PEPPER: Privacy-prEserving, auditable, and fair Payment based
resource discovery at the PERvasive edge

Emrah Sariboz
emrah@nmsu.com
New Mexico State University
Las Cruces, NM, USA

Roopa Vishwanathan
roopav@nmsu.com
New Mexico State University
Las Cruces, NM, USA

ABSTRACT

Pervasive Edge Computing (PEC), a recent addition to the edge com-
puting paradigm, leverages the computing resources of end-user
devices to execute computation tasks in close proximity to users.
One of the primary challenges in the PEC environment is determin-
ing the appropriate servers for offloading computation tasks based
on factors, such as computation latency, response quality, device
reliability, and cost of service. Computation outsourcing in the PEC
ecosystem requires additional security and privacy considerations.
Finally, mechanisms need to be in place to guarantee fair payment
for the executed service(s).

We present PEPPER, a novel, privacy-preserving, and decentral-
ized framework that addresses aforementioned challenges by uti-
lizing blockchain technology and trusted execution environments
(TEE). PEPPER improves the performance of PEC by allocating
resources among end-users efficiently and securely. It also provides
the underpinnings for building a financial ecosystem at the perva-
sive edge. To evaluate the effectiveness of PEPPER, we developed
and deployed a proof of concept implementation on the Ethereum
blockchain, utilizing Intel SGX as the TEE technology. We propose
a simple but highly effective remote attestation method that is
particularly beneficial to PEC compared to the standard remote
attestation method used today. Our extensive comparison experi-
ment shows that PEPPER is 1.23X to 2.15X faster than the current
standard remote attestation procedure. In addition, we formally
prove the security of our system using the universal composability
(UC) framework.

CCS CONCEPTS

« Security and privacy — Distributed systems security; Privacy-
preserving protocols; Trusted computing.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASIA CCS °24, July 1-5, 2024, Singapore, Singapore

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0482-6/24/07.

https://doi.org/10.1145/3634737.3637679

Reza Tourani
reza.tourani@slu.edu
Saint Louis University

St. Louis, MO, USA

Satyajayant Misra
misra@nmsu.com
New Mexico State University
Las Cruces, NM, USA

KEYWORDS

Auditable resource discovery, Ethereum, Privacy-preserving auc-
tion, Edge Computing, Trusted Execution Environment.

ACM Reference Format:

Emrah Sariboz, Reza Tourani, Roopa Vishwanathan, and Satyajayant Misra.
2024. PEPPER: Privacy-prEserving, auditable, and fair Payment based re-
source discovery at the PERvasive edge . In ACM Asia Conference on Com-
puter and Communications Security (ASIA CCS °24), July 1-5, 2024, Singapore,
Singapore. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3634737.3637679

1 INTRODUCTION

As technology continues to advance and develop, the number of end
user devices, such as smartphones and tablets, is increasing. Cisco
predicted that by the end of 2023, the number of devices connected
to the internet will be three times the world population [10]. The
increase in the number of devices has enabled a wide range of ap-
plications. Some emerging applications, such as metaverse [28] and
industrial internet of things [32], have demanding computational
needs while demanding low application latency. Cloud computing
offers a solution by allowing end users to offload the execution of
these applications to meet their needs.

However, uploading tasks or retrieving the computing results
for time-sensitive or privacy-sensitive applications underscores the
need for alternative solutions because cloud servers are usually
geographically distant from consumers and could have associated
privacy risks [35]. To address these challenges with cloud comput-
ing, new distributed computing paradigms such as edge computing
and variants, such as fog computing and multi-access edge com-
puting have emerged [36]. The promise of edge computing is to
bring powerful computing devices closer to the end-user region to
improve the response time of users’ needs. Application vendors can
host their services for the user in the vicinity, reducing the overall
latency and the cost of data transfer to the server.

The Pervasive Edge Computing (PEC) paradigm [16, 37, 38] takes
this idea one step further by creating an ecosystem where a variety
of devices at the edge ranging from laptops and tablets to smart-
phones, which have sufficient computation and storage power can
be put to use to provide services on behalf of the cloud service
provider. This will help the cloud provider offer better availability
of services with relatively lower latency. Another benefit of PEC is
enabling computing paradigms that harness the pervasiveness of

edge devices. Consequently, PEC helps offer users a wider range of
server options to outsource their computation compared to tradi-
tional edge computing. Naturally, the question arises, how to find
an appropriate end-device (i.e., PEC server) to which a user’s compu-
tation can be offloaded in the most cost-effective, secure, and private
manner within a dynamic and distributed PEC setting? To the best
of our knowledge, existing literature falls short in addressing the
question at hand, which underscores the need for this study. This
paper proposes a framework to address this question.
Motivation and Challenges: Creating a usable framework that
locates end devices to offload computation for the PEC ecosystem
requires proper incentives. The goal is to persuade end users to
join the computing pool and meet the needs of other users. We
can achieve this by offering money or digital assets (tokens) in
exchange for the service. The framework must also establish a se-
cure and trustworthy environment, ensuring that end users can
confidently participate without concerns regarding losses, privacy,
and security implications. In addition to providing incentives and a
trustworthy environment, the framework must also be fair on two
key aspects. Firstly, each participating server at the edge should
have an equal opportunity to execute offloaded computations—the
fairness can be proportional to capabilities. Secondly, it is crucial to
create a system to establish correct distribution of payment to the
party that executes the computation without any parties getting
shortchanged. This setup provides a transparent and unbiased op-
portunity for every available device at the edge to perform service
and get remunerated for it. Enhancing fairness fosters trust and
participation among the PEC servers, which ultimately enhances
the framework’s success.

To design our framework and to study how it will operate in the
PEC setting, we assume the use of an auction in the PEC for choos-
ing the specific server to perform a requested user’s computing.
Particularly, we assume the use of a reverse auction, where there
are several sellers (servers), each offering the same service at a po-
tentially unique price, and one buyer (end-user requesting service)
using the price to choose the least expensive server. Auction (in the
rest of the paper auction refers to reverse auction) as the means of
identifying the appropriate edge server to use makes sense as the
set of edge servers essentially represent a marketplace for a client
to choose from. Moreover, an unbiased auction guarantees that the
chosen edge server is chosen based on the characteristics needed
for the computation and will provide the most cost-effective opera-
tion among the corresponding usable servers set. In PEPPER, our
approach involves orchestrating an auction where all PEC servers
offer their services to users at competitive prices (we use price to
define cost, any other cost metric can be readily used). Each PEC
server strives to minimize the cost of executing the outsourced
client computation in question.

Considering its inherent data provenance, record immutability,
and support of smart contracts, we find the Ethereum blockchain
suitable for our design. Hence, we implemented the auction as a
smart contract on the Ethereum blockchain, to achieve our goals.
Our approach guarantees the integrity of the auction process, al-
lowing anyone to publicly verify its fairness while preventing any
party, including the auctioneer, from manipulating the process to
their advantage.

Another important challenge is that the framework must protect
the privacy of the participants by hiding their bid details. The
bid amount is considered private information since it represents
the cost assessment of the servers for the outsourced application.
The bid amount can be used to infer the computational strategy
and process that a given PEC server uses to devise its bidding
price for computations. Malicious PEC servers participating in the
next round of auction may use this information to gain an unfair
advantage in the auction. Hence, for fairness, it is imperative that
the bid amounts of PEC servers are hidden from each other using a
sealed-bid approach.

In PEPPER, only the winning bid amount is made public, and all
the losing bid amounts are kept secret, even from the auctioneer.
We note that by disclosing the winning bid’s details on the smart
contract, PEPPER assures that the bidder who won the auction
placed the corresponding bid, thereby eliminating any suspicions
of biased decision-making. We acknowledge that revealing the
winning bid from a previous round might provide the bidders with
data points to predict future bids. However, it’s important to note
that the cost of service execution heavily depends on the specific
nature of the service and the data size.

Bids are formulated per computation and can vary widely, de-
pending on the characteristics of the service and input size (e.g.,
sorting an array vs. a complex machine learning application like
video annotation) as well as the computation demand. Hence, the
winning bid from a previous round does not necessarily provide a
definitive advantage in future biddings. Also, given that all servers
in the network are privy to the information on the winning bid,
there is no unfair advantage for a chosen set of servers. We use the
Trusted Execution Environment (TEE), particularly, Intel Software
Guard Extension (SGX) [18] to meet these requirements. The TEE
promises to restrict the execution of computation loaded into the
secure and encrypted area of the processor - called enclaves - from
privileged software, including the operating system. The entities
who want to verify the correctness of the loaded software to enclave
perform what is called remote attestation.

Remote attestation assures that the application loaded into the
enclave is correct and the enclave is up to date. As we detail in Sec-
tion 5, the bidders verify the remote device before revealing bid de-
tails. However, for applications with a high number of participants—
multiple entity auctions being one of them-the time it takes to
complete remote attestation increases proportionally with the num-
ber of participants. To reduce this overhead, we propose a novel
technique that significantly improves remote attestation cost, en-
hances the system’s performance, and improves privacy.

Our novel contributions are as follows:

(i) We propose Privacy-prEserving, auditable, and fair Payment
based resource discovery at PERvasive edge, i.e, PEPPER, a frame-
work that enables the selection of the proper end-device for trust-
worthy computation offloading. PEPPER is blockchain and TEE
agnostic, meaning it can be deployed on any blockchain platform
with smart contract support.

(ii) PEPPER utilizes an auction implemented on a smart contract
that ensures the privacy of bidders by revealing only the winning
bid while keeping the bids that are lost in the auction confidential
from all parties, including the auctioneer/client.

(iii) We propose a simple yet highly effective remote attestation
technique that significantly reduces the overall time required to
attest a remote server and its enclave software, which is particularly
crucial in scenarios involving a large number of participants, a
situation commonly prominent in PEC.

(iv) We provide an end-to-end implementation of PEPPER, which is
built on top of the Ethereum blockchain and Intel SGX, and evaluate
its effectiveness. We further provide a rigorous security analysis of
PEPPER using Universal Composability (UC) framework.

The rest of the paper is organized as follows. In Section 2, we
provide the required background relevant to the problem. In Sec-
tion 3, we discuss the literature review. In Section 4, we detail the
system model, threat model, and our assumptions. Section 5 de-
scribes the protocols that constitute PEPPER and provides details
of the protocols. In Section 6, we extensively analyze the security
of PEPPER using both informal and formal methods. In Section 7,
we provide details of the implementation and experimental results
of PEPPER. Finally, we conclude the paper in Section 8.

2 BACKGROUND

In this section, we provide a concise overview of the necessary
background to facilitate a better understanding of our framework.

