively-secure, semi-synchronous proof-of-stake
blockchain. In Annual Conference on the Theory and Applications
of Cryptographic Techniques (2018), Springer, pp. 66-98.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

DAy, A., MEDVEDEY, E., NIRMAL, A., AND PrICE, W. Introducing
six new cryptocurrencies in bigquery public datasets—and how
to analyze them. Google Cloud (2021).

DELGADO-SEGURA, S., BaksHi, S., PErez-SoLA, C., LitToN, J.,
PacHuLskl1, A., MILLER, A., AND BHATTACHARIEE, B. Txprobe:
Discovering bitcoin’s network topology using orphan transac-
tions. In International Conference on Financial Cryptography
and Data Security (2019), Springer, pp. 550-566.

Dobce, Y., anp Cox, D. The Oxford dictionary of statistical
terms. Oxford University Press, USA, 2003.

Douckur, J. R. The sybil attack. In International workshop on
peer-to-peer systems (2002), Springer, pp. 251-260.

Dwork, C. Differential privacy in new settings. In Proceed-
ings of the twenty-first annual ACM-SIAM symposium on Discrete
Algorithms (2010), SIAM, pp. 174-183.

Dwogrk, C., Naor, M., Pitassi, T., AND RotHBLUM, G. N. Differ-
ential privacy under continual observation. In Proceedings of the
forty-second ACM symposium on Theory of computing (2010),
pp. 715-724.

Dwork, C., RotH, A., ET AL. The algorithmic foundations of
differential privacy. Found. Trends Theor. Comput. Sci. 9, 3-4
(2014), 211-407.

ErnHerum. Etherum 2.0 phse O becaon chain. https:
//github.com/ethereum/consensus-specs/blob/dev/
specs/phase®/beacon-chain.md, 2021.

Etnscan. Ethscan Statistics. https://ethscan.org/, 2022.

GaNEsH, C., OrLaNDI, C., AND TscHubi, D. Proof-of-stake pro-
tocols for privacy-aware blockchains. In Annual International
Conference on the Theory and Applications of Cryptographic
Techniques (2019), Springer, pp. 690-719.

Gao, Y., anD NoBUHARA, H. A proof of stake sharding pro-
tocol for scalable blockchains. Proceedings of the Asia-Pacific
Advanced Network 44, 1 (2017), 13-16.

Gaz1, P, Kiayias, A., AND ZINDROS, D. Proof-of-stake sidechains.
In 2019 IEEE Symposium on Security and Privacy (SP) (2019),
IEEE, pp. 139-156.

GRINSTEAD, C. M., AND SNELL, J. L. Introduction to probability.
American Mathematical Soc., 1997.

GrortH, J. Simulation-sound nizk proofs for a practical language
and constant size group signatures. In International Conference
on the Theory and Application of Cryptology and Information
Security (2006), Springer, pp. 444-459.

GrotH, J. On the size of pairing-based non-interactive argu-
ments. In Advances in Cryptology—-EUROCRYPT 2016: 35th
Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016,
Proceedings, Part I 35 (2016), Springer, pp. 305-326.

HANEY, S., MACHANAVAJJHALA, A., ABowD, J. M., GRAHAM, M.,
KurzBacH, M., AND VILHUBER, L. Utility cost of formal privacy
for releasing national employer-employee statistics. In Proceed-
ings of the 2017 ACM International Conference on Management
of Data (2017), pp. 1339-1354.

HeLLman, M., aND Raviy, J. Probability of error, equivocation,
and the chernoff bound. IEEE Transactions on Information Theory
16, 4 (1970), 368-372.

Karp, R. M., anD KLEINBERG, R. Noisy binary search and its
applications. In Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms (2007), pp. 881-890.

KEeLLARIs, G., PApaDoOPOULOS, S., X140, X., AND PapPaDIAS, D.
Differentially private event sequences over infinite streams. Pro-
ceedings of the VLDB Endowment 7, 12 (2014), 1155-1166.

1590 32nd USENIX Security Symposium

USENIX Association

https://github.com/Zokrates/ZoKrates
https://github.com/Zokrates/ZoKrates
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md
https://ethscan.org/

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

[50]
[51]

[52]

[53]
[54]

[55]

[56]

(571

(58]

[59]

[60]

KerBER, T., Kiavias, A., KoHLweiss, M., aND Zikas, V.
Ouroboros crypsinous: Privacy-preserving proof-of-stake. In
2019 IEEE Symposium on Security and Privacy (SP) (2019),
IEEE, pp. 157-174.

