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Abstract
Automatic Speech Recognition (ASR) technology is fundamental in transcribing spoken language into text, with
considerable applications in the clinical realm, including streamlining medical transcription and integrating with
Electronic Health Record (EHR) systems. Nevertheless, challenges persist, especially when transcriptions contain
noise, leading to significant drops in performance when Natural Language Processing (NLP) models are applied.
Named Entity Recognition (NER), an essential clinical task, is particularly affected by such noise, often termed the
ASR-NLP gap. Prior works have primarily studied ASR’s efficiency in clean recordings, leaving a research gap
concerning the performance in noisy environments. This paper introduces a novel dataset, BioASR-NER, designed
to bridge the ASR-NLP gap in the biomedical domain, focusing on extracting adverse drug reactions and mentions
of entities from the Brief Test of Adult Cognition by Telephone (BTACT) exam. Our dataset offers a comprehensive
collection of almost 2,000 clean and noisy recordings. In addressing the noise challenge, we present an innovative
transcript-cleaning method using GPT4, investigating both zero-shot and few-shot methodologies. Our study further
delves into an error analysis, shedding light on the types of errors in transcription software, corrections by GPT4,
and the challenges GPT4 faces. This paper aims to foster improved understanding and potential solutions for the
ASR-NLP gap, ultimately supporting enhanced healthcare documentation practices.
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1. Introduction

Automatic Speech Recognition (ASR) technology
is pivotal in converting spoken language into writ-
ten text and finds critical applications within clinical
contexts. One important use is expediting med-
ical transcription processes and efficiently docu-
menting doctor-patient interactions. This seam-
less conversion reduces the time and resources
traditionally spent on manual transcription, afford-
ing healthcare professionals more time for focused
patient care. Specifically, ASR can seamlessly in-
tegrate into Electronic Health Record (EHR) sys-
tems, enabling real-time dictation of diagnoses,
treatment plans, and patient notes, thereby aug-
menting the accuracy and immediacy of clinical
documentation. Hence, this technology holds sub-
stantial promise in revolutionizing healthcare doc-
umentation practices. After successful conversion
from audio to text, natural language processing
(NLP) tools can be applied to the transcriptions for
various tasks (Szymański et al., 2023). Unfortu-
nately, transcription is not accurate, particularly in
noisy environments. Moreover, when NLP mod-
els are applied to noisy data that does not match
the training data distribution, large drops in perfor-
mance may be observed.

This paper focuses on the biomedical NLP en-
tity recognition (NER) task applied to noisy audio
transcripts. Named entity recognition is vital for
many important clinical tasks, from extracting so-
cial determinants of health mentions from clinical
notes to extracting mentions of adverse drug reac-
tions. Clinicians may not be able to capture ev-
erything stated to them by a patient (e.g., specific
adverse reactions to a drug), particularly if they
need to transcribe information after an interaction
via rote memory. Hence, if ASR can be used to
record patient-clinician interactions, then NER sys-
tems can be applied to extract clinically relevant
information for later use. We explore the viability
of NER systems applied to noisy transcripts to bet-
ter understand their performance in real-world set-
tings, where records may have multiple speakers
and background sounds.

Szymański et al. (2023) has recently called this
difference in performance the ASR-NLP gap. At
a high level, there are two primary causes for the
ASR-NLP gap. First, transcription errors can com-
pletely change the words mentioned. For instance,
if someone mentions the word “headache” (which
could be a mention of a drug side effect), but if
it is recognized as “headway,” then a traditional
NER system would be unable to identify it. Sec-



ond, the data distribution changes. Models trained
on clean, non-transcribed data may capture differ-
ent patterns in the text that are not available in the
transcribed text. The patterns may be as simple as
differences in punctuation and capitalization, but
such patterns are essential for accurate NER.