2.1 Trusted Execution Environment

A trusted execution environment, such as Intel Software Guard
Extensions (SGX), enables one to execute applications inside secure
enclaves on untrusted machines [19]. The enclave secludes the
execution of the application and its data from other privileged
applications, including the operating system. Any remote entity
can verify if an enclave is initialized correctly, is on a state-of-the-
art platform, and runs the correct software by performing remote
attestation. Verifying the correctness of such information is critical
and essential before exposing any sensitive data. Intel SGX remote
attestation comes in two flavors:

Enhanced Privacy ID (EPID): The EPID-based remote attestation
employ an anonymous group signature scheme developed by In-
tel [18]. During remote attestation, the attesting enclave generates
a data structure known as a report. The report encapsulates essential
information such as the hash of the code and data loaded into the
enclave (MRENCLAVE), a hash of the public key of the entity that
signed the enclave (MRSIGNER), user-data field, and other pertinent
details. The generated report is then signed using the EPID key,
creating an EPID signature. The relying party! can ensure that the
report is indeed signed by a valid enclave, without needing to know
the exact identity of the enclave, thanks to the anonymity property
using the Intel Attestation Service (IAS).

Data Center Attestation Primitive (DCAP): In DCAP-based
remote attestation, the attesting enclave generates report, which is
then signed by the Provisioning Certification Enclave (PCE) using
Provisioning Certificate Key (PCK) that is unique to each plat-
form [31]. The PCE, located on the same platform as the attest-
ing enclave, acts as a local certificate authority. Unlike the EPID-
based attestation model, there isn’t a requirement connect to Intel’s

!Intel SGX refers to parties verifying the attestation as relying parties:
https://www.intel.com/content/www/us/en/developer/tools/software-guard-
extensions/attestation-services.html

servers each time to verify the attestation report. The Intel SGX
provisioning certification service (PCS) provides required APIs for
parties to retrieve and cache the necessary information, such as
the Provisioning Certificate Key (PCK) certificate and Certificate
Revocation Lists (CRLs), to validate remote attestation locally. We
employ DCAP-based remote attestation in PEPPER.

2.2 Ethereum and Smart Contracts

The blockchain technology enables mutually untrusting parties to
connect and transact without the need for any centralized trusted
party. Ethereum is a widely utilized decentralized blockchain plat-
form that enables the creation and execution of decentralized appli-
cations (dApps) in the form of smart contracts and uses Ether as its
cryptocurrency [40]. Smart contracts are software programs written
in specialized programming languages, such as Solidity or Vyper,
which get executed on the blockchain whenever pre-encoded con-
ditions are met. Interacting with a smart contract involves creating
a transaction, which is then verified by the network’s validators—
entities that partake in establishing network consensus. These inter-
actions are permanently recorded on an immutable ledger, ensuring
transparency and integrity.

2.3 Cryptographic Preliminaries

Elliptic Curve Integrated Encryption Scheme (ECIES) [1] is a hybrid
encryption scheme that combines the properties of symmetric and
asymmetric cryptography. In our framework, we utilize ECIES to
conceal the bid details of the auction participants and give a formal
definition below.

DerFINITION 1. Elliptic Curve Integrated Encryption Scheme [1]:

An Elliptic Curve Integrated Encryption Scheme (ECIES) is defined
over one probabilistic (KeyGen) and four deterministic polynomial
time algorithms: (KAF, KDF, Encrypt, MAC). Let G be a multiplica-
tive cyclic group of prime order p generated by g;.

o KeyGen(params) — (sk, pk): KeyGen algorithm takes ellip-
tic curve parameters, samples random secret key sk «s Z*
and computes public key pk «— gik.

o KAF(skx, pky) — (ss): Key agreement function (KAF), takes
sk of executor party and the pk of receiver party and produces
shared-secret key ss.

o KDF(ss) — (kpyrac, kenc): Key derivation function, KDF, al-
gorithms takes ss and produces MAC key, kyrac and symmetric
key, kenc by kmac. kenc < {0, 14,

e Encrypt(kpnc,m) — (c): Encryption algorithm, Encrypt,
encrypts the message m using KEnc-

o MAC(kprac,c) — (tag): Message authentication code func-
tion, MAC, generates tag on c using kpyac-

3 RELATED WORK

In this section, we provide a comprehensive review of the existing
literature pertaining to our design. This includes an examination
of research on privacy-preserving auctions and smart contracts,
and incentive-based resource utilization within the context of edge
computing paradigms.

3.1 Privacy-preserving Auction

The transparent nature of smart contracts is both a blessing and a
curse. On the one hand, it can transparently mediate the interaction
between mutually untrusted parties; on the other hand, the lack of
privacy limits the application variety, such as auction. To this end,
privacy-preserving auction frameworks for smart contracts have
been proposed in the literature [4, 9, 13-15, 20-22, 33, 41].

We categorize the existing work in blockchain-based privacy
preserving auction frameworks into two broad categories based on
the underlying technique: zero knowledge-based solutions and TEE-
based solutions. In the first category, the bidders use cryptographic
commitments to conceal their bids and employ zero-knowledge
proofs (ZKPs) to prove the validity of their bid values. These so-
lutions require the bids to be revealed to a smart contract or to
the auctioneer during the winner-election period [4, 9, 13, 14, 20—
22, 33]. However, by revealing bid details, the bidder’s strategy is
compromised. In contrast, our framework does not mandate the
disclosure of bids to any party, except for the winning bid.

In the second category of solutions, the bidders encrypt their bid
values off-chain and utilize TEEs to safeguard the bid privacy of the
participants during the decryption phase [15]. However, the number
of remote-attestation that these works require is proportional to the
number of bidders in the auction, making it impractical for auctions
with a high number of users to adopt due to the large latency. Our
framework decreases the number of remote attestation requests
from one request per bidder to one request per auction, reducing
the communication cost between bidders and enclave and the total
time it takes to perform remote attestation.

3.2 Privacy-preserving Smart Contracts

Another area of research worth noting is the pursuit of improved
confidentiality for smart contracts. This is accomplished by exe-
cuting them within a TEE, which restricts access to the execution
details of the smart contract. Several studies have explored this
approach to address the privacy limitations of smart contract exe-
cution [8, 11, 41]. However, these solutions have their limitations.
Some are specific to a particular blockchain due to the introduction
of their own consensus operation, while others can be prohibitively
expensive. In contrast, our solution is chain-agnostic and does not
incur significant costs, as detailed in Section 7.

3.3 Incentive-based Resource Utilization

One of the primary aims of our work is to incentivize participants
to contribute their resources to meet the needs of others. In this
subsection, we detail the related work in methodologies used in
incentive mechanisms.

Several works have applied a game-theoretic approach to in-
centivize the party to execute outsourced computation in the edge
computing paradigms [6, 25-27, 44]. These works model the interac-
tion of parties as a game and use mathematical theorems to deduce
the parties’ strategies. However, the lack of auditability and the cen-
tralized nature of these works make these approaches undesirable.
On the other hand, our work is auditable due to its blockchain ag-
nostic nature. Researchers have utilized blockchain-based auction
frameworks to incentivize resources of end devices [2, 17, 23, 24, 42].
However, these works do not consider hiding the bidding details,

which is critical to keep the auction strategies of the participants
private. Our work does not require bidders to reveal their bids to
any third party, including the auctioneer.

The closest related work to our framework is [15], where authors
employ a TEE to decrypt the bids that are encrypted off the chain
to achieve a privacy-preserving auction. However, our approach
differs in three important ways: (a) PEPPER does not require the
deployment of contracts every time a new auction is needed. The
same contract is reused, which ultimately reduces the long-term
costs and enables multiple auctioneers to utilize the framework
simultaneously; (b) PEPPER reduces the per-auction number of
remote attestation requests — from one request per bidder to a
single request per auction; and (c) our framework does not require
the auctioneer to be online during the declaration of the winner,
whereas [15] requires the auctioneer to be online to initialize the
transaction that assigns the winner’s address on the smart contract.
By removing the reliance on the auctioneer’s online presence, our
framework avoids potential delays in payment and the conclusion
of the auction.

4 MODELS AND ASSUMPTIONS

In this section, we provide a detailed explanation of the parties
involved in PEPPER, along with our threat model and underlying
security assumptions.

4.1 System Model

Pervasive Edge Computing (PEC) enables devices, such as com-
puters, tablets, Internet of Things devices, and mobile devices to
dynamically join and leave pools of computing resources at the
network edge [12, 34]. This approach aims to enhance the available
computational resources at the edge and minimize data transmis-
sion time compared to using the Cloud, especially when meeting
applications’ latency requirements. Furthermore, PEC capitalizes
on the pervasive presence of user-end devices, significantly enhanc-
ing the overall availability of computing services by utilizing these
devices for computational tasks. With this objective in mind, our
system model consists of a resource consumer (RC), PEC servers
who make up the set up bidders (B), a service provider (SP), and a
Manager (M).

An S?% is the entity that owns a service(s). In this paper, we
consider services that benefit from execution at the network edge,
such as object detection or video annotation, either to avoid trans-
ferring large volumes of data to the Cloud or minimize the response
latency. Such services may require an input that belongs to resource
consumers or can be provided by the S. We define RC as a client
of an SP who aims to outsource the execution of the SP’s service
to the more capable servers at the edge, primarily due to the limited
resource of her device. PEC servers are entities that are willing to
execute the outsourced application for RC. Finally, the Manager
M is the party that is responsible for mediating the interactions
between its enclave (E) and the smart contract (SC).

The M is equipped with a processor that supports a TEE, such
as Intel SGX or ARM TrustZone. In PEPPER, to outsource the
execution of her service, RC initiates an auction. The auction is
run by M as the auction manager and allows the PEC servers —
which we call bidders in the rest of the paper - to compete against

Table 1: Notations used in PEPPER

Notation Description

E Enclave.

B Set of bidders.

RC Resource consumer.

SP Service provider.

M Manager.

SC Smart contract.

BC Blockchain.

ida Auction identifier.
aggnonce Aggregated nonce.
Certy Certificate of entity x.
tXx Transaction of entity x .
report Attestation report.
addry Blockchain address of entity x.

each other by submitting their best offers to win the task. We give
our table of notations in Table 1.

4.2 Threat Model

We consider the following threats from the bidders, the manager,
and the resource consumer, each falling into their respective cate-
gories.

Bidders: (a) The bidders may attempt to learn the bid values of
other bidders to adjust theirs accordingly; (b) the bidders may abort
the auction after registering for it or may keep registering to the
auction to perform Distributed Denial of Service (DDoS) attack on
the framework.

Manager(M): (a) The manager may collude with other bidders to
learn and leak the bids to others; (b) the manager may attempt to
declare a different entity as the auction winner rather than the one
reported by the enclave; (c) the manager may attempt to exclude
one or more bids while transmitting them from the smart contract
to the enclave.

Resource Consumers (RC): (a) The resource consumer may cre-
ate an arbitrary auction without a legitimate intention of outsourc-
ing job; (b) the resource consumer may attempt to evade paying
the auction winner.