Kiayias, A., RusseLL, A., Davip, B., aNnp OrLiyNykov, R.
Ouroboros: A provably secure proof-of-stake blockchain pro-
tocol. In Annual international cryptology conference (2017),
Springer, pp. 357-388.

Kirer, D., AND MACHANAVAIIHALA, A. Pufferfish: A frame-
work for mathematical privacy definitions. ACM Transactions on
Database Systems (TODS) 39, 1 (2014), 1-36.

KiNG, S., AND NapAL, S. Ppcoin: Peer-to-peer crypto-currency
with proof-of-stake. self-published paper, August 19, 1 (2012).

KoHLwEIss, M., MADATHIL, V., Navak, K., AND ScaFuro, A. On
the anonymity guarantees of anonymous proof-of-stake protocols.
In 2021 IEEE Symposium on Security and Privacy (SP) (2021),
IEEE, pp. 1818-1833.

KRrAFFT, O., AND ScumiTz, N. A note on hoeffding’s inequality.
Journal of the American Statistical Association 64, 327 (1969),
907-912.

Mazieres, D. The stellar consensus: A federated model for
internet-level consensus. Stellar Development Foundation (2015).

MILLER, A., LitTON, J., PACcHULSKI, A., Gupta, N., LEVIN, D.,
SPRING, N., AND BHATTACHARIEE, B. Discovering bitcoin’s public
topology and influential nodes. et al (2015).

NakAMoTO, S., AND Bircoin, A. A peer-to-peer electronic cash
system. Bitcoin.—URL: https://bitcoin. org/bitcoin. pdf 4 (2008).

NARAYAN, A., FELDMAN, A., PapapiMITRIOU, A., AND HAE-
BERLEN, A. Verifiable differential privacy. In Proceedings of
the European Conference on Computer Systems (2015), pp. 1-14.

NOETHER, S., MACKENZIE, A., ET AL. Ring confidential transac-
tions. Ledger 1 (2016), 1-18.

Ross, S. M. Intro. to probability models. Academic press, 2014.

SassoN, E. B., CHigesa, A., GARMAN, C., GREEN, M., MIERs, 1.,
TROMER, E., AND VIrRzA, M. Zerocash: Decentralized anonymous
payments from bitcoin. In 2014 IEEE symposium on security and
privacy (2014), IEEE, pp. 459-474.

SHIRALL S. A. The bhaskara-aryabhata approximation to the sine
function. Mathematics Magazine 84,2 (2011), 98-107.

TAwrIK, S. A. Minimax approximation and remez algorithm.

Vuicic, D., Jacobic, D., anp Ranpic, S. Blockchain tech-
nology, bitcoin, and ethereum: A brief overview. In 2018 17th
international symposium infoteh-jahorina (2018), IEEE, pp. 1-6.

WaNG, C., BATER, J., Navak, K., AND MACHANAVAJIHALA, A.
Dp-sync: Hiding update patterns in secure outsourced databases
with differential privacy. In Proceedings of the 2021 International
Conference on Management of Data (2021), pp. 1892—1905.

WaNG, C., BATER, J., Navyak, K., AND MACHANAVAJJHALA,
A. Incshrink: Architecting efficient outsourced databases us-
ing incremental mpc and differential privacy. arXiv preprint
arXiv:2203.05084 (2022).

WANG, C., Puio, D., Navak, K., AND MACHANAVAIJHALA, A. Pri-
vate proof-of-stake blockchains using differentially-private stake
distortion. Cryptology ePrint Archive (2023).

Woob, G. Polkadot: Vision for a heterogeneous multi-chain
framework. White Paper 21 (2016), 2327-4662.

Xu, B., LutHra, D., CoLg, Z., AND BLAKELY, N. Eos: An
architectural, performance, and economic analysis. Retrieved June
11 (2018), 2019.

ZAMFIR, V. Casper the friendly ghost: A correct by construction
blockchain consensus protocol.

A Security Proof

In this section, we present the primary security proof
(for Theorem [9) related to the stake distortion protocol
proposed in this work. To minimize redundancy, we focus
on the security proof for the Timer protocol. However, we
emphasize that using the same proof technique, one can
easily derive a proof for the Binary protocol. Interested
readers may refer to our full version[57]] for more details.