Much of the prior work on studying ASR sys-
tems, particularly in biomedical domains, has fo-
cused on either developing or evaluating ASR sys-
tems for novel patient populations (Tran et al.,
2023) or training and evaluating NLP systems
on carefully corrected and relatively clean tran-
scripts. For work evaluating ASR systems in the
clinical domain, there have been low word er-
ror rates (WER) reported (e.g., 11% (Tran et al.,
2023) 24.3% (Hacking et al., 2023), and 10% (King
et al., 2023)). However, the studies often report
results on relatively clean recordings (e.g., with-
out multiple background speakers or substantial
background noise). Sometimes transcripts that
are very noisy are completely removed from the
evaluation data (King et al., 2023), potentially re-
sulting in overly optimistic performance. Prior
works have reported WERs much worse than the
reported numbers in the clinical setting (Kodish-
Wachs et al., 2018), with WERs in the range of
30% to 60%. Moreover, Kodish-Wachs et al.
(2018) also evaluated concept extraction software
on transcriptions. However, they did not compare
the performance difference between clean data
and noisy transcripts. The numbers are still gen-
erally reported on “clean” transcripts with minimal
background noise and background speakers. Fi-
nally, they do not provide any natural next steps
for improving performance. Hence, the results
may be much worse when evaluating substantially
noisy environments.

In this paper, we develop a new dataset so
biomedical NLP researchers can directly improve
and explore the biomedical ASR-NLP gap. Specif-
ically, we introduce a dataset that extracts adverse
drug reaction mentions and a dataset that extracts
fruits and animals that would be mentioned as part
of the Brief Test of Adult Cognition by Telephone
(BTACT) exam. To the best of our knowledge, this
will be the first publicly available dataset to allow
for careful evaluation of the ASR-NLP gap in the
biomedical domain.

In summary, based on current research gaps in
the ASR-NLP gap for biomedical applications, this
paper makes the following contributions:
(i) We introduce a novel dataset of nearly 2000

clean and noisy recordings for biomedical-
related ASR-NER called BioASR-NER.1

(ii) We introduce a simple approach to improving

1The dataset is available at https://zenodo.
org/records/10864063.

model performance via a transcript-cleaning
procedure using GPT4. We explore both zero-
shot and few-shot methodologies for when
ground-truth noisy and cleaned transcription
pairs are limited.

(iii) Finally, we perform an informative error anal-
ysis showcasing the types of errors made by
the transcription software, the type of errors
GPT4 corrects, and the types of errors GPT4
cannot handle accurately.

2. Related Work

In this work, we describe two major research
lines relevant to this paper: Biomedical ASR-NLP,
which includes work on Biomedical ASR technolo-
gies and NLP applied to transcriptions (clean and
noisy if available), and Biomedical NER, which dis-
cusses some recent work on developing methods
to extract biomedical entities from text.

2.1. Biomedical NER
There have been many datasets and methods
developed for the detection of biomedical enti-
ties (Leaman and Gonzalez, 2008; Song et al.,
2021; Rocktäschel et al., 2012; Chiu et al., 2021;
Lee et al., 2020; Sun et al., 2021; López-Úbeda
et al., 2021; Weber et al., 2021). Specifically,
there are biomedical NER tasks including, but not
limited to, extracting mentions of social determi-
nants of health from electronic medical records,
detecting adverse drug interactions in patient self-
reports (Karimi et al., 2015), extracting chemical
and drugs mentions (Rocktäschel et al., 2012),
and extracting gene mentions in biomedical re-
search articles (Pyysalo et al., 2007).

Many novel methodological approaches have
been developed for each of the tasks. For ex-
ample, Lee et al. (2020) developed a specialized
BERT model tailored for biomedical applications,
demonstrating improvements over previous state-
of-the-art results. Additionally, HunFlair (Weber
et al., 2021) introduced a methodology that com-
bines word, contextual, and character embeddings
within a unified framework, achieving state-of-the-
art performance. Tong et al. (2021) introduce a
multi-task learning framework for biomedical NER
that integrates multiple related training objectives
to improve entity extraction. Similarly, Watanabe
et al. (2022) improve biomedical NER by incor-
porating auxiliary learning with multiple datasets.
Guan and Zhou (2023) incorporated information
between word pairs to improve biomedical NER
performance. And more recently, Ghosh et al.
(2023) explored synthetic data augmentation to
improve low-resource biomedical NER. Similarly,

https://zenodo.org/records/10864063
https://zenodo.org/records/10864063


Chen et al. (2023) improved few-shot NER via con-
trastive prompt tuning.

Overall, our work is most related to research on
out-of-domain performance of information extrac-
tion systems (Rios et al., 2018; Jia et al., 2019; Po-
erner et al., 2020; Vu et al., 2020; Nguyen et al.,
2022). Poerner et al. (2020) train word embed-
dings on the target domain and the align them
to the general domain to improve generalization.
Nguyen et al. (2022) introduce “hardness” related
information to better generalize biomedical NER
models across domains. However, contrary to
prior research, our work differs in one major way.
Specifically, we are focused on a particular kind
of domain shift. Prior work has explored two dis-
parate domains such as social media and elec-
tronic health records. In our paper, the underlying
data does not change. Instead, the style of the con-
tent changes because of the noisy channel caused
by the transcription process.