4.3 Security Assumptions

The service provider SP is presumed honest. Since SP owns the
service, it is in its best interests to ensure correct service execution—
SP’s reputation is at stake. We assume Manager M to be honest-
but-curious — the manager follows the protocol but attempts to
learn additional information with malicious intent. Conversely, we
consider the resource consumer, denoted as RC, as an economically-
rational malicious entity, actively seeking to obtain and disclose
bid information. Similarly, the bidders are also considered to be po-
tentially malicious entities. We assume the application responsible
for decrypting the bids and finding the winner inside the enclave is
developed by S and then provided to M and publicly available
for the participants.

We recognize the recent attacks on Intel SGX [3, 43]; while it is
important to deter such attacks and build secure enclaves, it is an
orthogonal to the aim of this paper. We also assume the existence of
a mechanism such as a marketplace, where the resource consumers

Manager Blockchain
- 1
—>: B,
Bidders RC B; 8
2
____________ .>
Untrusted 3 @
Component < B.

B
¥
&
oo

\
\
A)
v
SN
\
\
\
&)
o)}
v
®

~
N
N
N
4
(&)
¥
)
co

-~
<
>
>
N
o

&
¥cl>)

y

Enclave > RC

ﬁ,/ - ---» BIDDER
e, ——» MANAGER

Figure 1: The interaction of parties throughout the entire
auction process, from the creation of the auction to the dec-
laration of the winner on the smart contract.

and servers can interact directly or via a facilitating authority. While
we do not consider the case where the executing party may return
the incorrect execution result, the modular design of our framework
enables the adoption of verifiable computation techniques, such
as [29, 30], to resolve the issue. Finally, we make the assumption
that the PEC servers have undergone authentication by the SP
before executing the service on behalf of the SP using techniques,
such as [12].

5 PEPPER CONSTRUCTION

In this section, we discuss the protocols that constitute the PEPPER
framework. These protocols serve as the foundation for privacy-
preserving PEC server selection to execute outsourced services.

5.1 Design Overview

In a nutshell (refer to Figure 1), the process in PEPPER begins after
the service provider implements and deploys the auction smart
contract that will be used for choosing the designated PEC server.
We note that the service provider’s presence is not needed after
deploying the auction’s smart contract, and the auctions can run
between the resource consumers and bidders independent of the
service provider.

Once the smart contract is deployed, a resource consumer inter-
ested in outsourcing their service defines the start and end time for
auction registration, as well as the auction end time (Step (1)). Bid-
ders who are interested in participating in the auction then register
themselves (Step (2)). During the registration, the bidders engage in
what we call “nonce aggregation”, enabling them to verify enclave
freshness during remote attestation. Once the bidder registration
phase is complete, the Manager (M) retrieves the aggregated nonce
from the Blockchain and initializes its Enclave E (Step (3)).

As part of the enclave’s remote attestation, the enclave generates
an attestation report, report, and makes it available for the bidders

Protocol 1 System Setup

{At Service Provider}
. (pk,sk) « KeyGen(1%).
2. 8P implement SC and deploy on Blockchain.
{At Bidders}

—_

3: for each b; € B do
4 (pki,ski) « KeyGen(l’l).
5. end for

to verify the freshness of the enclave before sending their encrypted
bids, which represents the interest to perform the outsourced task,
to the smart contract (Step (4)). Upon successful attestation, the
bidders encrypt their bids using the algorithm defined in Defini-
tion 1 and send them to the smart contract SC (Step (5)), along
with a deposit for the auction. This step is essential to confirm if
the enclave is legitimate before disclosing sensitive details. Once
the auction period is over, the Manager collects the encrypted bids
and information of bidders and sends them to the enclave along
with deposits (Step (6)). The enclave decrypts the bids to find the
winning bid and the winner’s address, and then reliably sends the
details to the Manager (Step (7)). The Manager creates a transaction
including the signed message from the enclave, which indicates
the winning bid, and submits it to the smart contract (Step (8)).
Finally, the smart contract verifies the integrity and authenticity
of the enclave’s signature on the blockchain and declares the win-
ner’s address. Following this step, participants who did not win the
auction can request refunds of their deposit amounts and exit the
auction.

5.2 PEPPER Detailed Design

In this section, we describe the five protocols that constitute the
PEPPER framework in detail. Protocol 1 comprises deploying a
smart contract for the auction and generating key pairs for all the
bidders, B. Protocol 2 deals with auction creation, bidders regis-
tration, and enclave (i.e., E) initialization. Protocol 3 details our
novel remote attestation process. Protocol 4 details the secure bid
submission process. Protocol 5 is used to verify the winner’s details
and announcement on the smart contract.

5.2.1 System Setup (Protocol 1). Initially, S generates a pub-
lic/private key pair, i.e., (pk, sk) for the signing transaction that
deploys the smart contract, SC. Subsequently, SP implements the
SC that codifies auction logic on the Blockchain (Lines 1-2). We note
that SC is provider-specific, allowing the service provider to adjust
the auction logic as needed for the interactions, such as reverse
auctions, Dutch auctions, etc., as discussed in the introduction due
to the nature of the PEC. Due to nature of PEC where multiple
servers offers the same service at varying prices, we have imple-
mented a reverse auction approach. During the system setup, the
bidders, which are willing to offer their computing resources for
the outsourced service execution, generate their own (pk, sk) pairs
using KeyGen(1%), where 1 is a security parameter (Line 4). The
encryption process requires these keys in Protocol 4.

5.2.2 Auction Initiation (Protocol 2). In this protocol, the RC cre-
ates an auction by calling SC.CreateAuction() and sets parameters,
such as the payment for the outsourced job (payment), the start and

Protocol 2 Auction Initiation

{At Resource Consumer}
1: idg < SC.CreateAuction(payment, regTime,
regEndTime, auctionEndTime, requiredDeposit).

{At Bidders}
2: for each b; € B do
3. Pick nonce; «$Z".
4. SC.RegisterBidder(ida, nonce;, pk;).
5. end for

{At Manager}
6: agqgnonce < SC.GetAggregatedNonce(idy).
7: Initialize E with aggnonce-
{At Smart Contract}
8: function CreateAuction(payment, regTime, regEndTime,
9: auctionEndTime, requiredDeposit):
10: idy « H(time.now()||addrgc).
11: returnidy.
12: end function

13: function RegisterBidder(id 4, nonce;, pk;):
14: if (regTime <= time.now() < regEndTime) A id4 exists
then

15: Store bidder details.
16: else:
17: return 1.

18: end function

19: function GetAggregatedNonce(id):
20 if (regTime < time.now() < auctionEndTime) A idy exists
A lisRequested then

21: isRequested = True.

22: return aggnonce of auction id4.
23: else:

24: return 1.

25: end function

end time for auction registration (regTime and regEndTime), the
time when the auction ends (auctionEndTime), and the required de-
posit amount to participate in the auction (requiredDeposit) (Line
1). The rationale for setting different times on smart contract SC
is to divide the auction process into two periods: the registration
period and the auction period. The auction period commences
immediately after the regEndTime and remains valid until the
auctionEndTime. During the auction creation, the smart contract
computes the auction identifier id4 using the current time on the
blockchain (¢time.now) and the blockchain address of the resource
consumer (addrgc).

The id 4 identifies the auction and bidders use it when registering
for the auction. The smart contract now locks the offered payment
to prevent the resource consumer from reclaiming it before the
end of the auction. Upon creation of the auction, the bidders in-
terested in bidding for the auction randomly sample a nonce. The
bidders will use the nonce values to verify the freshness of the en-
clave (Line 3). Each bidder then registers for the auction by calling
SC.RegisterBidder() that accepts auction identifier (i.e., id4), the
sampled nonce (nonce;), and the bidder’s public key (i.e., pk;) (Line
4). The id4 uniquely identifies the auction, for which the bidder is
registering.

In the process, SC aggregates the nonce values provided by all
participating bidders. SC achieves this by summing the individual
nonce values together which forms the foundation of our novel
remote attestation protocol. Aggregating nonce on smart contracts
enables public verification of the total value (aggnonce) and elimi-
nates the trust assumption on any party. Unlike traditional remote
attestation approaches that require each bidder to individually con-
nect with the enclave and provide their nonce values to verify
freshness, our framework employs a single nonce that is aggre-
gated on the smart contract. The aggnonce Will later be used by
enclave E to generate a report for the remote attestation (Proto-
col 3, Line 2). This approach not only simplifies the process but
also enhances scalability. Instead of generating separate reports
for each participant, our novel remote attestation model generates
a single report for all participants. As a result, the total number
of remote attestations is reduced to one, regardless of the number of
bidders. Finally, the smart contract stores the bidder’s public key
(pki). The enclave requires the pk; values to derive the necessary
keys to decrypt the encrypted bids.

The smart contract first checks if the auction with ID id4 exists
and if the registration period is still ongoing. If both conditions
are met, the smart contract will store the bidder’s details. Once
the registration phase for the auction id,4 is over, the manager M
calls SC.GetAggregatedNonce() with id4 argument to retrieve the
aggnonce from SC to initialize the enclave (Lines 6-7). The smart
contract checks if the auction registration period is over and the
manager already requested the aggnonce for the auction id4. The
second check is important to prevent the M from initializing the
enclave multiple times for the same auction. The manager initial-
izes the enclave with aggnonce if all the checks hold. During ini-
tialization, the application that determines the winner undergoes
compilation into a format that enables its loading into the enclave.
The bidders can now utilize the loaded application.

5.2.3 Remote Attestation (Protocol 3). After M initializes the en-
clave E, the application inside the enclave initially generates public
and private key pair (pkg, skg) (Line 1). The public key, i.e., pkg, is
required by bidders to encrypt their bids before submitting them to
the smart contract. The enclave utilizes the private key, i.e., skg, to
derive the shared-secret key during the decryption of the bids.

The bidders before submitting any sensitive details (bids) need
to validate the legitimacy and the freshness of the enclave. To assist
bidders in achieving their goals, the enclave generates an X.509
certificate, denoted as Certg, and constructs the message M as
M = (Certgllaggnonce)- Additionally, the enclave generates a report
and incorporates the digest of M (i.e., h = H(M)) into the user-data
field of the report (Lines 2-3). Under the hood, the report is signed by
the Provisioning Certification Enclave (PCE) using the Provisioning
Certificate Key (PCK), a unique key for the hardware. The PCE is an
Intel-provided enclave located on the same platform as the attesting
enclave, which serves as a root of trust for the Certg.

