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Abstract

Mixture of experts (MoE) model is a statistical machine learning design that aggregates
multiple expert networks using a softmax gating function in order to form a more intricate and
expressive model. Despite being commonly used in several applications owing to their scalability,
the mathematical and statistical properties of MoE models are complex and difficult to analyze.
As a result, previous theoretical works have primarily focused on probabilistic MoE models by
imposing the impractical assumption that the data are generated from a Gaussian MoE model.
In this work, we investigate the performance of the least squares estimators (LSE) under a
deterministic MoE model where the data are sampled according to a regression model, a setting
that has remained largely unexplored. We establish a condition called strong identifiability to
characterize the convergence behavior of various types of expert functions. We demonstrate
that the rates for estimating strongly identifiable experts, namely the widely used feed forward
networks with activation functions sigmoid(-) and tanh(-), are substantially faster than those of
polynomial experts, which we show to exhibit a surprising slow estimation rate. Our findings
have important practical implications for expert selection.

1 Introduction

Softmax gating mixture of experts (MoE) is introduced by [14, 17| as a generalization of classical
mixture models |23, 20] based on an adaptive gating mechanism. More concretely, the MoE model is
a weighted sum of expert functions associated with input-dependent weights. Here, each expert is
either a regression function [4, 7| or a classifier [1, 25] that specializes in smaller parts of a larger
problem. Meanwhile, the softmax gate is responsible for determining the weight of each expert’s
output. If one expert consistently outperforms others in some domains of the input space, the
softmax gate will assign it a larger weight in those domains. Thanks to its flexibility and adaptability,
there has been a surge of interest in using the softmax gating MoE models in several fields, namely
large language models [16, 30, 37, 6, 9], computer vision 31, 19, 32|, multi-task learning [11, 10] and
reinforcement learning [2]|. In those applications, each expert plays an essential role in handling one
or a few subproblems. As a consequence, it is of practical importance to study the problem of expert
estimation, which can be solved indirectly via the parameter estimation problem.

Despite its widespread use in practice, the theory for parameter estimation of the MoE model has
not been fully comprehended. From a probabilistic perspective, [13] studied the convergence of
maximum likelihood estimation under an input-independent gating Gaussian MoE with various
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choices of experts. By assuming that the data were generated from that model, they demonstrated
that the density estimation rate was parametric on the sample size while the parameter estimation
rates depended on the algebraic independence between expert functions. Subsequently, [27] and
[28] also considered the Gaussian MoE models but equipped with a softmax gate and a Gaussian
gate, respectively, both of which vary with the input values. Owing to an interaction among gating
and expert parameters, they showed that the rates for estimating parameters were determined by
the solvability of some systems of polynomial equations. Next, [26] investigated a Top-K sparse
gating Gaussian MoE model [33, 8|, which activated only one or a few experts for each input. Their
findings suggested that turning on exactly one expert per input would remove the interaction of
gating parameters with those of experts, and therefore, accelerate the parameter estimation rates.

While the theoretical advances in MoE modeling from recent years have been remarkable, a persistent
and significant limitation of all existing contributions in the literature is the reliance on the strong
assumption of a well-specified model, namely that the data are sampled from a (say, Gaussian) MoE
model. This is of course, an unrealistic assumption that does not reflect real-world data [18, 5].
Unfortunately, very little is known about the statistical properties of MoE models in mis-specified
but more realistic regression settings.

In this paper, we partially address this gap by introducing and analyzing a more general regression
framework for MoE models in which, conditionally on the features, the response variables are not
sampled from a gated MoE but are instead noisy realization of an unknown and deterministic gated
MokE-type regression function, as described next.

Set-up. We assume that an i.i.d. sample of size n: (X1,Y1), (X2,Y2),...,(Xn,Ys) in R? x R is
generated according to the model

Y;:fG*(Xl)_{'gla ’L:L,TL, (1)

where €1, . .., &, are independent Gaussian noise variables such that E[e;| X;] = 0 and Var(g;] X;) = o2

for all 1 <14 < n. Note that, the Gaussian assumption is just for the simplicity of proof argument.
Furthermore, we assume that Xi,..., X, are i.i.d. samples from some probability distribution u.
Above, the regression function fg,(-) takes the form of a softmax gating MoE with k, experts,
namely
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where (ﬁa‘i,ﬁfi,n;‘)iﬁl are unknown parameters in R x R? x R? and G, := Zf;l exp(85;)0(sz, )
denotes the associated mizing measure, a weighted sum of Dirac measures 6. The function h(z,n)
is known as the expert function, which we assumed to be of parametric form. We will consider
general expert functions as well as the widely used ridge expert functions h(z; (a,b)) = o(a’z +b),
compositions of a non-linear activation function o(-) with an affine function. See Section 2 below for
further restrictions on the model. In practice, since the true number of experts k, is unknown, it is
customary to fit a softmax gating MoE model of the form (2) with up to k > k. experts, where k is
a given threshold. We call this setting an over-specified setting.
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In order to estimate the ground-truth parameters (35;, 57, 77;*)?:1 in the above model, we can no
longer rely on maximum likelihood estimation. Instead we will deploy the computationally efficient
and popular least squares method (see, e.g., [34]). Formally, the mixing measure is estimated with
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where G;(0) := {G = Zf;l exp(B0i)0(s1,m,) * 1 < K <k, (Boi, Bri,mi) € O} is the set of all mixing
measures with at most & components. The goal of this paper is to investigate the convergence
properties of estimator GG, in fixed-dimensional setting. To the best of our knowledge, this is the
first statistical analysis of the least squares estimation under the MoE models, as previous works
[24, 27] focus on maximum likelihood methods.

Challenges. We highlight two subtle, major challenges in analyzing the regression model (2), which
require the formulation of novel identifiability conditions and new techniques. To the best of our
knowledge, these issues have not been noted before in the regression literature.

(C.1) Expert characterization. In our analysis (which conforms to the latest approaches to
MoE modeling), we represent the discrepancy fg (1) — fa.(-) between the estimated and true
regression function as a weighted sum of linearly independent terms by applying Taylor expansions
to the function x — F(x;81,7m) := exp(B; x)h(z,n). In order to guarantee good convergence rates,
it is necessary that the function F' and its derivatives are linearly independent (in the space of
squared-integrable functions of the features X'). This property will be ensured by formulating novel
and non-trivial algebraic condition on the expert functions, which we refer to as strong identifiability.
The derivation of that condition requires us to adopt new proof techniques since those in previous
works [27, 26| apply only for linear experts.

(C.2) Singularity of polynomial experts. An instance of expert functions that does not satisfy
the strong identifiability condition is a polynomial of an affine function. For simplicity, let us consider
h(z,n) = a' X +b, where = (a,b). Then, the function F mentioned in the challenge (C.1) becomes
F(x;B1,a,b) = exp(B{ x)(a"x +b). Under this seemingly unproblematic settings, we encounter an
unexpected phenomenon. Specifically, there exists an interaction between the gating parameter 5y
and the expert parameters a, b, captured by the partial differential equation (PDE)
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Complex functional interactions of this form are not new — they have been thoroughly characterized
in the softmax gating Gaussian MoE model by |27]. However, and contrary to the case of data drawn
from a well-specified softmax gating Gaussian MoE model, in our setting the above interaction causes
the estimation rate of all the parameters 37;, a;,b; to be slower than any polynomial rates, and thus,
could potentially be Op(1/log(n)). It is important to note that this singular, rather surprising,
phenomenon takes place as we consider a deterministic MoE model instead of a probabilistic one,

which requires us to develop new techniques.



Table 1: Summary of expert estimation rates (up to a logarithmic factor) under the softmax gating
mixture of experts. In this work, we analyze three types of expert functions including strongly
identifiable experts h(x,n), ridge experts o(a 'z + b) and polynomial experts (a'z + b)P. For ridge
experts, we consider two different regimes: all the experts are input-dependent (Regime 1) vs. there
exists an input-independent expert (Regime 2). The notation Aj(@n) stands for the Voronoi cels
defined in equation (6).

Expert Strongly- Ridge Experts with Strongly Independent Activation | Polynomial
Ind Identifiable E ¢
ndex Experts Regime 1 Regime 2 Xperts

VE |Aj(@n)| =1 Op(n~1/?) Slower than Op(n=1/2") ¥r > 1

j: |A]((A§n)] > 1 Op(n~4%) Slower than Op(n=1/27),vr > 1

Overall contributions. Our contributions are three-fold and can be summarized as follows (see
also Table 1 for a summary of the expert estimation rates):

1. Parametric rate for regression function. In our first main result, Theorem 1, we demon-
strate a parametric estimation rate for the regression function fg, (-). In particular, we show that
Ifa, — fe.llL2q = Op(n~1?), where || - | 12(4) denotes the L? norm with respect to the probability
measure p of the input X. This result will be leveraged to obtain more complex estimation rates for
the model parameters.

2. Strongly identifiable experts. We formulate a general strong identifiability condition for expert
functions in Definition 1 which ensures a faster, even parametric, estimation rates for the model
parameters. To that effect, we propose a novel loss function D; among parameters in equation (7)
and establish in Theorem 2 the L2?-lower bound || fo — fa, r2(w) = D1(G, Gy) for any G € Gi(©).

Given the bound [|faz — fo.llp2(w = Op(n~Y?) in Theorem 1, we deduce that the convergence

rate of the LSE G,, to the true mixing measure G, is also parametric on the sample size, i.e.
D1(Gp,Gy) = Op(n~1/?). This leads to an expert estimation rate of order at least Op(n=1/%).

3. Ridge experts: Secondly, we focus ridge expert functions consisting of simple two-layer neural
networks, which include a linear layer followed by an activation layer, i.e., h(z,n) = o(a'z +b),
where 7 = (a,b). In these very common settings, we give a condition called strong independence in
Definition 2 to characterize activation functions that induce faster expert estimation rates. Inter-
estingly, under the strongly independent settings of the activation function o, we demonstrate in
Theorem 4 that even when the activation function o is strongly independent, the expert estimation
rates are still slower than any polynomial rates and could be as slow as Op(1/log(n)) if at lease one
among parameters aj, ...,ay vanishes. Otherwise, we show in Theorem 3 that the expert estimation

rates are no worse than Op(n=1/4).

