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Abstract

Due to the increasing complexity of robot swarm algorithms, ana-
lyzing their performance theoretically is often very difficult. Instead,
simulators are often used to benchmark the performance of robot
swarm algorithms. However, we are not aware of simulators that
take advantage of the naturally highly parallel nature of distributed
robot swarms. This paper presents ParSwarm, a parallel C++ frame-
work for simulating robot swarms at scale on multicore machines.
We demonstrate the power of ParSwarm by implementing two
applications, task allocation and density estimation, and running
simulations on large numbers of agents.

CCS Concepts

« Computing methodologies — Shared memory algorithms; Dis-
tributed algorithms; Massively parallel algorithms.
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1 Introduction

Social insects like ants and bees are able to achieve spectacular feats
by distributing tasks to hundreds or thousands of individual agents.
Researchers are becoming increasingly interested in modeling these
insects [3, 4] and are even creating robot swarms of their own
that achieve tasks that are only possible with hundreds of agents,
such as “crop pollination, search and rescue missions, surveillance,
as well as high-resolution weather, climate, and environmental
monitoring” [1, 6].

Individual agents within robot swarms typically do not have
sophisticated long-range communication capabilities. Thus, they
are often unable to communicate with a central coordinator that
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tells them what to do or where to go. For this reason, algorithms for
controlling these robot swarms are an emerging field that combines
ideas from robotics and distributed algorithms. However, due to
the complexity of robot swarm algorithms, analyzing their per-
formance theoretically is difficult. Applying theoretical results to
real-life experiments is also challenging because there are often
many parameters that have to be tuned in order optimize the per-
formance of the algorithm. Therefore, simulators are often used
to benchmark the performance of robot swarm algorithms. How-
ever, most simulators run sequentially and do not make use of the
naturally highly parallel nature of distributed robot swarms.

This paper presents ParSwarm, a highly parallel C++ framework
for simulating robot swarms at scale using multicore machines.
With the significant speedups that ParSwarm can provide to robot
swarm simulations, we can efficiently simulate large swarms of
agents. Researchers are able to quickly run experiments of differ-
ent sizes without having to analyze theoretical bounds to draw
meaningful conclusions about their algorithms.

The paper first introduces the theoretical model that is the basis
for ParSwarm in Section 2 before diving into the framework itself
in Section 3. Finally, we use ParSwarm to implement two applica-
tions, task allocation and density estimation, and benchmark their
performance on large numbers of agents in Section 4.

2 Background
In designing robot swarm algorithms, simulators serve as an im-
portant intermediary step between mathematical models and real-
life testing. The current state-of-the-art robot simulators support
physics simulations [10, 12] and are compatible with real-world
robots [13]. ARGoS [12] is a modular swarm simulator that allows
different physics engines to be used with different parts of the
environment. Stage [14] currently offers the best performance for
large swarms [5], supporting up to 10° agents at 1/50 of real-time
speed, which is slower than ParSwarm. In Stage, the highly parallel
nature of the robots is not fully utilized since only the behavior of
stationary agents can be evaluated in parallel.

ParSwarm aims to provide support for even larger scale robot
simulations while maintaining the ability to emulate sensors work-
ing in 2D and 3D environments.

2.1 Modeling Robot Swarms

Cai et al. proposed a model for general robot swarm problems [3, 4].
This section gives a high-level introduction to this model, which
will be the basis for the ParSwarm framework. The model is a
probabilistic, synchronous distributed system. Its behavior is de-
fined by the agents, the environment, and the agent-environment
interactions that are specific to each experiment.
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Concretely, the model operates on an environment that is mod-
eled as a directed graph G = (V, E). For example, for an N x M 2D
torus grid, a vertex (x, y) € V has edges to the vertices ((x+1) mod
N,y), ((x—1) mod N, y), (x, (y+1) mod M) and (x, (y—1) mod M).
A particular configuration of this model is described by some en-
vironment graph G as well as a set of agents that can manipulate
vertices (locations) on the graph.

In particular, the system moves through a sequence of configu-
rations using a sequence of probabilistic global transitions. These
global transitions are resolved from a set of local transitions which
are generated by agents.

Given some integer parameter I, each agent has a defined local-

mapping, which maps vertices around an agent (the vertices [my, my]

such that x - < my < x+Iandy -1 < my < y+1 if the par-
ticular agent is at vertex (x, y)) to its associated information. Each
agent then uses their local-mapping to generate a local transition
using a user-defined function that describes the agent’s new state,
a new vertex state for the vertex it is currently on, as well as a new
direction for the agent to move in.

Then, a user-defined resolution function accepts or rejects pro-
posed local transitions generated by each agent. For example, if
two agents are trying to move to the same vertex, some resolution
rule may prohibit two agents from being on the same vertex at the
same time. So, one agent’s local transition would be accepted while
the other’s is rejected.

