
CVSS Base Score Prediction Using an Optimized
Machine Learning Scheme

Dinesh T. Vasireddy
Bentonville High School
dineshteja@gmail.com

Dakota S. Dale
University Of Arkansas

dsdale@uark.edu

Qinghua Li
University of Arkansas

qinghual@uark.edu

Abstract—The Common Vulnerability Scoring System (CVSS)
is commonly used to measure the severity of software vulner-
abilities. It consists of a CVSS Score Vector (i.e., a vector of
metrics) and a CVSS Base Score calculated based on the vector.
The Base Score is widely used by electric utilities to measure the
risk levels of vulnerabilities and prioritize remediation actions.
However, the process of determining the CVSS metric values
is currently very time-consuming since it is manually done by
human experts based on text descriptions of vulnerabilities,
which increases the delays of remediating vulnerabilities and
hence increases security risks at electric utilities. In this paper,
we develop an efficient and effective solution to automatically
predict the CVSS Base Score of vulnerabilities primarily based on
their text descriptions, leveraging Natural Language Processing
and machine learning techniques. Text descriptions for tens
of thousands of vulnerabilities are comprehensively interpreted
and vectorized using Doc2Vec, fed to a neural network with a
condensed regression structure, which is then fine-tuned using
Bayesian Optimization. By exploring and selecting the most
efficient option at each stage of development, we create an
optimized scheme that predicts CVSS Base Scores with very low
error. Our work shows that it is possible to effectively predict
CVSS Base Scores using simple but optimized neural networks. It
makes crucial progress toward addressing the inefficiencies of the
current CVSS severity assessment process through automation.

Index Terms—Cybersecurity, Vulnerability, Machine Learning,
Neural Networks, Automation

I. INTRODUCTION

Public software vulnerability databases such as the National
Vulnerability Database [1] and ExploitDB [2] are widely used
by electric utilities and third-party services to discover the
vulnerabilities in an organization’s assets [3, 4, 5]. They have
also become a major source of information for organizations
to assess the risk of vulnerabilities. The vulnerability entries
stored within these databases are called Common Vulnera-
bilities and Exposures (CVEs) [6]. The CVE system gives
each of the vulnerabilities a unique and easily accessible
identifier code, a CVE-ID, allowing for the CVEs to be
much more organized. Each CVE has a text description. The
initial documentation process of CVEs revealed that it was
essential to develop a system to classify vulnerabilities based
on their severity. This problem motivated the birth of the
Common Vulnerability Scoring System (CVSS) [7], which
usually utilizes a number of exploitability and impact metrics
(see Table I) to calculate a base score valued between 0 and
10 that is representative of a vulnerability’s severity.

TABLE I
CVSS BASE SCORE METRICS

Metric Possible Values
Attack Vector Network, Adjacent, Local, Physical
Attack Complexity Low, High
Privileges Required None, Low, High
User Interaction None, Required
Scope Unchanged, Changed
Confidentiality Impact None, Low, High
Integrity Impact None, Low, High
Availability Impact None, Low, High
Base Score [0,10]

Nevertheless, the modern CVSS has been criticized by
numerous data scientists for its more hard-arithmetic approach
and the delays in manually providing severity assessments for
vulnerabilities. A study [8] shows that, on average, it takes
over 134 days after publication for a vulnerability to receive
a full CVSS severity assessment. Additionally, it emphasizes
that the CVSS’ detailed metrics for severity assessments could
be a factor for larger delays between vulnerability publication
and severity assessment due to the heavily manual nature of
CVSS classification.

With the advent of more advanced Natural Language Pro-
cessing (NLP) models and neural network techniques, it is
critical to explore their usability in predicting CVSS scores
solely based on CVE descriptions as well as impact and
exploitability criteria provided when a CVE is published to
credible databases. In an effort to reduce the time delay
between vulnerability submission and severity classification, in
this paper, we develop a multi-faceted machine learning model
for predicting CVSS base scores that combines NLP, neural
networks, and Bayesian optimization. Our model primarily
prioritizes efficiency and accuracy. Evaluations show that it
outperforms two state-of-the-art solutions. Our solution does
not aim to fully replace manual assessment of CVSS metrics,
but can provide a quick, accurate estimate of CVSS base
scores so that organizations can use it first before the manual
assessment is available.