First, we provide the formal functionality descriptions
for the timer (Frimer) mechanism. In general, par-
ties can interact with Frimer Wwith DISTORT to retrieve the
distorted stake at each time, or with GET_COMM to ob-
tain distorted stake commitments for every other party.

—| Functionality 1.1: Frimer

For every time step j evaluate the following:

1: if j mod T =0 then

2: for partyi =1,2,.. do

3: Determine the true stake s;. owned by P;
. Sl i a

4: sj<—sj+!_ap(e) .

5: Commit §'; to comg: with

6: Record E}, comgi, and r;. for P;

7: else !

8: for partyi =1,2,.. do
: o i i i . .

(9). §j 8y 1y 1y, COMgi < COMgi

10:

~ ; J
Record s;., com;:, and r;. for P;
J

Upon receiving (DISTORT, sid) from P; :
11: return 53 com;:, and r;..
J
12: add Comgj to every registered party’s local cache.
Upon receiving (GET_COMIM, id, sid) from P; :
13: return comg from P;’s cache
J

Proof. (Theorem|9)We prove this theorem by construct-
ing a simulator Sgmer, Which corrupts the same set of
nodes as the real-world adversary A and interacts with
Fsd- This simulator can produce a transcript that is com-
putationally indistinguishable from the real-world proto-
col execution of []q in the presence of A. We assume the
existence of a simulator that simulates the message broad-
cast channel (the network) as described in [29]. Conse-
quently, we will not delve into the details of simulating
message broadcasting in real-world execution. For more
information, readers may refer to [[29].

To construct the simulator, we consider the existence of
a simulator, S rfz“;‘e', for non-interactive zero-knowledge
(NIZK) that proves statements in the NP language of
Ltimer- Srfz“li”e’ is able to simulate a proof using a trapdoor
(without requiring the witness) that is indistinguishable
from one an honest prover would provide with the wit-
ness [7, [33]]. We refer to the proof generated by S rfz“l'(”e’
using the trapdoor as the simulated proof.

USENIX Association

32nd USENIX Security Symposium

1591

Let HYB represent the distribution of real-world pro-
tocol execution of [[jmer- We consider the world HYB,
which is the same as the protocol execution, except for the
following: the noise generation keys and the DP noises
are obtained from the simulator Symer. Specifically, Stmer
samples a random string, using it as the key to deriving the
private randomness. By the security of PRF the output
of (private randomness) PRFp_ (0) is computationally in-
distinguishable from PRFq string (0). Furthermore, by the
fundamental laws of probability transformation, Laplace
or Gaussian random variables that are derived from the
actual and the simulated randomness are also indistin-
guishable. Hence, we say that the distributions of HYBy
and HYB; are indistinguishable.

Next, we consider another world HYB,, which is iden-
tical to the world HYB, except for replacing the calls
to Fsik with the interaction to Sgmer. The simulator
Stimer simulates the honest party’s stake commitment us-
ing Comr(0), where r is a random opening, and returns
the honest party’s noise generation key with the simu-
lated one (as demonstrated in HYBj, the simulated npx
is indistinguishable from the actual key). Owing to the
equivocality property of commitment schemes [39], we
can conclude that the distributions of HYB; are indistin-
guishable from those of HYB;.

Lastly, we consider the ideal world HYB3. The only
difference between HYB3 and HYB?2 is that in HYB3, the
noisy stake commitments for honest parties are simulated
using (i) O stake as the true value; (ii) simulated DP noise
z; (iii) a random opening to derive the commitment; and
(iv) a simulated NIZK proof generated by S<timernizk.
Due to the equivocality property of commitments, we
know that the simulated noisy stake commitments for
honest parties are indistinguishable from the actual ones.
Furthermore, the simulation security of NIZKs (or zero-
knowledge property) ensures that the simulated proof by
SLimernizk, generated without using a witness, is com-
putationally indistinguishable from the actual proof ob-
tained from ﬁék Consequently, we conclude that the
distribution of the ideal world HYBj3 is indistinguishable
from that of HYB, and, by extension, also indistinguish-
able from the real-world executions, HYB.

O

B Proof of Theorems

B.1 Proof of Theorem [1]

Theorem 10. Given 6 € (0,1), with probability at least
1-6, pSC(...,8) outputs correct comparisons.

Proof. We first prove that for each round, the probability
that Algorithm 1]outputs the wrong comparison between
the two biased coins g(f,,) and g(femp) is at most 6;.