2.2 Parallelism
This paper will use the standard work-span model for analyzing
shared-memory parallel algorithms. The work is defined to be the
total number of operations in the computation and the span is
defined to be the longest dependent path in the computation [8].
Prefix sum takes as input a sequence A of length n, an identity
element e, and an associative binary operator +, and returns the
sequence A’ of length n where A’[i] = e + 3 ;; A[j] as well as
the overall sum e + Zg’:_()l Ali]. Filter takes a sequence A of length
n and a predicate function f as input, and outputs a sequence A’
containing all a € A such that f(a) return true, in the same relative
order as they appear in A. Both prefix sum and filter take O(n) work
and O(log n) span [8]. Semisort takes a sequence A as input, and
reorders A such that equal-valued elements appear contiguously.
The semisort algorithm runs in O(n) expected work and O(log n)

span with high probability [7].
3 ParSwarm

We introduce the ParSwarm framework, a high-performance paral-
lel C++ implementation of the model defined in Section 2. We use
C++ templates, which allows for user-defined code to be efficiently
incorporated into the framework at compile-time instead of at run-
time, which would be the case if polymorphism were used instead.
We leverage the shared-memory multi-core programming paradigm,
where each process spawns any number of threads that all have
read/write access to any location in a global memory. The ParSwarm
code is publicly available at https://github.com/zhiweigan/geo-
swarm-framework.

The goal of the ParSwarm framework is to minimize the amount
of parallel code that a user has to write to model complex agent func-
tionalities. ParSwarm enables users to develop high-performance
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Algorithm 1 Simulate

1: config = initialize new configuration
2: Add agents to config

3: Initialize vertices on config

4: while not config.is-finished() do
5 config.transition()

programs for simulating robot swarms while requiring only mini-
mal knowledge about parallel programming. ParSwarm currently
supports agents operating on both 2D and 3D torus grids.
Algorithm 1 shows the simplified pseudo-code for the the user-
defined simulate file, which is the entry point for the program. An
empty configuration has to first be created (Line 1). The empty
configuration initializes an empty 2D or 3D torus grid with as-
sociated helper functions to add agents and edit vertices on the
graph (Lines 2-3). Then, agents have to be added and specific vertex
states can be changed. The program then enters the simulation loop
(Lines 4-5). On each round of the simulation, the simulator runs
the transition() function which is provided by the framework.
After each transition, it checks if the configuration’s user-defined
is-finished() function returns true, and if so the simulation ends.

3.1 User-Defined Functions

For each agent, the user defines an internal state astate as well as
two functions, generate-message () and generate-transition().
On each round, agents can optionally generate a message for other
agents in its vicinity to read. Then, the generate-transition()
function is given the agent’s local-mapping, which contains the
states of neighboring cells of the grid as well as the messages that
were generated by agents that are currently positioned on those
cells. The generate-transition() function proposes a transition
for the agent, which consists of

(1) A new state for the agent,

(2) A suggested new vertex state, and

(3) An edge to a neighboring vertex for the agent to traverse in
the next round.

Each vertex on the grid also has a user-defined internal state 1state
that can be read and modified by each agent.

The configuration itself then has to take the transitions that the
agents generate and resolve them using the update-agents() and
update-locations() functions that the user defines. The frame-
work parallelizes the transition generation as well as the agent and
location updates behind the scenes without requiring any addi-
tional user code. This function is further detailed in Section 3.2. The
user defines the is-finished() function, which determines when
the simulation terminates.

3.2 Transition

This section introduces the function transition(). The function
handles updating the overall configuration based on the proposed
transitions generated by each agent. The implementation uses the
parallel primitives introduced in Section 2.2.

Algorithm 2 shows the pseudocode for the transition function.
Every iteration of the parfor loops can be run in parallel. None of
the loops have different iterations that write to the same memory
location, nor does any iteration depend on the execution of another.
Each agent is equipped with its own random number generator,
seeded with its identifier. The default rand() function in C++ has
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contention on multiple threads, so we instead use a good hash
function for randomness.

Line 1 semisorts the agents by their location, placing co-located
agents contiguously in memory. Lines 2-11 determine the number
of agents that reside in each location. Lines 2—-5 keep track of the
indices at which neighboring vertices differ. Since the agents are
semisorted by location, the difference between any two adjacent
indices is also the number of agents currently on that location.
These counts are calculated in Lines 6-9. A parallel filter (Line 6) is
first needed to make all non-zero elements of diffIdx adjacent to
one another so that the counts can be calculated in parallel (Lines 8-
9). The prefix sums on Lines 10-11 are needed so that countsl[i]
returns the starting index of the agents at the i’th location and
isDiff[i] is used to index the location of the i’th agent. These
computed arrays (counts, of fsets, and is-diff) can be used to
(1) find the number of agents at each location, (2) iterate through
the agents at each location, and (3) determine the location of each
unique location.