Lastly, we consider the settings when the activation function ¢ is not strongly independent, e.g.,
polynomial experts of the form h(x,n) = (a'x + b)?, where p € N and 1 = (a,b) (of which linear
experts are special cases). This choice can be regarded as an ridge expert associated with the
activation function o(z) = 2P, which violates the strong independence condition. As a consequence,



we come across an unforeseen phenomenon in Theorem 5: the rates for estimating experts become
universally worse than any polynomial rates due to an intrinsic interaction between gating and
expert parameters via the PDE (4).

Practical implications. There are two main practical implications from our theoretical results:

(1) Firstly, based on the the strong identifiability condition provided in Definition 1, we can verify that
plenty of widely used expert functions, namely feed forward neural networks with activation functions
sigmoid(-), tanh(-) and GELU(-), are strongly identifiable. Therefore, our findings suggest that such
experts enjoy faster estimation rates than others. This indicates that our theory is potentially useful
for selecting experts in practical applications.

(ii) Secondly, Theorem 5 reveals that a class of polynomial experts, including linear experts, are not
good choices of expert functions for MoE models due to its significantly slow estimation rates. This
observation aligns with the findings in [1] which claims that a mixture of non-linear experts achieves
a way better performance than a mixture of linear experts.

Paper organization. The paper is organized as follows. In Section 2, we obtain a parametric rate
for the least squares estimation of softmax gating MoE model fg, () under the L?-norm. Subse-
quently, we establish estimation rates for experts that satisfy the strong identifiability condition in
Section 3. We then investigate ridge experts, including polynomial experts in Section 4. Finally,
we conclude the paper and provide some future directions in Section 5, while rigorous proofs are
deferred to the supplementary material.

Notations. We let [n] stand for the set {1,2,...,n} for any n € N. Next, for any set S, we denote | S|

as its cardinality. For any vector v € R? and o := (a1, @, ..., aq) € N4, we let v = v 03?2 .. g,
|v| ;==v1 +v2+...+vg and a! := ajlag! ... ag4!, while ||v]| stands for its 2-norm value. Lastly, for

any two positive sequences {an}n>1 and {b,}n>1, we write a, = O(by,) or a, < by, if a, < Cb,, for
all n € N, where C' > 0 is some universal constant. The notation a,, = Op(b,) indicates that a, /b,
is stochastically bounded.

2 The Estimation Rate for the Regression Function

In this section, we establish an important, preliminary result, showing that, under minimal assump-
tions on the regression function, the least squares plug-in estimator of the regression function f@n()
is consistent, and converges to the true regression function fg, (-) at the rate 1/4/n with respect to
the L?(u)-distance, where p is the feature distribution.

Assumptions. Throughout the paper, we impose the following, standard assumptions on the model
parameters. We recall that the dimension of the parameter space is fixed.

(A.1) We assume that the parameter space © is a compact subset of R x R? x RY, while the input
space X is bounded. These assumptions help guarantee the convergence of least squares estimation.



(A.2) For the experts h(X,n7),...,h(X,n} ) being different from each other, we assume that param-
eters 7y, ..., n; are pair-wise distinct. Furthermore, these experts functions are Lipschitz continuous
with respect to their parameters and bounded.

(A.3) In order that the softmax gating MoE fg, (+) is identifiable, i.e., f(X) = fq,.(X) for almost
surely = implies that G = G, we let f5, =0 and 87, = 04.

(A.4) To ensure that the softmax gate is input-dependent, we assume that at least one among gating
parameters (i, ..., 37, is non-zero.

Theorem 1. Given a least squares estimator @n defined in equation (3), the model estimation fz
admits the following convergence rate:

Ifa, — fa. L2 = Op(\/log(n)/n). (5)

The proof of Theorem 1 is in Appendix A.1. It can be seen from the bound (5) that the rate for
estimating the entire softmax gating MoE model fg, (+) is of order Op(n='/2) (up to logarithmic
factor), which is parametric on the sample size n. More importantly, this result suggests that if we
can construct a loss function among parameters D such that || fz — fe.llr2(u) 2 D(Gyp,G,), then

it follows that D(@n, G.) = (’)p(nfl/ 2). As a consequence, we achieve parameter estimation rates
through the previous bound, and therefore, our desired expert estimation rates.

3 Strongly Identifiable Experts

In this section, we derive estimation rates for the parameters of the softmax gating MoE regression
function (2) assuming that the class of expert functions satisfy a novel regularity condition which we
refer to as strong identifiability; see Definition 1 below.

Let us recall that in order to establish the expert estimation rates, our approach is to establish the
L?-lower bound Ifa, —fallrzqw 2 D(G,, G,) mentioned in Section 2, where D is an appropriate loss
function to be defined later. For that purpose, a key step is to decompose the quantity f@n ()= fa. (x)
into a combination of linearly independent terms, where

k.« ex * Tl’ *
fo.(@) =7 5L =+ i) ~h(@, 7).

k*
i—1 Zj:l eXP((rBikj)Tx + 53}')
This can be done by using Taylor expansions to the product of a softmax numerator and an expert
denoted by = +— F(z; 81,n) = exp(B{ X)h(z,n). Therefore, to obtain our desired decomposition, we

present in the following definition a condition that ensures the derivatives of F' with respect to its
parameters are linearly independent.

Definition 1 (Strong Identifability). We say that an expert function x +— h(z,n) is strongly
identifiable if it is twice differentiable with respect to its parameter n and the following set of functions
m x 15 linearly independent:

, glml+lr2lp,
{o

'W(l‘,m) tveN, r,meNL 0< [y +|n|+ |l <2, j€ [k]}>

for almost every x for any k > 1 and pair-wise distinct parameters ny, ..., Ng.



As indicated in Definition 1, the main distinction between the strong identifiability and standard
identifiability conditions of the expert function h [13] is that we further require the first and second-
order derivatives of the expert function h with respect to their parameter are also linearly independent.

Example. It can be verified that the strong identifiability condition holds for several experts com-
monly used in practice, including feed forward neural networks with activation functions sigmoid(-),
tanh(-) and Gaussian error linear units GELU(-) [12].

Next, to compute the expert estimation rates, we propose a loss function based on the notion of
Voronoi cells, put forward by [22], as follows.

Voronoi loss. Given an arbitrary mixing measure G with ¥’ < k components, we partition its
components to the following Voronoi cells A; = A;(G), which are generated by the components of

Gy
Aj ={i e [F]: Jwi =l < lwi = w7, V€ # j}, (6)

where w; 1= (B1;,7;) and wj := (8];,7;) for any j € [k.]. Notably, the cardinality of Voronoi cell A;
is exactly the number of fitted components that approximates w;f. Then, the Voronoi loss function
used for our analysis is given by:

ks
DiG, G =3 | D exp(Bor) — exp(Bi)| + D0 D exp(Boi) 148151 + | Am 11
j=1 icA; j:|_Aj|>1i€.Aj

D exn(Bon) 1881l + I Angll],(7)

jilAj|=1i€A;

where we denote ABy;; := f1; — ﬁikj and An;j == 1n; — 77;. Above, if the Voronoi cell A; is empty, then
we let the corresponding summation term be zero. Additionally, it can be checked that Dy (G, Gx) =0
if and only if G = G,. Thus, when D;(G, G4) is sufficiently small, the differences Afy;; and An;;
are also small. This property indicates that D; (G, G) is an appropriate loss function for measuring
the discrepancy between the LSE @n and the true mixing measures G,. However, since the loss
D1 (G, Gy) is not symmetric, it is not a proper metric. Finally, computing the Voronoi loss function
D, is efficient as its computational complexity is at the order of O(k x k).

Equipped with the Voronoi loss function D;, we are now ready to characterize the parameter
estimation rates as well as the expert estimation rates in the following theorem.

Theorem 2. Suppose that the expert function h(x,n) satisfies the condition in Definition 1, then
the following L*-lower bound holds true for any G € Gp(©):

|fe = fa.ll2uy 2 D1(G, Gy).

Furthermore, this bound and the result in Theorem 1 imply that Di(Gp, Gy) = Op(y/log(n)/n).

The proof of Theorem 3 is in Appendix A.3. A few remarks regarding the results of Theorem 2 are
in order.



(i) Firstly, the parameters Bi‘j, n}‘j that are approximated by more than one component, i.e. those

for which \A]((A?n)\ > 1, enjoy the same estimation rate of order Op(n~1/*). Additionally, since the
expert h(z,n) is twice differentiable over a bounded domain, it is also a Lipschitz function. Therefore,

by denoting Gp = Zfil eXP(BOi)5(gn ) We obtain that
12074
sup [a(z, i) — h(@, )| < Ly |57 —nj| S Op(n™ /%), (8)

for any 7 € Aj((?n), where L1 > 0 is a Lipschitz constant. Consequently, the rate for estimating a
strongly identifiable expert h(z,7n}) continues to be Op(n~1*) as long as it is fitted by more than
one expert. On the other hand, when considering the softmax gating Gaussian MoE, [27]| pointed
out that the estimation rates for linear experts could be Op(n~1/12) when they are fitted by three
experts, i.e., |Aj(@n)| = 3. Moreover, these rates will become even slower if their number of fitted
experts increases. This comment highlights how the strong identifiability condition proposed in this
paper immediately implies fast estimation rates.

(ii) Secondly, the rates for estimating parameters 3} ;»1; that are fitted by exactly one component,
ie., ]A](@nﬂ — 1, are faster than those in Remark (i), of order Op(n~/2). By employing the same
arguments as in equation (8), we deduce that the expert h(z,7;) admits the estimation rate of order
Op(n~1/2), which matches its counterpart in [27].

