
Invariant Low-Dimensional Subspaces in Gradient
Descent for Learning Deep Matrix Factorizations

Can Yaras
University of Michigan
cjyaras@umich.edu

Peng Wang
University of Michigan
pengwa@umich.edu

Wei Hu
University of Michigan

vvh@umich.edu

Zhihui Zhu
Ohio State University
zhu.3440@osu.edu

Laura Balzano
University of Michigan
girasole@umich.edu

Qing Qu
University of Michigan
qingqu@umich.edu

Abstract

An extensively studied phenomenon of the past few years in training deep networks
is the implicit bias of gradient descent towards parsimonious solutions. In this
work, we further investigate this phenomenon by narrowing our focus to deep
matrix factorization, where we reveal surprising low-dimensional structures in the
learning dynamics when the target matrix is low-rank. Specifically, we show that
the evolution of gradient descent starting from arbitrary orthogonal initialization
only affects a minimal portion of singular vector spaces across all weight matrices.
In other words, the learning process happens only within a small invariant subspace
of each weight matrix, despite the fact that all parameters are updated throughout
training. From this, we provide rigorous justification for low-rank training in a
specific, yet practical setting. In particular, we demonstrate that we can construct
compressed factorizations that are equivalent to full-width, deep factorizations
throughout training for solving low-rank matrix completion problems efficiently.

1 Introduction

In recent years, deep learning has demonstrated remarkable success across a wide range of applications
[1]. Many recent works attempt to explain the exceptional generalization capabilities of deep networks
by studying the implicit bias of gradient-based methods, showing that deep networks trained with
such algorithms tend to learn simple functions [2–6]. Similarly, it has been shown that gradient
descent induces max-margin [6, 7] or low-rank solutions [8–12] in deep networks, to name a few.

In another vein, recent work has explored the increasingly important problem of training deep
networks more efficiently via low-rank training [13–17], where the number of trainable parameters is
effectively reduced by replacing the original network weights with low-rank factorizations. While such
methods have shown promising empirical results for reducing training time, theoretical justifications
for these approaches remain deficient. The aforementioned works on implicit bias characterize
low-rank structure in the limit of gradient descent – they do not address whether the trajectory of
the original overparameterized network (along with its generalization/convergence properties) is
achievable via low-rank factorization from initialization throughout training, which is what low-rank
training necessitates.

Contributions. In this work, we draw theoretical connections between the implicit bias of gradient
descent in deep networks and the practice of low-rank training. Utilizing deep matrix factorizations
as a testbed (commonly assumed for analyzing the complex optimization dynamics of deep networks
[10, 18–20]) we demonstrate that for low-rank data, all weight matrices are only updated within

Mathematics of Modern Machine Learning Workshop at NeurIPS 2023.

Figure 1: Evolution of SVD of weight matrices. We visualize the SVD dynamics of the first layer
weight matrix of an L = 3 layer deep matrix factorization with d = 30, r = 3, σl = 1 throughout
GD without weight decay. Left: Magnitude of the i-th singular value σi(t) at iteration t. Middle:
Angle ∠(vi(t),vi(0)) between the i-th right singular vector at iteration t and initialization. Right:
Angle ∠(ui(t),ui(0)) between the i-th left singular vector at iteration t and initialization.

a low-dimensional subspace that is invariant throughout training, which can be determined from
their arbitrary orthogonal initialization. To our knowledge, this is the first work identifying such
invariant structures in gradient descent dynamics from random initialization. From this, we show
that we can construct a compressed, low-rank factorization that is nearly equivalent to the original
overparameterized network, thereby providing some rigorous foundations for low-rank training.
Although deep matrix factorizations are mostly of theoretical interest, they are adopted for low-rank
matrix sensing problems - therefore, we demonstrate that our theory can be applied (with slight
modifications) towards accelerating practical low-rank deep matrix completion problems.

2 Analysis

Setup. We study the training dynamics of L-layer deep matrix factorizations f(Θ) given by

f(Θ) := WLWL−1 · · ·W2W1

where Θ = (Wl)
L
l=1 are the parameters or weights with Wl ∈ Rdl×dl−1 for l ∈ [L]. For a given

target matrix Φ ∈ Rd×d, we learn parameters Θ with d0 = d1 = · · · = dL = d by minimizing the
square loss

ℓ(Θ) =
1

2
∥f(Θ)−Φ∥2F (1)

via gradient descent (GD) from scaled orthogonal initialization, i.e., we initialize parameters Θ(0)
such that all singular values of Wl(0) are equal to some σl > 0 for each l ∈ [L]. Then, we update all
weights for t = 0, 1, 2, . . . as

Wl(t+ 1) = (1− ηλ)Wl(t)− η∇Wl
ℓ(Θ(t)), l ∈ [L] (2)

where λ ≥ 0 is an optional weight decay parameter and η > 0 is the learning rate.