Lines 12-13 generate messages for each agent. Each location
has an associated vector of messages, so Lines 14-16 deposit the
messages at the particular location sequentially (this could be par-
allelized in theory). Lines 17-18 use the generated messages to gen-
erate transitions for each agent. On Lines 19-20, for each unique
location, the framework iterates through agents on the location
and accepts or rejects proposed agent transitions. On Lines 21-22,
based on the accepted agent transitions, each agent is iterated over
and their states will be updated accordingly.

The following theorem gives the work and span bounds of the
transition function.

THEOREM 3.1. Let a be the number of agents, &max be the max-
imum number of agents at a location, £ be the number of locations,
U,y be the maximum work of a user-defined function, and Us be the
maximum span of a user-defined function. The transition function
takes O(Uyy (a+?)) expected work and O(Us+log(a)+log(€) +amax)
span with high probability.

Proor. The semisort on Line 1 takes O(«a) expected work and
O(log @) span with high probability. The parallel loop on Lines 2-5
takes O(a) work and O(1) span. The filter on Line 6 and prefix
sum on Line 11 take O(a) work and O(log ) span. The loop on
Lines 8-9 take O(¢) work and O(1) span. The prefix sum on Line 10
takes O(¢) work and O(log ¢) span. The loops on Lines 12-13 and
Lines 17- 22 takes O(U,, (o +¢)) work and O(Us) span. Lines 14-16
take O(amax) work and span, assuming constant-sized messages.
The total work and span of the transition function is O(U,,(a + £))
and O(Us + log(a) + log(¢) + amax), respectively. O

The overall work and span of a ParSwarm simulation is the
product of the bounds in Theorem 3.1 and the number of iterations
until termination.

4 Experiments and Results

In this section, we present two applications, task allocation [3] and
density estimation [11], implemented using the ParSwarm frame-
work. For both simulations, we use a 2D torus grid environment.
We were able to replicate these simulations with very few lines of
non-boilerplate code (= 200 lines for task allocation and ~ 50 lines
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Algorithm 2 Transition

1: agents = semisort(agents, key=agent.location)

2: parfor each agent i do

3 if agents[i].location # agents[i + 1].location then
4 diffIdx[i] =i+1

5: isDiff[i] =1

6: offsets = filter(diffIdx)

7: unique-locations = [of fsets|

8: parfor i from 1 to unique-locations do

9 counts[i] = of fsets[i] — of fsets[i — 1]

10: startIdx = prefixSum(counts)

11: vitxId = prefixSum(isDiff)

12: parfor each agent i do

13: msgs[i] = agents.generate-message()

14: parfor i from 0 to unique-locations do

15: for j from startIdx[vtxId[i]] to startIdx[vtxId[i+1]] do
16: deposit(&local-mapping, msgs[j])

17: parfor each agent i do

18: transitions[i] = agents.generate-transition(&local-mapping)
19: parfor each unique-location i do

20: update-location(i)

21: parfor each agent i do

22: update-agent (i)

for density estimation) while being able to easily scale to larger
simulations with 107 agents.

We ran our experiments on a machine with 24 cores, with a
2.2GHz Intel Xeon Processor (E5-2699 v4) and 96 GiB of main mem-
ory. We use parallel primitives from the ParlayLib [2] library. Our
programs are compiled with g++ (version 7.5.0).

4.1 Task Allocation

The application showcases the parallel speedups that the framework
is currently able to achieve. The setup of this problem is as follows.
On an N X M torus grid with « agents, there are T tasks that have
some demand d > 0. The demand of all tasks sum to a total of D.

Every agent starts at the same home vertex and follows a simple
set of rules to traverse the grid until it finds a vertex that has a non-
zero residual demand, and stays on that vertex until the simulation
completes. For this experiment, each agent performs a random
walk to traverse the grid until a task vertex with non-zero residual
demand appears in its local-mapping.

Each agent has a destination task and a committed task that are
both initially set to null. If there is a task nearby, the generate-
transition() function sets it as the agent’s destination task and
moves towards it every round. Otherwise, it chooses a random
direction and moves in that direction for a pre-defined number
of rounds. If the agent is on a task vertex with non-zero residual
demand, it proposes to commit to the task in its agent transition.
If the update-location(i) function is called on a task vertex, it
iterates over the agents that are on that location and accepts all
transitions until the residual demand is reduced to 0. The updated
residual demand is calculated at the end of the function. If i is not
a task vertex or it is a task vertex with residual demand 0, then it
accepts all transitions. The update-agent (i) function resolves all
accepted transitions and sets the agent to be inactive if it has a com-
mitted task. The is-finished() function scans through the task
vertices and agents, returning true if all vertices have zero residual
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Figure 1: A plot of the parallel speedup for each part of the transition
function, as well as the speedup of the overall code.

demand or if all agents are committed to a task. The framework
function generate-message() is empty for this application.