2.2. Biomedical ASR-NLP
As discussed in the Introduction, much of the work
on automatic speech recognition (ASR) systems
provides overly optimistic word error rates (WER).
Many datasets lack background noise and only
have a single speaker. Yet, real-world datasets
may have background noise, multiple background
speakers of various volumes, and even dropped
connections. Recent studies and reviews have dis-
cussed how digital scribes (ASR systems) are nec-
essary to reduce physician burden to provide more
reliable care (Quiroz et al., 2019; van Buchem
et al., 2021).

Recently, there have been two major research
directions for biomedical applications related to
ASR. First, new ASR systems have been proposed
directly for particular patient populations (Kodish-
Wachs et al., 2018). For example, Hacking et al.
(2023) introduces a novel ASR system for older
adults in an interview setting. Likewise, there has
been substantial work on developing and improv-
ing biomedical ASR systems for languages be-
sides English (Dhuriya et al., 2022). Second, there
has been research that has evaluated commercial
ASR systems in the biomedical domain. For exam-
ple, (Tran et al., 2023) evaluated proprietary ASR
systems for their ability to detect non-lexical con-
versational sounds such as “Mm-hm” and “Uh-uh”,
which can be clinically relevant in many scenarios.
The authors found that current systems are unable
to detect them regularly. Likewise, Paats et al.
(2015) evaluated ASR systems in Estonian lan-
guages. Finally, there has been research that has
developed and evaluated NLP systems on ASR
transcripts. For example, (Ganoe et al., 2021) de-
velop NER tools to extract medication mentions
in transcripts of primary care conversations. Yet,

much of the prior work applying NLP tools to tran-
scripts has used “cleaned” transcripts with limited
transcription errors where a human has ensured
the transcript is accurate. In this work, we focus
on noisy transcripts in the presence of background
noise and multiple speakers. Moreover, for work
that evaluates ASR systems using WER, that per-
formance does not correlate with the quality of the
transcription by a human evaluator and does not
correlate with downstream performance on NLP
tasks (Whetten and Kennington, 2023; Szymański
et al., 2023).

From a methodological standpoint, some recent
work has explored reducing transcription errors.
To this end, our work is similar to Mani et al. (2020)
that developed a seq2seq method to reduce tran-
scription errors applied after a mainstream ASR
process. Our work expands on this direction in two
ways. First, we provide a unique dataset in a do-
main that lacks publicly available data. Second,
our work analyzes the impact on NER directly, not
WER, which can negatively correlate with NER per-
formance.

Overall, our work is most similar to Szymański
et al. (2023). At a high level Szymański et al.
(2023) analyzed the relationship between ASR per-
formance and NER model performance. They
found that the NER models make errors on the
ASR-transcribed data, even when the entity is con-
tained in the transcript. This can be caused by co-
variate shift (e.g., we would not expect a model
trained on general data to generalize to biomed-
ical articles). However, our work differs in three
major ways. First, the focus of this paper is on
the biomedical domain. There are limited pub-
licly available datasets that researchers can use to
develop new methods for improving downstream
tasks (e.g., NER) on noisy transcriptions. Sec-
ond, our focus is on noisy audio. Specifically,
our audio contains multiple background speakers
and background noise (e.g., TV sounds). Com-
pared to prior work applying NLP to transcripts,
our transcripts are not “clean.” Third, we introduce
a simple method of improving NER system per-
formance without training on domain-specific tran-
scribed data, which is advocated by Szymański
et al. (2023). Obtaining NER annotations on noisy
transcriptions is time-consuming and infeasible in
a timely manner. Hence, our approach can im-
prove existing NER model performance when ap-
plied to noisy transcripts with only a few examples
of noisy and clean transcripts (the actual NER an-
notations are not required).

3. Data

This paper uses CADEC (Karimi et al., 2015) and
a Synthetic BTACT dataset. CADEC is a popular
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Figure 1: Overview of our data collection process. The process has four main steps: 1) We collect the
initial datasets (CADEC and BTACT); 2) Graduate assistants read and record the text in the datasets;
3) We normalize each audio file to the same loudness; and 4) we generate noisy audio files by merging
multiple speakers and adding background noise.