Without loss of generality, we consider the case where the

algorithmoutputs f,, > femp (po > p1and |po—p1| > 21;).
By Hoeftding’s Inequality [44]] the failure probability that
Algorithm 1] outputs the wrong comparison satisfies

Pr [wrong_cmp]
< Prlq(fy) <P0_Ti]+Pr[Q(fcmp) >P1+Ti] 4)

o log(+ _
<e 2eog(éi):e 26,~

By union bound, the overall failure probability is bounded
by ¥7¥6; < 2 <6 u]

Theorem 11. The expected running time of pSC is
bounded by O (10g(1/6)+l°g(1/max(T’TC))) (sim) coin flips.

max(7,7c)2

Proof. We prove the complexity of pSC by following
the same technique used by [37]] for proving Lemma 3.2.
Without loss of generality, we consider ¢(f,) > g(femp)-
We start with the case of 7, > 7, and let k =log(TLC), so for
any round £ > k we have 7, < %5*. By Hoeffding’s Inequal-
ity [44] the probability such that pSC keeps running after
¢ > k rounds is at most - e~ (26 7+() | The running time
of round ¢ > k grows exponentially in £, while the prob-
ability that Algorithm 1] to continue running after round
¢ > k decreases faster than exponential in £. Hence, the
expected running time is dominated by the running time
of round k, which is O (w). Next, we con-
sider the case where 7. < 7. Witl; the same technique, one
can obtain that the expected running time is bounded by
the running time of k*”* round where k = log(ﬁ), which
s 0 (1og(1/6>+2log(1/r>

T

pected running time of pSC is bounded by

o (log(l/é) +log(1/max (T,Tc)))
max(7,7c)?

). Combining both cases, the ex-

&)

]

B.2 Proof of Theorem 2]
Theorem 12. Letn =3, and 6 = 0(@), then the run-

ning time of RABIn is bounded by O (]Og(li# xlog n)

Proof. Leté = @, where c is considered to be a constant
factor and ¢ > 0. By Equation |5} we can obtain that for
each random walk phase of RdBin, the expected running

time is bounded by O (k’gai#). As the random walk

will terminate within logn steps, and thus the overall

running is bounded by O (log(k;#

x log n) O
Theorem 13. Let p, = q(f,), n=max (¢ (py £7)),
and § =0(loén), then (i) the random walk of RdBin exits
at the correct node with constant failure probability; and
(ii) the inference error is bounded by max(%, n).

1592 32nd USENIX Security Symposium

USENIX Association

Proof. At each step of the random walk, the proba-
bility of moving in the wrong direction is O(loén).
As such, by union bound, the overall failure proba-
bility is O(1). If the random walk exits correctly,
it must have either reached a leaf node or an inter-
val [fa, fo] where |q(f = £322) —q(f,)| < 7, indicat-
ing that the minimum comparison threshold has been
met. For the first case, since |f, — fp| = g, thus the
inference error must be bounded by g. For the sec-
ond case, it is clear that the error must be smaller than

max (lg~' (pv+7) = ful.lg™ (pv = 7) = fi]). u!

B.3 Proof of Theorem[3

Proof. (Theorem Bl) Consider party P; and let S’ =
{s\.s5,....s5i} to be the stake history of P;. Given
St ={s1,82,....,8¢} and S; = {s’l,s’z,...,s;} to be a pair
of (a,u)-neighbor stake profiles. Let x,y € R such that
x <y < x+a, and by definition of («,u)-neighbor we
have s, =x, s, =y. We also consider a given out-
put o C Range(Lkg) and next. we compute the fol-
lowing probabilities (Note that we simplify the term
Pr [Lkg‘¥*5? = 0] as a conditional probability Pr[o | S])

Z Pr[S, | 55, —x]

S;cS

ZPr[SHsfl:y]

S;cS

[ols —su] <mSaxPr [o]S,]x
Pro|sl,=s,] > min Pr [o];]x

Note that any stake dataset S C S is a (a,u)-neighbor
of itself. Thus it holds that Y csPr[S, |s),=x]| <
Ys;csPr[S; | si, = y], since for any S, there exists at least
one (o, u)-neighbor S;. In addition, by Definition[5.3] we
know that maxg, Pr[o | §,] < e® (=% Xming; Pr [H ;]
Thus by combing the two facts, we can conclude that:

Pr(o|si, = s,] - s, csPr[Se | st =x]

maxs, Pro | S;]