4 Ridge Experts

In this section, we turn to softmax gating MoE models with ridge experts, i.e two-layer neural
networks comprised of a linear layer and an activation layer of the form

h(z,n}) = o((a}) "z +bj), (9)

where o : R — R is the (usually, nonlinear) activation function and n; = (aj,b}) € RY x R are expert
parameters. Ridge experts are commonly deployed in deep-learning architectures and generative
models, and they fail to satisfy the strong identifiability condition from the last section. To overcome
this issue, we instead formulate a strong independence condition on the activation function itself,
which will guarantee fast estimation rates, provided that all the expert parameters are non-zero.
Interestingly, when one or more parameters are zero, so that the corresponding experts are constant

functions, we show slow, non-polynomial rates in the sample size.

In Section 4.2, we then examine polynomial activation functions, which violates the strong indepen-
dence condition. In this case we again demonstrate slow rates.
4.1 On Strongly Independent Activation

To begin with, let us recall from Section 3 that our goal is to establish the L2-lower bound
£z, = follr2qy 2 D(Gn, Gy) where G, = 31 exp(B5,)0(ss. ar b7

3 o )
fa. — exp((81;) = + Bg;) o((at T .
e ; Sohexp((85;) T + Bg)) ((a7) @ + )



and D is a loss function among parameters that will be defined later. In our proof techniques, we
first need to represent the term fg () — fa,(x) as a weighted sum of linearly independent terms
by applying Taylor expansions to the function F(X;f1,a,b) = exp(3{ x)o(a"x + b). Nevertheless,
we notice that if af = 04 for some i € [k,], then there is an interaction between gating and expert
parameters expressed in the language of partial differential equation as follows:

oF oF
861(1‘ Bl a7, 07) = o'(07) - 5 (@3 B, af, b7). (10)

The above PDE leads to a number of linearly dependent terms in the decomposition of fz (z)— fa. (),
which could negatively affect the expert estimation rates. To understand the effects of the previous
interaction better, we split the analysis into two following regimes of parameters a; where the
interaction (10) vanishes and occurs, respectively:

e Regime 1: All parameters aj, ..., a; are different from 0Ogy;

e Regime 2: At least one among parameters aj, ..., a; is equal to Og.

Subsequently, we will conduct an expert convergence analysis in each of the above regimes.

4.1.1 Regime 1: Input-dependent Experts

Under this regime, since all the parameters af,...,a; are different from 04, the PDE (10) does
not hold true, and thus, we do not need to deal with linearly dependent terms induced by this
PDE. Instead, we establish a strong independence condition on the activation ¢ in Definition 2
to guarantee that there are no interactions among parameters, i.e. the derivatives of the function
x> F(z;B1,a,b) = exp(B{ x)o(a"x + b) and its derivatives up to the second order are linearly
independent.

Definition 2 (Strong Independence). We say that an activation function o : R — R is strongly
independent if it is twice differentiable and the set of functions in x

{xvam(ajx +b)weNLTEN, 0< |, 7<2, j€ [k]},

is linearly independent, for almost all x, for any pair-wise distinct parameters (ai,b1), ..., (ag, bg)
and k > 1, where o(7) denotes the T-th derivative of .

Example. We can verify that sigmoid(-) and Gaussian error linear units GELU(-) [12] are strongly
independent activation functions. By contrast, the polynomial activation o(z) = 2P is not strongly
independent for any p > 1.

Just like in the previous section, we construct an appropriate loss function among parameters that is
upper bounded by the L?(u) distance between the corresponding softmax gating MoE regression
functions to obtain expert estimation rates.

Voronoi loss. Tailored to the setting of Regime 1, the Voronoi loss of interest is given by

Z\Zexpﬁm —exp(Bi)| + D0 D exp(on) 11881 12 + [ Aa | + | Abi ]

j=1 icA; JiJ A |>1i€A;

+ 0D exp(Bon) |88l + l|Aay] +1Abyl)

JilAj|=14€A;



where we denote Aa;; := a; — a}f and Ab;; :=b; — b}‘.

Theorem 3. Assume that the experts take the form o(a' X + b), where the activation function
o(-) satisfies the condition in Definition 2, then the following L?-lower bound holds true for any
G € Gx(©) under the Regime 1:

| fa — fa.

Furthermore, this bound and the result in Theorem 1 imply that Da(Gp, Gy) = Op(y/log(n)/n).

2() 2 D2(G,Gy).

See Appendix A.3 for a proof. Theorem 3 indicates the LSE (A;n converges to GG, at the parametric
rate Op(n~1/2) under the loss function Dy. From the formulation of this loss, we deduce the following
rates.

(i) For parameters Bi;» aj and b7 fitted by one component, i.e., ].A](@n)\ = 1, the estimation rate is
of order Op (n_l/ 2). Moreover, as the strongly independent o is twice differentiable, the function
x + o(a'x + b) is Lipschitz continuous with some Lipschitz constant Lo > 0. Thus, denoting

Gy = ngl eXp(BOi)(S(Bﬁ,ag,Zy)’ we have
suplo (@) @ +07) — o((a]) T2 + )| < Lo-[|@F,07) — (a5, b))

< Lo - ([l — ajll + [bi" — b3])
< O0p(n™'?). (11)

As a consequence, the estimation rate for the expert J((a;)Tm +b7) is also of order Op(n~1/2).

(ii) For parameters, say f7;, a} and b7, fitted by more than one component, i.e. \Aj(@n)\ > 1, the
corresponding rates are @p(n~1/*). By reusing the arguments in equation (11), we deduce that the
expert 0((a;)Tx + %) admits the estimation rate of order Op(n~14).

4.1.2 Regime 2: Input-independent Experts

Recall that under this regime, at least one among parameters aj,...,a; equal to 04. Without
loss of generality, we may assume that a] = 04. This means that the the value of the first expert
o((a}) T2 + b}) no longer depends on the input x. In this case, there exists an interaction among the
gating parameter 51 and the expert parameter a captured by the PDE
oF . s oF
—(a; at, b)) =o' (bF) - —
851( 7/8117 1 1) ( 1) 80/(

The significance of this fact is that, owing to the the above PDE, the following Voronoi loss function
among parameters is not majorized by the L?(u) distance between the corresponding expert functions:

x;ﬁfba){?b}{)' (12)

D3,(G, Gx) Z‘ > exp(Boi) — exp(Bg;) ’ Z > exp(Bos) [IIAﬁmH’“ + [1Aai;]|” + [Abs["
Jj=1 i€A; Jj=1licA;
(13)

for any r > 1. This is formalized in the next result, whose proof can be found in Appendix A.4.

10



Proposition 1. Let the expert function take the form U(aTX +b), and suppose that not all the
parameters aj,...,ay are different from Oq, then we obtain that

li inf — D3, (G,Gy) =0,
livy. - inf | fe = fellr2(u) /D3 )
DB,T(GvG*)S‘E

for any r > 1.

The above proposition, combined with Theorem 1, indicates that the parameter estimation rate in
this situation ought to be slower than any polynomial of 1/4/n. This is indeed the case, as confirmed
by the following minimax lower bound.

Theorem 4. Assume that the experts take the form o(a' X +b), then the following minimaz lower
bound of estimating G, holds true for any r > 1 under the Regime 2:

_inf sup Efy (D3, (Gn, G)] 202,
Gnegk(e) GegGy, (@)\gk**l (9)

where By, indicates the expectation taken w.r.t the product measure with fgi and the infimum is over
all estimators taking values in Gy.

The proof of Theorem 4 is in Appendix A.5. This result together with the formulation of the Voronoi
loss D3, in equation (13) leads to a singular and striking phenomenon that, to the best of our
knowledge, has never been observed in previous work [13, 1, 27]. Specifically,

j
Op(n=1/?7) for any r > 1. In particular, they could be as slow as Op(1/log(n)).

(i) The rates for estimating the parameters 57, aj and b} are slower than any polynomial rate

(ii) Recall from equation (11) that

sup (@) Tz +B}') — o (@) Tw + b)| < Lo - (@} = a5 + [} = ). (14)

Consequently, the expert estimation rates might also be significantly slow, of order Op(1/log(n)) or
worse, due to the interaction between gating and expert parameters in equation (12). It is worth
noting that these slow rates occur even when the activation function o meets the strong independence
condition in Definition 2. This observation suggests that all the expert parameters a7, ..., aj, should
be different from 04. In other words, every expert of the form o(a'z + b) in the MoE model should
depend on the input value.

4.2 On Polynomial Activation

We now focus on a specific setting in which the activation function o is formulated as a polynomial,
i.e. o(z) = 2P, for some p € N. Concretely, for all j € [k*], we set

hz,n) = ((a)) e+ b)), zeX, (15)

and call it a polynomial expert. Notably, it can be verified that this activation function violates the
strong independence condition in Definition 2 for any p € N. For simplicity, let us consider only the
setting when p =1, i.e., h(x, 77;‘) = (a;)Tw + b;, with a note that the results for other settings of p

11



can be argued in a similar fashion.

Since the strong independence condition in Definition 2 is not satisfied, we have to deal with an
interaction among parameters, capture by following PDE:
O*F
0510b

(95;511‘,%751‘):%(»T;ﬁmambi)» (16)

where F(z; 1, a,b) := exp(8{ )(a'x + b) is the product of softmax numerator and the expert

Table 2: Comparison of parameter and expert estimation rates under the probabilistic softmax gating
mixture of linear experts [27] and the deterministic one (Ours). Here, we denote 7; := 7(|.A7]),
where the function 7(-) represents for the solvability of a system of polynomial equations in [27].
Some specific values of this function are given by: 7(2) = 4 and 7(3) = 6.

Parameters a; Parameters b} Experts (a;-‘)Tx + b}

Model Type | j: [A} =1 |j:[A}>1 | j:[A}[=1]| j: A} >1 |j:|A}[=1] j:[A}[>1

Probabilistic | Op(n=2) | Op(n=Y7) | Op(n=2) | Op(n='?7) | Op(n=Y2) | Op(n=1/?%)

Deterministic Slower than Op(n~1/%7),vr > 1

function. Though this interaction has already been observed and analyzed in previous work [27],
its effects on the expert convergence rate in the present settings are totally different as we consider
a deterministic MoE model rather than a probabilistic model. In particular, [27] argued that the
interaction (16) led to polynomial expert estimation rates which were determined by the solvability
of a system of polynomial equations. On the other hand, we show in the Proposition 2 below that
such interaction makes the ratio || fa — fa. | 12(4) /D3, (G, Gx) vanish when the loss D5 (G, G) goes
to zero as shown in the next proposition, whose proof can be found in Appendix A.6.