This paper is organized as follows. Section II reviews related
work. Section III provides background to the techniques used.
In Section IV, we break down the proposed model architecture
and justify the development of this structure for our use case.
Section V describes the parameter optimization and tuning
methods. Section VI presents the evaluation results. Finally,



Section VII concludes the paper.

II. RELATED WORK

Although much work has been done in vulnerability man-
agement [9, 10, 11, 12, 13, 14], there is relatively little research
on the automated prediction of CVSS Scores.

Shahid and Debar [15] proposed a CVSS prediction ap-
proach based on BERT [16]. It focuses on predicting the value
of individual metrics in the CVSS vector, and then calculating
the base score. A similar approach was adopted by two other
work [17, 18]. Different from them, our solution focuses on
predicting the CVSS base score, but not the vector of metrics,
considering that most electric utilities simply use the CVSS
base score to assess risk levels and prioritize vulnerabilities.
Two other solutions [19, 20] focused on predicting the cat-
egorical severity levels but our work predicts the numerical
base score value.

Elbaz et al. [21] proposed to predict CVSS Base Scores
by leveraging a Bag-of-Words model for text vectorization
and a Linear Regression model for prediction. However, this
approach has two limitations. First, text descriptions could
easily be misinterpreted since a Bag-of-Words model only con-
siders the number of occurrences of each word and completely
disregards their order. Second, a linear relationship is assumed
without basis between the vulnerability descriptions and the
CVSS Score Vector. Our solution addresses these limitations
by interpreting vulnerability descriptions as whole documents
rather than sets of individual words with Doc2Vec and utilizing
a neural network to capture the accurate relationship between
descriptions and CVSS Base Scores.

III. PRELIMINARIES

A. Background of Text Vectorization Tools

In order for a probabilistic model to interpret a CVE’s text
description, we need to find a reliable method to enumerate
the description into computable values that the model can
understand and train on.

1) Word2Vec: Developed and published in 2013 by
Mikolov et. al., Word2Vec [22] has been the standard for
interpreting text inputs in the machine learning world for
many years. The Word2Vec model learns the context of a
corpus of text by using a two-layer neural network struc-
ture that transforms individual words into numerical vectors
representing their meaning. Word2Vec contains two main
model architectures: Continuous Bag-of-Words (CBOW) and
Continuous skip-gram. The Bag-of-Words Word2Vec approach
predicts the middle word of a text input based on the sur-
rounding words, disregarding the order of those words, and
utilizes this process to interpret the entire input. The skip-
gram Word2Vec approach, however, differs slightly by pre-
dicting words within a certain range around a target word and
eventually learning specific representations of many words in
a text input. Despite being considered reliable in past research
applications, Word2Vec still lacks accuracy when attempting
to understand the context of larger text inputs with multiple

sentences because it treats the text as a collection of individual
words rather than a singular entity.

2) Doc2Vec: Shortly after the publication of the Word2Vec
algorithm, Le and Mikolov recognized that simply averaging
Word2Vec vectors to vectorize and later interpret a multi-
sentence or multi-paragraph text input was an ineffective and
fairly inaccurate strategy. In order to address this issue, they
developed the Doc2Vec Algorithm [23], which creates one
single paragraph vector of each document rather than generat-
ing separate vectors for each individual word. The paragraph
vectorization capabilities of Doc2Vec allow it to be more
accurate and efficient when interpreting larger text inputs, like
vulnerability descriptions. Similar to the Word2Vec Model,
Doc2Vec also has two primary model types: Distributed Bag-
of-Words (DBOW) and Distributed Memory (DM). DBOW is
similar to the previously mentioned skip-gram model from
Word2Vec, except that DBOW uses the document ID as the
input rather than the target word in order to predict randomly
sampled words from the document. DM is similar to the
Word2Vec Continuous Bag-of-Words model, but it uses a
document ID when predicting the meaning of a target word
based on its neighboring words.

B. Fast.ai Deep Learning Library

Our method is implemented based on the Fast.ai library. The
library was created [24] to improve the efficiency of machine
learning development by redesigning them to be rapidly pro-
ductive while also being highly configurable. Fast.ai’s focus
on generating cheaper and more efficient model structures has
allowed for more efficient model performance across many
applications [25]. For example, using tools from the library,
researchers were able to leverage a more efficient variant
of an LSTM structure to develop an NLP model (MultiFit
[26]) competitive with BERT, but with a cheaper pre-training
approach and faster training times. These reasons are mainly
why we selected Fast.ai for our implementation.