Pro|si,=s;| ~ XsjcsPr [/ 15l =y]

By Bayes’ theorem

Prhﬁ:x|o]/Pth={

Pr[si,=y|0] Pr[sL=y]
:Pr [SL =x| 0] Pr[o] /Pr [s,’l =y| 0] Pr[o] ©
Prsi = x| Pr(si =]
=M < e 7% € (Definition 5.1)
Pr [0 | 53, = s;]
i

B.4 Proof of Theorem 4

Proof. (Theorem [4) We first recall the important nota-
tions: (i) REAL?Y ‘.- denotes the transcript of real world

ming; Pr [0 | S;]

protocol () execution between the honest party and the
adversary A involving environment &; (ii) IDEALZ S.&
denotes the transcript generated by simulator a S with
input of a leakage profile Lkg who corrupts the same par-
ties as A and interacts only with a trusted functionality
¥ and the environment & We consider a set of parties
P ={Py,P,...,P,}, and the environment & can activate
stake distribution, S = {S'}1<;<n, for all parties across
every time slot. (In fact, the environment & can acti-
vate every transaction for each party, which essentially
governs stake distribution among parties over time.) By
definition, as [] UC-emulates ledger maintenance com-
mand, thus V &, there exists a simulator Sy, such that:

IDEALZ™

M(s)
Su((9)).& ~ind REAL 5 ¢ D

Next, we prove that with the same simulator Sy, one
can also simulate indistinguishable transcripts against
protocol [y+. We prove this by contradiction. As-
sume there exists an environment & and a distorted stake
distribution S, « f(S4) such that

IDEALT™

) [Tiv= (Sa)
SLM(¢(Sa)) & #ﬁnd REAL?{,S (8)

where [+ (Sy) denotes the execution of protocol
[T under the stake distribution S,. As [y+ only
modifies the inputs rather than the interface with the
environment or the components of [], the equivalence

REALHLM* (Sa) Rind F(EALFI(S <) becomes evident. In
other Words we keep the env1r0nment unchanged but
only change the stake distribution from S, to S, then
the execution transcripts of [+ (S) and H(S) should
be indistinguishable. And by the assumption Eq[8] we
can trivially obtain that

IDEALT™

. [1(Sa)
St & #ind REAL 4 ¢

This implies that if & activates the stake distribution
as Sa, then simulator Spy is unable to generate indistin-
guishable transcripts against the real protocol executions
of [, which evidently contradicts Equation Conse-
quently, we can deduce that no such environment exists,
and the assumption (Eq [8) is incorrect. Therefore, for
any stake distribution activation, the same simulator Sy
can also produce indistinguishable transcripts against the
real execution of [], with leakage ¢(S). O

B.5 Proof of Theorem [§

Proof. (Theorem Let S;={s;}i<j<x and

= {s}}lsjs, be any (a,u)-neighboring stake assign-
ments for an honest party P. We abstract the distortion
at each time j as M (s), which takes an input stake, s,
and outputs s+Lap() if j mod 7 ==0, and M;_;(s)

USENIX Association

32nd USENIX Security Symposium

1593

otherwise. For ease of notation, we write the conditional
probability Pr [Mj(sj) =0 | VISij_le(Sk) = Ok]
as Pr [Mj(sj) =o0j | *] , and compute the following term

t

Pr[S,—O
Pr[S’—o

e€ < el_”T“JXe

:L

Jj=1 J=uAnj=kT, ,keN+

In addition, knowing that Lkg = f(S;) is a prob-
abilistic function related to the noisy stake assign-
ment. Thus, by post-processing theorem of DP [26],
Pr[Lkg = 0] /Pr[Lkg’ = 0] < el“7*1X€. In general, the
total privacy loss for stake values at any time u is subject
to k-fold composition theorem of DP mechanisms [26]],
where k denotes the total number of noisy stake releases
from time u up to the current moment, which is “T“ m]

B.6 Proof of Theorem 6]

Proof. (Theorem|6) Let S; = {s;}1<;<; to be the stake
profiles of an honest party P, and tx, = {tX;}1< <, to be
the corresponding transaction outcomes at each time, i.e.,
tx; =sj-s;-1. Let M(tx,) be a mechanism that processes
the noisy p-sums based on tx;, and S, « f(M(tx,)) is
an algorithm that aggregates the output of M to derive
the noisy stake at each time. We say that, for any pair of
(@, u)-neighboring stake profiles S;, and S;, with corre-
sponding tx,, tx;. It holds that if for any 0 C Range(M),