On a 50 X 50 grid with 100 agents, 16 tasks and a total demand of
80, ParSwarm achieved a 500X speedup over a sequential Python
implementation by Cai et al. [4], completing the simulation in 19
milliseconds (the Python implementation took over 10 seconds
to complete). In addition to the speedup from parallelization, the
speedup can also be attributed to a modified way of computing
transitions. The sequential implementation iterates over every cell
of the grid and operates on agents separately, while ParSwarm
semisorts agents before each round so agents can find agents within
its local mapping to generate transitions in parallel. This means
ParSwarm does not need to iterate over the whole grid, which is
much larger than the number of agents.

To benchmark the parallel speedup, we ran a simulation of the
task allocation problem with a larger instance of the problem (N =
M =1000, @ = 107, T = 2 x 10%, and D = 7 x 10°) for 100 iterations
on an increasing number of cores. We measured the time that it took
to complete each part of the transition function (sorting, generating
transitions, and updating agents and locations). We repeated each
measurement 5 times and calculated the mean. This particular
problem did not make use of message passing so Lines 12-16 were
omitted. A plot of the parallel speedup is shown in Figure 1. Each
trial on 1 core took 48 minutes, whereas it only took 2.2 minutes
on 24 cores. The speedups of each of the steps as well as the overall
speedup is at least 18, indicating very good scalability.

4.2 Density Estimation

We use the density estimation application to showcase the simplicity
of the framework and the strengths of conducting an experiment
with many agents. The application works as follows: given an
N x M 2D torus grid with « agents, the agent density of the system
is defined to be a/ (N X M). Each agent on this torus grid is tasked
with estimating the agent density of the system. A simple algorithm
for estimating the density was presented by Musco et al. [11].

In their paper, each agent runs a random walk in 4 directions
on the 2D grid. At each step, each agent counts the number of
agents that share its position and increments a variable ¢ by that
amount. At the end of T rounds, its density estimate is returned
as ¢/T. According to Musco et al. [11], for any § > 0 the density
estimate d is within the range of [(1 — €)d, (1 + €)d], where € =
O(+/log (1/8) log (2T)/Td), with probability at least 1 — 3.
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Figure 2: A histogram of the agents’ estimated densities. The height
of the red histogram has been scaled by 0.01 since there are 100x
more agents in that experiment.

The implementation for this application using ParSwarm took
fewer than 50 lines of non-boilerplate code. Each agent’s generate-
transition() function creates a transition that simply chooses
a random cardinal direction for the agent to walk in. update-
location(i) iterates through every agent on its location and in-
crements the number of agent collisions. Every agent transition
is accepted. The update-agent (i) function resolves all accepted
transitions. The is-finished() function returns true if the num-
ber of rounds has exceeded T. The framework functions generate-
message () is empty for this application.

After implementing the problem in the framework for general
N, M, a, and T, we chose to run two experiments: in the first exper-
iment, we set N = M = 100 and & = 103; in the second experiment,
we set N = M = 1000 and & = 10°. In both experiments, T = 50 and
the exact density is 0.1. The first experiment completed in 50 mil-
liseconds, and the second completed in 4,500 milliseconds. Figure 2
shows the results of the density estimate of each agent for the two
experiments.

In Figure 2, the gray histogram shows the density estimates for
the first experiment. As we can see the distribution of the densities
in gray is not centered around 0.1 as we expect them to be. The
variation of densities is also not uniform and it would be difficult to
tell that the experimental results align with the theoretical bounds
that were produced.

However, this is not the case for the red histogram for the second
experiment, where the mean is clearly around 0.1 and there is
minimal variation around the mean. This experiment shows the
strength of running an experiment with many more agents, which
is enabled by ParSwarm, because it is easier to show that the density
estimates are concentrated around the mean.

Musco et al. [11] gave proofs for the 3D torus density estimation
case, which we confirmed with another experiment similar to this
one. Musco et al. also discussed the possibility of noisy collision
detection (i.e., detecting collisions with some probability p) and we
found empirically that the density is around p - d.

5 Conclusions and Future Work

We presented ParSwarm, a publicly-available parallel C++ frame-
work that massively speeds up robot swarm simulations on 2D and
3D torus environments. We used ParSwarm to implement the task
allocation and density estimation applications, and showed that our
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framework is able to scale to large numbers of agents while achiev-
ing good parallel speedups. For density estimation, we showed that
our empirical results match what is predicted by theory.

Kiszli et al. showed that simple swarm algorithms may fail when
the number of agents increase past a certain threshold [9]. We plan
to run more experiments with more agents for other algorithms
to show behavior that may not otherwise be evident in a small
number of agents. In the near future, we also plan to add more
environments beyond the 2D and 3D torus.
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