The E initializes a TLS server using Certg and makes the pkg
and signed report available to bidders. We note that the root of
trust of Certg is the enclave itself [19]. Then, participating bid-
ders retrieve the report, Certg, and pkg from enclave E (Line 4).
The bidders, using the retrieved values, verify the report by calling

Protocol 3 Remote Attestation
{At Enclave}
1: E creates (pkg, skg) «— ECIES.KeyGen(lA),
2. E generates Certg, sets M = (Certg|laggnonce) and computes
h = H(M).
3. E generates report < GenerateReport(h).
{At Bidders}

4: Retrieve report, pkg and Certg from E.
5. for each b; € B do
6: if true « VerifyRemoteReport(report) then
7: a99nonce — SC.GetAggregatedNonce(idy).
8: h = H(Certg|laggnonce)-
9: if report.userData == h then
10: Call Protocol 4.
11: else
12: return 1.
13: end if
14 else
15: return L.
16: end if
17: end for

VerifyRemoteReport, which checks if the code loaded into the en-
clave is correct. If it is, the signature on the report belongs to the
specific enclave and is up to date, verified by checking the Provision-
ing Certification Key (PCK) certificate and Certificate Revocation
Lists (CRLs) (Line 6).

Intel provides necessary APIs to retrieve information from In-
tel Provisioning Certification Service?. The PCK and CRLs are
cacheable to further reduce the report validation time for future
interactions. Upon successful verification, each bidder checks the
enclave’s freshness by obtaining the aggnonce from SC and com-
puting h = H(Certg||aggnonce)- To verify the freshness, bidders
compare the value of the user-data field in the report with h (Line
9). Verifying freshness is crucial in eliminating successful replay at-
tacks, in which M potentially uses a previously initialized enclave
rather than a new instance [7]. If the verification of enclave fresh-
ness and authenticity holds, the bidders interact with Protocol 4 to
encrypt and submit their bids.

5.2.4 Bid Submission (Protocol 4). Bidders use this protocol to
encrypt their bids and submit them to SC. Initially, each registered
bidder generates a shared secret denoted as ss using the enclave’s
public key (pkg) and its own private key (sk;). The ss key facilitates
the establishment of a shared secret between the bidder and the
enclave without the need for a direct key exchange. Each bidder
further derives kasac and kpnc keys from ss. Bidders use kpnc to
encrypt their bid and use kpg4¢ to generate a tag on the encrypted
bid. The enclave will use tag to ensure the integrity and authenticity
of the encrypted bid value.

To submit their bid to the smart contract, each bidder concate-
nates the bid and tag and invokes the SC.SendBid function, passing
the auction identifier (idy), encrypted and tagged bid (cp;4), and
deposit amount (deposit) as arguments (Lines 1-9). The deposit
amount, which is set to the same amount for every participant,
will be locked in SC until the auction winner is determined. The

Zhttps://api.portal trustedservices.intel.com/provisioning-certification

Protocol 4 Bid Submission

Protocol 5 Winner Announcement

{At Bidders}

1: for each b; € B do
2. ssj < ECIES.KAF(sk;, pkg).
3 (kMAC> kENC) = EC|ES.KDF(SS,').
4: pbldl — 7"
5. bid; « ECIES.Encrypt(kgpnc, pbid;).
6: tag; «— ECIES.MAC (kpac, bid;).
7 cbid; = (bid;||tag;).
8: Call SC.SendBid(id4, cbid;, deposit).
9: end for

{At Smart Contract}
10: function SendBid(id4, cbid;, deposit):
1. if (regEndTime < time.now() < auctionEndTime)
12: A idy exists A deposit == requiredDeposit then

13: Store bidder details on smart contract.
14: else:
15: return 1.

16: end function

17: function GetBidDetails(idy):
18: if (auctionEndTime < time.now()) then

19: return bids and public keys of bidders.
20. else:
21: return L.

22: end function

deposit aims to prevent malicious bidders from registering multiple
times but not participating in the auction. The smart contract first
verifies that the auction with the ID id4 exists, the auction is not
over, and the deposit amount matches the required amount. If all
conditions are met, the bid details are stored by the smart contract.
Once the auction period is completed, the Manager M retrieves
the encrypted bids and the bidders’ public keys and forwards them
to E through the TLS endpoint in the form of a dictionary (Bids).

5.2.5 Winner Announcement (Protocol 5). After receiving the bids
and public keys of the bidders, the enclave iterates over each bid
and creates the shared secret ss using its private key skg and the
participants’ public keys pk;. Using ss, the enclave derives two
symmetric keys, denoted as kyac and kgnc, by calling ECIES.KDF
(Line 6). To verify the integrity of bids, the E first computes tag’ «
ECIES.MAC (kpac, bid;) and checks it against the tag, which is
included in the ciphertext. If the integrity verification is successful,
then E decrypts the bid using kgnc, and finds the minimum bid
amount and the winner’s address (Lines 8-12).

After determining the winning bid and winner’s address, the en-
clave concatenates the winner’s bid amount (minBid), the winner’s
address (addryinner), and the Bids dictionary. Subsequently, it signs
the concatenated data to ensure integrity and provenance (Lines 16-
17). The enclave forwards o, along with minBid and addrinner to
M, who in turn, verifies the enclave signature, constructs transac-
tion tx 4, and calls SetWinner function on SC (Line 18). To prevent
a malicious M from setting a different winner’s address than the
one determined by E, SC needs to ensure that the message is signed
by E rather than M. In order to achieve this, we need to extract
the signer of the message from the given message and compare the
address with the Manager’s address on the chain.

{At Enclave}
1: minBid <« uint.Max().
2: index « 0.
3: addrinner < 0.
4: for each bid; € Bids.items() do
5. ss « ECIES.KAF(skg, bid;.pk;).
6: (kMACs kENC) — EC[ES.KDF(SS).
7 tag’ — ECIES.MAC (kprac, bid;).
8 if tag’ == bid;.tag; then
9 pbid; — ECIES.Encrypt’l(kENc, bid;).

10: if pbid; < minBid then
11 minBid = pbid;.

12: addrvinner = bid;.pki.
13: end if

14: endif

15: end for

16: h « H(minBid||addrinner||Bids).
17: o « Sign(h).
{At Manager}
18: M creates tx pq = SC.SetWinner(ida, og, minBid, addrinner)-
{At Smart Contract}
19: function SetWinner(ida, og, minBid, addrvinner):

20 if addrg z ecrecover(og, H(minBid||addryinner||Bids)) A

id4 then
21: auctionWinner = addryinner-
22: winnerBid = minBid.
23: else:
24: return L.

25: end function

26: function RefundDeposit(id):
27: if caller # auctionWinner A auction is over A caller € B
then

28: refund deposit.
29: else:
30: return 1.

31: end function

In Solidity, the ecrecover opcode is used to extract the address
of the signer from a given signature and a message [39].

The SC computes the digest of concatenation of minBid, addrinner
and Bids and use ecrecover low-level instruction (i.e., opcode) to
extract the addr of the signer from the given signature o (i.e., o)
on message M. It is important to note that, during the extraction
of the winner’s address, the SC includes Bids in the hash function
to verify whether M excluded any bids during transmission to E
or modified the original bidder’s list. In the case of malicious activ-
ity from M, the extracted address would not match the address of
the enclave. If the check holds, the auctionWinner and winnerBid
details are now stored on SC and are available to everyone. Every
entity, except the winner bidder, can now withdraw their deposit
by calling SC.RefundDeposit() (Line 26).

We note that the enclave’s address, addrg, is stored within SC,
and a specific function is implemented to allow only the service
provider to update this address, especially when there is a need for
a new manager. This functionality is achieved through the use of

modifiers, which enable function-level access control in the smart
contracts. For the withdrawal, the smart contract checks if the
auction is over, if the caller is not the winner, and if the caller is
one of the participants in the auction. If all conditions are met, the
deposit will be refunded to the bidder.

6 SECURITY ANALYSIS

In this section, we present a comprehensive security analysis of
our framework, describing potential attack vectors per our adver-
sary model, and detailing how PEPPER effectively mitigates them.
Furthermore, we establish the security of our framework formally
using the Universal Composability (UC) framework [5], provid-
ing a rigorous validation of its robustness against various security
threats.

6.1 Informal Security Analysis

Malicious Bidder: Following the threat model, the malicious bid-
ders may attempt to learn and leak the bid details of others. How-
ever, in PEPPER, the bidders encrypt their bids, which are subse-
quently decrypted within an enclave. Unless bidders collude and
share their bids among themselves, the auction only discloses the
winning bid at the end of the auction. We emphasize that bidders’
primary goal is to secure victory in the auction by offering their
service at a competitive price. Sharing the bid details with other
participants undermines their competitive advantage.

Additionally, malicious bidders may attempt to disrupt the auc-

tion process by either aborting the auction after registering or
continuously registering without actually participating in the auc-
tion. However, the security of the system remains intact as the
registration period is the initial step before the auction period. Con-
sequently, the bidder will incur losses as the transaction to register
requires gas fees.
Malicious Manager: The malicious manager may attempt to se-
lectively exclude a subset of bidders by removing their bids when
transferring them from the smart contract to the enclave, i.e., during
the winner election process. We eliminate this attack by including
all the bids when creating a signature on the digest of the bids
inside the enclave (Protocol 5, Line 16) and also when verifying the
signature of the enclave (Protocol 5, Line 20). We can perform such
verification since the encrypted bids are permanently recorded on
the blockchain during the bid submission process. In the case that
a bid is excluded during transfer, the enclave will not have all the
bids. The signature verification of the enclave will fail, hence the
malicious attempt of the manager will be detected.

Another possible attack from a malicious manager is to change
the winner’s address to another bidder. Our design inherently pre-
vents such an attack as it requires the enclave to digitally sign the
digest of the winner’s address, inside the secure environment, using
the enclave’s private key. By doing so, PEPPER ensures that any
modification of the winner’s address by the manager can be de-
tected. When the enclave’s signature is verified on the blockchain,
any discrepancy, such as a change in the winner’s address, would
result in the failure of signature verification. The verification pro-
cess effectively reveals and thwarts any such malicious attempts
by a manager to modify the auction outcome.

Functionality 7y,
Smart contract deployment: Upon receiving the tuple
(sid, deploy, SC, code, addrg) from the service provider SP,
Fpe will first deploy the smart contract SC and then store
the corresponding tuple (SC.address, code, addrg) in a table
called scTable. 7. will then return the tuple to the service
provider SP and S.

Figure 2: Ideal functionality for blockchain

Malicious Resource Consumer: In our framework, we address
the issue of resource consumers attempting to acquire and disclose
bid details of unsuccessful bidders during the bid reveal period.
Although such actions may not be driven by malicious intent, the
leaked information could be exploited by other participants to ad-
just their bids and secure victory in subsequent compute requests.
However, unlike other frameworks, our framework does not re-
veal the bids of the losing participants to any party, including the
resource consumer. The only information we disclose is the win-
ner’s bid and address. By doing so, our framework achieves a fully
privacy-preserving bidding period.

Another potential threat by a malicious resource consumer in-
volves the creation of arbitrary auctions without any genuine inten-
tion to outsource computation, aiming to waste the bidders and the
manager’s resources. When creating an auction, the RC is required
to specify the payment amount (payment) willing to offer to the
winning bidder, which remains locked throughout the auction’s
duration. The deposit amount is visible to the bidders and serves
as an incentive for them to participate in the auction. The poten-
tial for the loss of the RC’s deposit on incorrect/arbitrary auction
discourages an economically rational RC (per Section 4.3) from
creating such a fake auction.