Dataset Example

CADEC

i actually am taking provacal, but when I bring up the drug, it brings me to lipitor. I have experienced
fatigue, hip pain,some joint pain in knee.

I would not recommend this drug,my Doctor didn’t explain any risk to taking this drug,although it
lowered my cholesterol some,I changed my diet and started an exercise plan,I quit taking the drug
2 months ago and have continually lowered my chol. level.

Synthetic BTACT

Let me see what I can do. mortar, cod, lemming, vole, quail, pigeon, rodent, laboratory rat strains,
turkey breeds, eel, great blue heron, ringneck dove, bonobo, prawn, record. That’s something I’ll
need some more time to consider. rodent. I’m concerned that I might not be able to provide a well-
informed response. rodent, laboratory rat strains, turkey breeds, eel, great blue heron, ringneck
dove, bonobo, prawn, pigeon, record, cockroach, pike

Okay, let’s get to work. loquat, mouse melon, soda, kiwifruit, cucumber, lime, plantain, white
currant, mouse melon, height, rambutan, apple, cucumber, citrus, lime, jackfruit, goji berry, loquat.

Table 1: Modified examples from the CADEC and Synthetic BTACT datasets.

NER dataset for extracting adverse drug reactions
from experiences written by patients, and the Syn-
thetic BTACT dataset is a novel dataset we cre-
ated that simulates questions of the Brief Test of
Adult Cognition by Telephone (BTACT). For both
datasets, we have research assistants read each
item and record an audio file of the reading. We
generate noisy audio files by merging the files of
multiple speakers and background noises/sounds.
A high-level overview of the data collection pro-
cess is shown in Figure 1. The details of the cu-
ration and creation are described in the following
subsections.

3.1. Dataset Curation
CADEC. The CSIRO Adverse Drug Event Cor-
pus (CADEC)2 is an extensively annotated collec-
tion of medical forum posts centered on patient-
reported Adverse Drug Events (ADEs). Derived
from social media discussions, the corpus com-
prises text predominantly written in colloquial lan-
guage, often straying from conventional English
grammar and punctuation norms. The annota-
tions reference various concepts, including drugs,
adverse effects, symptoms, and associated dis-
eases, all linked to controlled vocabularies such

2The dataset is publicly accessible at
https://data.csiro.au.

Text Files # Audio # Types

CADEC 1,250 1,000 5
Syntehtic BTACT 1,000 1,000 3

Table 2: This table reports the basic dataset statis-
tics for both CADEC and Synthetic BTACT, includ-
ing the number of audio files (# Audio) and the
number of named entity classes (# Types).

as SNOMED Clinical Terms and MedDRA. Rig-
orous annotation guidelines, multi-stage anno-
tations, inter-annotator agreement assessments,
and a final review by a clinical terminologist en-
sure the high quality of annotations. This corpus,
initially sourced from Askapatient.com, proves
invaluable for research in information extraction
and broader text mining from social media, espe-
cially for identifying potential adverse drug reac-
tions directly reported by patients. This resource
empowers patients by encouraging the sharing of
side effects and success stories, advocating for
informed health decisions through real-life experi-
ences with drug treatments. AskaPatient.com
provides tools to support and inform the engaged
patient. Overall, the entity types in the dataset are
adverse drug reaction (ADR), drug, finding, dis-
ease, and symptom. Examples can be found in
Table 1.

Askapatient.com
AskaPatient.com
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Figure 2: Overview of the training procedure and the prediction strategies we explore to improve biomed-
ical NER performance.

Synthetic BTACT. The Brief Test of Adult Cogni-
tion by Telephone (BTACT) is a succinct yet com-
prehensive screening tool designed for assessing
cognitive function, particularly in the context of de-
mentia. Administered either in person or over the
phone, this battery of tests evaluates key cogni-
tive domains, including episodic verbal memory,
working memory, verbal fluency, inductive reason-
ing, and processing speed. Developed for use
in the National Survey of Midlife Development in
the United States (MIDUS), the BTACT combines
adapted neuropsychological tests with novel sub-
tests. Extensive research has validated its effec-
tiveness as a dementia screening measure across
a diverse range of individuals, providing a valu-
able tool for early detection and intervention in
cognitive decline. This versatile assessment tool
holds promise for enhancing dementia diagnosis
and care, particularly in situations where in-person
evaluation may not be feasible.