Main Result. Under the setting described above, we show learning only occurs within an invariant
low-dimensional subspace of the weight matrices, provided that the target matrix Φ is low-rank.
Theorem 1. Suppose Φ ∈ Rd×d is at most rank r where m := d − 2r > 0. Then there exist
orthogonal matrices (Ul)

L
l=1 ⊂ Rd×d and (Vl)

L
l=1 ⊂ Rd×d satisfying Vl+1 = Ul for l ∈ [L − 1],

such that Wl(t) admits the decomposition

Wl(t) = Ul

[
W̃l(t) 0
0 ρl(t)Im

]
V ⊤
l (3)

for all l ∈ [L] and t ≥ 0, where W̃l(t) ∈ R2r×2r with Wl(0) = σlI2r, and

ρl(t) = ρl(t− 1) · (1− ηλ− η ·
∏
k ̸=l

ρ2k(t− 1)) (4)

for all l ∈ [L] and t ≥ 1 with ρl(0) = σl.

We defer the proof of Theorem 1 to Appendix A.1. In the following, we discuss several implications
of our result and its relationship to previous work.

2

Figure 2: Network compression for deep matrix factorization. Comparison of trajectories for
optimizing the original problem (1) vs. the compressed problem (6) with L = 3, d = 1000,
r̂ = r = 5, and σl = 10−3. Left: Principal components of end-to-end GD trajectories. Right:
Training loss vs. wall-time comparison.

• SVD dynamics of weight matrices. The decomposition (3) implies that Wl(t) has m identical
singular values that follow the updates given in (4), whose corresponding singular vectors are
stationary from initialization throughout GD – this is portrayed in Figure 1. By this, we can
decompose the total space Rd into two invariant singular subspaces: a 2r-dimensional space within
which learning takes place, and an m-dimensional space corresponding to repeated singular values.

• Low-rank bias. From (4), we see that the GD trajectory either remains or tends towards a rank of
at most 2r when we employ implicit or explicit regularization respectively. Indeed, if we use small
initialization σl ≈ 0, then the fact that ρl is a decreasing sequence implies that Wl(t) can be no
more than rank 2r throughout the entire trajectory; whereas if λ > 0, then ρl(t) → 0 as t → ∞,
which forces Wl(t) towards a solution of rank at most 2r, regardless of initialization.

• Comparison to prior arts. In contrast to existing work that demonstrates the tendency of GD to
find low nuclear-norm solutions [9, 11], our result directly shows that GD tends to find low-rank
solutions. Moreover, unlike previous work on implicit bias [11, 21–23], we carefully examine the
effect of weight decay, which is commonly employed during the training of deep networks. We
note that our analysis is distinct from that of [18, 19], where continuous time dynamics are studied
with the special (separable) setting WL:1(0) = UV ⊤ with Φ = UΣV ⊤. In contrast, our result
applies to discrete time GD and holds for initialization that is agnostic to the target matrix. We also
note that our result is unrelated to balanced initialization (as in [24]), since the σl can be arbitrarily
different from one another.

Compressed Deep Matrix Factorization. We now show that, as a consequence of Theorem 1, we
can run gradient descent on dramatically fewer parameters to achieve a near identical end-to-end
trajectory to the original (full-width) factorization. More specifically, given an initialization Θ(0) of
the original parameters and an upper bound on the rank r̂ ≥ r such that d− 2r̂ > 0, we define the
compressed factorization

f̂(Θ̂,UL,1,V1,1) := UL,1ŴLŴL−1 · · · Ŵ1V
⊤
1,1 (5)

where Θ̂ = (Ŵl)
L
l=1 are compressed weights with Ŵl ∈ R2r̂×2r̂ and UL,1, V1,1 ∈ Rd×2r̂ are the

first 2r̂ columns of UL,V1 ∈ Rd×d respectively from Theorem 1 (depends on Θ(0) and Φ). Then,
initializing Θ̂(0) such that Ŵl(0) = U⊤

l,1Wl(0)Vl,1 for all l ∈ [L] and running gradient descent on
the loss

ℓ̂(Θ̂) =
1

2
∥f̂(Θ̂,UL,1,V1,1)−Φ∥2F (6)

gives an almost equivalent network in the following sense.

Proposition 1. For r̂ ≥ r such that m̂ := d− 2r̂ > 0, running gradient descent on the compressed
weights Θ̂ as described above for the loss (6) satisfies∥∥∥f(Θ(t))− f̂(Θ̂(t),UL,1,V1,1)

∥∥∥2
F
≤ m̂ ·

L∏
l=1

σ2
l

for all iterates t = 0, 1, 2,

3

We defer the proof of Proposition 1 to Appendix A.2. When we start from small initialization (σl ≈ 0),
Proposition 1 demonstrates that we only need to optimize 4L · r̂2 many parameters as opposed to the
original L ·d2 number of parameters to achieve an almost identical end-to-end trajectory, see Figure 2
(left). Since it is often the case that r ≤ r̂ ≪ d, this results in an order of magnitude reduction in
time to reach an optimal solution compared to the original network, see Figure 2 (right). In the next
section, we demonstrate how this idea can be leveraged (with slight modification) to accelerate a
more practical problem.