IV. MODEL ARCHITECTURE AND COMPONENTS

This section describes our CVSS Base Score Prediction
model that determines accurate Base Scores primarily using
the human-generated text descriptions along with two simple
binary identifiers (hasExploit, hasFix) that are all provided for
each vulnerability upon entry to the National Vulnerability
Database. For any vulnerability, a 1 for hasExploit signifies
that the vulnerability has a known exploit while 0 signifies
the opposite. Similarly, for hasFix, a 1 signifies that the
vulnerability has a known solution or “fix” while 0 signifies
the opposite.

A. Model for Text Vectorization

The complexity and specificity of CVE descriptions in
vulnerability databases necessitate the use of a large-scale
text vectorization tool that has the capacity to interpret text
inputs as whole entities rather than sets of individual words.
The Doc2Vec model meets these performance requirements by
comprehensively analyzing text inputs as whole multi-sentence



or multi-paragraph inputs when attempting to interpret their
meaning [27]. For the text vectorization process of the data
preprocessing stage, we use the Doc2Vec implementation from
Gensim Library [28], particularly the Distributed Memory ap-
proach within the Doc2Vec Algorithm, which allows for target
word prediction based on surrounding context information.

B. Neural Network Model

The specific neural network model structure that we propose
is as follows. In training, we have three LinBnDrop Blocks
within a Sequential Container, each of which contains a
BatchNorm, Linear, and Dropout Layer. Beginning with the
Linear Layer, the block will input the vectorized description
data and begin making connections between document vectors
and representations within the realm of severity classifica-
tion. The output of the Linear Layer is then passed through
a Rectified Linear Activation Function (ReLU), which will
activate the appropriate neurons in the neural network and
directly output the previous layer’s input if it is positive
and zero if not. Following the ReLU function, the output is
passed through a BatchNorm Layer, which normalizes the
outputs from the previous layers before allowing them to
continue through the remaining neurons and stabilizes the
network as it runs. Finally, in order to prevent overfitting, the
output is processed through a Dropout Layer, which randomly
removes certain units of the input in order to simulate training
on larger data sets and allow for the model to yield more
accurate results. This process occurs in three different blocks
throughout the model’s training stage and prepares the model
for the prediction stage.

V. OPTIMIZATION AND HYPERPARAMETER TUNING
METHODOLOGY

This section describes our methods to tune and optimize the
model parameters for more effective training.

A. Data Preparation

1) Data Collection: In order to assemble a reliable set of
CVEs, including text descriptions and calculated CVSS scores,
the data was collected from two nationally recognized CVE
databases: the National Vulnerability Database and ExploitDB.
This data was collected and organized by VulnIQ [29], a
vulnerability and intelligence solution dedicated to tracking
and analyzing system vulnerabilities. We extracted this data
from VulnIQ using web-scraping techniques to traverse and
record VulnIQ’s vulnerability records, which resulted in a
dataset with CVSS data from 100,000 CVEs. The resulting
dataset covers CVEs from June 2017 to July 2022. After
merging CVE data from the previously mentioned data sources
using CVE Identifiers, any CVE records with missing or
invalid CVSS data were removed in a cleaning operation,
resulting in a final dataset of 95,046 CVEs.

2) Doc2Vec Model Training and Text Vector Creation:
In order to convert the text descriptions of the selected
vulnerabilities into numerical data to enhance data processing
speed and accuracy, we have selected the Doc2Vec technique

TABLE II
CVE-2022- 20862 AFTER DOC2VEC DESCRIPTION VECTORIZATION

CVE ID Description Generated Vector
CVE-
2022-
20862

A vulnerability in the
web-based management
interface of Cisco Unified
Communications Manager
(Unified CM) and Cisco
Unified Communications
Manager Session
Management Edition
(Unified CM SME)...