Proposition 2. Let the expert functions take the form a'xz + b, then the following limit holds for
anyr > 1:

. - B
lm o nto | fa — fa.

D3,T (GvG* ) <e

2(w)/ D3 (G,Gx) = 0.

Just like in the previous section, we arrive at a significantly slow expert estimation rates.

Theorem 5. Assume that the experts take the form o'z + b, then we achieve the following minimax
lower bound of estimating G:

_ inf sup Efc [D?:,r(éna G)] Z n71/27
Gn€Gk(©) GEGL(O)\Gk, —1(O)

for any r > 1, where Ey, indicates the expectation taken w.r.t the product measure with fr..

Proof of Theorem 5 is in Appendix A.7. A few comments regarding the above theorem are in order
(see also Table 2):

12



(i) Theorem 5 reveals that using polynomial experts will result in the same slow rates as using
input-independent experts, as described in Theorem 4. More specifically, the estimation rates for
parameters 3j;, af and b} are slower than any polynomial rates, and could be of order Op(1/log(n))
because of the interaction in equation (16).

(ii) Additionally, we have that
sup (@) " +b7) — ((a}) "2 +07) | < sup [} — ]|l - || + b} — b5
xT x

Since the input space X is bounded, we deduce that the rates for estimating polynomial experts
(a;‘-)Tx + b7 could also be as slow as Op(1/log(n)). This is remarkable, especially in contrast to the
polynomial rates of linear expert established by [27] in probabilistic softmax gating experts. Hence,
for the expert estimation problem, the performance of a mixture of linear experts cannot compare to

that of a mixture of non-linear experts. It is worth noting that this claim aligns with the findings in

1.

5 Conclusions

In this paper, we have analyzed the convergence rates of the least squares estimator under a determin-
istic softmax gating MoE model. We have shown that expert functions that satisfy a novel condition
referred to as strong identifiability enjoy estimation rates of polynomial orders. When specializing to
experts of the form ridge function, polynomial rates can be guaranteed under another condition,
called strongly independent activation, provided that all the expert parameters are non-zero. In
contrast, when at least one of the expert parameters vanishes, we have unveiled the surprising fact
that expert estimation rates become slower than any polynomial rates. Furthermore, we also prove
that polynomial experts, which violate the strong identifiability condition, also experience such slow
rates under any parameter settings.

There are some potential directions to which our current theory can extend. Firstly, we can leverage
our techniques to capture the convergence behavior of different types of experts under the MoE
models with other gating functions, namely Top-K sparse gate [33], dense-to-sparse gate [29], cosine
similarity gate [18] and sigmoid gate [3]. Such analysis would enrich the knowledge of expert selection
given a specific gating function. Additionally, we can develop our current techniques to provide a
comprehensive understanding of more complex MoE models such as hierarchical MoE [36, 15] and
multigate MoE [21, 19|, which have remained elusive in the literature.

A Proofs of Main Results

In this appendix, we provide proofs for main results in the paper.

A.1 Proof of Theorem 1

For the proof of the theorem, we first introduce some notation. Firstly, we denote by Fj(©) the set
of conditional densities of all mixing measures in Gi(©), that is, Fx(0) := {fc(X) : G € Gx(O)}.
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Additionally, for each § > 0, the L? ball centered around the conditional density gq, (Y|X) and
intersected with the set F(©) is defined as

Fi(©,0) :={f € Fe(©) : |f = fa.llL2y <9}

In order to measure the size of the above set, Geer et. al. [34] suggest using the following quantity:

0
To(0,F@.0) = [ L FO.1) 1 -l e v a7)
2

where Hp(t, F(0,1), || - || £2(.)) stands for the bracketing entropy [34] of F% (6, u) under the L2-norm,
and ¢V § := max{t,d}. By using the similar proof argument of Theorem 7.4 and Theorem 9.2 in
[34] with notations being adapted to this work, we obtain the following lemma:

Lemma 1. Take ¥(§) > Jp(8, Fr(©,0)) that satisfies W(5)/6?% is a non-increasing function of §.
Then, for some universal constant ¢ and for some sequence (8,) such that \/né2 > c¥(d,), we achieve
that

no?

for all § > 6,.

We now demonstrate that when the expert functions are Lipschitz continuous, the following bound
holds:

Hp(e, Fe(©), ||l L2()) < log(1/e), (18)

for any 0 < e < 1/2. Indeed, for any function fg € Fj(0), since the expert functions are bounded, we
obtain that fo(X) < M for all X where M is bounded constant of the expert functions. Let 7 < € and
{m1,..., 7N} be the T-cover under the L? norm of the set F;(©) where N := N (1, F(0), ] - I 22())
is the n-covering number of the metric space (Fx(©), || - [[12(,)). Then, we construct the brackets of
the form [L;(X), U;(X)] for all i € [N] as follows:

L;(X) := max{m;(X) — 7,0},
Ui(X) := max{m(X) + 7, M}.

From the above construction, we can validate that F;(0) C UN | [L;(X), U;(X)] and U;(X)—L;(X) <
2min{27, M'}. Therefore, it follows that

1Us = Lill 22, = /(Ui — L;)%du(X) < /167201”()() = 1672,
which implies that ||U; — L;[[2(,) < 47. By definition of the bracketing entropy, we deduce that
Hp (47, F(©), || - |£2(n)) < log N =log N(7, F(©), || - lL2())- (19)

Therefore, we need to provide an upper bound for the covering number N. In particular, we denote

A :={(Bo,B1) ERxRZ: (By,B1,m) € O} and Q := {n € RY: (By, B1,n) € O}. Since O is a compact
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set, A and €2 are also compact. Therefore, we can find 7-covers A, and 2, for A and (2, respectively.
We can check that

Ar] < Op(rHI8) - |0,| < Op(r ).

For each mixing measure G = Zle exp(50i)d(8,;.n) € Gr(O), we consider other two mixing measures:

k

G = Z exp(ﬁgi)5(5mﬁi), G =

i=1 i=1

M=

exp (BOZ ) 5(511 M)

Here, 7; € Q, such that 7, is the closest to 7; in that set, while (3y;, 81;) € A, is the closest to
(Boi, £1i) in that set. From the above formulations, we get that

S 3h exp((B1)TX + Boy)

ex )T 2
<k/zl p((B1)TX + fs) ,[h(ij)_h(Xm] )

k ex )T i 2
Ve~ Sl = [ |32 BB o] anc

_1exp((B15) T X + fBoj)

<k [ S (X, m) ~ BCET? du()
=1

k
<k [3 (ea = mll? du(x)
=1
< k2(L17_)27

which indicates that || fo — fzll2() < L1k7. Here, the second inequality is according to the Cauchy-
Schwarz inequality, the third inequality occurs as the softmax weight is bounded by 1, and the

fourth inequality follows from the fact that the expert hA(X,-) is a Lipschitz function with Lipschitz
constant L;. Next, we have

exp((B14) " X + Boi) B exp((B1:) " X + Boi) WX r d
If&— fGHLQ(u /Z [( j exp((B1))TX + Boj) Z?:l eXP((51j)TX+5oj)> (X,m;) p(X)

<wr? [ 5™ [ = Bl 11+ s B "an0
=1

k
< k:M2L2/Z(T - B+ 7)%du(X)
=1
< [kML7(B +1)]?,

where L > 0 is a Lipschitz constant of the softmax weight. This result implies that || fz — fzllz2¢u) <
EML(B + 1)T. According to the triangle inequality, we have

|fe = fallezq < lfe — fallezq + Ife — falleeqy < [Lik+ kML(B+1)] -7
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By definition of the covering number, we deduce that
N7, Fi(©), | - 2 () < 1A7] x [2:] < Op(n™TDF) x O(n=%) < O(n~H1H+k). (20)
Combine equations (19) and (20), we achieve that
Hp(47, F(0), || - [lL2(n) < log(1/7).
Let 7 = ¢/4, then we obtain that

Hp(e, Fe(©), |I-lr2()) < log(1/e).

As a result, it follows that

)

3
Ta0.71(0.0) = [ HYtFO0.] o) devo S [ togt/dve. (@)
52/215 52/213

Let ¥(8) = 6-[log(1/6)]1/2, then W(§)/6? is a non-increasing function of §. Furthermore, equation (21)
indicates that ¥(8) > Jg(d, Fx(0,0)). In addition, let &, = \/log(n)/n, then we get that \/né2 >
cW(0y,,) for some universal constant c¢. Finally, by applying Lemma 1, we achieve the desired conclusion
of the theorem.

A.2 Proof of Theorem 2

In this proof, we aim to establish the following inequality:

f
Glgn | fa — fe.

L2( )/Dl(G, G.) > 0. (22)

For that purpose, we divide the proof of the above inequality into local and global parts in the
sequel.

Local part: In this part, we demonstrate that

I _ DI(G,G.) > 0. 23
sl—%cegk(@)pl(GG* | fe = fallr2(u/Da( ) (23)

Assume by contrary that the above inequality does not hold true, then there exists a sequence of
mixing measures G,, = Zf;l exp(B5;)d(sp. ey in Gi(©) such that Dy, 1= D1(Gyp, Gx) — 0 and

Ifa. — fallL2(u/Pin — 0, (24)

as n — o0o. Let us denote by .A? := A;(Gy) a Voronoi cell of Gy, generated by the j-th components
of G.. Since our arguments are asymptotic, we may assume that those Voronoi cells do not depend
on the sample size, i.e. A; = A?. Thus, the Voronoi loss Dy, can be represented as

K«
Dini= 30| 3 exp(8) —exp(i)| + S0 37 exn(a) (1865, 17 + 1 an5 2]

Jj=1 ic€A; Ji| A |>1i€A;

+ Y S e 1485 +lAnsl]. (25)

JilAj|=14i€A;
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where we denote ASY;; := B, — B7; and A :=n' — ;.