3 Application: Accelerating Deep Low-Rank Matrix Completion

Problem Setup. We consider the low-rank matrix completion problem [25–27] with ground-truth
Φ ∈ Rd×d with rank r ≪ d, where the goal is to recover Φ from only a few number of observations
encoded by a mask Ω ∈ {0, 1}d×d. Adopting a deep matrix factorization approach [11], we minimize
the objective

ℓmc(Θ) =
1

2
∥Ω⊙ (f(Θ)−Φ)∥2F (7)

which simplifies to (1) when Ω = 1d1
⊤
d in the full observation case. In practice, the true rank r is

not known – instead, we assume to have an upper bound r̂ of the same order as r, i.e., r ≤ r̂ ≪ d.

Compressed Deep Matrix Completion. In the setting described above, it is advantageous to over-
parameterize along both the depth and width of the factorization, particularly for accelerating GD
convergence to well-generalizing solutions – see Appendix B for a more detailed discussion alongside
evidence. Nonetheless, the advantages of over-parameterization are hindered by the fact that depth
and width incur much higher per-iteration costs – for an L-layer factorization of (full)-width d, we
require O(L · d3) multiplications to evaluate gradients, where d is often very large. However, using
ideas from the previous section, we can effectively reduce the computation to O(r̂ 2 · (Lr̂ + d))
multiplications via a compressed factorization that emulates the trajectory of a (full)-width d network,
thereby enjoying accelerated GD convergence with heavily reduced per-iteration computational cost.

In the full observation case (Ω = 1d1
⊤
d), we have already seen via Proposition 1 that the compressed

factorization (5) with small initialization stays close to the trajectory of the full-width factorization.
However, applying this directly to the projection Ω⊙Φ will result in the compressed factorization’s
trajectory diverging from that of the original – see the orange trace in Figure 3. Intuitively, this
is because the factors UL,1,V1,1 are initialized from incomplete measurement of Φ – instead, we
optimize the modified objective

ℓ̂mc(Θ̂,UL,1,V1,1) =
1

2
∥Ω⊙ (f̂(Θ̂,UL,1,V1,1)−Φ)∥2F (8)

where Θ̂ are updated with learning rate η while the UL,1,V1,1 factors are updated with a discrepant
learning rate γη where γ > 0 is small. While this results in an additional 2dr̂ parameters to be
tracked, the trajectory of this compressed factorization will ultimately align with that of the original
while converging roughly 5× faster w.r.t. wall-time, as demonstrated in Figure 3. Moreover, the
accelerated convergence induced by the full-width trajectory results in the compressed factorization
being 3× faster than randomly initialized factorizations of similar width – see Appendix C for more
details.

4 Conclusion

This paper offers novel insights into simple structures in gradient descent for learning deep matrix
factorizations, from which we derive some rigorous justification for the practice of low-rank training.
Through this work, we hope to inspire more principled approaches to designing efficient and effective
deep models by exploiting low-dimensional aspects of their training dynamics. Moreover, we plan to
apply this result to study progressive neural collapse [28, 29] and hierarchical feature learning [30].

Acknowledgement

CY and QQ acknowledge support from U-M START & PODS grants, NSF CAREER CCF-2143904,
NSF CCF-2212066, and NSF CCF-2212326. QQ and PW also acknowledge support from ONR

4

Figure 3: Network compression for deep matrix completion. Comparison of trajectories for
optimizing the original problem (7) vs. the compressed problem (8) with γ discrepant updates
(γ = 0.01) and ablating γ (γ = 0) with L = 3, d = 1000, r = 5, σl = 10−3 and 20% of entries
observed. Left: Principal components of end-to-end trajectories of each factorization. Middle:
Recovery error vs. iteration comparison. Right: Recovery error vs wall-time comparison.

N00014-22-1-2529, NSF IIS 2312842, an AWS AI Award, and a gift grant from KLA. PW and LB
acknowledge support from DoE award DE-SC0022186, ARO YIP W911NF1910027, and NSF CA-
REER CCF-1845076. ZZ acknowledges support from NSF grant CCF-2240708. WH acknowledges
support from the Google Research Scholar Program.

References
[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444, 2015.

[2] Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth Netrapalli. The pitfalls of
simplicity bias in neural networks. Advances in Neural Information Processing Systems, 33:9573–9585,
2020.

[3] Guillermo Valle-Perez, Chico Q. Camargo, and Ard A. Louis. Deep learning generalizes because the
parameter-function map is biased towards simple functions. In International Conference on Learning
Representations, 2019.

[4] Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent on linear
convolutional networks. Advances in neural information processing systems, 31, 2018.

[5] Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. arXiv preprint
arXiv:1810.02032, 2018.

[6] Daniel Kunin, Atsushi Yamamura, Chao Ma, and Surya Ganguli. The asymmetric maximum margin bias
of quasi-homogeneous neural networks. arXiv preprint arXiv:2210.03820, 2022.