6.2 Formal Security Analysis

We analyze the security of our framework in the Universal Com-
posability (UC) framework [5]. The notion of UC security and
indistinguishability is captured by the following two definitions.

DEFINITION 2. (UC-emulation [5]) Let = and ¢ be probabilistic
polynomial-time (PPT) protocols. We say that = UC-emulates ¢ if for
any PPT adversary A there exists a PPT adversary S such that for any
balanced PPT environment Z we have EXECy g 7 ~ EXEC, 7 7.

DEFINITION 3. (UC-realization [5]) Let F be an ideal functionality
and let 7t be a protocol. We say that & UC-realizes F if 1 UC-emulates
the ideal protocol for F.

We define an ideal functionality, pgppEr, which is composed of
two independent ideal functionalities: F, and Fayction as depicted
in Figures 2-3. Additionally, we utilize the helper functionality
Fsig [5] and give the formal definition in Figure 8.1. We assume
the existence of four tables that store the internal state of Fpgppgr:
scTable, aTable, bTable, nTable. These tables are accessible by all
functionalities at any time. Specifically, scTable stores the contract
address code, and enclave details, aTable stores the auction details,
bTable stores the bidder details, and nTable keeps track of the ag-
gregated nonce for the auction. We need to show that a simulator
S can simulate the actions of all honest parties by interacting with

Functionality Fyction
Auction Creation: Upon receiving (sid, createAuction, payment, regTime, regEndTime, auctionEndTime, requiredDeposit) from SP,
Fauction first computes auction identifier ida, records (ida, payment, regTime, regEndTime, auctionEndTime, requiredDeposit) tuple in
aTable and returns it to both SP and S.
Bidder Registration: Upon receiving a request (sid, registerBidder, ida, unonce, pk,) from user u, Fayction first checks if a tuple
(ida, -, regTime, regEndTime, -, -) exists in aTable and retrieves if so. Fayction then checks if the current time is within the registration
period; if so it adds the tuple (ida, pky, “not-used”, “not-winner”) to the bTable and returns to u and S. If not, Fayction returns L to
both u and S. Then, Fauction checks if the tuple (ida, aggnonce) exists in the nTable. If it does, Fauction retrieves (ida, aggnonce) and
adds the unonce to the aggnonce value and updates the tuple. Otherwise it sets agg@nonce = unonce and store (ida, aggnonce) in nTable
and returns to u and S.
Bid Submission: Upon receiving a request (sid, bidSubmit, idg, ubid, udeposit) from user u, Fayction first checks if tuple
(idg, -, -, -, -, requiredDeposit) exists in aTable; if so the udeposit amount is equal to the requiredDeposit; if so, Fauction Updates the
row (idy, -, “not-used”, -) in bTable to (idga, -, ubid, -) and returns to u and S. If not, Fayction returns L to both v and S.
Setting Winner: Upon receiving a request (sid, setWinner, idg, og, minBid, addriyinner) from manager M, Fauction retrieves (-, -, addrg)
from scTable, constructs tuple (sid, Sign, uid, minBid, addrinner, addrg) and forwards to Tsig where uid is user id. Upon receiving
(sid, Signature, uid, minBid, addr.inner, addrg, alf:), Fauction checks if op equals to 0'1’_:. If s0, Fauction updates the row in bTable from
(ida, pkys -, “not-winner”) to (ida, pky, -, “winner”) and sends to all users including S.
Auction Aggregated Nonce Request: Upon receiving a request (sid, getAggNonce, id4) from user u, Fyction checks if tuple (idg, -, -, -)
exists in bTable; if so it retrieves (-, -, regEndTime, auctionEndTime, -) from aTable and checks if the current time is between regEndTime
and auctionEndTime. If s0, Fauction retrieves (ida, agg€nonce) from nTable and returns (sid, aggnonce) to the user u and S.
Auction Bid Detail Request: Upon receiving (sid, getBidDetails, idy, uid) from user u, Fayction checks if tuple (idy, -, -, -) exists in
bTable; if so retrieves (-, -, regEndTime, -, -) from aTable and checks if auction registration period has ended. If so, Fayction then returns
bTable to both user u and S.
Initialize Enclave: Upon receiving a request (sid,initEnclave, aggnonce, uid) from user u, Fauction constructs tuple
(aggnonce, “not-used", “not-used”, “not-used") and adds to eTable. Fayction returns (sid, initialized, aggnonce) to user u and S.
Generate Report: Upon receiving a request (sid, reportGen, h) from user u, Fayction generate certificate ecert, attestation report
ereport, updates tuple (-, ecert, ereport, h) in eTable and returns back to user u and S.
Verify Report: Upon receiving a request (sid, reportVer, idg, report) from user u, Fyction verifies the report. If the report is valid,
Fauction retrieves (ida, aggnonce) from nTable and the tuple (-, ecert, -, -) from eTable. Fayction then computes H(ecert||aggnonce) and
compares it to the userData field in the report. If the two values match, Fayction sends (sid, verified) response to both u and S.

Figure 3: Ideal functionality for auction

the ideal functionalities. Due to space constraints, we provide the
proof of the following theorem in Appendix 8.2.

THEOREM 1. Let Fpgppgr be an ideal functionality for PEPPER. Let
A be a probabilistic polynomial-time (PPT) adversary for PEPPER,
and let S be an ideal-world PPT simulator for ¥pgpppr. PEPPER
UC-realizes FpgppEg for any PPT distinguishing environment Z.

In order to prove the theorem mentioned above, we need to prove
that no environment (trusted or untrusted) outside the protocol
execution can distinguish between the execution of real-world pro-
tocols in PEPPER and the execution of ideal-world functionalities
in Fpepper. We use A to denote real-world adversaries and S to
denote ideal-world adversaries. Our goal is to show that S can
simulate the actions of the real-world protocol by interacting with
peppER and can produce the same outputs and messages as in the
real-world protocols.

7 EXPERIMENTAL RESULTS AND ANALYSIS

This section provides a comprehensive overview of the implemen-
tation scope, experimental setup, and evaluation of PEPPER.

7.1 Implementation Scope

Our proof of concept implementation of the framework is composed
of four main components: the bidder engine, the manager engine,
the enclave engine, and the client engine. All of these components
were implemented using Go (v.1.17.5). In our enclave engine, we
used EGo?(v.1.2.0) framework to implement enclave-related opera-
tions and used the SGX driver (v.2.11.0). To secure communication
between the components, we employed TLS (v.1.2). Additionally,
we used the curve secp256k1 and the ECIES* library (v.2.0.4) in our
cryptographic operations.

To conduct our experiments, we utilized Intel SGX as a TEE
platform. We deployed a virtual machine on Microsoft Azure with
the following specifications: Ubuntu 18.04.6 operating system, In-
tel Xeon CPU with 3.70 GHz clock speed and 2 processor, 8 GB
RAM, and 100 GB solid-state drive (SSD) storage to execute SGX
instructions. We refer to this virtual machine as the manager and
dedicated this virtual machine to confidential operations using its
enclave. In addition, we deployed two more virtual machines with
identical specifications to act as Bidders in the same geographical
region. These machines have the following specifications: Ubuntu

3https://github.com/edgelesssys/ego
“https://pkg.go.dev/github.com/ecies/go/v2@v2.0.4

Table 2: Gas consumption and corresponding dollar amounts
used in the auction.

Function | Gas Consumption | USD Equivalent
constructor() 2091834 $8.36
RegisterBidder() 434962 $1.73
RefundDeposit() 130000 $0.52
CreateAuction() 117457 $0.46
SetWinner() 41310 $0.16

18.04.6 LTS operating system, Intel Xeon Platinum processor with
2.60 GHz clock speed and 2 cores, 4 GM RAM, and 30 GB SSD. We
selected Ethereum as the underlying blockchain platform. We im-
plemented and deployed our auction smart contract using Solidity
(v.0.8.0) on the Sepolia testnet’.

For comprehensive performance analysis of PEPPER’s remote
attestation, we further implemented Trustee’s remote attestation
mechanism as described in [15] within the EGo framework (same
as PEPPER), utilizing Intel’s Data Center Attestation Primitives
(DCAP) model. We will present our comparison results in Figure 5.

7.2 Results and Analysis

In Table 2, we present the total gas consumption of functions used
in the auction smart contract. The gas consumption analysis details
the total cost of creating an auction and participating in it. For
instance, deploying smart contract, i.e., constructor function, on
the Sepolia testnet required a total of 2091834 units of gas, which is
equivalent to $8.36 at an average rate of 2.5 GWei (i.e., one-billionth
of one Ether) per unit of gas and a cost of $1600 per Ether. It is
important to note that the deployment cost is a one-time expense.

The contract can be utilized by both the bidders and the auction-
eers multiple times and even simultaneously, thereby amortizing
the cost of running auctions. In contrast, the transaction that sets
the winner (i.e., the SetWinner() function) only costs $0.52 due to
the low gas consumption of the ecrecover opcode. We emphasize
that GetAggregatedNonce() and GetBidDetails() functions do not
cost any Ether as they do not modify any state; hence, excluded
from Table 2. Moreover, the deployment gas amount remains con-
stant irrespective of the number of registered bidders or auctioneers.
Finally, PEPPER drastically reduces gas consumption by delegating
the auction winner logic to an enclave, which runs off the chain.

In contrast, Trustee [15] requires the redeployment of the auc-
tion contract for every individual auction event, incurring a cost of
$5.4 at the current Ether rate. These characteristics make PEPPER a
more cost-effective and scalable solution in comparison. For exam-
ple, in 1000 auctions, the total cost for PEPPER amounts to $8.36,
while Trustee incurs a total cost of $5.4 X 1000.

We benchmark enclave-related operations, including signing the
executable (depicted in turquoise; bottom), generating the report
(depicted in green; middle), and building the enclave (depicted in
orange; top), as depicted in Figure 4. We averaged the numbers over
100 iterations to provide a robust analysis. The X-axis in Figure 4
shows the number of bidders, and the Y-axis shows the time it
takes to complete the operations in milliseconds. Enclave building
is a process of converting the application logic implemented in a

Shttps://sepolia.etherscan.io/

2500

EEE Winner Detection
@IN Enclave Build
B Report Generation
20001 WA Sign Executable

1500

1000 1

7

=N\

500

End-to-end Winner Selection Latency (ms)

A\ 2%

N\ 9%
NN\ A

=
o
o
o

10000 15000 20000
Number of bidders

Figure 4: Increasing the number of bidders has negligible
impact on the latency which shows scalability.

high-level language into an executable that enables loading it into
an enclave. The executable is then signed before being loaded into
the enclave.