Since Dy, — 0, we get that (57, n") — (B1;:m;) and exp(Bg;) — exp(ﬁf')‘j) as n — oo for any i € A,
and j € [k«]. Now, we divide the proof of local part into three steps as follows:

Step 1. In this step, we decompose the term @y (z) := [Z] 1 exp((ﬂlj) z+ By [fa. (@) — fa. (@)]
into a combination of linearly independent elements using Taylor expansion. In particular, let us

denote F(z;81,m) := exp(B] x)h(x,n) and H(x;B1) = exp(B{ x) fa, (x), then we have

ZZGXP BOZ |: Blz’nz)_F(i’BT]’n;)}

Jj=1licA;

_ Z Z exp(B%:) [ (x; B1) — (x;ﬁikj)}

j=1licA;

ks
(D exp(G) — ex(8iy) ) | Flws Bi0m5) — H(ws 57))
J=1 Q€A
= A (z) — Bp(z) + En(x). (26)

Decomposition of A, (z). Next, we continue to separate the term A,, into two parts as follows:

Z Z exp BO’L |: Z; Blzvnz)_F(l"Bi{]’n}()}

JilAj|=14€A;
+ Z Z exXp ﬂOz |: €5 ﬂlzanz ) - F(‘T’BT]?”;)}
Ji| A |>1i€A;

= Ap1(x) + Apa(x).
By means of the first-order Taylor expansion, we have
n n \aq n\a2 oF *
Api(x) = Z Z exp(8g;) Z (Aﬁug‘) (Anz’j) ) W(x;61]7a31 bj) + Ry (z),
1

where Rj(z) is a Taylor remainder such that R;(z)/D1, — 0 as n — oo. By taking the first
derivatives of F' w.r.t its parameters, we get

aF * * * * * *
ﬁ(x;ﬂljanj) = XeXP((Bu)TfE)h(%??j) =X F(x;ﬂu,ﬁj),
oF oh

87’/( 181]777]) exp((/Bikj)T‘T) ’ 877( 77J) = Fl(x /Bljan])

Thus, we can rewrite A, ;(x) as

= Y Chpi(X) + Ri(X), (27)

J‘AJ| 1
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where

Cn 17] Z exp /802) [(Aﬁlz]) €T F(‘T 51]777]) (AnZ)TFl(xaﬂikjan;) .

i€A;

Next, by applying the second-order Taylor expansion, A, 2(x) can be represented as

Apa(z) = Z Z exp(5p;) Z ;(Aﬁm) (An)* - W(Uc;ﬁlj’%’) + Ra(x),
Jil A >1iEA; laf=1 !
where Ra(x) is a Taylor remainder such that Ry(z)/D1, — 0 as n — oco. The second derivatives of
F w.r.t its parameters are given by

82F * * T * * 82F . Q% * . Q% *\1 T
W(%ﬁua%):mﬁ 'F($§51j>77j)7 W(myﬁmﬁj):$'[F1($751j777j)] )
O*F 9%h

. Q% €\ * \ T N . Q% *
W(%ﬁuﬂ?ﬂ = exp((By;) =) - ananT Fy(x; B1551m;)
Therefore, the term A, 2(x) becomes

Apa(@) = > [Cnij(@) + Cnzj(x)] + Ra(2), (28)

J:lA;[>1
where

Cnzi(@) = D exp(B) {[J(Md@mﬁﬁ-j)mﬁﬁjf)] F (e 555, a5.0))

i€A;
+ 2T (A8 ()T Fi(as By, m)| + [(An5)T (Mo © Falas B5,m)) ) (M) }

with My being an d X d matrix whose diagonal entries are % while other entries are 1.

Decomposition of B, (x). Subsequently, we also divide B,, into two terms based on the Voronoi
cells as

Bu(w)= 3 S exp(B5)[H(w: 67) — H(w: 57,)]

Ji|Aj|=1i€A;

+ Z Zexp (B%) [ (x; B7) — (w;ﬁfj)]

Ji|Aj|>1i€A;
= By (7) + Bna(2).

By means of the first-order Taylor expansion, we have

Bpa(z)= Y > exp(Bp)(ABY;) Tw- H(x; B)) + Ra(x), (29)
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where R3(z) is a Taylor remainder such that R3(x)/Di, — 0 as n — oo. Meanwhile, by applying
the second-order Taylor expansion, we get

Bua() = > > exp(85)[(A81) Ta + (A81) T (Ma © T ) (ABL)] - H(w: 1)) + Rale),
JilAj[>1icA;
(30)

where Ry4(x) is a Taylor remainder such that R4(x)/D1n, — 0 as n — oo.

Putting the above results together, we see that [A,(x) — Ri(z) — R2(x)]/Din, [Bn(x) — R3(x) —
Ry(z)]/D1y, and E,(z)/Diy can be written as a combination of elements from the following set

O {1 (s 815, I, 2 F (a5 8] 5w € [d), € k),
O {[Fa(as B, m)) w0 € [d), j € k],

U {H(ws Bry), 2O H (s Bry), e H (@ 85)) uv € 1d], € [k}

Step 2. In this step, we prove by contradiction that at least one among coefficients in the
representations of [A, — Ry (x) — Ra(2)]/Dan, [Bn — R3(x) — Ra(x)] /D2y, and E,(X)/Day, does not go
to zero as n tends to infinity. Indeed, assume that all of them converge to zero. Then, by considering
the coefficients of

o F(x;81;,m;) for j € [ki], we get that D%n . Zf’;l ZieAj exp(Bg;) — exp(Bg;)| — 0

o XWE(z; Bi;sm;) foru € [d] and j : |A;] = 1, we get that D%n'zjz\Aﬂ:l > ica,; exp(BG) 1AL —

0;

o [Fy(x; ij,nj)](“) foru € [d] and j : | Aj| = 1, we get that %M'st\Aj\:l ZieAj exp(Bg) | Anisll1 —
0;

o [X(“)]QF(aﬁ;ﬂ’l"j,n;-‘) foru € [d] and j : |A;j| > 1, we get that D%n'zj:\fljbl Zz‘eAj exp(ﬁ&-)HABﬁ»sz —
0;

o [Fy(x; Bi‘j,n}f)](“u) foru € [d] and j : |A;| > 1, we get that D%n'zj:\f\jlﬂ Zz‘eAj exp(ﬂ(’}i)HAn?jHQ —
0.

)

By taking the summation of the above limits, we obtain that 1 = Dy, /D1, — 0 as n — oo, which is a
contradiction. Therefore, not all the coefficients in the representations of [A, () — Ry (z) — Ra(x)]/D1n,
[Br(z) — R3(z) — Ry(x)] /D1y, and E,(z)/D1yp go to zero.

Step 3. In this step, we point out a contradiction following from the result in Step 2. Let us
denote by m, the maximum of the absolute values of the coefficients in the representations of
[An(z) — Ri(z) — Ro(x)]/Din, [Bn(x) — R3(x) — R4(2)]/D1pn, and E,(x)/Diy,. Since at least one

among those coefficients does not approach zero, we obtain that 1/m,, /4 oc.
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Recall the hypothesis in equation (40) that ||fa, — fe.llz2(s)/DP1in — 0 as n — oo, which indicates
that || f, — fa.llz1(u)/DPin — 0. By means of the Fatou’s lemma, we have

0= Ly Hon — fa-llziw > /liminf |fa.(X) = fe. (X))
n—00 mnDin n—r00 mpDip

du(X) > 0.
This result implies that [fq, (z)— fa, (x)]/[mnD1y] for almost surely . Since the term Zf*: Lexp(( ij)—r T+
ﬁa‘j) is bounded, we deduce that @, (x)/[m,D1,] — 0, or equivalently,

1
mnpln

: {(An,l(x) — Ri(z) + An2(7) — Ro(2)) — (Bn1(2) — R3(x) + Bp2(x) — Ra(x)) + En(z)| — 0.
(31)

Let us denote

1 " . .
m 171 Z exp *801 Aﬁlzy) = P14, mnD1 : Z eXP(ﬂoi)(Aﬁm‘)(Aﬁhj)T — @25,
nt1n ieA; nt1n icA;
1 n n 1 " " "
mnDin Z exp (i) (A1) = o1 mo Dy Z exp(B0;) (A (Ani) T = a5,
1 n n ny\ T 1 n x
e ';; exp(B:) (ALY (Ans) - — &, o S (;; exp(B;) — exp(ﬁoj)) — &
(3 j i p

Here, at least one among gbl , gb2 G gog j), gp(uu) and &, for j € [k,], is different from zero, which

results from Step 2. Addltlonally, let us denote Frj = Fr(X; Bi‘j, 77;‘) and H; = H(x; ij) for short,
then from the formulation of

e A, in equation (27), we get

An,l — Rl(l’) N

T T
mnDin > [¢1va Sk 901,jF1j]' (32)

e A, 9 in equation (28), we get

Ap2 — Raf
n2—Io(z) > {[1T,j£”+xT<Md®¢2,j>$}‘Fj+[901T,j+fUTCj]'F1j+[Md®¢2,j]®F2j}-

oD
(33)
e B, 1 in equation (29), we get
B 1= R3 X
"D() = Y [pl 2 Hj|. (34)
MpL2n Nl
J:lA441=1
e B, 2 in equation (30), we get
Bpo— Ry(x
Bu2 = fulz) 5~ (ol0+ 2T (Ma© 60,)e| - Hj. (35)
mnDQn

Jil A 1>1
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e E,(x) in equation (26), we get

Ey ()
mp Doy

—>2ng Hj). (36)

7=1

Due to the result in equation (31), we deduce that the limits in equations (32), (33), (34), (35) and
(36) sum up to zero.

Now, we show that all the values of qﬁlj, ¢2] , cplj), (pguju) and &, for j € [k.], are equal to zero.

For that purpose, we first denote Ji, Jo,...,J; as the partition of the set {exp((ﬁfj)Tw) 1 j € [ki]}
for some ¢ < k, such that

(i) B7; = By, for any 4, € Ji and i € [{];
(ii) Bi; # Bi; when j and j” do not belong to the same set J; for any i € [¢].