[0.34770614, 0.24144247,
-0.3812419, -
0.105862066,
0.27085847, -0.3862508,
-0.19297537, -
0.5055367, 1.3502474, -
0.71859527, -0.13281806,
0.0069170436, -
0.036240224,
0.82979566...

to vectorize the text descriptions into a more understandable
set of values representing the information in each description.
Before training the Doc2Vec model on the available data to
generate text vectors, we need to treat each individual text
description as a separate “document” and then separate the
text documents into arrays of individual words. Following
the initial transformation of the text data, the corpus of text
“documents” is then converted to a list and then analyzed
to identify specific words/phrases that represent the negative
or positive sentiment of the descriptions. After building a
dictionary of the important vocabulary from the collected
data, the Doc2Vec model is trained for 40 epochs using
70% of the converted corpus to become more efficient at
understanding the meaning of vulnerability descriptions. The
custom-trained Doc2Vec model is then used to generate a
vector with 50 embeddings for every CVE’s text description
that most accurately explain their meaning (as exemplified in
Table II).

Then the vectors were attached to their respective CVE
records in the existing data frame and then separated into 50
different columns, each with an embedding from the vector.
Additionally, two binary identifiers (hasExploit, hasFix) were
also One-Hot Encoded to use for CVSS Base Score Prediction
and provide more support for each prediction rather than
relying solely on the Doc2Vec generated vectors. The dataset
with the vectorized descriptions was then split 70% and 30%
for training and testing data, respectively, to be used by the
neural network model.

B. Initial Optimization and Hyperparameter Identification

Though there are numerous parameters that can be ma-
nipulated to increase performance, we begin the optimization
process by choosing six major hyperparameters that have the
most impact on prediction error: Number of Epochs, Batch
Size, Learning Rate (lr), Weight Decay (wd), Dropout Value
(dp), Number of Layers Generated by LinBnDrop blocks.
Additionally, depending on the number of layers generated, we
will also focus on identifying the most beneficial layer sizes for
each layer generated by each LinBnDrop block in the neural
network when predicting CVSS Scores. The exact ranges of
testable values for each hyperparameter in the optimization
process are provided in Table III.



TABLE III
IDENTIFIED HYPERPARAMETERS WITH TESTABLE RANGES

Hyperparameter Testable Range
Dropout Value (0.01,0.50)
Weight Decay (4 ×10−4, 0.40)
Learning Rate (1 ×10−5, 1× 10−1)

Generated Layers (1,3)
Layer 1 Size (50,200)
Layer 2 Size (100,1000)
Layer 3 Size (200,2000)

C. Justification for Bayesian Optimization

For the purpose of maximizing the model’s performance,
the Bayesian optimization algorithm is selected to identify
the most lucrative set of values for the chosen hyperparam-
eters. The Bayesian optimization algorithm, a probabilistic
optimization technique based on the Bayes Theorem, generates
a probabilistic model of the original function (CVSS score
prediction) to add efficiency to the hyperparameter tuning
process. Following the creation of this probabilistic surrogate
model, the algorithm then directly searches the surrogate
model to identify the optimal combinations for evaluation with
the original prediction model.

P (Bj | A) =
P (A | Bj)P (Bj)

Σn
i=0P (A | Bi)P (Bi)

(1)

As stated by the Bayes Theorem (Eq. 1), the conditional
probability of an event can be calculated using the occurrence
of a prior event by multiplying the probability of the first
event by the probability of the second event given the first
event. Essentially, it states that the probability of a hypothesis
can be calculated based on prior probabilities of related
events. In [30], Agnihotri and Batra state that, in the case of
Bayesian Optimization, it allows the algorithm to find the most
promising combination of hyperparameters at each stage of the
process and then use it to determine the best combination to
evaluate in the next stage until the most optimal combination
is found. By using this optimization algorithm, we are able
to accelerate the tuning process with intelligent optimization
rather than tedious manual optimization.

D. Algorithm Execution

After defining the Bayesian optimization algorithm for our
CVSS score prediction model, we execute the algorithm to
optimize the chosen hyperparameters on the previously iden-
tified testable ranges in Table III, running for 40 epochs on
each identified combination. We choose the Mean Absolute
Error metric to evaluate the effectiveness of each combination
of hyperparameter values due to its ability to accurately gauge
the magnitude of error in the generated forecasts rather than
be more inaccurately swayed by negative errors and outliers
like Mean Absolute Percentage Error and occasionally Mean
Squared Error.