We create synthetic BTACT subtest answers for
the questions, “List as many animals as possible in
30 seconds” and “List as many fruits as possible in
30 seconds.” Specifically, we randomly generate a
list of fruits or animals using publicly available lex-
icons.3 Next, we randomly inject incorrect entities
(non-animal and non-fruit) into the respective lists.
Next, we randomly add an introduction sentence
(e.g., “Okay, let me try to list as many as I can.”)
and interjections (e.g., “Let me think for a second”)
in the middle of the lists. The entity types are “an-
imal”, “fruit”, and “other.” Examples can be found
in Table 1.

3.2. Audio Recordings and mixing
Next, we had research assistants read each of the
scripts from both datasets. Luckily, the examples
in both datasets are written in first-person, which

3https://github.com/imsky/wordlists

also helps more natural readings. In total, we had
five diverse assistants with respect to age and gen-
der that helped the recording process. Next, each
recording was normalized to ensure the volume
(loudness) was the same across all speakers us-
ing pyloudnorm (Steinmetz and Reiss, 2021).

After generating audio recordings from both
datasets, we randomly sampled the signal-to-
interference (SNR) ratio to merge each audio file
with the audio files of 2 to 3 other speakers and
a background noise/sound. The SNR used for
the CADEC and the Synthetic BTACT dataset dif-
fers when we generate noisy files. We differ in
the SNR ranges because the CADEC dataset has
more “signal” because of the relative fluency of the
text. Intuitively, the transcription models can un-
derstand how to extract words when they follow
common syntactic patterns (e.g., a noun follows a
determiner). However, the Synthetic BTACT data
contains large lists of nouns, and the relation of
one noun to the next provides little information for
prediction. An example of this phenomenon can
be seen in Figure 1. For the CADEC dataset,
we randomly mix each audio file with other users
using an SNR sampled from {−1, 0, 6} (negative
scores mean the background is “louder” than the
main speaker), and the background noise SNR is
sampled from {−1, 0, 3, 6, 9, 12}. For the Synthetic
BTACT dataset, we randomly sample the SNR
from the set {4, 6, 9}, and the background SNR
is sampled from {3, 6, 9, 12}. The background
noise types include kitchen, TV, home appliances,
music, and other ambient noises sampled from
recordings of ”daily life” environments. Overall,
this mixing strategy is based on the work by Ji et al.
(2020).

https://github.com/imsky/wordlists
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Figure 3: Example of the zero-shot prompting strat-
egy we use for GPT4.

4. Methods

This study attempts to investigate the performance
of NER systems on biomedical ASR-transcribed
data. In this regard, after developing a set of base-
lines trained on original scripts, we transcribe the
noisy audio and evaluate the NER performances
on the noisy and original transcripts.

In addition, we introduce a simple framework
to improve the NER system performance that re-
quires no training on domain-specific transcribed
data. We use the fourth iteration of the Generative
Pre-trained Transformer (GPT4) (OpenAI, 2023)
to post-process the ASR transcripts using its ad-
vanced capacity in contextual understanding and
extensive knowledge, which covers a very broad
range of biomedical concepts. During this post-
processing, GPT4 is provided instructions to eval-
uate and refine the transcribed outputs to improve
the downstream NER performance. In this regard,
we study two approaches: zero-shot prompting
and few-shot in-context learning.

NER baselines. Using the dataset, we develop
a set of solid and representative baselines for
biomedical NER and evaluate them on original
scripts as well as the ASR-transcribed data. How-
ever, we use the original scripts for training the
models using the widely adopted BIO tagging
scheme (Sang and De Meulder, 2003). We use
pretrained language models such as BERT (Devlin
et al., 2018), BioBERT (Lee et al., 2020), T5 (Raf-
fel et al., 2020) and Flair’s4 pretrained word em-
beddings such as GloVe that are fine-tuned on

4Flair is a framework for many NLP tasks including
NER, POS tagging and text classification which pro-
vides a variety of embeddings as well as modules to

Instruction Prompt

Instruction prompt here

In-context Examples

T: Noisy prompt example
C: Clean Prompt

T: Noisy Transcript example
C: Clean Transcript

T: Noisy Transcript
C:

GPT4

C: Clean Transcript

+

Figure 4: Example of the few-shot prompting strat-
egy we use for GPT4.

news articles and PubMed datasets. We combine
these with the widely adopted BiLSTM-CRF (Lam-
ple et al., 2016; Sui et al., 2021).