Then, the set {exp((,@ikjl)—r:v), e ,exp((ﬁsz)—rm)}, where j; € J;, is linearly independent. Since the
limits in equations (32), (33), (34), (35) and (36) sum up to zero, we get for any i € [¢] that

Z [(ﬁj + ¢1T,jx)  hy + @Ijhlj] + Z { [qﬁLx el (Md ©) ¢2,j)$:| - h;

jeJi:|Ajl=1 jeJi:lAj[>1

+lely +a Gl + [Md © 90273} © h2j} - > ezt fa. (@)

jeJi:lAjl=1

_ Z [fj +olxtal (Md ® d>2,j):c] fe(x) =0

jeJiz|Aj|>1

where we denote h; := h(z, nj) hij = 87] e n;) and hgj 1= aaahT (z,m7). Recall that the expert

function h satisfies conditions in Definition 1, then the followmg set is linearly independent
lrl+lr2lp J
{33V : W(%U;)a v fa.(x) v eNY 1, e N, 0O< [y +|m| + || <2, j € [k'*]}-

is linearly independent. Therefore, we obtain that {; =0, ¢1; = ¢1; = 0q and ¢2; = @2, = (j =
O4xq for any j € J; and i € [¢]. In other Words those results hold true for any j € [ki], which

contradicts to the fact that at least one among (bl ], qb(zuju), o1 e cpg y ) and &j, for j € [k.], is different
from zero. Thus, we achieve the inequality (23), i

im - D1(G, Gy 0
HOGegk(@)pl(GG* ||fG fallp2)/Di(G,Gy) >

As a consequence, there exists some € > 0 such that

ot - Di(G,Gy) >0
Gegk(@):g(G,G*)gs/HfG fa Lz /D1(G, Gy)

Global part: Given the above result, it suffices to demonstrate that

i _
Gegk(e):g(c,a*)wnk Jo.

Lz(u)/Dl(G,G*) > 0. (37)
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Assume by contrary that the inequality (37) does not hold true, then we can find a sequence of
mixing measures G, € Gi(0) such that Dy (G, G«) > &’ and

i | far, — faullz(w

-0
noo Dy(Gh,Gy) ’

which indicates that || fa: — fa.ll2(n) — 0 as m — oo. Recall that © is a compact set, therefore,
we can replace the sequence G’ by one of its subsequences that converges to a mixing measure

G’ € Gi(Q). Since D1 (G),,Gx) > €', we deduce that D1 (G',G) > €.
Next, by invoking the Fatou’s lemma, we have that
2
0= tim |/, — fo.l3a = / liminf | e, (X) ~ fa. (X)| du(X).

Thus, we get that for(x) = fa, (z) for almost surely 2. From Proposition 3, we deduce that G’ = G,.
Consequently, it follows that D1 (G’, G.) = 0, contradicting the fact that D; (G, Gx) > &’ > 0.

Hence, the proof is completed.

A.3 Proof of Theorem 3

In this proof, we focus on demonstrating the following inequality:

f
Glgri I fa — fe.

L2( )/DQ(G, G*) > 0. (38)
To this end, we divide the proof of the above inequality into local and global parts in the sequel.

Local part: In this part, we show that

fim - Ds(G,Gy) > 0. 39
sﬁOGegk(Q)DQ(GG ”fG fa 2y /D2(G,Gy) > (39)

Assume by contrary that the above inequality does not hold true, then there exists a sequence of
mixing measures G,, = Zf;l exp(B5;)d(ay. ar br) in G(O) such that Dy, := Da(Gy, G+) — 0 and

Ifc, — fa.llr2(uy/Pan — 0, (40)

as n — oo. Let us denote by A% := A;(G,,) a Voronoi cell of Gy, generated by the j-th components
of G,. Since our arguments are assymptotic, we may assume that those Voronoi cells do not depend
on the sample size, i.e. A; = A;l. Thus, the Voronoi loss Dy, can be represented as

k*
Do = 3| D exn() —exp(@ip)| + D0 D exp(@m 188112 + 1 aag | + |Ab?]
J=1 i€A; Ji| A |>14i€A;

YD exn(Bo) [1A8H 1+ Aakll + 1Ab], (41)

where we denote ASY;; := BY; — b1, Aaj; == aj' — aj and Ab% = by — 0.
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Since D, — 0, we get that (87}, af’,b}') — (815, a},b}) and exp(8y;) — exp(f;) as n — oo for any
i€ Aj and j € [ki]. Now, we divide the proof of local part into three steps as follows:

Step 1. In this step, we decompose the term Q,(x) := [Z] 1 exp((ﬁlj) z+B5;)) - [fa. (@) — fa. (@)]

into a combination of linearly independent elements using Taylor expansion. In particular, let us
denote F(z;31,a,b) := exp(B) z)o(a'x + b) and H(x;B1) = exp(B{ x) fa, (x), then we have

Z Z exp 502 [ ﬁll?a”b7 z) F(m;ﬁf],aj,b;)}

j=11icA;
S Y () ) [H(w: 8) — H(w: 57,)]
Jj=1icA;
kx«
+3 ( > exp(Br) — eXP(ﬂS})) [F(ﬂf;ﬁu’%’b?) H (z; 513‘)}
Jj=1 i€A;
‘= Ap(2) — Bu(z) + Ep(x). (42)

Decomposition of A, (z). Next, we continue to separate the term A, (z) into two parts as follows:

= 3T exp(B5) [Flas Bkl 07 - Flas By, 5)|

Ji|Aj|=14€A;
+ Z Z €xp 501 |: 6lzvaz 7b7) (x;51‘77a‘]7b‘;k):|
JilAj|>1i€A;
= An,l + AmQ.

By means of the first-order Taylor expansion, we have

OF
ST exp(Bg) D (AB)™ (Aafy)*2 (Ab) - m(m ; 815, a5, 05) + Ri(w),

JilAj|=11€A; laf=1

where Rj(z) is a Taylor remainder such that R;(z)/Da, — 0 as n — oo. By taking the first
derivatives of F' w.r.t its parameters, we get

OF * * * * *
86 ($ ,81],0/], ])_xexp((ﬂlj)—rx)'O-((aj)T$+bj):$'F($;/81]7aj>b])
aF * * * * * *
da ($ ﬁlgv Jab]) - xexp((ﬂlj)—rm) : O-<1)((aj)—r$ + b]) =€ Fl(x;ﬂljaa]abj)
oF

ab (.’B /81]701])();) - exp((/BT])T ) (1)(( ) x + b*) l(x;ijvaj;ab;)v
where we denote Fr(x; 37}, a},b;) = exp((ﬁ’fj)Tac) -0(")((a;'f)Tx +b7). Thus, we can rewrite 4,1 as

= Y Cnuj(z) + Ra(x), (43)

.7|-A]‘ 1
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where
Cn,l,j Z exXp ﬁ()z [(Aﬁlz]) €L F( Bl]’aj’b;) ((AGZ)Tx + (Ab?j)) : Fl(x;/Blya]ab;)
i€A;

Next, by applying the second-order Taylor expansion, A, 2 can be represented as

2
1 o o g, Olonltlozltas @ .
Z Z exp(By;) Z ol (ABL;) ™ (Aag;)*? (Ab)* - m(m;/@U?aj?b])—‘rRQ(x)?

il A [>1iEA, =1

where Ra(x) is a Taylor remainder such that Ry(z)/Da, — 0 as n — oco. The second derivatives of
F w.r.t its parameters are given by

0*F O*F

W(x, 51], ;,b;) XXT . F(x;61]7a‘]7b;) 8/818 T(.’IJ Blj? ;,b}k) = . Fl(x;ﬁlj,a],b;)
O°F . oy _OF B
8,8131)(:6 /8137 3 )_‘T Fl(x 5137a]7 ]) dada T(.T /81]7 30 )— FQ(:U 51370137 _])
O*F O*F

aaab( Blj?a‘]7b;k) =T FQ(:’C /Bljﬂajvb;) abQ (‘/I" /81]7 37 ]) F2(:I" /81]7a37b;)

Therefore, the term A,, 2 becomes

Ao = [Copj(@)+ Cnpj(x)] + Ra(x), (44)
JilA;1>1

where

Cuailr) = 3 exp(By) {[J(Md@<Aﬁﬁj><Aﬂﬁj>T)m}- F(a: B1;,a3,55)

iI€A;
- [XT (Md © (Aa)(Aaf) " )z + (Ab)(ABE) Ta+ o (ML) (Aal) 2| - Fu(ws 815, a5, b5)

1 mn T n * *

Decomposition of B, (x). Subsequently, we also divide B,,(z) into two terms based on the Voronoi

cells as
Buw)= 3 3 exp(85) [H(w: 1) — Hiws )]

Ji|Aj|=14i€A;

+ Z Zexp BOZ{ (z; BT;) — (CE,BL)]

A [>1i€EA;
= Bn,l + Bn,2-

By means of the first-order Taylor expansion, we have

Bui= 3 3 exp(85)(A81) o - Hw: Bi)) + Ra(a), (45)

Ji|Aj|=1i€A;
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where R3(z) is a Taylor remainder such that R3(x)/D2, — 0 as n — oo. Meanwhile, by applying
the second-order Taylor expansion, we get

Bua= 3 3 exn(B) [(AB1) Ta+oT (Ma© (ABL)(ABE) T )a] - H(w: Bi) + Rala), (46)

il A > 1i€A;
where R4(x) is a Taylor remainder such that R4(x)/Day — 0 as n — oo.