The Bayesian optimization algorithm identifies the com-
binations with the minimum error values to find the opti-
mal combination of hyperparameter values. The optimization
algorithm is then repeated 4 more times to confirm the

TABLE IV
IDENTIFIED OPTIMAL HYPERPARAMETER COMBINATIONS

Hyperparameter Comb 1 Comb. 2 Comb. 3 Comb. 4 Comb. 5
Dropout Value 0.415 0.238 0.416 0.415 0.179
Weight Decay 0.031 0.239 0.138 0.283 0.351
Learning Rate 0.098 0.093 0.060 0.086 0.069

Generated Layers (≈) 3 2 2 2 1
Layer 1 Size (≈) 89 85 139 167 110
Layer 2 Size (≈) 725 273 652 746 585
Layer 3 Size (≈) 1787 374 1 2 955

identified combinations as optimal for enhancing the model’s
performance.

Through multiple iterations of the Bayesian optimization
algorithm, we found 5 primary combinations (shown in Table
IV) that were consistently identified as most likely to decrease
mean absolute error in the original model’s CVSS score
predictions. Upon analyzing the combinations, we found that
the Dropout value (dp) and Weight Decay (wd) generally
hovered around 0.33 and 0.21 respectively, but the layer sizes,
Number of Generated Layers, and learning rate (lr) value
showed more variation among the combinations, indicating
that they are generally more combination specific.

E. Final Optimization Steps and Statistical Benefits

Based on the statistical results from testing the model’s
performance at each of the identified hyperparameter com-
binations (See Table IV), we conclude that combination 4
(Dropout Value: 0.415, Weight Decay: 0.283, Number of
Generated Layers: 2, Layer 1 Size: 167, Layer 2 Size: 746,
Layer 3 Size: Near 0) is the most optimal. At 40 and 50
epochs, combination 4 yielded the lowest Mean Absolute
Error (MAE), Mean Squared Error (MSE), and Root Mean
Squared Error (RMSE) when compared to the results from
the other combinations. Therefore, we focus solely on opti-
mizing the results for combination 4 while manipulating the
only remaining hyperparameters we have not optimized via
Bayesian Optimization: Number of Epochs and Batch Size.
We incrementally increase the number of epochs of the model
with hyperparameter combination 4 to identify the number of
epochs with the lowest values on the selected error metrics:
MAE, MSE, RMSE, and MAPE (Mean Absolute Percentage
Error).

For the sake of consistency and simplicity, we keep the
Batch Size constant across all trials. In the initial testing of
all the hyperparameter combinations, we use a batch size of
256 since a relatively smaller batch size is generally beneficial
for a multi-faceted model in its initial stages of development.
Therefore, we again set the batch size as 256 for the new
trials in which we gradually increase the epochs of the model
to minimize the error margin in the optimization stage prior
to conducting a final evaluation of the model’s usability.

Beginning by testing the model at 100 epochs, we then
incrementally increase the training time by 50 epochs and test
the model at each value, the results of which are evaluated
using the same original error metrics of MAE, MSE, RMSE,
and MAPE (Results in Table V). Upon analyzing the results



TABLE V
EPOCHS MANIPULATION TRIAL RESULTS WITH HYP. COMB. 4 AT BATCH

SIZE OF 256
Epochs MAE MSE RMSE MAPE R2

100 0.5685 0.7446 0.8629 0.1084 0.7624
150 0.5331 0.6846 0.8274 0.1054 0.7830
200 0.5181 0.6844 0.8273 0.1106 0.7857
250 0.5037 0.6563 0.8101 0.0982 0.7982
300 0.5007 0.6692 0.8180 0.1892 0.7966
350 0.4927 0.6606 0.8128 0.1246 0.8010
400 0.4906 0.6535 0.8084 0.1221 0.8042
450 0.4748 0.6251 0.7906 0.1073 0.8144

TABLE VI
BATCH SIZE MANIPULATION TRIAL RESULTS WITH HYP. COMB. 4 W/

450 EPOCHS

Batch Size MAE MSE RMSE MAPE R2

64 0.7743 1.1026 1.0501 0.1907 0.6078
128 0.6224 0.8286 0.9103 0.1413 0.7341
256 0.4748 0.6251 0.7906 0.1073 0.8144
512 0.4246 0.5990 0.7739 0.0924 0.8192

1024 0.4395 0.6453 0.8033 0.6528 0.8020
2048 0.5025 0.7338 0.8566 0.0954 0.7645

of all our trials, we found that 450 epochs resulted in the
lowest values on all error metrics. By training the model for
450 epochs, the error metrics are significantly decreased: MAE
from 0.568 to 0.475, MSE from 0.745 to 0.625, and RMSE
from 0.862 to 0.790. Further increasing the number of epochs
for training beyond 450 epochs showed signs of overfitting.
Thus, 450 epochs is considered as the best choice.