ASR. As for the ASR module, we use Whisper
from OpenAI (Radford et al., 2023) because of
its high-quality transcriptions and wide adoption in
the literature (Zhuo et al., 2023). We use Whis-
per in an audio streaming fashion in which the au-
dio input is divided into overlapping chunks, and
the overlapping content is post-processed using
Llama-2-7b (Touvron et al., 2023) by giving instruc-
tions to concatenate the transcribed chunks–we
also have tested with GPT4, but there has been
a minimal improvement. The size of the chunk is
also chosen based on optimum WER.

Zero-shot Prompting. Taking advantage of
GPT4’s understanding of context and comprehen-
sive knowledge in various biomedical domains, we
instruct it to refine the transcript, knowing that the
end goal is to improve the performance of the
downstream NER system evaluated based on de-
tecting the correct terms and categories.

The format of the zero-shot prompting is shown
in Figure 3. In addition, we provide the following
instructions and contextual information: i) We ex-
plain the general topic discussed in each dataset;
for example, for CADEC, we mention that the data
is a transcribed medical conversation about ad-
verse drug reactions. For BTACT dataset, we pro-
vide examples of valid animals/fruits. ii) We men-
tion that the audio is noisy, and some words may
have been incorrectly transcribed. It has to detect
the inappropriate terms and also rephrase them
to phonetically similar, yet more appropriate ones.
iii) We also explain the multi-speaker nature of the
noise and mention the possibility that some words

combine with pretrained language models. https://
flairnlp.github.io/

https://flairnlp.github.io/
https://flairnlp.github.io/


may be transcribed from the background speakers.
This way, GPT4 provides a more concise transcript
or at least removes the off-topic sentences to im-
prove the performance of the downstream NER.

Few-shot In-Context Learning. We also lever-
age in-context learning to provide sample ASR
noisy transcripts alongside the corresponding
ground-truth script and tagged named entities.
This way, we teach the GPT4 model through di-
rect examples, and it learns to identify the relation-
ships between the errors and correct similar errors
in the test transcripts. We show the prompt format
we generally use in Figure 4. The GPT4 may also
uncover unique relationships and come up with in-
novative approaches to refine the transcript. By ex-
posing the model to various examples, from com-
mon transcription inaccuracies to more complex
ones, GPT4 is encouraged to mimic corrections
and understand the underlying principles of these
mistakes (Ge et al., 2022; Gutierrez et al., 2022;
Jin et al., 2023; Cheng et al., 2023).

To choose the set of examples, we randomly
sample examples from the training set and cluster
them based on their type of errors. In this regard,
we look at the NER precision, recall, and F1; differ-
ences between the transcript and the original script
along with unrecognized or misrecognized named
entities. We also ask the GPT4 model to provide
its insights about what might have caused the er-
rors and how it can fix the errors. This insight is
also used in the clustering algorithm. Finally, a set
of varied examples is chosen to be provided to our
in-context few-shot learning approach5.

5. Results

In this section, we evaluate and contrast ASR-NER
performances on biomedical noisy transcripts with
those of the two proposed methods. We evaluate
the models based on their performance in detect-
ing the named entities as well as their categories.
We use micro precision, recall, and f1 as the eval-
uation metrics in which a correct prediction hap-
pens only if the named entity and the correspond-
ing tag category ŷĉii = (n̂i, ĉi) is predicted correctly
and matches those of the corresponding original
ground truth ycii = (ni, ci). If a script has multiple
pairs of the same named entity and category, we
treat each as a separate prediction to account for
repeated terms. This way, our evaluation would
be very similar to CoNLL’s (Sang and De Meul-
der, 2003); however, we do not perform a Span
detection or consider the BIO tags as the posi-

5We have tested the effect of every cluster as well as
various combinations, but providing examples from all
clusters results in the maximum improvement.

Model Precision Recall F1

Original

BERT .669 .569 .615
BioBERT .665 .583 .622
T5 .679 .585 .629
Flair .663 .658 .660
Average .669 .599 .631

Whisper

BERT .215 .215 .229
BioBERT .243 .208 .224
T5 .242 .272 .256
Flair .236 .242 .239
Average .234 .234 .237

+GPT4

BERT .363 .336 .349
BioBERT .363 .347 .355
T5 .362 .334 .347
Flair .352 .389 .369
Average .360 .351 .355

+GPT4+Few-shot

BERT .371 .358 .364
BioBERT .387 .383 .385
T5 .374 .360 .367
Flair .367 .415 .389
Average .375 .379 .376

Table 3: CADEC ASR dataset results

tion of words changes in all of our noisy transcript
datasets due to the existence of mistranscribed
words.