The purpose behind signing the executable is to check if the
loaded executable is indeed legitimate and has not been altered
by a malicious operating system during loading. Our experiments
showed that the operations of signing the executable, generating
reports, and building the enclave take approximately 1600 millisec-
onds, and these times are independent of the number of bidders.

We benchmarked the winner selection performance in terms of
latency. In these experiments, we generated a series of encrypted
bids across different numbers of bidders and measured the time
it takes for the enclave to decrypt the corresponding number of
encrypted bids, find the minimum among them, and construct a
signature that will be used by the smart contract to verify the win-
ner’s address (i.e., operations in Lines 1-17 of Protocol 5). As shown
in Figure 4 (the blue bar at the top), the time it takes to perform the
aforementioned operations marginally increases with the number
of participants. For instance, it only takes 100 milliseconds for the
enclave to identify the winner’s bid with 20 thousand bidders.

We also compare the performance of our proposed remote attes-
tation with Trustee [15].

In Figure 5, the X-axis represents the number of bidders, and
the Y-axis depicts the time in seconds required to complete the
corresponding number of remote attestation requests. Our focus
in this experiment is on assessing how both PEPPER and Trustee
respond to concurrent remote attestation requests originating from
the bidders. To this end, we initiated concurrent remote attestation
requests, from bidders, using PEPPER and Trustee. For each request,
we permitted up to 5 retries in case the remote attestation request
failed due to issues, such as request timeouts. While the number
of remote attestation requests in a typical PEC environment might
not be as numerous, our objective is to demonstrate that PEPPER’s
performance excels even in a generic remote attestation approach
when compared to the most relevant method. For more realistic

Table 3: Communication Complexity of PEPPER in Compari-
son with Trustee.

Auction Bidder Remote Contract
Creation. | Registration. | Attestation. | Deployment.
PEPPER | O(1) O(|B|) O(1) O(1)
Trustee | O(1) O(|BJ) O(|B]) O(1)

scenarios, for instance, with 50 bidders (not depicted in the Fig-
ure), PEPPER still outperformed Trustee, on average 14.5ms faster
completion time of remote attestation requests (PEPPER: 284.2ms,
Trustee: 298.7ms)—5%-10% speed up on an average.

In the experiment with a high number of bidders, both approaches
exhibited similar performance, with PEPPER marginally outper-
forming Trustee for lower numbers of bidders, specifically at 2000
and 3000 - roughly a 1.23X speedup on average. However, as the
number of bidders increased, Trustee’s remote attestation requests
encountered connection timeouts, leading to delays for 4000 bid-
ders and a sudden jump in remote attestation latency. On the other
hand, PEPPER maintained a more consistent and robust perfor-
mance, avoiding any significant delays in request completion, and
completed all the remote attestation requests 2.15x faster. Although
both methods experienced delays with settings of 5000 and 6000
bidders, PEPPER’s performance remained more stable, consistently
taking less time across all categories. In a setting with 6000 bidders,
the server that hosts the enclave began to slow down in respond-
ing to both types of requests, as evidenced by the small difference
in the performance of the two approaches. Consequently, we lim-
ited the total number of bidders in this experiment to 6000, as
the server hosting the enclave failed to respond and crashed with
more than 6000 concurrent requests. The failure was due to an
“out-of-memory” error, leading to a cut in the connection.

160{ MM PEPPER
B Trustee [17]

1401 °
o
120
100
: i

Remote Attestation Elapsed Time (s)
[ee]
o

60
40+ o
8 o
20+ o == == 8
——
0
2000 3000 4000 5000 6000

Number of bidders

Figure 5: Comparison of remote attestation times for various
numbers of bidders, showing PEPPER’s faster performance
compared to Trustee [15] across all categories.

7.3 Complexity Analysis

We also assess the communication complexity of PEPPER in Table 3.
When creating an auction, the RC submits a single transaction to
the smart contract for registration, which results in a constant time
communication complexity. With our improved remote attestation
protocol, generating an attestation request results in a communi-
cation complexity of O(1), since the nonce values of bidders are
aggregated and only one single request is sent to the enclave. This
is a significant improvement compared to the original remote attes-
tation protocol, in which the communication complexity increases
linearly with the number of bidders, i.e., O(|B|) for B bidders. The
communication complexity for auction registration by B bidders is
O(|B]) as each bidder needs to send a separate request to the smart
contract. Finally, deploying a smart contract in the PEPPER system
has a constant communication complexity for SP, as it involves a
single transaction sent to the network.

8 CONCLUSION AND FUTURE WORK

In this paper, we proposed a decentralized framework that enables
users to select the PEC servers at the pervasive edge to outsource
their computation. The proposed solution is designed to address
the challenges of providing proper incentives and a trustworthy
environment to persuade end users to participate in the PEC ecosys-
tem, as well as to ensure that the allocation of computation tasks
is fair, transparent, and privacy-preserving. We implemented and
evaluated our framework on top of Ethereum using Intel SGX, and
demonstrated its effectiveness through experimentation. Further-
more, we introduced an innovative method for remote attestation,
which is particularly advantageous in the context of PEC. Notably,
our experiments revealed that PEPPER’s remote attestation out-
paces standard remote attestation, offering a more efficient alterna-
tive.

As future work, our research will probe into challenges related
to potentially malicious bidders within the PEC system. Specifically,
we plan to explore the use of verifiable computation techniques to
deter bidders from submitting incorrect results. Additionally, we
will investigate means to build and utilize reputation within the
PEC ecosystem, enabling clients to review and rate bidders based
on the quality of the executed service.

ACKNOWLEDGEMENTS

This research was partially funded by the US National Science Foun-
dation under grants #2148358 and #1914635, and the US Department
of Energy grant #DE-SC0023392. Any opinions, findings and con-
clusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the US
federal agencies.

REFERENCES

[1] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. 1999. DHAES: An Encryption

[2

3

[4

[9

[10

(11

[13

[14

[15

[17

(18

[19

[20

[21

]

=

=

=

=

]

]

]

Scheme Based on the Diffie-Hellman Problem. IACR Cryptol. ePrint Arch. 1999
(1999), 7.

Gaurav Baranwal, Dinesh Kumar, and Deo Prakash Vidyarthi. 2022. BARA: A
blockchain-aided auction-based resource allocation in edge computing enabled
industrial internet of things. Future Generation Computer Systems 135 (2022),
333-347.

Pietro Borrello, Andreas Kogler, Martin Schwarzl, Moritz Lipp, Daniel Gruss,
and Michael Schwarz. 2022. Z£PIC Leak: Architecturally Leaking Uninitialized
Data from the Microarchitecture. In 31st USENIX Security Symposium (USENIX
Security 22). USENIX Association, Boston, MA, 3917-3934. https://www.usenix.
org/conference/usenixsecurity22/presentation/borrello

Benedikt Biinz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. 2020. Zether:
Towards privacy in a smart contract world. In International Conference on Finan-
cial Cryptography and Data Security. Springer International Publishing, Cham,
423-443.

Ran Canetti. 2004. Universally composable signature, certification, and authenti-
cation. In Proceedings. 17th IEEE Computer Security Foundations Workshop, 2004.
IEEE, Pacific Grove, CA, 219-233.

Valeria Cardellini, Vittoria De Nitto Personé, Valerio Di Valerio, Francisco
Facchinei, Vincenzo Grassi, Francesco Lo Presti, and Veronica Piccialli. 2016.
A game-theoretic approach to computation offloading in mobile cloud comput-
ing. Mathematical Programming 157, 2 (2016), 421-449.

Guoxing Chen, Mengyuan Li, Fengwei Zhang, and Yinqian Zhang. 2019. De-
feating speculative-execution attacks on SGX with HyperRace. In 2019 IEEE
Conference on Dependable and Secure Computing (DSC). IEEE, Hangzhou, China,
1-8.

Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah
Johnson, Ari Juels, Andrew Miller, and Dawn Song. 2019. Ekiden: A platform for
confidentiality-preserving, trustworthy, and performant smart contracts. In 2019
IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, Stockholm,
Sweden, 185-200.

K. Chin, K. Emura, K. Omote, and S. Sato. 2022. A Sealed-bid Auction with Fund
Binding: Preventing Maximum Bidding Price Leakage. In 2022 IEEE International
Conference on Blockchain (Blockchain). IEEE Computer Society, Los Alamitos, CA,
USA, 398-405.

CISCO. 2023. Cisco Annual Internet Report (2018-2023) White Pa-
per. https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/
annual-internet-report/white-paper-c11-741490.html

Poulami Das, Lisa Eckey, Tommaso Frassetto, David Gens, Kristina Hostakova,
Patrick Jauernig, Sebastian Faust, and Ahmad-Reza Sadeghi. 2019. FastKitten:
Practical Smart Contracts on Bitcoin.. In USENIX security symposium. USENIX
Association, Santa Clara, CA, 801-818.

Sean Dougherty, Reza Tourani, Gaurav Panwar, Roopa Vishwanathan, Satya-
jayant Misra, and Srikathyayani Srikanteswara. 2021. APECS: A distributed
access control framework for pervasive edge computing services. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security.
Association for Computing Machinery, New York, NY, USA, 1405-1420.
Hisham S Galal and Amr M Youssef. 2018. Succinctly verifiable sealed-bid auction
smart contract. In Data Privacy Management, Cryptocurrencies and Blockchain
Technology. Springer, Cham, 3-19.

Hisham S Galal and Amr M Youssef. 2018. Verifiable sealed-bid auction on the
ethereum blockchain. In International Conference on Financial Cryptography and
Data Security. Springer-Verlag, Berlin, Heidelberg, 265-278.

Hisham S Galal and Amr M Youssef. 2019. Trustee: full privacy preserving vickrey
auction on top of ethereum. In International conference on financial cryptography
and data security. Springer, St. Kitts, 190-207.

Yaodong Huang, Jiarui Zhang, Jun Duan, Bin Xiao, Fan Ye, and Yuanyuan Yang.
2022. Resource Allocation and Consensus of Blockchains in Pervasive Edge
Computing Environments. IEEE Transactions on Mobile Computing 21, 9 (2022),
3298-3311. https://doi.org/10.1109/TMC.2021.3053230

Vibha Jain and Bijendra Kumar. 2022. Auction based cost-efficient resource
allocation by utilizing blockchain in fog computing. Transactions on Emerging
Telecommunications Technologies 33, 7 (2022), e4469.

Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and Frank Mckeen.
2016. Intel software guard extensions: EPID provisioning and attestation services.
White Paper 1, 1-10 (2016), 119.

Thomas Knauth, Michael Steiner, Somnath Chakrabarti, Li Lei, Cedric Xing, and
Mona Vij. 2018. Integrating remote attestation with transport layer security.
Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papaman-
thou. 2016. Hawk: The blockchain model of cryptography and privacy-preserving
smart contracts. In 2016 IEEE symposium on security and privacy (SP). IEEE, San
Jose, CA, 839-858.

