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A holistic approach for single-cell data trajectory
inference using chromosome physical location and

ensemble random walk
Jovany Cardoza-Aguilar, Caleb Milbourn, Yifan Zhang, Lei Yang, Sergiu M. Dascalu, and Frederick C. Harris, Jr.

Abstract—Single-cell RNA sequencing technology enables the
analysis of complex, heterogeneous cell samples. However, errors
in data processing, dimension reduction, and clustering can
negatively impact subsequent calculations, particularly when
inferring cell trajectories using graph methods. We proposed
a novel method for single-cell data Trajectory Inference using
Chromosome physical location and ensemble Random Walk
(scCRW). It utilizes entire chromosomes and their gene identifiers
to enhance factor analysis, providing a more comprehensive view
of biological processes. For trajectory inference, scCRW employs
a random walk, which has been evaluated against other state-of-
the-art methods using real single-cell RNA-seq datasets. These
datasets include both linear and nonlinear data, showcasing
scCRW’s capabilities in pseudotime and trajectory inference
tasks. The results demonstrate that scCRW consistently achieves
top or near-top correlation scores and excels in nonlinear metrics
such as F1 branches and milestones. This approach provides
accurate trajectory inference that closely aligns with ground
truth, highlighting the utility of using chromosomes in factor
analysis and random walk techniques for more precise data
analysis.

Index Terms—Single-cell, Chromosome, Trajectory Inference,
Pseudotime Inference, Clustering, RNA-sequencing, Factor Anal-
ysis, Random Walk, Data Processing, Deep Learning.

I. INTRODUCTION

RNA sequencing [1] unveils real-time cellular processes
within individual cells at the time of sampling. It yields
data highlighting active gene expressions and their levels,
enabling diverse biological research on single-cell samples.
This data managed via a gene expression matrix, can be
computationally modeled using trajectory inference methods.
Consequently, it facilitates the creation of graphs depicting cell
stage progression and pseudotime, guided by the similarities
among single-cell expression patterns.

The datasets obtained through this procedure are frequently
extensive and necessitate the use of advanced computational
tools and statistical techniques for thorough analysis. A com-
prehensive workflow involves various components, including
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data preprocessing, clustering, and creating graphs that illus-
trate the various developmental stages of cells in a dataset.
In this paper, we focus on enhancing the feature selection and
graph construction procedure of the trajectory inference. These
refinements to the workflow components aim to facilitate the
identification of cell stages and the estimation of “pseudotime,”
a metric indicating a cell’s progression through these stages.
This enhances our understanding of cell development by
providing deeper insights.

Numerous efforts [2] have been made to analyze single-
cell RNA sequence data. The minimum spanning tree (MST)
has found application in various trajectory inference methods
for constructing graphs. An early method that employed MST
for calculating pseudotime in cells was Monocle [3], which
achieved this by identifying the longest path between each
cell. Similarly, Tools for Single Cell Analysis (TSCAN) [4]
utilized MST for trajectory inference, but it grouped cells into
clusters before applying MST, rather than at the single-cell
level. TSCAN assigned cells to the edges of this trajectory and
computed pseudo time, significantly reducing computational
time. Slingshot [5], on the other hand, amalgamates elements
from these methods while introducing some unique modifica-
tions. Slingshot initially clusters cells together and then applies
MST to the clusters, akin to TSCAN. Subsequently, Slingshot
employs a principal curves algorithm to smooth the trajectory,
assigning cells to the principal curve and calculating pseudo
time.

However, one prominent challenge for inferring trajectories
of individual cells lies in their capacity to effectively handle
large datasets comprising hundreds of thousands of single
cells. The execution time for these methods significantly
increases in such scenarios, leading to a detrimental effect on
the accuracy of the generated output. Issues related to stability
emerge, as these methods should ideally yield similar results
when given similar input data across different runs. However,
some of these methods exhibit variance in their outputs, which
might benefit from potential reduction.