[7] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit
bias of gradient descent on separable data. The Journal of Machine Learning Research, 19(1):2822–2878,
2018.

[8] Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal, and Phillip Isola. The
low-rank simplicity bias in deep networks. Transactions on Machine Learning Research, 2023.

[9] Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro.
Implicit regularization in matrix factorization. Advances in Neural Information Processing Systems, 30,
2017.

[10] Gauthier Gidel, Francis Bach, and Simon Lacoste-Julien. Implicit regularization of discrete gradient
dynamics in linear neural networks. Advances in Neural Information Processing Systems, 32, 2019.

[11] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix factorization.
Advances in Neural Information Processing Systems, 32, 2019.

[12] Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit bias of gradient descent for
matrix factorization: Greedy low-rank learning, 2020.

[13] Samuel Horvath, Stefanos Laskaridis, Shashank Rajput, and Hongyi Wang. Maestro: Uncovering low-rank
structures via trainable decomposition, 2023.

[14] Jiawei Zhao, Yifei Zhang, Beidi Chen, Florian Schäfer, and Anima Anandkumar. Inrank: Incremental
low-rank learning, 2023.

[15] Hongyi Wang, Saurabh Agarwal, Pongsakorn U-chupala, Yoshiki Tanaka, Eric P. Xing, and Dimitris
Papailiopoulos. Cuttlefish: Low-rank model training without all the tuning, 2023.

[16] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685,
2021.

5

[17] Albert Gural, Phillip Nadeau, Mehul Tikekar, and Boris Murmann. Low-rank training of deep neural
networks for emerging memory technology, 2020.

[18] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

[19] Andrew M Saxe, James L McClelland, and Surya Ganguli. A mathematical theory of semantic development
in deep neural networks. Proceedings of the National Academy of Sciences, 116(23):11537–11546, 2019.

[20] Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit acceleration
by overparameterization. In International Conference on Machine Learning, pages 244–253. PMLR, 2018.

[21] Hancheng Min, Salma Tarmoun, René Vidal, and Enrique Mallada. Convergence and implicit bias of
gradient flow on overparametrized linear networks. arXiv preprint arXiv:2105.06351, 2022.

[22] Daniel Gissin, Shai Shalev-Shwartz, and Amit Daniely. The implicit bias of depth: How incremental
learning drives generalization. arXiv preprint arXiv:1909.12051, 2019.

[23] Gal Vardi and Ohad Shamir. Implicit regularization in relu networks with the square loss. In Conference
on Learning Theory, pages 4224–4258. PMLR, 2021.

[24] Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of gradient descent
for deep linear neural networks. arXiv preprint arXiv:1810.02281, 2018.

[25] Emmanuel Candes and Benjamin Recht. Exact matrix completion via convex optimization. Communica-
tions of the ACM, 55(6):111–119, 2012.

[26] Emmanuel J Candès and Terence Tao. The power of convex relaxation: Near-optimal matrix completion.
IEEE Transactions on Information Theory, 56(5):2053–2080, 2010.

[27] Mark A Davenport and Justin Romberg. An overview of low-rank matrix recovery from incomplete
observations. IEEE Journal of Selected Topics in Signal Processing, 10(4):608–622, 2016.

[28] Hangfeng He and Weijie J Su. A law of data separation in deep learning. Proceedings of the National
Academy of Sciences, 120(36):e2221704120, 2023.

[29] Can Yaras, Peng Wang, Zhihui Zhu, Laura Balzano, and Qing Qu. Neural collapse with normalized
features: A geometric analysis over the riemannian manifold. arXiv preprint arXiv:2209.09211, 2022.

[30] Peng Wang, Xiao Li, Can Yaras, Zhihui Zhu, Laura Balzano, Wei Hu, and Qing Qu. Understand-
ing deep representation learning via layerwise feature compression and discrimination. arXiv preprint
arXiv:2311.02960, 2023.

[31] Samuel Burer and Renato DC Monteiro. A nonlinear programming algorithm for solving semidefinite
programs via low-rank factorization. Mathematical Programming, 95(2):329–357, 2003.

[32] Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion using alternating
minimization. In Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pages
665–674, 2013.

[33] Qinqing Zheng and John Lafferty. Convergence analysis for rectangular matrix completion using burer-
monteiro factorization and gradient descent. arXiv preprint arXiv:1605.07051, 2016.

[34] Ruoyu Sun and Zhi-Quan Luo. Guaranteed matrix completion via non-convex factorization. IEEE
Transactions on Information Theory, 62(11):6535–6579, 2016.

[35] Rong Ge, Jason D Lee, and Tengyu Ma. Matrix completion has no spurious local minimum. Advances in
neural information processing systems, 29, 2016.

[36] Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro. Global optimality of local search for low rank
matrix recovery. Advances in Neural Information Processing Systems, 29, 2016.

[37] Rong Ge, Chi Jin, and Yi Zheng. No spurious local minima in nonconvex low rank problems: A unified
geometric analysis. In International Conference on Machine Learning, pages 1233–1242. PMLR, 2017.