Putting the above results together, we see that [A,(x) — Ri(z) — R2(x)]/Dan, [Bn(x) — R3(x) —
R4(2)] /D2y and E,(z)/Day, can be written as a combination of elements from set S := U3_,S; in
which

So = {F(x;ﬁf],aj,b;‘) 2 F(x; By, albh), (u)x(v)F(x;ﬂfJ,aj,b;) u,v € [d], j€ [k:*]},

Sl = {F (,fL‘ /Blj’aj7b;) (U)Fl( ﬂlj,a],b;) (u)x(v)Fl( ﬁl]’aj7b;) u,v S [d]7 j S [k*]}7
Sy = {FQ(CL’ Bijs a5, b3), 2 Fa(; By, a5, 0%), M) Fy(w; 81, a5,0%) s w0 € [d), j € [k*]}’
Sy = {H(l‘;ﬁi}-), 2 H(x; B7;), 22 H(w; 81)) s w,v € [d], j € [k*]}-

Step 2. In this step, we prove by contradiction that at least one among coefficients in the
representations of [A,(z) — Ri(z) — Ra(z)]/Dan, [Bn(z) — R3(x) — R4(x)]/ D2y, and E,(z)/Da, does
not go to zero as n tends to infinity. Indeed, assume that all of them converge to zero. Then, by
considering the coeflicients of

o I'(z;B7;,aj,b;) for j € [k.], we get that D%n : Z?;l ZieAj exp(Bh;) — exp(Bg;)| — 0;

o (W F(x; ﬁlj,a],b;k) foru € [d] and j : | A;| = 1, we get that %M'Ej:\Aj|:l ZieAj exp(ﬁ&)HAﬁﬁ-jHl —

0;
. g(“) 1(z Blj,aj,bj)foru € [d] and j : |A;j| =1, we get that D - Z] A= 12164 exp 502)HAG | —
o [ (x; By, aj,b}) for j: |Aj| =1, we get that D12 DI Ayl=1 ZzGA exp(Sg;) |[Ab[1 — 0;

o [2M]*F(x; 57}, a5,b7) foru € [d] and j : | A;] > 1, we get that D%H-Zj;w» Dica, exp(B) | AL (1P —
0;

° [ZE(U)] Fy(x; Blj? 30 ]) foru € [d] and j : |A;] > 1, we get that D Z JA;1>1 ZZEA eXp(ﬁOZ)HAa Ll
0;

o [y(x; By),aj,b7) for j: |Aj| > 1, we get that D12n > A >1 ZzGA exp(Bg;) | AbY; 12 — 0.

By taking the summation of the above limits, we obtain that 1 = Ds, /D, — 0 as n — oo, which is a
contradiction. Therefore, not all the coefficients in the representations of [4, (x)— Ry (z) — Ra(z)]/Dan,
[By(z) — R3(z) — Ry(x)] /D2y, and E,(x)/Day, go to zero.

Step 3. In this step, we point out a contradiction following from the result in Step 2. Let us
denote by m, the maximum of the absolute values of the coefficients in the representations of
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[An(z) — Ri(x) — Ra(z)]/Day, [Bn(x) — R3(x) — Ra(x)]/Dap and E,(z)/Day. Since at least one
among those coefficients does not approach zero, we obtain that 1/m,, /4 oc.

Recall the hypothesis in equation (40) that ||fa, — fc.|lz2()/D2n — 0 as n — oo, which indicates
that || fa, — fa.llL1(u)/DPan — 0. By means of the Fatou’s lemma, we have

0= lim | fa, — fa . /liminf |fa.(X) — fa,(X)]

n—00 Mp Do, n—r00 my Doy,

du(X) > 0.

This result implies that [fq, (x)— fa, (x)]/[mnDay) for almost surely z. Since the term Z?*Zl exp((ﬁfj)Tx—i—
f;) is bounded, we deduce that Qy,(x)/[m,Da2n] — 0, or equivalently,

. 1
lim
n—00 My Doy,

[ (Ant = Bi(@) + Apz = Ro(@) = (Bug — Rs(2) + Byz — Ra(x)) + En(2)] 0.
(47)

Let us denote

1 n n n
m Z exp(fo;) Aﬁlw) = P1j; moDor Z eXP(ﬁoi)(Aﬁuj)(Aﬁm)T — P24,
" 2” ZG'AJ n2n iG.Aj
1 n n n
m Z eXp ﬁO’L Aa ) — @1,]‘7 m D . Z eXp(ﬁol)<AaU)(Aa”)T — @27]‘7
n 2n icA; non icA,
1 1
AD? . n Y (A2 .
mnDQn ;; P IBOl)( ) o ) mnDQTL 2;; eXP(ﬁOz)( z]) - K255
J J
1 n 7 n
o D2n ; exp(80;) (ABT;) (Aafy) T — ¢y, e R ; exp(B1;) (AL (ABS) — G,
J 1eAy
'y n 1 mn *
mnDQn ; exp(3y;) (Ab5)(Aais) — G345 Dy (;; exp(fy;) — exp(ﬁoj)> =&
1€A,;

Here, at least one among (bluj, qﬁéu]u), gpguj), gpg J ), K1, ko,j and &, for j € [k,], is different from zero,

which results from Step 2. Additionally, let us denote Fr; := Fr(x; Bij.aj, ]) and H; = H(z; ﬁik])
for short, then from the formulation of

e A, in equation (43), we get

An,l — Rl (x)

T T
Dy > [¢1,j$ Fj+ (k1 + ¢1) 'Flj] (48)

JilA;1=1

e A, 9 in equation (44), we get

Ap2 — Ra(
e p; - 2 { { Lota! (Md © ¢27j>l’} Fj [+ (015 + G) w3 Gual - By
n n
Jil A4 1>1

1
+ bﬁzj + ¢+l (Md ©] 4P2,j>$:| - Fy; (49)
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e B, 1 in equation (45), we get

Bn,1 — Rs(x) T
Do 2 oo A (50)
J:l Ay 1=1
e B, in equation (46), we get
Bna — Ry(x) T T
Ji|Aj>1

e F,(x) in equation (42), we get

Eo(z) K

11, Doy, jz;fj[FJ H]] (52)

Due to the result in equation (47), we deduce that the limits in equations (48), (49), (50), (51) and
(52) sum up to zero.
(uuw)

2,j
to zero. For that purpose, we first denote Jp, Jo, ..., Jy as the partition of the set {exp((ﬁi‘j)T:L‘) :

J € [ky]} for some ¢ < k, such that

Now, we show that all the values of (;5&?, ¢gf;)7 4,0%‘]-), 0y .+, K1j, ko and &, for j € [k, are equal

(i) By, = By, for any j,j' € J; and i € [€];
(ii) Bg; # By when j and j” do not belong to the same set J; for any i € [¢].

Then, the set {exp((ﬁa‘jl)Tx), . ,exp((ﬂ(’)‘je)Tx)}, where j; € J;, is linearly independent. Since the
limits in equations (48), (49), (50), (51) and (52) sum up to zero, we get for any i € [¢] that

> [(¢1T,jx +&) - 05+ (r + o j2) UJ('U} 2 { {gj tore et (Md © ¢2’j>x} 19

jedi:lAjl=1 jeJi|Aj1>1

1
+ (k1 + (o1, + CQJ‘)TJ? + xTCij] . a](-l) + [5/4527]‘ + C;Ij:c +a2" (Md ® @2,j>x} . 0](-2)}

- Y el fa@l- Y [G+ole+aT (Mi©an)a] - fa. (@) =0,

jEJi:‘.Ajl:l jEJi:|Aj‘>l
where we denote oj(-T) = J(T)((a;)Tx + b7). Additionally, as (af,by),...,(aj,,b;, ) are pairwise
distinct, the experts (a}) "z +b},..., (a} ) @ +0b}_ are also pairwise distinct. Recall that the function

o satisfies conditions in Definition 2, then the following set is linearly independent

{x”UJ(T),x”fG*(x) veNLreN, 0<|y,7<2, j¢€ [k*]}

is linearly independent. Therefore, we obtain that k1 ; = ko ; =& =0, ¢1; = p1; = (2 = (3, = 0q
and ¢2j = @2 = (1,j = O4xq for any j € J; and ¢ € [{]. In other words, those results hold true for
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any j € [k,], which contradicts to the fact that at least one among d)ng]), (;ngjy), cpng]), cpgu]u), K1, K2,j

and &;, for j € [k,], is different from zero. Thus, we achieve the inequality (39), i.e

li — Dy(G, Gy 0
sl—r>r(l)G€gk(®)D2(GG ”fG fG*HL2 )/ 2( ’ )>

As a consequence, there exists some ¢ > 0 such that

i _
G’egk(@):ang(G,G*)ge’HfG fe.

LQ(M)/DQ(G, G*) >0

Global part: Given the above result, it suffices to demonstrate that

i _
G’egk(@):ang(G,G*ba’HfG fe.

Lz(u)/'DQ(G,G*) > 0. (53)

Assume by contrary that the inequality (53) does not hold true, then we can find a sequence of
mixing measures G, € Gi(0) such that Dy(G!,,G,) > &’ and

i | fer, = fa 2w

B N (AT A

which indicates that ||fa; — fa.llz2(u) — 0 as n — oo. Recall that © is a compact set, therefore,
we can replace the sequence G, by one of its subsequences that converges to a mixing measure

G’ € Gr(Q). Since Do(G),, Gx) > €', we deduce that Dy(G', Gy) > €.
Next, by invoking the Fatou’s lemma, we have that
2
0= tim |lfo, — fo. 3o = / liminf | e, (X) ~ fa. (X)| du(X).

Thus, we get that fo(x) = fa, (z) for almost surely 2. From Proposition 3, we deduce that G’ = G,.
Consequently, it follows that Da(G’, G.) = 0, contradicting the fact that Do(G’, Gx) > &’ > 0.

Hence, the proof is completed.