The recently introduced Single-cell data Trajectory in-
ference method using Ensemble Pseudotime inference
(scTEP) [6] offers a approach to RNA sequencing data anal-
ysis, which we aim to extend and enhance. scTEP seeks to
advance existing methods by incorporating pathway informa-
tion that groups related genes together and allowing users to
specify a starting point for trajectory inference, given that root
cells are typically known to users. The scTEP process begins
with dataset preprocessing, involving the removal of missing
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values and non-expressed genes. Subsequently, the gene ex-
pression matrix undergoes filtration using various gene sets
linked to common pathways. Factor analysis is then applied
to generate submatrices for each pathway. scTEP utilizes the
scDHA [7] package for cell clustering and dimension reduc-
tion, marking a significant departure from previous methods
by deriving pseudotime from multiple clustering outcomes.
To conclude, the graphing stage of scTEP employs an MST
and enhances the graph by arranging vertices based on their
average pseudotime.

We introduce single-cell data trajectory inference using
Chromosome physical location and ensemble Random Walk
(scCRW), specifically feature selection and trajectory infer-
ence. In the current scTEP method, the focus during data
feature selection is rather limited, primarily concentrating
on specific pathways. Our proposal introduces an approach
that expands the analysis to encompass the entirety of the
chromosomes within the datasets. This broader perspective
provides a more holistic view of the dataset, granting a deeper
understanding of the system and enhancing flexibility when
working with diverse biological inputs in the future. The sec-
ond substantial change we recommend for the scTEP method
involves replacing the current employment of the MST with
an ensemble random walk algorithm. Utilizing an ensemble
random walk algorithm allows for more accurate capture of the
inherent complexity and interconnectivity between cells. This
is due to the nature of a random walk [8], which is based on the
likelihood of transitioning from one cell to another, providing
a more precise representation of cellular progression through
various stages.

These proposals to the scTEP method aim to address its
limitations arising from a restricted focus and deterministic
trajectory inference. They offer a more adaptable and exten-
sible approach that future researchers can build upon, thereby
overcoming these constraints.

II. METHOD

In this section, we begin by presenting the comprehensive
structure of the proposed pipeline, followed by a detailed
discussion of its constituent components. Figure 1 illustrates
the complete workflow of the scCRW, which comprises four
main parts: (a) Chromosome feature selection, (b) clustering
and dimension reduction, (c) pseudotime inference, and (d)
ensemble random walk trajectory inference.

A. Chromosome physical location feature selection

Dataset filtering is a common step in many workflows,
but it often lacks substantial input from the actual biological
processes, potentially resulting in gaps in the analysis. There
are methods such as scTEP that seek to mitigate this by
applying initial gene filtering through multiple gene sets, each
consisting of intersected genes. While this approach incorpo-
rates biological insights, it may be criticized for its limited
focus on specific pathways. In response, our approach takes a
broader view by considering each chromosome, enabling us to
reconstruct the dataset from a more comprehensive biological
perspective.

There is a connection between histones and gene expres-
sion, with the ability to predict gene expression levels of a
cell type. Karlic et al. [9] has evaluated and demonstrated
the dual functionality of histones, and we take advantage
of this relationship by grouping genes according to their
chromosomal location. The chromosome data that will be used
for the evaluation of scCRW originates from a meticulously
curated and extensive dataset, which includes over 50,000
gene identifiers. The individual chromosomes are distinct gene
sets in the form of an expression matrix containing tens of
thousands of genes. It’s essential to emphasize that this study
exclusively relies on chromosomal information for its analysis.
The foundational data for this compilation was sourced from
publicly available files hosted on The Jackson Laboratory’s
Informatics website [10].

An initial data preprocessing step is carried out to en-
hance the method’s performance. This process is depicted in
Figure 1(a) of our workflow. The input for the scCRW is
chromosomal data that will be in the form of an m×n matrix,
with n representing the genes on m cells. We then normalize
the single-cell datasets, while taking measures to be mindful
on the scale of genes, as genes with larger scales could become
dominant in comparison to other genes. We used a logarithmic
transformation (base 2) to rescale the raw expression counts,
ensuring that the resulting range of gene expressions is smaller
than 100. Additionally, we exclude genes expressed in only a
few cells, as their contribution to the data is nearly negligible.
Removing such genes not only reduces computation time but
also has a limited impact on the overall performance of the
method.