[38] Qiuwei Li, Zhihui Zhu, and Gongguo Tang. The non-convex geometry of low-rank matrix optimization.
Information and Inference: A Journal of the IMA, 8(1):51–96, 2019.

[39] Yuejie Chi, Yue M Lu, and Yuxin Chen. Nonconvex optimization meets low-rank matrix factorization: An
overview. IEEE Transactions on Signal Processing, 67(20):5239–5269, 2019.

[40] Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized matrix
sensing and neural networks with quadratic activations. In Conference On Learning Theory, pages 2–47.
PMLR, 2018.

[41] Mahdi Soltanolkotabi, Dominik Stöger, and Changzhi Xie. Implicit balancing and regularization: Gener-
alization and convergence guarantees for overparameterized asymmetric matrix sensing. arXiv preprint
arXiv:2303.14244, 2023.

6

Appendix

Notation. Given any L ∈ N, we use [L] to denote the index set {1, . . . , L}. We use In ∈ Rn to
denote the identity matrix of size n, and 1n to denote a vector of length n with all entries equal
to 1. We denote by ∥A∥2F the squared Frobenius norm of matrix A, i.e., the sum of squares of all
entries of A. For convenience, whenever j > i we adopt the abbreviations Wj:i = Wj · · ·Wi and
W⊤

j:i = W⊤
i · · ·W⊤

j , whereas both are identity if j < i.

A Proofs in Section 2

Substituting the analytic form of the gradient into (2), we have the update rule

Wl(t+ 1) = (1− ηλ)Wl(t)− ηW⊤
L:l+1(t)E(t)W⊤

l−1:1(t), l ∈ [L] (9)

for t = 0, 1, 2, . . . , where E(t) = f(Θ(t))−Φ.

We first establish the following Lemma 1 – the claim in Theorem 1 then follows in a relatively
straightforward manner. We note that all statements quantified by i in this section implicity hold for
all i ∈ [m] (as defined in Theorem 1) for the sake of notational brevity.

A.1 Proof of Theorem 1

Lemma 1. Under the setting of Theorem 1, there exist orthonormal sets {u(l)
i }mi=1 ⊂ Rd and

{v(l)
i }mi=1 ⊂ Rd for l ∈ [L] satisfying v

(l+1)
i = u

(l)
i for all l ∈ [L− 1] such that the following hold

for all t ≥ 0:

A(t) : Wl(t)v
(l)
i = ρl(t)u

(l)
i ∀l ∈ [L],

B(t) : W⊤
l (t)u

(l)
i = ρl(t)v

(l)
i ∀l ∈ [L],

C(t) : Φ⊤WL:l+1(t)u
(l)
i = 0 ∀l ∈ [L],

D(t) : ΦW⊤
l−1:1(t)v

(l)
i = 0 ∀l ∈ [L],

where ρl(t) = ρl(t− 1) · (1− ηλ− η ·
∏

k ̸=l ρk(t− 1)2) for all t ≥ 1 with ρl(0) = σl > 0.

Proof. Define Ψ := W⊤
L:2(0)Φ. Since the rank of Φ is at most r, we have that the rank of Ψ ∈ Rd×d

is at most r, which implies that dimN (Ψ) = dimN
(
Ψ⊤) ≥ d− r. We define the subspace

S := N (Ψ) ∩N
(
Ψ⊤W1(0)

)
⊂ Rd.

Since W1(0) ∈ Rd×d is nonsingular, we have

dim(S) ≥ 2(d− r)− d = m.

Let {v(1)
i }mi=1 denote an orthonormal set contained in S and set u(1)

i := W1(0)v
(1)
i /σ1, where

σ1 > 0 is the scale of W1(0) – since W1(0)/σ1 is orthogonal, {u(1)
i }mi=1 is also an orthonormal

set. Then we trivially have W1(0)v
(1)
i = σ1u

(1)
i , which implies W⊤

1 (0)u
(1)
i = σ1v

(1)
i . It follows

from v
(1)
i ∈ S that Ψv

(1)
i = 0 and Ψ⊤W1(0)v

(1)
i = 0, which is equivalent to W⊤

L:2(0)Φv
(1)
i = 0

and Φ⊤WL:2(0)W1(0)v
(1)
i = σ1Φ

⊤WL:2(0)u
(1)
i = 0 respectively. Since W⊤

L:2(0) is full column
rank, we further have that Φv

(1)
i = 0.

Now let E(l) be the event that we have orthonormal sets {u(l)
i }mi=1 and {v(l)

i }mi=1 satisfying
Wl(0)v

(l)
i = σlu

(l)
i , W⊤

l (0)u
(l)
i = σlv

(l)
i , Φ⊤WL:l+1(0)u

(l)
i = 0, and ΦW⊤

l−1:1(0)v
(l)
i = 0.

From the above arguments, we have that E(1) holds – now suppose E(k) holds for some 1 ≤ k < L.