Table 3 shows the performances on the CADEC
dataset. As you can see, and was expected, the
performance on the NER has significantly dropped
(on average 62% of micro f1 scores) on the ASR
noisy transcript data for different reasons, includ-
ing mistranscribed words/terms, the words that are
picked up from the background and those that are
missed to name but a few reasons. Another rea-
son is the covariate shift between the training and
testing set. For example, the ASR output may
write the full name of a drug/disease, but the origi-
nal script may use abbreviations, or they may use
different punctuation. PLM-based models’ perfor-
mances have dropped less due to their robustness
to covariate shift and their ability to handle Out-Of-
Vocabulary (OOV) scenarios (in comparison with
traditional pretrained embeddings such as GloVe).
T5 performs consistently better on the recall and
precision, which shows its superior robustness,
and it would potentially be an ideal choice for fine-
tuning if one decides to fine-tune the NER on the
noisy transcript data.

The zero-shot prompting consistently im-
proves the micro f1 score by an average of 0.14
across all models, which is 59% improvement, fix-
ing the 22% of the drop (reduces the 62% drop
to 40%). This shows the value and effective-
ness of providing the context and GPT4’s capabil-
ity of utilizing its knowledge to refine the transcripts.
With the improvement of the transcripts and re-
duction in noise models, performances improved,



Corpus Model Precision Recall F1

Original

BERT .974 .972 .973
T5 .962 .968 .965
Flair .942 .963 .953
AVG .959 .968 .964

Whisper

BERT .528 .525 .526
T5 .554 .609 .580
Flair .555 .624 .587
AVG .546 .586 .564

+GPT4

BERT .554 .584 .570
T5 .571 .609 .589
Flair .580 .614 .597
AVG .568 .602 .585

+GPT4+Few-shot

BERT .567 .598 .584
T5 .611 .659 .634
Flair .620 .649 .634
AVG .599 .635 .617

Table 4: Overall results on the Synthetic BTACT
ASR dataset.

and Flair pretrained embedding surpassed other
models, consistent with the original scripts’ results.
BioBERT and Flair improved more than others,
especially T5, because GPT4 may replace some
terms with new medical terms that T5 has not seen
in the training set, but BioBERT and Flair PubMed
embeddings are good at recognizing them.

The few-shot in-context learning additionally
improves the micro f1 score by an average of 0.03
across all models. This is 79% improvement from
the ASR noisy transcripts that happen consistently
across all models and fixes the f1 drop by 27%.
Furthermore, the difference between the perfor-
mance of the models is more similar to those of
the original scripts, even in comparison with the
zero-shot prompting, which is because the post-
transcribed scripts are more similar to the origi-
nal ones. However, the BioBERT model, which is
the best-performing model, has shown the most
improvement by improving by 32% in terms of
micro-F1. Flair and BioBERT are the best mod-
els for zero-shot and few-shot learning when used
with GPT4 because of their pretraining on medi-
cal terms. We hypothesize that more specialized
language models that use medical databases for
pretraining can potentially improve performance.

Table 4 shows the performances on the Syn-
thetic BTACT dataset. Similar to the CADEC
dataset, we see that the performance significantly
drops on the noisy transcripts, and zero- or few-
shot learning will consistently improve the per-
formance. The generalization of improvements
across the two datasets suggests the effective-
ness of the proposed approaches. However, the
improvement on BTACT data is substantially lower

than CADEC–on BTACT data, the micro-f1 drop re-
duces from 41.4% in the noisy ASR-NER to 35.9%
using few-shot learning, i.e., 5.5% improvement.
This is due to the unnatural style of the BTACT data
and the lack of context to be leveraged by GPT4.