The next step of the workflow involves the exclusive
filtering of genes situated on the initial chromosome. We
select the initial chromosome and its corresponding gene set,
and intersect the genes in the expression matrix with each
chromosome’s gene sets in the process creating an intersected
gene expression matrix for each chromosome. There will likely
be chromosomes that have little to no genes that are shared
in the gene expression matrix of the initial chromosome. We
resolve this issue by having a set threshold of 10 genes or
less for a chromosome to be marked for removal. This step
results in the creation of a gene expression submatrix for each
gene set within the chromosome. However, It’s important to
note that each chromosome may have different ranges of scale
having varying numbers of genes associated with it. A larger
intersected gene expression submatrix could dominate over a
smaller one.

To address this, we generate a latent representation of each
chromosome from its gene expression submatrix using the
psych [11] package. We use the factor analysis function of
the psych package to conduct factor analysis on all the chro-
mosome’s gene expression matrices. This process produces a
two-dimensional data representation for every chromosome an
overall reduction of dimensions, while retaining information.
We concatenate the chromosomes into a single whole matrix,
with a dimension that will be double the number of remaining
chromosomes. The resulting values typically fall within the
range of -5 to 5, with very few outliers. We can use this range
as a threshold for the safe removal of any results that fall
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Fig. 1. The workflow of our proposed single-cell data trajectory inference using Chromosome physical location and ensemble Random Walk (scCRW).
It consists of four parts: (a) Chromosome feature selection, (b) Dimension reduction and clustering through the use of scDHA, (c) Ensemble pseudotime
inference that performs multiple clustering results for a more robust pseudotime of cell clusters, and (d) The construction of a trajectory through the use of
an ensemble random walk algorithm generating multiple trajectory graphs, averaging them into a single final graph, and sorted by the average of clusters
pseudotime

outside this specified value range.
Through the use of these techniques to prune the vast

dataset that encompasses an excess of 25,000 genes, we have
significantly reduced the dimension of the gene expression and
its total gene count. This significant reduction in computational
requirements greatly benefits the subsequent stages of the
workflow.

B. Dimension reduction and clustering

The dimension reduction and clustering technique we’ve
integrated into our method have demonstrated remarkable
performance when coupled with the use of single-cell De-
composition using Hierarchical Autoencoder (scDHA). As
illustrated in Figure 1(b) within our workflow, scDHA comes
into play after the factor analysis. scDHA was developed to
address the challenge of efficiently handling the extensive data
and noise inherent in single-cell RNA sequencing, yielding
representative data from each cell. The scDHA pipeline con-
sists of two core models. The first module is a non-negative
kernel autoencoder that eliminates genes with a negligible
contribution based on the encoder’s weight distribution, thus
providing a non-negative data representation. This data is then
processed through a stacked Bayesian self-learning network
based on the Variational Autoencoder (VAE), which takes
and decodes the data produced by the non-negative kernel
autoencoder, projecting it into a low-dimensional space, often
referred to as the latent space.

The scDHA approach represents data in an informative and
compact manner, facilitating excellent performance in the anal-
ysis of single-cell data with high accuracy and time efficiency
for dimension reduction and clustering. The scDHA package
plays a pivotal role in our workflow as it excels in handling
dimension reduction and clustering steps, outperforming other
potential methods for dimension reduction and clustering. At-
tempts to replace scDHA with dimension reduction algorithms
like PCA and UMAP, or implement the K-means clustering

algorithm into scCRW, result in inferior outcomes, leading to
an accuracy decline in trajectory inference. The reason for
this performance degradation in scCRW is twofold, tied to its
integration within the scCRW framework. As demonstrated
in Figure 1(c), scDHA is utilized by running it six times
with varying values for the parameter ‘k,’ which represents
the cluster number, set from 5 to 10 to cluster all the cells
into ‘k’ clusters. scCRW leverages the results from these
multiple clustering runs to create a more robust ensemble
pseudotime for cells than would be achieved by running
it only once. Figure 1(b) showcases its second application,
generating the latent space and clustering results with the help
of automatically detected cluster numbers from intersected
factors, which are then utilized by scCRW to construct the
output graph.