Michal Krél, Alberto Sonnino, Argyrios Tasiopoulos, Ioannis Psaras, and Etienne
Riviére. 2020. PASTRAMLI: privacy-preserving, auditable, Scalable & Trustworthy
Auctions for multiple items. Proceedings of the 21st International Middleware

[22

[23

[24

[25

[26

[31

(32

[33

&
=

[35

[36

(37]

[38

(39]

[40

[41

[42

[43

[44

Conference, Delft, 296-310.

Honglei Li and Weilian Xue. 2021. A blockchain-based sealed-bid e-auction
scheme with smart contract and zero-knowledge proof. Security and Communi-
cation Networks 2021 (2021), 1-10.

Li Li, Yue Li, and Ruotong Li. 2021. Double auction-based two-level resource allo-
cation mechanism for computation offloading in mobile blockchain application.
Mobile Information Systems 2021 (2021), 1-15.

Xuelian Liu, Jigang Wu, Long Chen, and Chengpeng Xia. 2019. Efficient auction
mechanism for edge computing resource allocation in mobile blockchain. In 2019
IEEE 21st international conference on high performance computing and communi-
cations; IEEE 17th international conference on smart city; IEEE 5th international
conference on data science and systems (HPCC/SmartCity/DSS). IEEE, Zhangjiajie,
China, 871-876.

Yujiong Liu, Shangguang Wang, Jie Huang, and Fangchun Yang. 2018. A compu-
tation offloading algorithm based on game theory for vehicular edge networks.
In 2018 IEEE International Conference on Communications (ICC). IEEE, Kansas
City, MO, 1-6.

Minghui Liwang, Jiexiang Wang, Zhibin Gao, Xiaojiang Du, and Mohsen Guizani.
2019. Game theory based opportunistic computation offloading in cloud-enabled
ToV. leee Access 7 (2019), 32551-32561.

Mohamed-Ayoub Messous, Sidi-Mohammed Senouci, Hichem Sedjelmaci, and
Soumaya Cherkaoui. 2019. A game theory based efficient computation offloading
in an UAV network. IEEE Transactions on Vehicular Technology 68, 5 (2019),
4964-4974.

Stylianos Mystakidis. 2022. Metaverse. Encyclopedia 2, 1 (2022), 486-497.
Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2016. Pinocchio:
Nearly practical verifiable computation. Commun. ACM 59, 2 (2016), 103-112.
Emrah Sariboz, Kartick Kolachala, Gaurav Panwar, Roopa Vishwanathan, and
Satyajayant Misra. 2021. Off-chain execution and verification of computationally
intensive smart contracts. In 2021 IEEE International Conference on Blockchain
and Cryptocurrency (ICBC). IEEE, Sydney, Australia, 1-3.

Vinnie Scarlata, Simon Johnson, James Beaney, and Piotr Zmijewski. 2018. Sup-
porting third party attestation for Intel® SGX with Intel® data center attestation
primitives. , 12 pages.

Emiliano Sisinni, Abusayeed Saifullah, Song Han, Ulf Jennehag, and Mikael
Gidlund. 2018. Industrial internet of things: Challenges, opportunities, and
directions. IEEE transactions on industrial informatics 14, 11 (2018), 4724-4734.
Alberto Sonnino, Michat Krél, Argyrios G Tasiopoulos, and Ioannis Psaras. 2019.
Asterisk: Auction-based shared economy resolution system for blockchain. arXiv
preprint arXiv:1901.07824 (2019).

Yuhu Sun, Qiang He, Lianyong Qi, Wajid Rafique, and Wanchun Dou. 2020. Dpoda:
Differential privacy-based online double auction for pervasive edge computing
resource allocation. In Proceedings of the 2nd ACM International Symposium on
Blockchain and Secure Critical Infrastructure. Association for Computing Machin-
ery, New York, NY, USA, 130-141.

Hamed Tabrizchi and Marjan Kuchaki Rafsanjani. 2020. A survey on security
challenges in cloud computing: issues, threats, and solutions. The journal of
supercomputing 76, 12 (2020), 9493-9532.

Tarik Taleb, Konstantinos Samdanis, Badr Mada, Hannu Flinck, Sunny Dutta, and
Dario Sabella. 2017. On multi-access edge computing: A survey of the emerging
5G network edge cloud architecture and orchestration. IEEE Communications
Surveys & Tutorials 19, 3 (2017), 1657-1681.

Reza Tourani, Srikathyayani Srikanteswara, Satyajayant Misra, Richard Chow,
Lily Yang, Xiruo Liu, and Yi Zhang. 2020. Democratizing the Edge: A Pervasive
Edge Computing Framework. arXiv preprint arXiv:2007.00641 1, 1 (2020), 1-7.
Xiaojie Wang, Zhaolong Ning, and Song Guo. 2020. Multi-agent imitation learning
for pervasive edge computing: A decentralized computation offloading algorithm.
IEEE Transactions on Parallel and Distributed Systems 32, 2 (2020), 411-425.

Will Warren and Amir Bandeali. 2017. 0x: An open protocol for decentralized
exchange on the Ethereum blockchain. , 04-18 pages.

Gavin Wood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 2014 (2014), 1-32.

Rui Yuan, Yu-Bin Xia, Hai-Bo Chen, Bin-Yu Zang, and Jan Xie. 2018. Shadoweth:
Private smart contract on public blockchain. Journal of Computer Science and
Technology 33, 3 (2018), 542-556.

Jixian Zhang, Wenlu Lou, Hao Sun, Qian Su, and Weidong Li. 2022. Truthful
auction mechanisms for resource allocation in the Internet of Vehicles with public
blockchain networks. Future Generation Computer Systems 132 (2022), 11-24.
Yahui Zhang, Min Zhao, Tingquan Li, and Huan Han. 2020. Survey of Attacks and
Defenses against SGX. In 2020 IEEE 5th Information Technology and Mechatronics
Engineering Conference (ITOEC). IEEE, Chongqing, China, 1492-1496. https:
//doi.org/10.1109/ITOEC49072.2020.9141835

Shuchen Zhou and Wagqas Jadoon. 2020. The partial computation offloading strat-
egy based on game theory for multi-user in mobile edge computing environment.
Computer Networks 178 (2020), 107334.

8.1 UC Functionalities

Functionality F,
Key Generation: Upon receiving a value (KeyGen, sid) from
some party S, verify that sid = (S, sid”) for some sid’. If not,
then ignore the request. Else, hand (KeyGen, sid) to the ad-
versary. Upon receiving (VerificationKey, sid, v) from the ad-
versary, output (VerificationKey, sid, v) to S, and record the
pair (S, 0).
Signature Generation: Upon receiving a value (Sign, sid, m)
from S, verify that sid = (S, sid”) for some sid’. If not, then
ignore the request. Else, send (Sign, sid, m) to the adversary.
Upon receiving (Signature, sid, m, o) from the adversary, ver-
ify that no entry (m, o, v, 0) is recorded. If it is, then output an
error message to S and halt. Else, output (Signature, sid, m, o)
to S, and record the entry (m, 0,0, 1).
Signature Verification: Upon receiving a value
(Verify, sid, m,0,09) from some party P, hand
(Verify, sid, m, 0,09) to the adversary. Upon receiving
(Verified, sid, m, ¢) from the adversary do:

(1) If v9 = v and the entry (m, 0,0, 1) is recorded, then
set f = 1. (This condition guarantees completeness:
If the verification key vy is the registered one and o
is a legitimately generated signature for m, then the
verification succeeds.)

Else, if vp = v, the signer is not corrupted, and no entry
(m, 09,0, 1) for any oy is recorded, then set f = 0 and
record the entry (m, 0, v, 0). (This condition guarantees
unforgeability: If vy is the registered one, the signer is
not corrupted, and never signed m, then the verification
fails.)

Else, if there is an entry (m, g, vy, fo) recorded, then
let f = fp. (This condition guarantees consistency:
All verification requests with identical parameters will
result in the same answer.)

(4) Else, let f = ¢ and record the entry (m, o, v, ¢).

Output (Verified, id, m, f) to P.

@

~

G

~

Figure 6: Ideal functionality for signature generation and
verification [5]

8.2 Proof of Theorem 1

PROOF 1. We separate the details of protocol execution into two
worlds and demonstrate that Z’s view remains the same in both
worlds.

Part 1: We consider the system setup and auction initiation proto-
cols described in Protocols 1 and 2.
1) Case 0: Bidders and Manager are honest.

a) Real-world: In the real-world (Protocols 1 and 2), SP gen-
erates key pair (pk, sk), implements auction smart contract SC,
deploys it on BC. The PEC servers in the vicinity who wants to
participate in auction (i.e., bidders) generate their key pairs, (pk;,
ski), i € [1...n] where n = |B|. Next, SP creates auction on SC
with auction id id4. Z sees the SC, pk’s of every entity and the idy4.

Next, each b; € B samples nonce; from Z* and registers auction on
SC. The provided nonces are aggregated on SC. Once the registra-
tion period is over, the manager M retrieves the aggregated nonce
aggnonce and initializes enclave E with it. Note that since both M
and B are honest, the secret keys of the parties are not visible to
Z. It is important to remember per our adversary model, the SP
is trusted. Hence, the view of Z will be (SC, pk, pki ... pkn, ida,
noncej ... noncer, aggnonce, A) where A is the security parameter.

b) Ideal-world: In the ideal-world, S picks security parame-
ter A, and sends (KeyGen, sid) where sid is id of SP and sends
it to Fig and receives (VerificationKey, sid, pk). Then, S calls F.
with (deploy, SC, code, addrg) to simulate the deployment of con-
tract on BC. S makes n unique calls to Fi; with (KeyGen, sid;)
where i € [1...n]. Fg returns (VerificationKey, sid;, pk;) to Z.
Next, S simulating SP creates auction by sending (createAuction,
payment, regTime, regEndTime, auctionEndTime, requiredDeposit)
to Fauction and receives id4. Next, to simulate the bidder registra-
tion, S generates n nonce’s, and makes n calls to Fayction With
(registerBidder, ida, unonce, pky). To simulate retrieval of aggnonce
for the auction with id id4, S sends (getAggNonce, id4) to Fauction-
Upon receiving aggnonces S sends (initEnclave, aggnonce, uid) to
Fauction to initialize the enclave. The view of Z remains the same
as in the real-world, i.e., (SC, pk, pki ... pkp, ida, nonce; ... noncey,
ag8nonces A)

2) Case 1: Malicious bidders and honest manager.

a) Real-world: Per our adversary model, some bidders may act
maliciously. As in previous case, the SP generates (pk, sk) pair
and deploys SC on BC. Bidder generate their keypairs, (pk;, sk;),
i € [1...n] where n = |B|. Then, SP creates auction as in previous
step and receives id4. Z has access to the public and private keys
of malicious bidders, the public keys of honest bidders, SP’s public
key and id 4. Next, each bidder provides their random nonce to smart
contract by registering. The provided nonce’s are aggregated on SC.
The malicious bidders may attempt to notify M to initialize the E
before the end of registration period; however, SC would check and
revert the request that attempts to retrieve aggregated nonce. Man-
ager, since honest, retrieves aggnonce and initializes enclave. Let the
set of malicious bidders be B’, such that B’ c B. The view of Z will
be (SC, {pki, ski}tiew/, {pk;}jem. ida, noncey . .. noncen, aggnonce)-

b) Ideal-world: As in Case 0, S simulates the role of SP and
generates (pk, sk) from F;g. S sends (deploy, SC, code, addrg) to
Fbe and receives id4 for the auction. For the honest bidders, B — B’,
S creates pk «s {0, 1}¥. Corrupt bidders in B’ C B are handled by
A. Following the same approach as in Case 0’s ideal-world, S sim-
ulates the actions of B by creating nonce for every b; € B and calls
Fauction to register by sending (registerBidder, ida, unonce, pk,) for
each bidder. Next, S retrieves aggnonce for the auction with id
id4. Upon receiving aggnonce, S simulates initialization of enclave
by sending (initEnclave, aggnonce, uid) to Fauction- The view of
Z will be (SC, {pki,ski}iep’, {Pk;j}jer\B’> ida, nonce; . .. noncen,
aggnonce) Which is the same as in the real-world.