7

Set v(k+1)
i := u

(k)
i and u

(k+1)
i := Wk+1(0)v

(k+1)
i /σk+1. This implies that Wk+1(0)v

(k+1)
i =

σk+1u
(k+1)
i and W⊤

k+1(0)u
(k+1)
i = σk+1v

(k+1)
i . Moreover, we have

Φ⊤WL:(k+1)+1(0)u
(k+1)
i = Φ⊤WL:k+1(0)W

⊤
k+1(0)u

(k+1)
i /σ2

k+1

= Φ⊤WL:k+1(0)v
(k+1)
i /σk+1

= Φ⊤WL:k+1(0)u
(k)
i /σk+1 = 0,

where the first two equalities follow from orthogonality and u
(k+1)
i = Wk+1(0)v

(k+1)
i /σk+1, and

the last equality is due to v
(k+1)
i = u

(k)
i . Similarly, we have

ΦW⊤
(k+1)−1:1(0)v

(k+1)
i = ΦW⊤

k−1:1(0)W
⊤
k (0)v

(k+1)
i

= ΦW⊤
k−1:1(0)W

⊤
k (0)u

(k)
i

= σkΦW⊤
k−1:1(0)v

(k)
i = 0,

where the second equality follows from v
(k+1)
i = u

(k)
i and the third equality is due to W⊤

k (0)u
(k)
i =

σkv
(k)
i . Therefore E(k + 1) holds, so we have E(l) for all l ∈ [L]. As a result, we have shown the

base cases A(0), B(0), C(0), and D(0).

Now we proceed by induction on t ≥ 0. Suppose that A(t), B(t), C(t), and D(t) hold for some
t ≥ 0. First, we show A(t+ 1) and B(t+ 1). We have

Wl(t+ 1)v
(l)
i =

[
(1− ηλ)Wl(t)− ηW⊤

L:l+1(t)E(t)W⊤
l−1:1(t)

]
v
(l)
i

=
[
(1− ηλ)Wl(t)− ηW⊤

L:l+1(t) (WL:1(t)−Φ)W⊤
l−1:1(t)

]
v
(l)
i

= (1− ηλ)Wl(t)v
(l)
i − ηW⊤

L:l+1(t)WL:1(t)W
⊤
l−1:1(t)v

(l)
i

= (1− ηλ)Wl(t)v
(l)
i − η · (

∏
k ̸=l

ρ2k(t))Wl(t)v
(l)
i

= ρl(t) · (1− ηλ− η ·
∏
k ̸=l

ρ2k(t))u
(l)
i = ρl(t+ 1)u

(l)
i

for all l ∈ [L], where the first equality follows from (9), the second equality follows from definition
of E(t), the third equality follows from D(t), and the fourth equality follows from A(t) and B(t)
applied repeatedly along with v

(l+1)
i = u

(l)
i for all l ∈ [L− 1], proving A(t+1). Similarly, we have

W⊤
l (t+ 1)u

(l)
i =

[
(1− ηλ)W⊤

l (t)− ηWl−1:1(t)E
⊤(t)WL:l+1(t)

]
u
(l)
i

=
[
(1− ηλ)W⊤

l (t)− ηWl−1:1(t)
(
W⊤

L:1(t)−Φ⊤)WL:l+1(t)
]
u
(l)
i

= (1− ηλ)W⊤
l (t)u

(l)
i − ηWl−1:1(t)W

⊤
L:1(t)WL:l+1(t)u

(l)
i

= (1− ηλ)W⊤
l (t)u

(l)
i − η · (

∏
k ̸=l

ρ2k(t))W
⊤
l (t)u

(l)
i

= ρl(t) · (1− ηλ− η ·
∏
k ̸=l

ρ2k(t))v
(l)
i = ρl(t+ 1)v

(l)
i

for all l ∈ [L], where the third equality follows from C(t), and the fourth equality follows from A(t)

and B(t) applied repeatedly along with v
(l+1)
i = u

(l)
i for all l ∈ [L− 1], proving B(t+ 1). Now, we

show C(t+ 1). For any k ∈ [L− 1], it follows from v
(k+1)
i = u

(k)
i and A(t+ 1) that

Wk+1(t+ 1)u
(k)
i = Wk+1(t+ 1)v

(k+1)
i = ρk+1(t+ 1)u

(k+1)
i .

Repeatedly applying the above equality for k = l, l + 1, . . . , L− 1, we obtain

Φ⊤WL:l+1(t)u
(l)
i =

[
L−1∏
k=l

ρk+1(t)

]
·Φ⊤u

(L)
i = 0

8

which follows from C(t), proving C(t+ 1). Finally, we show D(t+ 1). For any k ∈ {2, . . . , L}, it
follows from v

(k)
i = u

(k−1)
i and B(t+ 1) that

W⊤
k−1(t+ 1)v

(k)
i = W⊤

k−1(t+ 1)u
(k−1)
i = ρk−1(t+ 1)v

(k−1)
i .