C. Pseudotime inference

Pseudotime inference stands as a pivotal step in our tra-
jectory inference process. As depicted in Figure 1(c), our ap-
proach to ensemble pseudotime inference differs significantly
from the methods employed by other approaches. The majority
of methods typically begin by establishing a trajectory first and
then using that trajectory to infer pseudotime. The approach of
using a trajectory to infer pseudotime is used in the slingshot
method, which initiates by constructing an MST graph based
on cell clusters to identify the number of lineages and their
branch points. It employs simultaneous principle curves to
smooth out the lineages represented by the MST and projects
cells onto the principal curves. Subsequently, the slingshot
computes the pseudotime of cells by measuring the arc length
from the start point to the projected points on the principal
curve of cells. While this procedure may offer improved
results compared to using an MST alone, it hinges on the
generation of an accurate MST graph, and errors in the MST
graph can significantly impact the pseudotime. Other methods,
like Monocle3, have attempted to mitigate these issues by
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learning a principal graph in a low-dimensional space and
calculating pseudotime by geodesic distance. These endeavors
may enhance the accuracy of MST graph construction, but
the reliance on dimension reduction and clustering remains
challenging.

In our approach, we aim to circumvent this challenge by
inferring the pseudotime of cells first and then incorporating
the generated pseudotime into the trajectory inference process.
This approach hinges on a key assumption that the closer two
cells are to each other on the trajectory, the more similar their
gene expression profiles. Our testing reveals that this holds
true in a low-dimensional space generated by a dimension
reduction algorithm, allowing us to assume that cells belonging
to the same developmental state share a similar latent space
in a low-dimensional context.

We have confirmed this assumption by conducting tests with
true cell types, showing that we can accurately determine
pseudotime from true labels. This involves selecting a start
group and calculating distances between this group and other
cell groups to determine pseudotime. Importantly, we can
accurately infer pseudotime solely from the true cell type
label. However, when we attempt to use clustering results to
accomplish the same task, we observe a significant decrease
in pseudotime inference accuracy compared to using true cell
types. This discrepancy can be attributed to errors in the clus-
tering method, as cells may be assigned to incorrect clusters
due to the limitations of the clustering method. Additionally,
the clustering method struggles to infer the number of cell
types, further contributing to a decrease in clustering accuracy,
which ultimately leads to the construction of an inaccurate
graph and a reduction in pseudotime inference accuracy.

To address this issue, we propose employing multiple
scDHA clustering results at various resolutions, ranging from
coarse scale (e.g., 5 clusters) to finer scales (e.g., 10 clusters) to
enhance pseudotime inference accuracy. This method requires
one or more cells as starting points to identify the initial
cluster. The pseudotime inference algorithm sets scDHA to
a clustering result with ‘k’ equal to 5. Using the provided
starting points, we identify the starting cluster and assign
its cells a pseudotime of 0. We then calculate the Euclidean
distance between the center of the starting cluster and other
cell clusters, assigning pseudotime to cells based on their
respective distances to their corresponding cell cluster. This
process is repeated for ‘k’ values ranging from 5 to 10,
resulting in six pseudotime values for each cell. Finally, we
aggregate these six pseudotime results and divide them by six
to generate the final pseudotime value. It’s important to note
that increasing the maximum ‘k’ value beyond a certain point
offers limited benefits while incurring a higher computational
cost.

D. Trajectory inference

The low-dimensional representation of single cells is de-
rived from the single-cell expression data processed through
earlier stages in the workflow. The objective of graph con-
struction is to depict the relationships between individual
cells and their developmental trajectories, organizing them

according to their pseudotime. scTEP endeavors to achieve this
by employing an MST that connects the clusters formed during
the clustering phase, with edges symbolizing connections
between the nodes. While this method does achieve the goal of
graph construction, there is room for improvement. An alter-
native approach that we propose involves the utilization of an
ensemble random walk algorithm to trace the developmental
trajectory of cells. This approach offers enhanced capability
for detecting branching points and is more robust against noise
in the datasets.

This stage in our workflow entails leveraging the latent
representations generated by scDHA to deduce the cellular
trajectories. We initiate this process by computing the centers
of the clusters, which are depicted as vertices on a graph
representing the centroids of cells corresponding to these
clusters. Subsequently, we calculate a distance matrix using
the Euclidean distance based on these cluster centers. This
distance matrix then serves as an adjacency matrix to establish
a fully connected directed graph. The weights of the edges
connecting the vertices on the graph are determined by the
Euclidean distances between pairs of vertices, with the average
pseudotime serving as an attribute of the vertices.