3) Case 2: Honest bidders and malicious manager.

a) Real-world: As in previous cases, SP generates key pairs
and deploys SC on BC. Next, SC generates auction with id4 on BC.
Bidders interested in auction, generates key-pairs, samples nonce
and register for the auction with id4. Once registration period is

over, M retrieves the aggregated nonce aggnonce from SC and ini-
tializes the E. During the initialization, the malicious M can initiate
the E with different nonce than the legitimate aggnonce. However,
this attempt will be caught by the honest biddders during remote
attestation—the enclave generated report will include nonce that is
different than the one on SC that is publicly available to all users.
Hence, the view of Z is (SC, pk, pk1 ... pkn, ids, nonce; ... noncep,
aggnonces A) where A is the security parameter.

b) Ideal-world: As in ideal-world of Case 1’s, the simulator S is
responsible for simulating the key-pair generation, the deployment
of the smart contract SC, and the creation of the auction on the
blockchain for the service provider SP. For each bidder, S simulates
the key generation and generates a nonce, which is used to call the
function Fyyction With the arguments (registerBidder, ida, unonce,
pky). Then, Z retrieves the aggnonce for the auction with id id4 by
sending (getAggNonce, ida) to Fauction. During initialization of E,
if Z use wrong aggnonce than the legitimate one, the S will reveal it
during the verification of report on behalf of honest bidders. Thus,
the view of Z will be (SC, pk, pki ... pkn, ida, nonce; ... noncep,
aggnonce, 4) which is same as real-world case.

4) Case 3: Malicious bidders and malicious manager.

a) Real-world: As in Case 1’s real-world, SP generates key-
pairs, deploys SC and creates auction. Similarly, interested bidders
generate key-pairs, samples nonce and register for the auction.
Upon end of registration period, M retrieves auction. Since mali-
cious, the M attempts to initialize E with different aggnonce. How-
ever, the M’s attempt will be revealed during remote attestation by

the honest bidders. Hence, the view of Z is (SC, {pki, ski}ien’, {pk;} jeB,

ida, noncey ... noncey, aggnonce) Where B’ is set of malicious bid-
ders such that B’ c B.

b) Ideal-world: In the ideal-world scenario of Case 1, the simu-

lator S simulates the role of the service provider by generating key-
pairs, deploying the smart contract SC on the blockchain, and cre-
ating the auction. Honest bidders generate their key-pairs, sample
nonces, and register for the auction. The environment handles the
corrupted bidders. Once the registration period ends, the environ-
ment retrieves the aggregate nonce aggnonce from the smart contract
SC. However, as a malicious party, the environment may attempt
to initialize the enclave with a different value than the legitimate
aggnonce- This attempt will fail during remote attestation because
S will abort the protocol execution on behalf of the honest parties.
Thus, the environment’s view is (SC, {pki, ski}iep, {Pk;j}jeB. ida,
noncej . ..noncen, agfnonce)-
Part 2: We now consider the remote attestation and bid submission
protocol that runs between the bidders and enclave as described
in Protocol 3 and 4. We note that the enclave is honest party per
our adversary model; hence, we do not consider any malicious case
from the enclave. Morever, the ECIES related operations for the
honest parties are omitted due to them being honest by definition.
1) Case 0: Honest bidders.

a) Real-world: In the real world of Protocol 3, E generates x509
certificate Certg and concatenates it with aggnonce. Next, enclave
computes the digest of the result and use it to generate a attesta-
tion report for the bidders B. The bidders retrieves the pkr and
Certg from enclave. Then they all retrieve the aggnonce individu-
ally from SC and re-compute (Certg||aggnonce)- Bidders then com-
pare the value in the userData field of the report to the digest.

If the values are equal, the remote attestation step is now com-
pleted. Each bidder encrypts their bid and calls the SendBid func-
tion of SC with (idya, cbid;, deposit), where cbid; represents the
encrypted bid of the i’th bidder. Once the bid submission period
is over, M retrieves the bids of auction id4 and sends them to E
for the decryption. The view of Z is (pkg, Certg, report, aggnonces
{nonce;, pki, cbid;, deposit;}icp).

b) Ideal-world: In the ideal world, S sends (reportGen, h) to
Fauction and receives (aggnonce, ecert, ereport, h). Then, to simu-
late the actions of bidders, Fayction Sends (reportVer, ida, report)
for each b; € B to Fayction- If the verification is true, S receives
(verified). Next, S simulates the bid submission operations of bid-
der n times each being unique for n different bidders by sending
(bidSubmit, ida, ubid, udeposit) to Fauction- Since the bidders are
honest, the view of Z is (pkg, Certg, report, aggnonce, {nonce;, pki,
cbid;, deposit;};ep) which is same as real-world.

2) Case 1: Malicious bidders.

a) Real-world: Similar to the previous scenario, the enclave pro-
duces Certg and an attestation report. Bidders retrieve the public
key (pk) of the enclave, the attestation report (report), the certifi-
cate, and the aggnonce separately and use them to validate the report.
If the verification is true, each bidder generates a random bid (bid;)
and encrypts it before submitting it to SC. Malicious bidders can dis-
card the auction at this stage by claiming that the report is incorrect,
but this does not affect the system’s security. Next, bidders create a
shared-secret key (ss) and produce a (kypac, kgnc) pair using KDF
and KAF algorithms. Each bidder encrypts their bid using kpnc
and submits it to SC along with their deposit. Malicious bidders
can submit incorrect ciphertext instead of encrypting their bid with
kgnc. However, during the decryption process, the E will exclude
those bids, and the SC code will prevent the malicious bidders from
retrieving their deposit. Hence, there isn’t any rational financial
reason for acting malicious. The view of Z is (pkg, Certg, report,
aggnonce> {nonce;, pki, cbid;, deposit;}iecp, {skj, pkj} jem\n’) where
B’ is honest bidders.

b) Ideal-world: In an ideal world, S would send (reportGen, h) to
Fauction and receive (aggnonce, ecert, ereport, h). Then, to simulate
the actions of bidders, Fauction would send (reportVer, ida, report)
for each b; € B to Fayction- If the verification is true, S receives
(verified). Once the remote attestation period is over, S gener-
ates a key pair (pk;, sk;) for each bidder. For the malicious bidders,
S sends their key pairs to Z. Both S and Z use the same KAF
and KDF functions, resulting in kyrac and kgpnc variables being
the same. For the honest bidders, S simulates bid generation and
encryption operations, while for the corrupted bidders, Z sam-
ples bid; and encrypts their bids, which are then sent to S. If Z
uses different kgnc, S will discard them during decryption, re-
sulting in the failure of the attack. Eventually, all the bids will get
decrypted, and S will identify the winning bid. Hence, the view of
Z is (pkg, Certg, report, aggnonce, {nonce;, pki, cbid;, deposit;}icp,
{skj. pkj}jem\p’) which is same as real-world.

Part 3: We now consider winner announcement protocol that fa-
cilitates the setting of the winner address and involves interactions
between the enclave and the manager, as outlined in Protocol 5.
1) Case 0: Honest Manager.

a) Real-world: The manager M retrieves the signature of the
enclave E, the winner bid minBid, and the address of the winner
addrinner from the manager. M constructs transaction txy; and
calls the SetWinner function. The SC first verifies if the o, is signed
by the enclave. If so, the SC updates the winner address and the win-
ner bid on the SC. Hence, the view of Z will be (minBid, addryinner-

addrg, o).

a) Real-world: As in the previous case, the M retrieves (og,
minBid, addrinner) from the E. Instead of assigning the winner
address to addryinner, the manager may attempt to assign it to
another entity. However, since the of is verified on-chain, this
attempt will fail during verification. As in the previous case, the
M sends the transaction to the BC, and if the signature is valid,
the winner address is updated on the SC. Thus, the view of Z is

b) Ideal-world: In the ideal world, S receives (og, minBid, addryinner) (minBid, addryinner, addrg, o).

from the enclave. The S sends (setWinner, id4, o, minBid, addryinner)

to Fauction- Upon receiving it, Fauction first retrieves the addrg from
scTable and sends (Sign, uid, minBid, addrinner, addrg) to Fg.
Upon receiving (Signature, uid, minBid, addryinner, addrg, 01/3)’
Fauction checks if o equals a]::. If so, it updates the winner address
to addryinner. Thus, the view of Z will be (minBid, addrvinner-
addrg, og), which is the same as the real world.

2) Case 1: Malicious Manager .

b) Ideal-world: As in the previous case’s ideal-world, S receives
(op, minBid, addriyinner). < may attempt to change the addrinner
to another entity’s address. However, Fyction Will first check if the
o is legitimate by interacting with %;e. Hence, the attempt of Z
will be caught. Thus, the view of Z is (minBid, addr.yinner, addrg,
og), which is the same as in the real-world.

	Abstract
	1 Introduction
	2 Background
	2.1 Trusted Execution Environment
	2.2 Ethereum and Smart Contracts
	2.3 Cryptographic Preliminaries

	3 Related Work
	3.1 Privacy-preserving Auction
	3.2 Privacy-preserving Smart Contracts
	3.3 Incentive-based Resource Utilization

	4 Models and Assumptions
	4.1 System Model
	4.2 Threat Model
	4.3 Security Assumptions

	5 PEPPER Construction
	5.1 Design Overview
	5.2 PEPPER Detailed Design

	6 Security Analysis
	6.1 Informal Security Analysis
	6.2 Formal Security Analysis

	7 Experimental Results and Analysis
	7.1 Implementation Scope
	7.2 Results and Analysis
	7.3 Complexity Analysis

	8 Conclusion and Future work
	References
	8.1 UC Functionalities
	8.2 Proof of Theorem 1