Repeatedly applying the above equality for k = l, l − 1, . . . , 2, we obtain

ΦW⊤
l−1:1(t)v

(l)
i =

[
l∏

k=2

ρk−1(t)

]
·Φv

(1)
i = 0

which follows from D(t). Thus we have proven D(t+ 1), concluding the proof.

Proof of Theorem 1. By A(t) and B(t) of Lemma 1, there exists orthonormal matrices {Ul,2}Ll=1 ⊂
Rd×m and {Vl,2}Ll=1 ⊂ Rd×m for l ∈ [L] satisfying Ul+1,2 = Vl,2 for all l ∈ [L− 1] as well as

Wl(t)Vl,2 = ρl(t)Ul,2 and Wl(t)
⊤Ul,2 = ρl(t)Vl,2 (10)

for all l ∈ [L] and t ≥ 0, where ρl(t) satisfies (4) for t ≥ 1 with ρl(0) = σl. First, complete V1,2 to
an orthonormal basis for Rd as V1 = [V1,1 V1,2]. Then for each l ∈ [L − 1], set Ul = [Ul,1 Ul,2]
where Ul,1 = Wl(0)Vl,1/σl and Vl+1 = [Vl+1,1 Vl+1,2] where Vl+1,1 = Ul,1, and finally set
UL = [UL,1 UL,2] where UL,1 = WL(0)VL,1/σL. We note that Vl+1 = Ul for each l ∈ [L − 1].
Then we have

U⊤
l,1Wl(t)Vl,2 = ρl(t)U

⊤
l,1Ul,2 = 0 (11)

for all l ∈ [L], where the first equality follows from (10). Similarly, we also have

U⊤
l,2Wl(t)Vl,1 = ρ(t)V ⊤

l,2Vl,1 = 0 (12)

for all l ∈ [L], where the first equality also follows from (10). Therefore, combining (10), (11), and
(12) yields

U⊤
l Wl(t)Vl = [Ul,1 Ul,2]

⊤
Wl(t) [Vl+1,1 Vl+1,2] =

[
W̃l(t) 0
0 ρl(t)Im

]
for all l ∈ [L], where W̃l(0) = σlI2r by construction of Ul,1. This directly implies (3), completing
the proof.

A.2 Proof of Proposition 1

Proof. First, it follows from Theorem 1 that for any 1 ≤ i ≤ j ≤ L we have

Wj:i(t) = Uj,1W̃j:i(t)V
⊤
i,1 + (

j∏
k=i

ρk(t)) ·Uj,2V
⊤
i,2 (13)

for all t ≥ 0, where Ul,1,Vl,1 ∈ Rd×2r̂ and Ul,2,Vl,2 ∈ Rd×m̂ are the first 2r̂ and last m̂ columns
of Ul,Vl ∈ Rd×d respectively.

The key claim to be shown here is that Ŵl(t) = W̃l(t) for all l ∈ [L] and t ≥ 0. Afterwards, it
follows straightforwardly from (13) that∥∥∥f(Θ(t))− f̂(Θ̂(t),UL,1,V1,1)

∥∥∥2
F

=

∥∥∥∥∥UL,1W̃L:1(t)V
⊤
1,1 + (

L∏
l=1

ρl(t)) ·UL,2V
⊤
1,2 −UL,1ŴL:1(t)V

⊤
L,1

∥∥∥∥∥
2

F

=

∥∥∥∥∥UL,1(W̃L:1(t)− ŴL:1(t))V
⊤
1,1 + (

L∏
l=1

ρl(t)) ·UL,2V
⊤
1,2

∥∥∥∥∥
2

F

=

∥∥∥∥∥(
L∏

l=1

ρl(t)) ·UL,2V
⊤
1,2

∥∥∥∥∥
2

F

≤ m̂ ·
L∏

l=1

σ2
l .

9

We proceed by induction. For t = 0, we have that

Ŵl(0) = U⊤
l,1Wl(0)Vl,1 = W̃l(0)

for all l ∈ [L] by (13) and choice of initialization.

Now suppose Ŵl(t) = W̃l(t) for all l ∈ [L]. Comparing

Ŵl(t+ 1) = (1− ηλ)Ŵl(t)− η∇
Ŵl

ℓ̂(Θ̂(t))

with

W̃l(t+ 1) = U⊤
l,1Wl(t+ 1)Vl,1

= U⊤
l,1 [(1− ηλ)Wl(t)− η∇Wl

ℓ(Θ(t))]Vl,1

= (1− ηλ)W̃l(t)− ηU⊤
l,1∇Wl

ℓ(Θ(t))Vl,1

it suffices to show that

∇
Ŵl

ℓ̂(Θ̂(t)) = U⊤
l,1∇Wl

ℓ(Θ(t))Vl,1, ∀l ∈ [L] (14)

to yield Ŵl(t+ 1) = W̃l(t+ 1) for all l ∈ [L]. Computing the right hand side of (14), we have