We continue manipulating the training requirements of the
model to improve its performance. With the number of epochs
also optimized along with the other original hyperparameters,
the only parameter that needs to be optimized is batch size.

Similar to the trials to optimize the number of epochs, we
conduct trials to optimize the batch size parameter by testing
the model at a variety of batch sizes (64, 128, 256, 512, 1024),
with a fixed number of epochs of 450 to remain consistent. The
results are shown in Table VI. It can be seen that a batch size
of 512 yields the lowest Mean Absolute Error (0.42), Mean
Squared Error (0.59), and Root Mean Squared Error (0.77)
as well as the highest R-Squared of 82.24% (see Table VII).
Thus, we identify 512 as the optimal batch size of training
examples used per iteration when training the model.

Now, we conclude the optimization phase of our model’s
development and confirm the final set of hyperparameters for
the model: [Number of Epochs: 450, Batch Size: 512, Dropout
Value: 0.415, Weight Decay: 0.283, Number of Generated
Layers: 2.014, Layer 1 Size: 166.6, Layer 2 Size: 745.6, Layer
3 Size: 1.552].

VI. EVALUATION

A. Prediction Performance

We first evaluate the performance of the CVSS base score
prediction model with the optimized hyperparameters. The
results are shown in Table VII. Out of five separate tests, the
model yielded an average MAE of 0.4209, MSE of 0.5899,
RMSE of 0.7680, MAPE of 0.0919, R-squared of 0.8224.

TABLE VII
FINAL RESULTS WITH HYP. COMB. 4, TRAINING FOR 450 EPOCHS, AND

A BATCH SIZE OF 512
Test MAE MSE RMSE MAPE R2

1 0.4246 0.5990 0.7739 0.0924 0.8192
2 0.4166 0.5757 0.7587 0.0941 0.8267
3 0.4226 0.5861 0.7656 0.0819 0.8232
4 0.4220 0.5959 0.7720 0.0854 0.8216
5 0.4186 0.5926 0.7698 0.1054 0.8215
AVG 0.4209 0.5899 0.7680 0.0919 0.8224

TABLE VIII
CVSS QUALITATIVE SEVERITY RATING SCALE

Rating CVSS Score
None 0.0
Low 0.1 - 3.9
Medium 4.0 - 6.9
High 7.0 - 8.9
Critical 9.0 - 10.0

With an average R2 value of 82.24%, it can be seen that
the model explains approximately 82.24% of the variance of
the possible CVSS scores on the CVSS v3 scale. This metric
paired with the large size of the dataset tells us that our model
is able to identify a strong correlation between vulnerabilities’
text descriptions and their CVSS Base Scores.

Since the average Mean Absolute Error, i.e., the average
absolute difference between predicted and actual values, is
only 0.4209 and the CVSS v3 score ranges from 0.0 to 10.0,
we can see that this model is quite accurate in determining
the CVSS base score. Similarly, the Mean Squared Error and
Root Mean Squared Error are also very low and are improved
significantly from the beginning of the optimization stage, thus
showing the effectiveness of our optimization strategy.

Additionally, we refer to the Qualitative Severity Rating
Scale in [7] and Table VIII which classifies numerical CVSS
scores into categories of None, Low, Medium, High, or Crit-
ical, and then sort our predicted and actual scores into these
qualitative ratings. Upon comparing the predicted and actual
CVSS severity ratings, we found that approximately 83.21%
of the vulnerabilities in our testing dataset were classified
correctly by our model.

B. Comparison to Existing Models

Then we compare our solution with two state-of-the-art
approaches [15] and [17]. The implementation of those two
approaches adopted the code from GitHub repositories [31]
and [32] provided in [15] and [17], respectively, and the
parameter configurations in their original publications [15] and
[17] were also adopted. We run them and our proposed model
on the dataset described in Section V-A1, with 70% of the data
used for training and 30% used for testing. For the model of
[15], according to their documentation [33], it is first trained
for two warm-up epochs, and then it is trained for two more
epochs because their method determines that two additional
full epochs will be optimal.