Pr[M(ix;) = o] <

w(t-u)xe
Pr[M’(tx;) =0] ~ ¢ ©)

hence the released noisy stake S, « f(M(tx,)) satisfies
Definition|[5.3|under the same decay function w, given f
only conduct post-processing operations. By the theory
. Pr[M (tx;)=0] _
of the Laplace mechanism, IGIACAETE ef., whent = u
Moreover, when O < t-u < L, then the privacy loss is
subject to phase two distortion (privacy loss due to noisy
interval tree generation). Note that tx,, can be used to
(t—u) :
generate at most log, (=) many noisy nodes (p-sums),
thus the phase two privacy loss is bounded by

Pr[Lkg = o] /Pr[Lkg’ = o] < e"022(7*)x€

In addition, when ¢ —u > L, then the mechanism incurs
privacy loss for both phase one and phase two distortion.
By Theorem|5|the total phase one privacy loss is bounded
by [%] x €. For phase two, the max privacy loss is

bounded by elom(F)xe Ag such, we may conclude
Pr[Lkg = 0] /Pr[Lkg’ = o] < e(LT*IHloza (7)) x€
As summary, the privacy decay function to be

t-u Ly e
w(t_u) < L L JttlogZ(T)’ if (t M) > L (10)
log, (%), otherwise

O

B.7 Proof of Theorem

Lemma 14. Given n independent and identically dis-
tributed (i.i.d.) Laplace random variables X1, X3, ..., Xy,
drawn from Lap(%). LetX=3%7",X;,0<a< n%, then:

—a?A?)

Pr[X > a] 56(4,.52

Proof. Please refer to the proof to Lemma 12.2 in [26] or
proof to Theorem 6 in [55]]

Proof. (Theorem|[7) When adopting stake distortion, the
inference errors consist of two parts: (i) the error due
to injected DP noises and (ii) the error caused by the
inference algorithm. By Theorem 2] the part (ii) noise is

a2 A 2
bounded by . By Lemma |14} and let eUCaner) = B, and

take log on both sides, one can obtam that with probability

: A [1
atleast 1 — g, forany g > 0. X is bounded by 22 ,/nlog B

Hence, we can conclude that when #Timer and ¥gin are
applied, the part (i) errors are bounded by O(<), and
O(E") respectively.

O

B.8 Proof of Theorem

Proof. (Theorem [8) Let X, < 1328, X, > 225 to be
stake controlled by the adversary and the honest par-
ties, respectively. We denote the distorted stake as
X, « X +Y", and X), « X;, +Y" respectively for ad-
versary and honest, where Y~ is the summation of x i.i.d.
Laplace random variables, and n,, n, denotes the num-
ber of honest and malicious parties, respectively, such
that n, +np, = n. To ensure that the corrupted stake after
distortion is bounded by %, we need to have X;, —2X, >0
with high probability. Knowing that:

—2Y"a

(11)
Since the random variables are symmetric, without loss
of generality, we may assume the following

Xn—2X,= (X —=2X,)+Y"™ —2Y"a =S4y

Pr[X,-2X, <0| =Pr[Y™ +2Y"« > yS] (12)

By Lemma 12.2 in [26]], we can obtain that for 8 € (0, 1)

Y 1277 > Jlog %M] <p (13

As np+n, < % and nj > 2n,, then /nj, +2+/n, <

1 74\/7 Thus, by setting y > 1132 \/%log[—g, one can

conclude that with probability at least 1 -, the adversary
controlled stake after distortion does not exceed %

Pr

O

1594 32nd USENIX Security Symposium

USENIX Association

	Introduction
	Contributions

	Background
	Stake Inference Attack
	Issues with the SOTA Approach kohlweiss2021anonymity
	The General Stake Inference Paradigm
	Practical Stake Inference Attack

	Private PoS Desiderata
	Privacy Model
	Privacy Requirements
	Formal Privacy Definition

	Private PoS with Stake Distortion
	Design Overview
	Differentially Private Stake Distortion
	Analysis of the Stake Distortion
	Stake Distortion Protocol Design

	Case Study with Real-World System
	Safety Guarantee
	Safety Simulation
	Resilience to SIA
	Key Takeaways

	Performance Evaluation
	Discussion
	Related Works
	Conclusion
	Security Proof
	Proof of Theorems
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Theorem 8