Now, we can initiate our random walk. We commence from
a specified root vertex, and the method conducts random walks
using the “random edge walk()” function, integrated from
the igraph [12] package. The algorithm is inclined to move
towards nearby cells rather than those farther away. If, during
the random walk, the algorithm visits a particular vertex more
frequently than what can be expected by chance, that vertex is
considered a potential next starting point. Multiple potential
starting vertices may emerge from this step, indicating the
possibility of branching trajectories. The method then proceeds
recursively through the graph based on the next starting vertex,
eliminating previously visited vertices and those identified as
possible starting points, thus creating a sub-graph for traversal.
If there were multiple potential starting vertices, the method
traverses sub-graphs created at each selection point. This
process repeats until all vertices have been visited. The method
eventually returns the trajectory or trajectories, amalgamating
into a single graph that may contain multiple edges pointing to
the same vertex due to the possibility of being visited multiple
times from different potential starting vertices. In such cases,
the edge closest to the vertex being pointed to is retained, while
others are discarded. This process of running the random walk
algorithm to generate a graph is repeated 10 times to obtain ten
graphs with their own trajectories based on the random walk
algorithm. These ten graphs are then averaged into a single
final graph that will be fine-tuned with nodes being sorted
based on their pseudotime obtained from the average of all
cells in the cluster.

The trajectory resulting from the random walk is subse-
quently refined by a sorting algorithm that arranges the graph’s
vertices based on their pseudotime. The algorithm commences
with the vertex designated as the root vertex and proceeds to
locate its neighbors along with the vertices on the graph in
pursuit of the node with the minimum pseudotime. If the root
vertex is not the one with the minimum pseudotime, the two
vertices are swapped, making the minimum vertex the new
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TABLE I
THE TRAJECTORY INFERENCE CORRELATION RESULTS OF LINEAR DATA SETS

Methods Proposed scTEP Slingshot TSCAN SCORPIUS PAGA Monocle3

Kowalczyk 0.84 0.78 0.79 -0.72 0.78 0.69 0.61
Han 0.75 0.73 0.69 -0.76 0.39 0.66 0.19

Manno 0.82 0.68 0.77 -0.76 0.81 0.41 0.42
Yuzwa 0.6 0.66 0.41 0.62 -0.66 0.66 0.35

Mean 0.696 0.67 0.574 -0.388 0.274 0.544 0.394

LT−HSC

ST−HSC

MPP

1 2 3
Pseudo Time

GT R=1

−1

0

1

2

3

−3 0 3 6
UMAP1

U
M

A
P

2
1.0

1.5

2.0

2.5

3.0
pseudotime

R = 1

−1

0

1

2

3

−3 0 3 6
UMAP1

U
M

A
P

2

cell_stages

LT−HSC
ST−HSC
MPP

R = 1

LT−HSC

ST−HSC

MPP

0 2 4 6
Pseudo Time

scCRW R=0.84

−1

0

1

2

3

−3 0 3 6
UMAP1

U
M

A
P

2

0
1
2
3
4
5
6

pseudotime

R = 0.84

−1

0

1

2

3

−3 0 3 6
UMAP1

U
M

A
P

2

cell_stages

1
2
3
4
5

R = 0.84

Fig. 2. The visual representation of Kowalczyk’s results. The top row displays the ground truth, while the bottom row showcases the scCRW output.

root. This process is then iteratively applied to sub-graphs
with the root vertex removed, and is continued until there are
no vertices left. These sub-graphs are then combined into a
single graph. This process ensures the creation of a polished
and precise representation of cell trajectories in the final graph.

III. RESULTS AND DISCUSSION

Analyzing single-cell RNA-seq data presents numerous
challenges, with a prominent issue being the substantial level
of variability. This variability can stem from various sources,
potentially impacting single-cell data, underscoring the signif-
icance of employing robust techniques capable of processing
and managing any noise inherent in the data.

We assess the capability and resilience of scCRW by utiliz-
ing datasets encompassing both linear and nonlinear single-
cell data. We compare the outcomes achieved by scCRW
to those of other state-of-the-art methods, highlighting the
advancements made by scCRW over previous approaches. The
methods selected for this comparison include scTEP, Sling-
shot, TSCAN, SCORPIUS [13], PAGA [14], and Monocle
3 [15].