Since the two baseline approaches focus on predicting
different categorical variables, specifically ratings for Con-



TABLE IX
CVSS BASE SCORE PREDICTION COMPARISON RESULTS

Model Accuracy Precision Recall f1-Score
CVSS-BERT [6] 82.53% 0.8229 0.8253 0.8234
DistilBERT [9] 75.87% 0.5756 0.7587 0.6546
Our Model 84.55% 0.8588 0.8454 0.8471

fidentiality, Integrity, Availability, and Overall Severity, as
opposed to our model which directly predicts CVSS base
scores, for fair comparisons, we convert our model’s CVSS
base score predictions into CVSS Severity Levels using the
ranges listed in Table VIII. As shown in Table IX, our solution
performs better than the other two approaches in accuracy,
precision, recall, and f1-score.

VII. CONCLUSION

We focused on efficiently automating the severity classifica-
tion process for CVSS base scores to shorten the time needed
and reduce security risks for electric utilities. The prediction
model that we developed performed very well in predicting
the CVSS base scores from human-generated text descriptions
and two supporting binary identifiers (hasExploit, hasFix). It
generated more accurate predictions than two state-of-the-art
solutions. Our scheme is also efficient, through implementing
a Fast.ai-based neural network with a low-maintenance text
vectorization tool.

ACKNOWLEDGMENT

This work is supported in part by NSF under award
1751255, and also by the Arkansas High Performance Com-
puting Center which is funded through multiple NSF grants
and the Arkansas Economic Development Commission.

REFERENCES

[1] National Vulnerability Database. National Institute of Standards and
Technology. URL: https://nvd.nist.gov/.

[2] Offensive Security’s Exploit Database Archive (Exploit-DB). Offensive
Security. URL: https://www.exploit-db.com/.

[3] Philip Huff, Kylie McClanahan, Thao Le, and Qinghua Li. “A
Recommender System for Tracking Vulnerabilities”. In: International
Conference on Availability, Reliability and Security (ARES). 2021.

[4] Yatish Dubasi, Ammar Khan, Qinghua Li, and Alan Mantooth. “Se-
curity Vulnerability and Mitigation in Photovoltaic Systems”. In:
IEEE International Symposium on Power Electronics for Distributed
Generation Systems (PEDG). 2021, pp. 1–7.

[5] Fengli Zhang and Qinghua Li. “Security Vulnerability and Patch
Management in Electric Utilities: A Data-Driven Analysis”. In: The
1st Radical and Experiential Security Workshop (RESEC). 2018.

[6] Common Vulnerabilities and Exposures(CVE). The MITRE Corpora-
tion. URL: https://cve.mitre.org/.

[7] Common Vulnerability Scoring System version 3.1: Specification Doc-
ument. Forum of Incident Response and Security Teams. URL: https:
//www.first.org/cvss/specification-document.

[8] Jukka Ruohonen. “A look at the time delays in CVSS vulnerability
scoring”. In: Applied Computing and Informatics 15.2 (2019), pp. 129–
135.

[9] Philip Huff and Qinghua Li. “Towards Automated Assessment of
Vulnerability Exposures in Security Operations”. In: EAI International
Conference on Security and Privacy in Communication Networks
(SecureComm). 2021, pp. 62–81.

[10] Fengli Zhang, Philip Huff, Kylie McClanahan, and Qinghua Li. “A
Machine Learning-based Approach for Automated Vulnerability Re-
mediation Analysis”. In: IEEE Conference on Communications and
Network Security (CNS). 2020, pp. 1–9.

[11] Fengli Zhang and Qinghua Li. “Dynamic Risk-Aware Patch Schedul-
ing”. In: IEEE Conference on Communications and Network Security
(CNS). 2020, pp. 1–9.

[12] Kylie McClanahan and Qinghua Li. “Automatically Locating Mitiga-
tion Information for Security Vulnerabilities”. In: IEEE International
Conference on Communications, Control, and Computing Technologies
for Smart Grids (SmartGridComm). 2020, pp. 1–7.

[13] Marie Louise Uwibambe, Yanjun Pan, and Qinghua Li. “Fuzzing for
Power Grid Systems: A Comparative Study and New Approaches”. In:
IEEE Design Methodologies Conference (DMC). 2023.