A.4 Proof of Proposition 1

Proof of claim (54): It is sufficient to show that the following limit holds true for any r > 1:

Ife = fe. 2
li inf =0. 54
50 Gegk(G):ll)I;J.(G,G*)Ss D3 (G, Gy) (54)

To this end, we need to construct a sequence of mixing measures (Gy,) that satisfies D3 (G, Gx) — 0
and

Gn
IS W
D3,r (Gn’ G*)
as n — 00. Recall that under the Regime 2, at least one among parameters aj, ..., a; is equal to
04. Without loss of generality, we may assume that a] = 04. Next, let us take into account the

sequence Gy = Y211 exp(B5:)8(sp, a ) in which
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o exp(B3;) = exp(Bly) = §exp(f;) and exp(Bg) = exp(B,_,,) for any 3 < i <k, + 1;
o (11 = By = P1y and By = By, _y) for any 3 <@ < ki 4 1;

o a =aj =a] =04 and a} =a} ;| forany 3 <i <k, +1;

o bT =07+ £, by =b; + 2 and b = b}, for any 3 <i < ky + 1,

where ¢ € R will be chosen later. Consequently, we get that

1 T 2¢c)"
Dy (G, G) = 3 exp(sn) [ + L) = o).

Next, we demonstrate that || fc, — fa.|12(4)/DPs,r(Gn, Gx) — 0. To this end, consider the quantity
Qn(z) = [E] 1 exp((ﬁlj) z+ B5;)] - [fa.(z) — fa. ()], and decompose it as follows:

K
=3 3" exolB) | exp((81) T@)o (@) Tw + 7) — exp((81) ) (@) Tw + 1)

j=licA;

ks
> > exp(Bh) [exp((ﬁﬁ-)Tx)fcn () — exp((81) ' 2) fa, (x)

j=1icA;
kx
3 (X exolBr) — exp(Bi) ) [ exp((8)) @) (@) T+ 5) - exp(85) @) fa, ()

j=1 icA;
= Ap(x) — Bp(x) + Ep(x).

From the definitions of 87;, al' and b}, we can verify that B, (z) = E,(x) = 0. Additionally, we can
represent A, (x) as

2
=3 exo(Bin) exp((B85) o) [0 (8]) - o (0])].
=1

When r is odd: By applying the Taylor expansion up to order r-th, we get that

2 Ty S (B = )
r) = Y exp(5i) exp((81y)T2) 3 PP - 0 (H) + Rue)

P = al
r 1 0 (o) b*
=[50 WO o] exp((810) T+ ) + (),
a=1 :

o) g (a) (p*
where R;(z) is a Taylor remainder such that Ry (z)/Ds ,(Gp, Gs) — 0. Note that | > _ 13+2%)0 20

a=1 aln”
c’"}
to the fact that A,(x) = 0. From the above results, we deduce that Q,(z)/D3,(Gn,G«) — 0, or
equivalently, [fa, () — fa.(x)]/D3r(Gn, Gx) = 0 as n — oo for almost surely z. As a consequence,

we achieve that || fa, — fa.llL2()/D3,r(Gn, Gx) = 0

is an odd-order polynomial of ¢. Thus, we can choose ¢ as a root of this polynomial, which leads
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When r is even: By means of the Taylor expansion of order (r 4 1)-th, we have

2 g _prya
Aule) = 3 (i) esn((50) ) 32 I 006 4 Ry
=1 a=1

_ ﬁ (1 + 220 (b7)

a aln”

: ca] exp((B11) @ + B5)) + Rel(x),

a=1

a) (o) (p*
where Ry(z) is a Taylor remainder such that Ry(z)/Ds,(Gyp, Gy) — 0. Since | St (120 20 |

a=1 aln”

ca] is an odd-degree polynomial of variabel ¢, we can argue in a similar fashion to the scenario when

7 is odd to obtain that || fc, — fa.llr2(u)/Psr(Gn, Gx) — 0.

Combine results from the above two cases of r, we reach the conclusion of claim (54).

A.5 Proof of Theorem 4

Based on the result of Proposition 1, we demonstrate that the following minimax lower bound holds
true for any r > 1:

_inf sup Ef,[Ds.(Gn, G)] 2 n~1/2, (55)
Gn€G(O) GEGL(O)\Gk, —1(O)

Indeed, from the Gaussian assumption on the noise variables, we obtain that Y;|X; ~ N (fq, (X:), 0?)
for all i € [n]. Now, from Proposition 1, for sufficiently small ¢ > 0 and a fixed constant C; > 0 that
we will choose later, we can find a mixing measure G, € G;(0) such that D3, (G, Gx) = 2¢ and
I fa, — fa.llL2(u < Cie. From Le Cam’s lemma [35], as the Voronoi loss function D3, satisfies the
weak triangle inequality, we obtain that

o inf sup IEfG [DS,T (am G)]
Grn€Gr(O) GEGL(0)\Gk, —1(O)

~ 8
2 €-exp(—nl far — fa. H%Q(u))’
3 oG (56)

eXp(—TLEXN“[KL(N(fgl* (X)’ U2)aN(fG* (X)’ 02))])

where the second inequality is due to the fact that

(fa (X) —fc*(X))z.

202

KL(N(fG;(X)a02)7N(fG*(X)>J2)) =

1/2 2

By choosing ¢ = n~'/2, we obtain that ¢ - exp(—Cine?) = n='/2exp(—C1). As a consequence, we
achieve the desired minimax lower bound in equation (55).
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A.6 Proof of Proposition 2

We need to prove that the following limit holds true for any r > 1:

I fe — fa.llL2(u
li inf = 0. 57
£20 GG, (©) s (G0 <= Dy (G, Ga) (57)

For that purpose, it suffices to build a sequence of mixing measures (G,,) such that both D3 ,.(G,,, Gx) —
0 and

I fe, — fallr2q
D3,T(GH)G*) - 07

as n — oo. To this end, we consider the sequence G,, = Zf;”fl exp(ﬁgi)é(ﬁﬁ7a?7b?), where

o exp(Ay) = exp(Aly) = S exp(5y) + yber and exp(AL) = exp(8Yy_y) for any 3 < < ky + 1
* Bl = By = Piy and Bf; = Bi;_y) forany 3 <4 < ki + 1
e a =ay =aj and @ =a | for any 3 <i < ky +1;
) b?:b’{+%, bgzb’{—%andb?:bil for any 3 <17 <k, + 1.
As a result, the loss function D3, (G, G4) is reduced to
Dy (G, G) = o+ [exp(B8) + 7] - - = O ™) (5%)
which indicates indicates that Ds3,(G,,Gx) — 0 as n — oo. Now, we prove that | fg, —

fc.llz2(u) /D3, (Gn, G«) — 0. For that purpose, let us consider the quantity () := [E?;l exp((ﬁfj)Tx—&—
Bo;) - [fan(z) — fa.(x)]. Then, we decompose Qn(z) as follows:

ks
=3 exp(B) [exp((ﬂﬁ-)Tx)((a?)Tw +0}) = exp((B5;) " 2)((a5) "= + 0)

j=licA;

K
=S exn(8) | exp((81) @) fa, (@) — exp((87) @) fa ()]

j=licA;

Ky
+ 30 (S exp() — exp(6i,)) [exp((81,) To) (@) T + ) — exp((81)) ") e (2)

J=1 i€A;
= Ay (z) — Bp(z) + Ep(x).

From the definitions of 7}, al' and b, we can rewrite A, (z) as follows:

%exp(ﬁéﬁ) exp((871) @) [(0F — b) + (05 — b)) =

2
r) = 3 5 exp() expl(551) ) (0 — b7) =
=1
Additionally, it can also be checked that B, (x) = 0. Next, we have E,(z) = O(n~("+1), therefore,
it follows that E,(z)/Ds,(Gpn,G«) — 0. As a consequence, Qn(z)/D3,(Gpn,Gx) — 0 as n —
oo for almost surely z. Since the term Z?*Zl exp((ﬁfj)Tx + Bp;) is bounded, we deduce that
[fa,(z)— fc.(x)]/Ds, — 0 for almost surely x. This result indicates that || f, — fa.ll£2(u)/DPsr — 0
as n — oo. Hence, the proof of claim (57) is completed.
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A.7 Proof of Theorem 5

By leveraging the result of Proposition 2 and the arguments for Theorem 4 in Appendix A.5, we
achieve the following minimax lower bound for any r > 1:

_inf sup Ef,[Ds,(Gn, G)] 2 n~1/2, (59)
Gn€Gr(©) GEGL(O)\Gr, _1(O)

B Identifiability of the Softmax Gating Mixture of Experts

Proposition 3. If fc(z) = fa,(x) holds true for almost surely x, then we get that G = G'.

Proof of Proposition 3. Since fg(x) = fq,(x) for almost surely z, we have

k kx
> Softmax((81) @+ Boi) - bl m) = Y Softmax ((81) Tz + 85) - hlz,m)). (60)
i=1 =1

As the expert function h satisfies the conditions in Definition 1, the set {h(z,n}) : i € [K']}, where
n,---,N are distinct vectors for some k" € N, is linearly independent. If k # k., then there exists
some i € [k] such that n; # 5 for any j € [k.]. This implies that Softmax((B1;) "« + Boi) = 0, which
is a contradiction. Thus, we must have that k = k.. As a result,

{Softmax((ﬁh-)Tx + ﬁm) i [k]} - {Softmax((ﬂi"i)T:c n 55;) i [k:*]},
for almost surely . WLOG, we may assume that

Softmasx((81:) "z + o) = Softmax ((85) Tz + ;). (61)

for almost surely z for any i € [k,.]. It is worth noting that the Softmax function is invariant to
translations, then equation (61) indicates that 81; = B7; + v1 and Bo; = 3; + vo for some vy € RY
and vgp € R. However, from the assumptions 31x = ], = 04 and By, = 3, = 0, we deduce that
v1 = 04 and vy = 0. Consequently, we get that f1; = 55, and Bo; = f; for any i € [ky]. Then,
equation (60) can be rewritten as

ks ks
>~ exp(fos) exp ((B1) T ) hlw,m) = > exp(G) exo ((61) ) hlw,m), (62)
i=1 i=1

for almost surely x. Next, we denote Py, Pa, ..., Py, as a partition of the index set [k.], where m < k,

such that exp(fo;) = exp(f;,) for any i,i" € P; and j € [k,]. On the other hand, when i and 4’ do
not belong to the same set P;, we let exp(f5o;) # exp(Boir). Thus, we can reformulate equation (62)
as

> exp(Boi) exp ((B1) T hlw,m) = Y2 Y exp(G) exp ((57) @ ) (),
j=1icP; j=1i€P;

for almost surely . Recall that 81; = 87; and fo; = (§; for any i € [k,], then the above leads to

{miie Py ={n :ie P},
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for almost surely = for any j € [m]. As a consequence,

m m
G = Z Z eXp(BOi)(S(ﬁliﬂn) = Z Z eXp(ﬁOZ)d(ﬁﬁ,n:) — G*
j=14icP; j=licP;
Hence, we reach the conclusion of this proposition. O
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