6. Discussion and Error Analysis

The error in ASR-NER can come from different
sources, such as noise in the original script, NER
errors, or ASR errors in which words may be mis-
transcribed or not transcribed from the background
speaker by mistake. The noise from the original
script includes grammatical errors, typos, or even
biomedical misconceptions. Although in a general
setting, we cannot address the input data noise,
in an ASR setting, this causes the model to either
mistranscribe or fix the issue, which causes a mis-
match between the predictions and ground-truth
tags. For example, (’flu like symtoms’, ’ADR’) is
transcribed to (’flu-like symtoms’, ’ADR’). Another
example, if the script talks about a drug that can
stop multiple episodes of migraines, it should say

“It stops migraines”

rather than

“It stops migraine.”

GPT4 realizes these issues and fixes them using
its biomedical knowledge.

The errors that come from the NER system can-
not be remedied, but sometimes the noisy tran-
scribed data can add terminologies or a combina-
tion of words, which results in errors in the NER
model; for example, NER is prone to misidentify
pronouns as ADRs, e.g. (we, ADR) or (i, ADR), es-
pecially when there are not many named-entities
in the input text. Therefore, when the input is very
noisy, and ASR cannot transcribe any ADR terms,
the output includes many such errors. Further-
more, the covariate shift between the ASR tran-
script and the original script can also cause errors
in the NER system. However, both types of errors
are mitigated to some extent by few-shot in-context
learning as the GPT4 has seen these errors and
changes in the style of the transcript compared to
the original script.

The error can also come from Whisper’s lim-
ited vocabulary or noisy predictions during uncer-
tainty. For example, Whisper cannot detect many
drug names, especially phonetically similar to a
more common term. For example, it transcribes
Arthotec as “arthritis” or “arthrotype,” but providing
the context that the script is about adverse drug
effects fixes the problem. However, due to the in-
trinsic randomness of GPT4, there are examples
in which the term is not fixed in either zero- or few-
shot learning–this happens for many other terms,



and very commonly, one approach has the right
answer, which suggests the use of ensemble ap-
proaches.

We also find unique situations where GPT4 hal-
lucinates new contexts. For instance, The original
text

“Both husband and wife on a low dosage
(10 mg). We are having extreme reac-
tions to heat.”

is transcribed by Whisper to

“There you have it everyone, some kind of
low dose of temperature, we are having
extreme reactions.”.

But, after applying GPT4, it hallucinates a change
in temperature, e.g.,

“We both have extreme reactions to tem-
perature changes.”

The new context has unexpected impacts on the
NER models, e.g., “changes in temperature” is de-
tected as an ADR. Future research is required to
reduce these hallucinations.

7. Conclusion

This paper explores the ASR-NLP gap in the
biomedical domain, particularly for noisy audio.
This challenge is especially pronounced in biomed-
ical Named Entity Recognition (NER) tasks. While
advancements in ASR show promise in controlled
environments, real-world noisy conditions present
significant obstacles (e.g., lack of publicly avail-
able datasets). To address this, we’ve introduced
the BioASR-NER dataset, offering a mix of clean
and noisy biomedical recordings. Coupled with
our innovative GPT4-based transcript cleaning ap-
proach, we’ve made strides toward mitigating tran-
scription errors.

There are two avenues for future research.
First, our methodology to fix transcripts is based
on the transcription text. Incorporating the au-
dio information, particularly with recent advances
in transformer-based audio-representations (Gong
et al., 2022), could substantially improve perfor-
mance. Second, other biomedical NLP-based
tasks, particularly when applied to noisy tran-
scripts, deserve attention. These tasks in-
clude tasks such as text summarization (Mishra
et al., 2014) and question answering (Jin et al.,
2022). How these models generalize when ap-
plied to audio-generated transcripts with back-
ground voices and noises is unclear. Hence, we
will explore these tasks as future work.
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A. Complete System Prompts

In our study, we structure the dialogues with GPT-4
to refine noisy transcriptions of animal names. The
dialogue is initiated with a system prompt, followed
by a series of user and assistant interactions. Be-
low, we show the system prompt used for the Syn-
thetic BTACT dataset:

System Prompt: ”I give you a transcript
about animals. Animal names are being
called out. There are some names that
are transcribed by mistake. Fix them to
the phonetically similar, more proper ver-
sion if you find it not proper. Respond
with the fixed transcript only! Remember
to remove repetitive statements to make
the content concise.”

For the CADEC dataset, we use the following
system prompt:

System Prompt: ”I give you a transcript
of medical conversation. There are some
technical terms that are transcribed by
mistake. Fix them to the phonetically sim-
ilar, more proper version if you find it not
proper. Respond with the fixed transcript
only!”
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