[14] Dakota Dale, Kylie McClanahan, and Qinghua Li. “AI-based Cyber
Event OSINT via Twitter Data”. In: International Conference on Com-
puting, Networking and Communications (ICNC). 2023, pp. 436–442.

[15] Mustafizur R Shahid and Hervé Debar. “CVSS-BERT: Explainable
Natural Language Processing to Determine the Severity of a Computer
Security Vulnerability from its Description”. In: IEEE Int’l Conf. on
Machine Learning and Applications (ICMLA). 2021, pp. 1600–1607.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
“Bert: Pre-training of deep bidirectional transformers for language
understanding”. In: arXiv preprint arXiv:1810.04805 (2018).

[17] Joana Cabral Costa, Tiago Roxo, João B. F. Sequeiros, Hugo Proenca,
and Pedro R. M. INÁCIO. “Predicting CVSS Metric via Description
Interpretation”. In: vol. 10. 2022, pp. 59125–59134. DOI: 10 .1109 /
ACCESS.2022.3179692.

[18] Atefeh Khazaei, Mohammad Ghasemzadeh, and Vali Derhami. “An
automatic method for CVSS score prediction using vulnerabilities
description”. In: Journal of Intelligent & Fuzzy Systems 30.1 (2016),
pp. 89–96.

[19] Zhuobing Han, Xiaohong Li, Zhenchang Xing, Hongtao Liu, and
Zhiyong Feng. “Learning to Predict Severity of Software Vulnerability
Using Only Vulnerability Description”. In: IEEE Int’l Conf. on Soft-
ware Maintenance and Evolution (ICSME). 2017, pp. 125–136.

[20] Kerem Gencer and Fatih Başçiftçi. “The fuzzy common vulnerability
scoring system (F-CVSS) based on a least squares approach with fuzzy
logistic regression”. In: Egyptian Informatics Journal 22.2 (2021),
pp. 145–153.

[21] Clément Elbaz, Louis Rilling, and Christine Morin. “Fighting N-day
vulnerabilities with automated CVSS vector prediction at disclosure”.
In: The International Conference on Availability, Reliability and Secu-
rity. 2020, pp. 1–10.

[22] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. “Efficient
estimation of word representations in vector space”. In: arXiv preprint
arXiv:1301.3781 (2013).

[23] Quoc Le and Tomas Mikolov. “Distributed representations of sentences
and documents”. In: International conference on machine learning.
PMLR. 2014, pp. 1188–1196.

[24] Jeremy Howard and Sylvain Gugger. “Fastai: a layered API for deep
learning”. In: Information 11.2 (2020), p. 108.

[25] Rita Yi Man Li, Herru Ching Yu Li, Beiqi Tang, and WaiCheung Au.
“Fast AI Classification for Analyzing Construction Accidents Claims”.
In: Proceedings of the Artificial Intelligence and Complex Systems
Conference. 2020, pp. 1–4.

[26] Julian Martin Eisenschlos, Sebastian Ruder, Piotr Czapla, Marcin
Kardas, Sylvain Gugger, and Jeremy Howard. “MultiFiT: Effi-
cient multi-lingual language model fine-tuning”. In: arXiv preprint
arXiv:1909.04761 (2019).

[27] Jey Han Lau and Timothy Baldwin. “An empirical evaluation of
doc2vec with practical insights into document embedding generation”.
In: arXiv preprint arXiv:1607.05368 (2016).

[28] Gensim: Topic Modelling For Humans. URL: https : / / radimrehurek .
com/gensim/auto examples/tutorials/run doc2vec lee.html.

[29] VulnIQ: Vulnerability Intelligence and Management Solution. VulnIQ.
URL: https://www.vulniq.com/.

[30] Apoorv Agnihotri and Nipun Batra. “Exploring bayesian optimiza-
tion”. In: Distill 5.5 (2020), e26.

[31] Mustafizur Rahman Shahid and Hervé Debar. Jan. 2022. URL: https:
//github.com/mus-shd/CVSS-BERT.git.

[32] Joana Cabral Costa, Tiago Roxo, JOÃO SEQUEIROS, HUGO
PROENÇA, and PEDRO INÁCIO. Predicting CVSS Metric via De-
scription Interpretation (GitHub). Nov. 2022. URL: https://github.com/
Joana-Cabral/CVSS Prediction.

[33] URL: https : / /github.com/mus- shd/CVSS- BERT/blob/main/demo
notebook.ipynb.