A. Linear data sets

Table I presents the outcomes for the linear datasets, uti-
lizing a correlation metric to quantify the similarity between
each method’s cell geodesic distances from the starting point
within the milestone network and the ground truth. Notably,

scCRW outperforms other methods with a mean correlation
of 0.696, securing the top position. scTEP follows closely
with a mean correlation of 0.67. Given that scCRW builds
upon scTEP, a similar mean score is expected. Slingshot and
PAGA yield similar results, occupying the third and fourth
positions with mean scores of 0.574 and 0.544, respectively.
Both methods achieve top results in individual data samples.
Monocle3 and SCORPIUS exhibit more significant drops in
correlation values, with scores of 0.394 and 0.274, respec-
tively. Lastly, TSCAN records a mean correlation value that is
negative (-0.388) and displays negative correlation values in all
data samples except one, where it secures the second-highest
correlation value. The results demonstrate a clear improvement
for scCRW, as it consistently achieves top correlation values
over previous methods.

Figure 2 provides a visual representation of the results for
the Kowalczyk datasets. The visualization can be separated
into three columns. The left column depicts the pseudotime of
cells in three groups “MPP”, “ST-HSC”, and “LT-HSC” with
scCRW having pseudotime for cells that are often consistent
to the ground truth, with cells aligning together towards the
center of the ground truth pseudotime. Although there are
a few instances where some cells appear to be in reverse
order, relative to the ground truth. The middle column shows a
UMAP visualization with cells pseudotime belonging to three
main pseudotime groups with lighter blue cells having higher
pseudotime. The pseudotime generated by scCRW having
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TABLE II
THE TRAJECTORY INFERENCE CORRELATION RESULTS OF NONLINEAR DATA SETS

Methods Metrics Proposed scTEP Slingshot TSCAN SCORPIUS PAGA Monocle3

Macrophage
F1 Branches 0.43 0.40 0.40 0.40 0.40 0.5 0.40
F1 Milestone 0.49 0.41 0.57 0.37 0.48 0.46 0.46
Correlation 0.38 0.20 0.03 0.008 0.03 0 0.16

NKT
F1 Branches 0.59 0.45 0.50 0.38 0.38 0.71 0.32
F1 Milestone 0.44 0.48 0.66 0.40 0.44 0.37 0.28
Correlation 0.55 0.46 0.52 0.27 0.35 0.50 0.22

similar cell clustering pseudotime to the ground truth. The
right column illustrates the trajectory inferred by scCRW, and
the cells are classified into five groups. The resulting trajectory
correctly identifies and follows the main lineage, but there
are two additional branches identified by scCRW, one that
branches off from cluster 3 and one that originates from cluster
5 and towards cluster 4.

B. Nonlinear data sets

Table II presents the results for the nonlinear datasets,
where we utilize a correlation metric, along with F1 branch
and F1 milestone metrics. scCRW consistently produces top
correlation values for the nonlinear datasets, and its F1 branch
and F1 milestone values are often near the top of the rankings.
A notable example is the macrophage dataset, where scCRW
excels in the correlation metric with a value of 0.38, while
the second-highest correlation is 0.20 from scTEP. In terms
of the F1 branch and F1 milestone metrics, scCRW records
the second-highest top result with values of 0.43 and 0.49,
which are in close proximity to the top results of 0.5 for the
branch metric by PAGA and 0.57 for the milestone metric by
Slingshot. These results underscore the robustness of scCRW
in effectively handling various data types.

IV. CONCLUSION

We have introduced a novel framework, scCRW, for pseu-
dotime and trajectory inference of single-cell data RNA se-
quencing data. scCRW utilization of chromosomes in its factor
analysis and random walk for trajectory inference has allowed
for more accuracy and robustness in its output. scCRW ef-
fectiveness is demonstrated with results produced from the
linear and nonlinear datasets. scCRW due to filtering by
chromosome, we capture broader gene interactions that might
be missed when focusing on individual genes or narrower gene
sets. This approach also leaves room for incorporating other
biological data in the future, adding flexibility to the analysis
workflow.
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