U⊤
l,1∇Wl

ℓ(Θ(t))Vl,1 = U⊤
l,1W

⊤
L:l+1(t)(WL:1(t)−Φ)W⊤

l−1:1(t)Vl,1

= (WL:l+1(t)Ul,1)
⊤(WL:1(t)−Φ)(V ⊤

l,1Wl−1:1(t))
⊤

where

WL:l+1(t)Ul,1 =

(
UL,1W̃L:l+1(t)V

⊤
l+1,1 + (

L∏
k=l+1

ρk(t)) ·UL,2V
⊤
l+1,2

)
Ul,1 = UL,1W̃L:l+1(t)

by (13) and the fact that Ul = Vl+1, and similarly

V ⊤
l,1Wl−1:1(t) = V ⊤

l,1

(
Ul−1,1W̃l−1:1(t)V

⊤
1,1 + (

l−1∏
k=1

ρk(t)) ·Ul−1,2V
⊤
1,2

)
= W̃l−1:1(t)V

⊤
1,1.

We also have that

U⊤
L,1(WL:1(t)−Φ)V1,1 = U⊤

L,1

(
UL,1W̃L:1(t)V

⊤
1,1 + (

L∏
k=1

ρk(t)) ·UL,2V
⊤
1,2 −Φ

)
V1,1

= W̃L:1(t)−U⊤
L,1ΦV1,1

so putting together the previous four equalities yields

U⊤
l,1∇Wl

ℓ(Θ(t))Vl,1 = (WL:l+1(t)Ul,1)
⊤(WL:1(t)−Φ)(V ⊤

l,1Wl−1:1(t))
⊤

= W̃⊤
L:l+1(t)U

⊤
L,1(WL:1(t)−Φ)V1,1W̃

⊤
l−1:1(t)

= W̃⊤
L:l+1(t)(W̃L:1(t)−U⊤

L,1ΦV1,1)W̃
⊤
l−1:1(t).

On the other hand, the left hand side of (14) gives

∇
Ŵl

ℓ̂(Θ̂(t)) = ŴL:l+1(t)
⊤U⊤

L,1(UL,1ŴL:1(t)V
⊤
1,1 −Φ)V1,1Ŵl−1:1(t)

⊤

= ŴL:l+1(t)
⊤(ŴL:1(t)−U⊤

L,1ΦV1,1)Ŵl−1:1(t)
⊤

so (14) holds by the fact that Ŵl(t) = W̃l(t) for all l ∈ [L], completing the proof.

B Benefits of Over-Parameterization in Deep Matrix Completion

In the setup described in Section 3, we claim that depth and width are beneficial for accelerating
GD convergence to well-generalizing solutions, and therefore constructing more computationally
efficient factorizations that share the same trajectory is a fruitful endeavour. Below, we give a more
detailed explanation of these ideas:

10

Figure 4: Benefits of depth & width in overparameterized matrix completion with d = 100,
r = 5, σl = 10−3 and 30% of entries observed. Left: Recovery error. Right: Number of GD iterations
to converge to 10−10 error.

• Benefits of depth. When L = 2, (7) reduces to Burer-Monteiro factorization [31], whose global
optimality and convergence under GD have been widely studied under various settings [9, 32–41].
However, it has been demonstrated [11] that in the over-parameterized regime r̂ > r, deeper
factorizations (starting from small random initialization) continue to generalize well beyond the
exact parameterization r̂ = r unlike their shallow counterparts, see Figure 4 (left).

• Benefits of width. On the other hand, increasing the width r̂ of the deep factorization beyond r
results in accelerated convergence of GD in terms of iterations, see Figure 4 (right).

C Compressed vs. Narrow Factorizations

We compare the training efficiency of a 2r̂-compressed factorization (with trajectory equivalent to
a wide factorization of width d ≫ r̂) versus a narrow factorization with width 2r̂ under different
over-parameterized estimates r̂. As depicted in Figure 5 (left), the compressed factorization requires
fewer iterations to reach convergence, and the number of iterations necessary is almost unaffected by
r̂. Consequently, training compressed factorizations is considerably more time-efficient than
training narrow ones of the same size, provided that r̂ is not significantly larger than r.

Figure 5: Efficiency of compressed vs. narrow factorizations for different overestimated r̂ with
L = 3, d = 1000, r = 5, σl = 10−3 and 20% of entries observed. Left: Number of iterations to
converge to 10−10 error. Right: Time to converge.

The distinction between the compressed and narrow factorizations underscores the benefits of width,
as previously demonstrated and discussed in Figure 4 (right), where increasing the width results in
faster convergence. However, increasing the width alone also increases the number of parameters. By
employing our compression methodology, we can achieve the best of both worlds.

11

	Introduction
	Analysis
	Application: Accelerating Deep Low-Rank Matrix Completion
	Conclusion
	Proofs in sec:analysis
	Proof of thm:1
	Proof of prop:1

	Benefits of Over-Parameterization in Deep Matrix Completion
	Compressed vs. Narrow Factorizations

